OPTIMAL REGULARITY OF MIXED DIRICHLET-CONORMAL
BOUNDARY VALUE PROBLEMS FOR PARABOLIC OPERATORS

JONGKEUN CHOI, HONGJIE DONG, AND ZONGYUAN LI

AssTrRACT. We obtain the regularity of solutions in Sobolev spaces for the mixed
Dirichlet-conormal problem for parabolic operators in cylindrical domains with
time-dependent separations, which is the first of its kind. Assuming the boundary
of the domain to be Reifenberg-flat and the separation to be locally sufficiently
close to a Lipschitz function of m variables, where m = 0,...,d — 2, with respect
to the Hausdorff distance, we prove the unique solvability for p € (2(m + 2/(m +
3),2(m + 2)/(m + 1))). In the case when m = 0, the range p € (4/3,4) is optimal in
view of the known results for Laplace equations.

CONTENTS

1. Introduction 2
2. Notation and main results 4
2.1. Notation 4
2.2. Main result 6
3. Auxiliary results 8
3.1. L, estimate 8

1

3.2. Poincaré and embedding inequalities 1

3.3. Localization and reverse Holder’s inequality 13
4. Estimates with time-independent separation and constant coefficients 17
4.1. Estimates near curved boundary 17
4.2. Estimates near flat boundary 19
5. Proof of Theorem 2.4 21
5.1. Decomposition 21
5.2. Level set estimates 28
5.3. Proof of Theorem 2.4 31
Appendix A. 31
References 33

2010 Mathematics Subject Classification. 35K20, 35B65, 35R05.

Key words and phrases. Mixed boundary value problem, Parabolic equation, Reifenberg flat domains.

J. Choi was supported by the National Research Foundation of Korea (NRF) under agreement
NRF-2019R1F1A1058826.

H. Dong was partially supported by the Simons Foundation, grant no. 709545, a Simons fellowship,
grant no. 007638, and the NSF under agreement DMS-2055244.

Z. Li was partially supported by an AMS-Simons travel grant.

1



2 J. CHOI, H. DONG, AND Z. LI

1. INTRODUCTION

In this paper, we obtain the maximal regularity for divergence form parabolic
equations with mixed boundary conditions:

Pu-Au=D;gi+f inQ,

Bu = gin; on NT, (1.1)

u=0 on DI,
where for some T € (—c0, 00], QT = (00, T) x Q is a cylinder with the base Q c R?
being either bounded or unbounded. The lateral boundary of Q" is decomposed
into two non-intersecting components D’ and N7 on which we impose two differ-

ent types of boundary conditions. We consider both cases when DT, N7, and their
interfacial boundary (separation) I'” are cylindrical and non-cylindrical.

g — f

Ficure 1. Domains with cylindrical and non-cylindrical I

We also consider the equations in a finite height cylinder, in which case, we
impose the zero initial condition at t = S for some finite S < T. For the parabolic
operator # and the conormal derivative operator 8

Pu = —u; + D,-(aijD]-u +a'u) + b’ Diu + cu,
Bu = (aijD]-u +a'u)n;,

where n = (n3, ..., n,) is the outward unit normal to JQ2, we always assume that the
leading coefficients (a”/) are symmetric, and that there exists A € (0, 1] satisfying

a(t, & 2 AP, 1aT(t 2] < AT
for any & € R? and (t,x) € R x R?. We also always assume
la'| + b + |e| < K

for some K > 0.

Elliptic and parabolic equations with mixed boundary conditions arise natu-
rally in physics and material science. For example, when a block of floating ice
is melting into liquid water, the ice-water interface maintains zero temperature
(Dirichlet) while the ice-air interface is insulated (Neumann). Such problem also
has applications in the combustion theory. See, for example, [27, 28]. We also
refer to [21] for an application in modelling exocytosis, which is a form of active
transport mechanism. It is worth mentioning that the mixed problems for the heat
or Laplace equations are commonly called Zaremba problem in the literature.
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In contrast to the purely Dirichlet or conormal boundary value problem, solu-
tions to mixed boundary value problems can be non-smooth near the separation I
even if the domain, coefficients, and boundary data are all smooth. In the literature,
elliptic equations with mixed boundary conditions have been studied quite exten-
sively both from the PDE perspective and harmonic analysis point of view. We
refer the reader to [33, 29, 3,31, 19, 17] and [35, 2, 4, 7, 10] and the references therein.
In these papers, regularity of solutions in Hélder, Sobolev, and Besov spaces as well
as the non-tangential maximal function estimates were obtained. We also refer the
reader to [1, 12] for results about the Kato square root problem for elliptic equations
and systems with mixed boundary conditions and their applications.

However, there are relatively few papers dealing with parabolic equations with
mixed boundary conditions. In [34], Skubachevskii and Shamin established the ex-
istence, uniqueness, and stability of solutions to parabolic equations in a cylindrical
domain with time-independent separation I' under minimal regularity assump-
tions on initial data, by using a semigroup approach and properties of difference
operators in L-based Sobolev spaces. Hieber and Rehberg [20] studied systems of
reaction-diffusion equations with mixed Dirichlet-Neumann boundary conditions
in 2D and 3D cylindrical Lipschitz domains satisfying Groger’s regular condition.
Assuming an implicit topological isomorphism condition on the second-order op-
erator, they proved the maximal L, estimates by using harmonic analysis and a
heat-kernel method. See also [18] for a further result about equations with nonho-
mogeneous boundary data as well as an earlier result in [16] about the elliptic mixed
boundary value problem. We also mention the work [32, 23] for parabolic equa-
tions in non-cylindrical domains. In [32] Savaré considered parabolic equations
in a non-cylindrical domain with C'"! boundary and separation I'. Under certain
condition on the excess of I' with respect to t, he introduced an approximation
approach to general abstract evolution equations in L,-based Sobolev spaces and
obtained optimal regularity under quite weak assumptions on the data. Recently
in [23], Kim and Cao studied linear and semilinear parabolic equations in non-
cylindrical domains with the mixed Dirichlet, Neumann, and Robin conditions
and Lipschitz leading coefficients. They considered smooth domains which are C
in t and C? in x and general DT and N7, and proved the solvability in L,-based
Sobolev spaces. In [11], a maximal regularity result was established for parabolic
equations with time irregular coefficients and mixed boundary conditions when
the exponents are in a neighborhood of 2. See also [14] for an optimal L7 maximal
regularity result when p < 2 and the coefficients are BV in the x variable. We
remark that in all these work, either p is assumed to be 2 or an implicit condition
is imposed on the operator, so that p needs to be sufficiently close to 2.

In this paper, we consider parabolic equations in a cylindrical domain with
rough boundary and separation and with vanishing mean oscillation (VMO) co-
efficients. Let m = 0,...,d — 2 be an integer. Our main result, Theorem 2.4, reads
that if JQ) is Reifenberg-flat and the separation T  is locally sufficiently close to a
Lipschitz function of m variables with respect to the Hausdorff distance, then for

any p € (2(721:32 2, 25;”:12) ), f, 8 € L,(Q"), and sufficiently large A, there is a unique

solution u € 7‘{,} (@Q") to (1.1). See Section 2.1 for the definitions of function spaces.
In the special case when I' is Reifenberg-flat of co-dimension 2, i.e., m = 0, we get
the solvability when p € (4/3,4), which is an optimal range in view of the known
results for the Laplace equation in [33] and for elliptic equations in [7].
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Let us give a brief description of the proof. In the first step, we show the L,
solvability by approximating I by piecewise time-independent separations and (2
by extension domains, and solve the approximating equations using the Galerkin
method. Note that one cannot directly test the equation with u because the usual
Steklov average argument is not applicable here. The second step is to derive an
estimate of the form

”DMHL;’

2(m+2
< CIDul,p, Ve [2,202),

L& Q1)) m+1

where u is a weak solution to a homogeneous equation with constant coefficients
in the half cylinder Q7 = {(t,x) : t € (-1,0), |x| < 1,x' > 0}. It satisfies the mixed
homogeneous boundary conditions on the flat boundary {x' = 0} with a time-
independent separation I' defined by a {x? = ¢(x%,...,x"*2)}, where ¢ is a Lipschitz
function, ¥’ = (x!,...,x"*2) and x” = (x"*3,...,x%). This will be achieved by
a boundary Caccioppoli type inequality and the corresponding elliptic estimate
obtained in [10], which in turn is a consequence of the Besov type estimate estab-
lished in [31, 4]. Since dQ and T are not smooth, the usual flattening boundary
argument does not work in our case. To approximate the domain by domains with
flat boundaries and separations, the third step in the proof is to apply the cutoff
and reflection argument first used in [8, 9] for equations with the pure Dirichlet or
conormal boundary condition. Such argument was also used recently in [6, 10] for
elliptic equations with mixed boundary conditions. Here an additional difficulty
is the extra u; term which appears on the right-hand side after the reflection. For
this, we use a delicate multi-step decomposition procedure. Finally, we complete
the proof of Theorem 2.4 by utilizing a level set argument introduced by Caffarelli
and Peral [5] and the “crawling of ink spots” lemma due to Krylov and Safonov
[30, 25].

The rest of the paper is organized as follows. In Section 2, we introduce the
notation and function spaces, and then give our main result, Theorem 2.4 for the
solvability of (1.1) in Sobolev spaces. In Section 3, we prove several auxiliary
results including the L, solvability, Poincaré and embedding inequalities suitable
to our problem, and a reverse Holder’s inequality for weak solutions to the mixed
boundary value problem. Section 4 is devoted to the boundary estimates for
equations with constant coefficients near a curved boundary or a flat boundary. In
Section 5, we give the proof of Theorem 2.4.

2. NOTATION AND MAIN RESULTS

2.1. Notation. Throughout the paper, we always assume that € is a domain (open
and connected, but not necessarily bounded) in R? and Q = (=0, ) X Q is an
infinitely long cylinder, which is a subset of

RM = (X=(x):teR, x= (..., x%) eRY.

We also assume that the boundary of Q, denoted by dQ = (—o0, c0) X dQ), is divided
into two disjoint portions D and N, separated by I'. More precisely, let D C JQ be
an open set (relative to JQ) and

N=0Q\D, T=DnN.
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Note that the separation I" between D and N is time-dependent unless explicitly
specified otherwise. In Section 2.2, we will impose certain regularity assumptions
ondQandT.

For T € (—oo, 00], we define

Q" ={XeQ:t<T)
and similarly define DT, N7, and I'". For R > 0, we set
Br(x) ={y € R”:lx -yl <R}, Qgr(x) = QNBr(),
Qr(X) = (t— R H X Br(x), Qr(X) =QN Qr(X),
Qr(X) = (t — R?,t + R?) x Bg(x).
We use the abbreviations Br = Br(0) and Qr = Qg(0), etc. For a function f on Q,

we denote .
(flo = @fodX :)gde.

Now we introduce function spaces and the notion of weak solutions to mixed
boundary value problems. To start with, we use the unified notation for cylinders
with finite or infinite height' for given S, T with —c0 < § < T < o0, we set

={Xe@Q:S<t<T}
XeD:S<t<T), (2.1)
(XeN:S<t<T}
We write X = (t,x) = (t,x',x”) € R*!, where x’ € R" and x” € R®, d; +d, = d. For
p,q € [1, 00), we define L,(;’XH)L;’ (Q) to be the set of all functions u such that

1/q

qalp
Ul ey v 4y 2= ulPlsdx’ | dx’dt] < oo,
g ([ [ oo

where I is the usual characteristic function. Similarly, we define L,(qt’x/’)L;/ (Q) with
p=ocoorq=oco,andL; L(”C )(Q). We abbreviate

LILYQ) = Lyp(@Q), L@ = Ly(@.
Let C;(Q) be the set of all infinitely differentiable functions on R%*! having a

compact support in [S, T]x Qand vanishing in a neighborhood of D. We denote by
W0 ! (Q) and W1 ! (Q) the closures of C°°(Q) in WO (Q) and W! p(Q) respectively,
where

Z)
N =

WOl(Q) {u:u,Due Lqp(é)}/ W,;/’;(@) = {u:u,Du,u; € Ly,(Q)).

We write WO;(Q) W0 1(Q), etc.
Byue I[—Ip’lz)(Q) we mean that there exist ¢ = (g1,...,%4) € LP(Q)"’ and f € L,(Q)
such that
u=Digi+f inQ gmni=0 onAN,
where n = (ny,...,n4) is the outward unit normal to dQ, in the distribution sense
and the norm

s @ = inf{||g||Lp@) +1flly @ : # = Digi + f in @ gini =0 on N}
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is finite. We set
~ 01 (7 -1 (A
7{;@(@) = {u uew »(Q), ut € alf@(Q)}
equipped with a norm
”””7’,1,@@ = Ilellwor @) + ””t”H;})(@)'

When Q has a finite height (i.e., —00 < S < T < 0), we define V,(Q) as the set of
all functions in Wg’l (Q) having the following finite norm

”u”Vz(@) = esssup [lue(t, ‘)HLz(Q) + ”DM”LZ(Q)-
S<t<T

When Q has an infinite height, we define V; (Q) asthesetof u € VZ(Q Nt x): |t <
To}) for all Ty > 0 having the finite norm ”””vz(@)- We then denote by V, 5(Q) the
closure of W2 (Q) in V>(Q).
We write u € L 10c(Q) if nu € L, ,(Q) for any infinitely differentiable function
d+1 . . . . 1 A~
on R“** having a compact support, and similarly define ‘Hp’ D,loc(Q)’ etc.

Definition 2.1. We say that u € 7-{; o (Q) satisfies the mixed boundary value

problem

loc

Pu=D;gi+f in Q
Bu = gin; on N, (2.2)
u=20 on @,

where ¢ = (g1,.-.,84) € Lpioc(@) and f € L, 1o.(Q) if
f u@ydX + f(—aiijuDi@ - aiuDi(p + biD,-u(p + cup)dX = jj(—giD,-qo + fp)dX
Q Q Q

for all p € C;;(Q) that vanishes for t = S and T. For S > —oo, we also say that
u € 7{; @loc(é) satisfies (2.2) with the initial condition u(S,-) = ¢ on Q, where
P € Lyoc(Q) if

f u@ydX + f(—aiijuDi(p —a'uD;p + b'Djug + cup) dX
Q Q 2.3)

=—f®ﬂwﬁwﬂ—IWﬁAM
Q Q

forall p € Cg(@) that vanishes for t = T.

2.2. Main result. We impose the following regularity assumptions on the domain

and the leading coefficients. The first one is the so-called Reifenberg flat conditions

ondQandT.

Assumption 2.2 (y;m,M). Letm € {0,1,...,d — 2} and M € (0, o0).

(a) For any xp € dQ and R € (0, Ro], there is a coordinate system depending on x
and R such that in this coordinate system, we have

{y:y" > xy+ YR} N Br(xo) € Qr(x0) € {y : y' > x5 — YR} N Br(xo).  (2.4)
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(b) For any Xy = (fo,x9) € I and R € (0, Ro], there exist a spatial coordinate system
and a Lipschitz function ¢ of m variables with Lipschitz constant M, such that
in the new coordinate system (called the coordinate system associated with
(Xo, R)), we have (2.4),

(0QN Qr(Xo) N i, ) : Y* > (W, ..., y" ) +yR}) € D,

(0QN Qr(Xo) N i(s, ) : v* < §(,...,y"*?) = yR}) C N,
and
Plxy, ..., X5 = x5
Here,zif m = 0, then the function ¢ is understood as the constant function
¢ = xg.

The second is the small BMO condition on the leading coefficients.

Assumption 2.3 (6). For any X € QandR € (0, Rg], we have
{ w00 - @hamlix <o,
Qr(Xo)

Our theorems deal with cylinders with infinite or finite height. We rewrite (1.1)
in the unified form

Pu—Au=D;gi+f in Q
Bu = gin; on N, (2.5)
u=0 on D,

where Q, N, and D are defined in (2.1), and —c0 < S < T < 0. The main theorem
of the paper is the following solvability result for (2.5) in Sobolev spaces.

Theorem 2.4. Let Ry € (0,1], m € {0,1,...,d -2}, M € (0,0), and p € (2531:32), 23;’:1”).
There exist constants y, 0 € (0,1) and Ag € (0, o) with
(7, 0) = (y,0)d, A, M,p), Ao = Aod, A,M,p,K,Ry),

such that if Assumptions 2.2 (y;m, M) and 2.3 (0) are satisfied with these y and 0, then

the following assertions hold.

(@) When S = —oo, forany A > Ao, ¢ = (81,--.,84) € Lp(@)d, and f € Lp(@), there exists
a unique solution u € 7{; i)(é) to (2.5), which satisfies

B 1/2 . . -1/2 ~
IDuly, @ + Allull, @ < Cligl, @ + CA™2IIfll, @ (2.6)

where C = C(d, A, M, p).

(b) For the initial boundary value problem on a cylindrical domain of finite height, we can
take A = 0, i.e., when S = 0 and T € (0, 00), for any g = (g1,...,84) € L,,(@)d and
fe L,,(Q), there exists a unique solution u € 7’(;/@(@) to (2.5) with A = 0 and the
initial condition u(0,-) = 0 on Q. Moreover, we have

”u”?{;i)(@) < CIIgIILp(@) + C”fHLp(@)r

where C = C(d, A, M,p,K, Ry, T).
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3. AUXILIARY RESULTS
Throughout this paper, we use the following notation.

Notation 3.1. For nonnegative (variable) quantities A and B, we denote A < B if
there exists a generic positive constant C such that A < CB. We add subscript
letters like A <, B to indicate the dependence of the implicit constant C on the
parameters a and b.

3.1. L, estimate. In this subsection, we prove the solvability of the mixed bound-
ary value problem in V, 5(Q) under the following assumption that the boundary
portions D and N vary continuously in #, which is weaker than the condition (b)
in Assumption 2.2 (y; m, M); see Lemma A.1.

Assumption 3.2. For any ¢ > 0 and L > 0, there exist a time partition
max{S,—-L} =ty <t <---<t, =min{T,L}
and decompositions dQ = D UN*, k € {1,...,n}, such that
D(t) c D%, HYD(),DH) < e, Vte [t i), (3.1)

where D(t) = {x € dIQ : (t,x) € D} and H is the usual d-dimensional Hausdorff
distance.

Note that Assumption 3.2 excludes the following possibility:

In the proposition below, we do not impose any regularity assumptions on
a’l = all(t,x). It generalizes the classical solvability result in [26] by allowing a
rough ) and a time-varying I'.

Proposition 3.3. Let Q be a bounded or unbounded domain in R?. Under Assumption
3.2, there exists Ag > 0 depending only on d, A, and K such that the following assertions
hold. Forany A > Ao, g = (81,-..,84) € Lz(@)d, fe Lz(@), and Y € L,(Q), there exists a
unique u € V, 5(Q) satisfying

Pu-Au=Digi+f inQ

Bu = gin; on /}/, (32)
u=20 on D,
U=y on {S}xQ if S> —co.

Moreover, we have

IDull,, g + A2l g San gl + Al + e (33)
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and
lll, @y < Il + Cd, A)(IIgll,@ + A llL@)- (34)

Here the initial condition u = 1 and the term ||{||r,«q) in the estimates only appear when
S > —oo.

The rest of this subsection is devoted to the proof of Proposition 3.3. In the fol-
lowing, we call a domain Q(C R?) an extension domain if it is bounded and admits
an bounded extension W%(Q) - W%(]R"’). In particular, the compact embedding
W%,D(Q) — [,(Q) holds. The following lemma should be classical, which we state
explicitly for completeness.

Lemma 3.4. Let Q be an extension domain in R and D c Q. Then there exists an
orthogonal basis {w;} for W) ,(Q) satisfying

fwiwj dx = 61’]’/
Q

where 6;; is the Kronecker delta symbol.

Proof. The lemma follows from the same argument used in [13, §6.5], by finding
Laplacian eigenfunctions with the help of the compact embedding W(Q) < L»(Q)
and the spectral theory for compact operators. We omit the details. u

Using Lemma 3.4 and the Galerkin method, we obtain the following L, solv-
ability of the mixed problem (3.2) with a cylindrical separation.

Lemma 3.5. Proposition 3.3 holds when D and N are time-independent.

Proof. Approximating g and f by L, functions with compact support in time, it
suffices to consider the case when —co < S < T < co. When the spatial domain Q
is a bounded and regular (i.e., an extension domain), the lemma follows from the
standard Galerkin method together with Lemma 3.4. The energy inequalities (3.3)
and (3.4) are standard, with constants independent of the spatial domain. See, for
example, [26, §4, Chapter III].

When Q) is unbounded or irregular, we take a sequence of expanding smooth
domains QF c QN B, such that for anyx € (@QNYN By, dist(x, dQ) < 1/k,ie., QX /1 Q
as k — oo. Set

NF = {x € 90 : dist(x, N) < 1/k},
where N = {x € dQ : (t,x) € N'}. We also set
Q=S T)xQ, N=(ST)xN DF=(ST)x @0\ Nb.

We may assume that k is sufficiently large so that D* and N are not empty. Now
we solve the mixed problem in Qf with zero Dirichlet boundary condition on D,
homogeneous conormal boundary condition on N¥, and initial data 1. Since QF is
an extension domain, the solution u* € V, i (QF) exists and is uniformly bounded.
We extend 1 to be zero, still denoted by uk, on

Q= (5, T)x {x e Q\ QF : dist(x,N) > 2/k}.
Then u* is in V5(QF U QF) and vanishes on

{(t,x) € D : dist(x, N) > 2/k}.
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By a diagonal argument, we can pick a subsequence, again denoted by u*, such
thatask — oo,

u¥ —u, Duf — Du weakly in Ly((S, T) X K),
uF > u weakly" in Lea((S,T) X K)
for any compact set K C Q. Due to the estimates (3.3) and (3.4), which are uniform
with respect to k, by taking the limit in the weak formulation and using Holder’s

inequality, we see that u € Vz,z“)(Q) satisfies (3.2) as well as the estimates (3.3) and
(3.4). The lemma is proved. [ |

We are ready to prove Proposition 3.3.

Proof of Proposition 3.3. Again, by the standard approximation argument, it suffices
to consider the case when —c0 < S < T < 0. Let ¢ > 0 be given. By Assumption
3.2, there exists a time partition

S=ty<thh<---<t,=T
and decompositions dQ = D UN%, k € {1,2,...,n}, such that (3.1) holds. From
Lemma3.5,fork € {1, 2, ...,n}, there exists a unique u’§ € Vg’l((tk_1, )X Q) satisfying

Pulg - /\M’é =D;gi + f in (f_1, ) X Q,

Buk = gin; on (fx-1,t) x N*, (3.5)
up =0 on (fx-1,t) x D', '
uk = k-1 on {1} X Q,

where 10 = ¢, with the estimates
DUt 1 %0 + AN NEa s 002
San I8Nt ix) + A2 il toxay + 1857 (et i)
and
N () M (b v
< Nl (b, - c(d, A ATH?
< e (tkm1, o) + C, AN Lt ix) + AN (s %) )-
We then see that the function u, defined by

ue= Y Wl yxa 0 Q=(S,T)xQ
k=1
belongs to Vz,z“)(é) and that the estimates (3.3) and (3.4) hold with u, in place
of u. Thus from the weak compactness and Alaoglu’s theorems, there exist a
subsequence of {u.}, denoted by {u,,}, and a function u € V2,i)(é) such that

ue, = u, Du, — Du weaklyin L,(Q),

e, = u  weakly” in Lo (Q).
Moreover, u satisfies (3.3) and (3.4).
To prove that the limit function u satisfies (3.2), we let ¢ € Cg(@) vanishing for
t = T. Since ¢ vanishes in a neighborhood of D and has the compact support, we
see that
dist(supp ¢, D) > 0.
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Hence, for sufficiently large 7, dist(supp ¢, D) > ¢&;, which in turn implies that ¢
vanishes in a neighborhood of

U(t;:) y t(l) X Dt

where t,(:) and D'’ are given in Assumption 3.2. By testing (3.5) with ¢, we have

f t(') Yt dx+f fu @ dxdt

f(—aiijulgiDi(p - aiulgiD,'(p + biDiulgi(p +(c— A)u’éfp) dx dt

10

J,

0

=~ [, o= forana= [ 600,

Thus, by taking summatlon with respect to k, and then sending i — oo, we see that
u satisfies (2.3). The proposition is proved. [ |

3.2. Poincaré and embedding inequalities. In this subsection, we present some
inequalities suitable to our problem. The first lemma is a Sobolev-Poincaré in-
equality on small Reifenberg flat domains, proved in [6].

Lemma 3.6 ([6, Theorem 3.5]). Let p € (1,d) and Q be a domain in RY satisfying
Assumption 2.2 (a) with y € (0,1/48], and let xo € IQ and R € (0,Ro/4]. Then for any
u € Wy (Qar(x0)), we have
= (1) x) Ly 1oy @rx0)) Sep IDUIIL (Car () -
When u = 0 on a surface ball, we can remove the average from the left-hand

side.

Lemma 3.7. Let Q be a domain in R? satisfying Assumption 2.2 (a) with y € (0,1/48].
Let xo € dQ, R € (0,Ro/4), and u € W;(QQR(XO)). If there exist some zy € dQ N Br(xp)
and a € (0,1) such that

Bar(z0) € Br(x0), u =0 on dQN Bar(zo),
then
”u“Ldp/(d,r,)(QR(Xo)) sd,p,a ||Du||Lp(QZR(x0))/ (36)
provided that p € (1,d), and
llL, @r o)) Sap.a RIDUIL, @ x0)) (3.7)
provided that p € (1,00). The same results hold for xy € Qand R € (0, Ro/8] with Qsg(xo)
in place of Qor(xo).

Proof. The estimate (3.7) is a simple consequence of Holder’s inequality and (3.6),
the proof of which is the same as that of [7, Corollary 3.2 (a)]. Here the chain of
inclusions

Qr(x0) € r(20) C Qur(z0) € Qsr(%0)

is also used when x; € Q. [ ]
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We have the following parabolic Sobolev-Poincaré inequalities with mixed
norms, the proof of which is based on the embedding results in [22, Lemmas
5.3 and 5.4] along with Sobolev-Poincaré inequalities for each x and t variables.
We present the proof in Appendix A. Note that the usual zero extension technique
as in [7, Corollary 3.2] does not work for the parabolic case, since u; might not be
in H_, after the extension.

Lemma 3.8. Let Q be a domain in RY satisfying Assumption 2.2 (a) with y € (0,1/48],
and let Xy € Q and R € (0, Ry/4] such that either

QrXg) cQ or Xp€0Q.

Ifp,g €[1,0], po € [p, ], go € (g, o], and
d 2 d 2
-+ -<14+—+—,
P 9 Po 4o
then for u € Wg:; (Qur(X0)) satisfying
ur=Djgi  in Qr(Xo)
in the distribution sense, where § = (g1,...,84) € Lq,p(QzR(Xo))d, we have

llu — (W)@ xo)llL,  (@x (o))

R1+d/p0+2/q0_d/p_2/q(||DM|IL (38)

Sd i @Qr(Xo) T “g“Lq/p(QZR(XO)))'

If we further assume that there exist Yy € dQ and a € (0,1) such that
u=0 on Quwr(Yo)NdQ, Qar(Yo) C Qr(Xo),

P4:Po.g0

then we have

R1+d/po+2/40*d/1’*2/’7(IIDu| IL

el @x(x0)) Sdpapodoa @) + 181, @ucxe)- (3.9)

To end this subsection, we prove the following inequality which will be fre-
quently used in our cut-off argument.

Lemma3.9. Letp € (1, 00)and Assumption 2.2 (y; m, M) be satisfied withy € (0, m],

and let Xy € I', R € (0, Ro], and p € [R/8,R]. Then for any u € Wg’l(Qp(Xo)) vanishing
on D N Q,(Xo), we have
lulall,@,»x0) Sdmp ¥PIDUIL,@, X0
where
A={(sy):y' <xg+2yR, y¥* > —2yR}
in the coordinate system associated with (Xo, R).

Proof. By translation we may assume that X, = (0,0). Fix the coordinate system
associated with the origin and R, and we denote by D,; the set of all grid points
z = (yR,kyR), where k = (ka, ..., k;) € Z%"!, such that

z€Qyp, Q%),R(z) Nix:a2> o} # 0.
By Lemma 3.7 applied to €2, VATE/R (z), we have

et M, (@, s, @) Samp YRIDUE, L, @, s, o @)
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Since
(Qp2nA)c U Q, 75,:(2) © U Q75 @ € Qy,

2Dy 2Dz
we have that
lu(t, Nall, @, < yRIDut, L, @,),
from which we get the desired estimate. |

3.3. Localization and reverse Holder’s inequality. In this subsection, we assume
that the lower-order coefficients of P are all zero, i.e.,

Pu = —u; + Di(aijD]-u).

We do not impose any regularity assumptions on a”/. Hereafter in this paper, we
always assume that T € (—oo, c0].
We first localize the estimate in Proposition 3.3.

Lemma 3.10. Let Q ¢ R? and Assumption 3.2 be satisfied. If u € H ,  (QT) satisfies

Pu = Digi n QT,
Bu=gmn; on NT, (3.10)
u=0 on DT,

where g = (1, - --,94) € Latoc(@QT)?, then for any X, € Q" and R € (0,1], we have

-1
||Du||L2(QR/2(X0)) San R ||u||L2(QK(XU)) + ||g||L2(QR(X0))’

Proof. We give a proof which also works when the L, norms are replaced by the L,
norms provided that the corresponding global estimate is available. By translation
we may assume that Xy = (0,0). Let

Rr=R(1-279, kel1,2,..}
and 1 be an infinitely differentiable function on R**! such that

0<m <1, n=1onQg, suppnCOg,,,,
|(7e)el + IDmef? < R722%.

Then nu € H, ,,(Q°) satisfies

Pmeu) — A(niu) = Digi.‘ +¢F in @,
Bneu) = gini on A, @3.11)
Mu =0 on 9P,

where Ay > Ay, Ag = Ao(d, A) = 0 is from Proposition 3.3, and
d I
g{f = T]kgi + Zal]DjT]ku/
=1

P d
g=- Z Dinkgi — (M)t + Z aDjuDin = A(e)-
i=1

ij=1
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By (3.3) applied to (3.11), we have
k 22k

2
DG ll@) + VARl @) (E t v

DM+ 1)l L2@p)-

+ VAl @)

k

+(1+2—k)|| s + ==
8llL2(@r) R\//\_k

R VA
Set
Uy = IDM)ll@)y, U =@y, F = Iglly@e)-

By multiplying both sides of the above inequality by ¢ and summing the terms
respect to k, we obtain

[

ka kfuk<cwz (2k zzj_ \/—)
+C?Z (1+

) Z ([/[k+1,

where we may assume Cy > (A +1)!/?, and each summation is finite upon choosing

C02k+2 2
)

e=1/4, /\k:(

Indeed we have

k=1
Co Zw: 2 Uy = i U i ef Uy
= RV k=1 k=2

Therefore,

[Se) C (o]

k L~ k

Y U< ZUHCF + ) U,

k=1 k=2
which implies the desired estimate. u

Lemma 3.11. Let o € (0,1), g1 € (thf),Z) and y € (0, %]. If Assumptions 2.2 (a) and

3.2 are satisfied, and if for any X € I and p € (0, Ro/4], there exists Y € dQ such that
Qup(MNIQC D, Qup(Y) C Qu(X), (3.12)
then the following assertion holds. Let u € '7{21 D7 loc Q") satisfy (3.10) with g =
(Q1,---,84) € Latoc(@T). Then for any X, € QT and R € (0, Ro] satisfying either
Qrp(Xo)cQ or Xpe€oQ,

we have

2y1/2 q1\1/m 2\1/2
(|Du| )QR/lﬁ(X) ~d/\0(lh (|Du| I)QR(X) + (|g| )QR X)



MIXED BOUNDARY VALUE PROBLEM 15

Proof. By translation, we may assume that Xy = (0,0). In the case when Qg/» C Q,
by Lemma 3.10 applied to u — (u)g,,,, we have

211/2 -1 2)1/2 2L/
(IDu| )Q/R/B SR (lu- (M)QR/4| )Q/R/4 + (|g| )Q/R/4’

from which together with (3.8), we get the desired estimate. In the case when
Xo € dQ, we consider the following two cases:
QriuaNT#0, QrunI=0.

(i) Qrsa NT # 0. Due to Lemma 3.10, it suffices to show that

R (uP)g?, < (Dul™)™ + (gP)g: (3.13)

We aim to apply Lemma 3.8. For this, we first fix some X € Qr/s NI By the
assumption, we can find some Y| € JQ satisfying (3.12) with p = R/4. Noting
u vanishes on Qur/4(Yo) € Qrja(X) € Qrj2, by (3.9) with R/2 in place of R, we
conclude (3.13).

(ii) Qr/a NT = 0. In this case, we have either

(QR/4 N 8@) cP or (QR/4 N 8@) CN,
where the proof of the first case is the same as in (i) and the second case is the

same as the interior case.

The lemma is proved. [

From Lemma 3.11 along with Gehring’s lemma and Agmon’s idea, we conclude
the following reverse Holder’s inequality. For a given constant A > 0 and functions
u, f,and g = (g1, ..., g4), we write
”n

VA

We also denote for a function v defined on a domain Q that

U = |Dul + VA, F=|g|+

V= U]IQ.

Lemma 3.12. Leta € (0,1),p > 2,and y € (O, ﬁ]. If Assumptions 2.2 (a) and 3.2 are
satisfied, and if for any X € I and p € (0,Ro/4], there exists Y € dQ such that (3.12)
holds, then we have the following. Let u € H) .. (Q") satisfy

Pu—-Au=D;gi+f inQl,
Bu = gin; on NT, (3.14)
u=0 on DT,

where A >0, § = (g1,...,84) € LP,IOC(QT)EI, and f € Lp,loc(QT). There exists a constant
po € (2,p) depending only on d, A, a, and p, such that for any X, € R*1 and R € (0, Ro],

we have
—por1/ —2\1/2 —por1/
(UPO)Q:/(;(XO) Sd A (u )QR(X0> * (PpO)Q:(OXw'

The same result holds with |Du| and |g| in place of U and F, respectively, provided that
A=0and f=0.
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Proof. We first prove the lemma for A = 0 and f = 0. More precisely, we show
that there exists p; € (2,p], depending only on d, A, a, and p, such that for any
po € (2,111, Xo € R, and R € (0, Rg], we have
— . \1/po —\1/2 — - \1/Po
Po 2 Po
(|Du| )QR/Z(XO) SdAap (lDul )QR(XO) + (lgl )QR(XO). (3.15)

Fix a number g; € (221;12 2, ) Then by Lemma 3.11 with a covering argument, we

have that for X, € R¥**! and R € (0, Ro],

2/q
J( DY dX Sana ()( (DdX) + J( w2 gx,
Qr/2(Xo) Qr(Xo) Qr(Xo)

where ® = [Dul"" and ¥ = Ig|™. Thus by Gehring’s lemma (see, for instance, [15,
Ch.V]), we get the desired result (3.15).

For the case when A > 0, we use an idea by S. Agmon. Denote by (¢t,z) = (f, x, 7)
a point in R%*2, where z = (x, 7) € R*!. We define

(t,z) = u(t, )n(t), n(t) = cos( VAT + 11/4),

Q={(tz):teR zecQxR}, Q" ={(t,z2)eQ:t<T)
D=|{tz):teR, zeDXxR}, D' ={tz)eD:t<T)
N={tz):teR ze NxR}, N ={tz2)eN:t<T)}
Oi(to, z0) = (to — 1%, to) X {z € R |z — zo| < 7).
Since u satisfies (3.14), we see that 71 € H! (Q") satisfies

2,DT loc

d
Pit+ Dol = ) Dilgim) + f1 in &,
i=1

d . (3.16)
Bii = Z gimn; on NT,
=0 on DT
Since n; = 0, the operator 8 is also the conormal derivative operator associated
with P + D;.. Note that the coefficients of P + D, satisfy the ellipticity condition

with the same constant A, and that Q, 9, and &/ satisfy the same conditions of the
lemma. Moreover, we can rewrite the source term in the divergence form since

sin( VAT + /4)
Hence, we can apply the above result for A = 0 to (3.16) to see that there exists p; €

(2,p] determined by d + 1, A, a, and p, such that for any py € (2, p2], (fo, z0) € R%*2,
and R € (0, Ro],

fn=D.(ff}), where /(1) =

—  \1/po
D).
(I 2 )Qk/z(fo,zu)

—\1/2 1/po v 1/po
< (ID.4). + (gl - + (IfAl).
~ (I z |)QR(tO/ZU) (|ng]| )QR(tO/ZU) (lfnl )QR(fO/ZU)

——\1/2 —po\1/po

< D.a). . 3.17
Saanmy (DA )QR(tO/ZU) ( )QR(fo/ZU) (3.17)
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Now we fix pg such that 2 < pg < min{ps, p»}, where p; is the constant from the case
A = 0. Then by (3.17) with zg = (x0,0) € R*! and the fact that

—R/4 - . _
f P de 2, 1, 1Dt ()| < (D2, 2)] < Tt ),
R/4

we have
— \1/po —— \1/po —2\1/2 —po\1/po
DulPo < (ID.7lF°) . < +(F .
(l u )QR/4(t0rx0) ~ (l 2 )QR/Z(tOrZO) ~ (u )QR(fo,xo) ( )QR(fo,Xo)

Similarly, using the fact that

—R/4 . i
]( ' P° dt 2p, AP?, [t x)n' ()] < DA, 2)| < U, x),
R/4

we get
—po\1/po —— _\1/po —2\1/2 —po\1/po
Au < (ID:af) . < (U +(F .
(l \/_ | )QR/4(t0,X0) ~ (l 2 )QR/Z(tOrZO) N( )QR(tO/XO) ( )QR(fo,Xo)
Combining these together and using a covering argument, we get the desired
estimate. The lemma is proved. ]

4. ESTIMATES WITH TIME-INDEPENDENT SEPARATION AND CONSTANT COEFFICIENTS

In this section, we derive various estimates when the separation is time-independent
and the coefficients are all constants. Throughout the section, we consider

Pou = —u; + Difag Dju),

where the coefficients ag are constants. The corresponding conormal derivative of
u is denoted by Bou.

4.1. Estimates near curved boundary. Recall that
U = |Dul + VAJul,
and set
Us = [Dugl + VAJuyl.
Compared to Lemma 3.12, in the following proposition we further estimate some

time derivatives. Here, I is assumed to be time-independent, which clearly satisfies
Assumption 3.2, and % is replaced with the constant-coefficient operator Py.

Proposition 4.1. Let a € (0,1) and y € (0, %]. Suppose that the spatial domain
satisfies Assumption 2.2 (a), the separation I between D and N is time-independent, and
forany X e T and p € (0,Ro/4], there exists Y € dQ such that (3.12) holds. Let (0,0) €T,

Re(0,Rp], and u € Wg’l(QR) satisfy
Pou—Au=0 in Qg,

Bou =0 on Qr NN, 4.1)
u=20 on Qr N D,
where A > 0. Then u; € Wg’l(QR/z) and

d+2— 22 d+4—4x2
R0 [UllL,, (@epp) + R 70 UL, @) Sdae 1UL @0

where py = po(d, A, @) € (2,4) is from Lemma 3.12 with g; = f = 0.
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Remark 4.2. In the proposition above and throughout the paper, u € Wg’l(QR) is
said to satisfy (4.1) if # vanishes on Qr N D and

f up;dX — f af)ijuD,-(de— /\f updX =0
@ @ @

for any ¢ € (Qg) that vanishes on dQg \ N.

11
WP/(P—l)
The rest of this subsection is devoted to the proof of Proposition 4.1.
Lemma 4.3. Under the same conditions in Proposition 4.1 with A = 0, we have that for
r€(0,R), u € Wy'(Q,) and
(R = Nlluelliy@) + R = N2IDully @) + R = 1) llunlli,@) San 1Dl @-

Proof. By a standard mollification technique, it suffices to prove the desired esti-
mate under the assumption that # and Du are smooth with respect to ¢t. For p, 7
with 0 < p < T <R, let ), be an infinitely differentiable function in R?**! such that

0<np:<1, 1n:=1inQ,, suppnp.CQ

D11+ [(pe )il <a (T = p)~>
Since the boundary portions in (4.1) are time-independent, we can apply nfmu asa
test function to get the usual Caccioppoli inequality
IDullL,@,) Saa (T - p) lull,@.)-
Since u; satisfies the same equation and boundary conditions, we also have

IDuliy@,) s (= ) udllL@y)- (4.2)

Let
p1+ P2

PE<p1<p2=5T, po= >

We test (4.1) again with nfmpout to get

f |T]p1,p01/lt|2 X = _f Tﬁmpoaé)]D]'”Diut ax
Q) Q,

Po Po

-2 f Np1,poDiMlpr,polty Djutity dX.

P0o

By Young’s inequality and (4.2) with pp and p, in place of p and 7, respectively, we

have c
f | dX < —2f |Du|2dX+ef s> dX
Q (p2 = p1)* Ja,, Q

P1 P2
for € € (0,1), where C = C(d, €) > 0. Since the above inequality holds for any p1, p»
with p < p1 < p2 < 1, by a standard iteration argument, we get

i@, < (= p) M IDull,@,)- (4.3)
From (4.2) with 7 replaced by (p + 7)/2 and (4.3) with p replaced by (p + 7)/2, we
obtain
IDull1y@,) < (T = P)_1||Mt||L2(a(p+,),2) < (t = p)?lIDull,q)- (4.4)
Again, since we can differentiate the problem in ¢, the uy estimate follows from
(4.3) with u replaced by u; and (4.4), with parameters chosen properly

loteelly@,) S (T — P)_1||Dut||L2(a(p+,),2) < (1 - p)lIDull,@.)
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The lemma is proved. |
We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Due to Agmon’s idea (cf. the proof of Lemma 3.12), it
suffices to prove the proposition for A = 0. By a rescaled version of Lemma 3.12
and a covering argument, we see that for 0 < p <7 <R,

d+2 _ d+2
IDulle, @, < (t=p)7 * [IDull,@,)- (4.5)

From Holder’s and Young’s inequalities, we have

o _
IDullL, @, < elDull, @) + Ce 07 (z = p) VP DDul|, q,), (4.6)
for any € > 0, where C = C(d, A, a, €). Set

_ 3R R K
T = 1 +4(1 2™, ke{0,1,2,...}.

Then by (4.6) with 7; and 7441 in place of p and 7, respectively, we get

__ro_ _ _
”D“”Lm(@k) < 5||Du||Lm(Q )+ Ce ™~ o2 R@+2)1/po=1)p(d+2)(1 UPO)k”D””Ll(QTM)-

Tk+1

Multiplying both sides of the above inequality by ¢* and summing the terms with
respect to k = 0,1,..., we obtain that

(o8] (o]
k k
Y & IDull, @, < Y & IDulls, (@,
k=0 k=1

+ Ce PZOZR( )(1/po=1) E (82( A /D)) ||Bll||L1(Q )
1)’
k=0

where each summation is finite upon choosing ¢ = 271-@*2(-1/r) This yields

2 _(d+2
IDUllL, @0 < R™ 2 NIDullL, @u)- 4.7)

po (Qar/4
Since u; satisfies the same equation and the boundary conditions, by (4.7), Holder’s
inequality, and Lemma 4.3, we have

ds2_

d+2 _ d+2 d+2 _ 2 2 _g_4
[Dugl|, ) S R 2 IDugllry@ups) S R 2 T lIDUllLy@up,0) S RP 1Dz, (@z)-

v (Qr/2 Qory3

The proposition is proved. u

4.2. Estimates near flat boundary. Now, we prove that the problem that we per-
turb from — the problem with constant coefficients, cylindrical separation, and flat

boundary, can reach the optimal regularity Du € L;'Lg;x”). In this subsection, we

additionally assume that (a:)j) is symmetric and set
Qf = Qr N {(t, %) : x1 > 0},
D=BiN{x:x1=0, x>0},
N=BiN{x:x1=0x<9¢},

where
o=@, ") R" > R
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is a Lipschitz function of m variables with Lipschitz constant M and satisfying
¢(,...,0) = 0. Here, m € {0,1,...,d — 2} and if m = 0, then ¢ is understood as the
constant function ¢ = 0. We write X = (t,x) = (t,x,x”) € R, where

o=, ") e R™2, 7 = (0, x) e R
Proposition 4.4. Ifu € Wg’l(Q;f) satisfy
Pou—Au=0 in QF,

Bou =0 on (-1,0) x N
u=20 on (-1,0) x D,
where A > 0, then for p € [2, %) we have that

UeLyLE Q)
and
75 (tx" + S +) .
||U||L; LEQ; ) SdAMp UL, @)
The rest of this subsection is devoted to the proof of Proposition 4.4.
Lemma 4.5. Under the same conditions in Proposition 4.4 with A = 0, we have that for
O0<r<R<1,
ue W, (Q)), u,Due WoHQ)), kelm+3,...,d)

and

luellraqry + IDuelLyQr) + IDDstilliy(qr)y Saanr IDUlL @3- (4.8)
Generally, for i € {0,1,2, ...}, we have

||DDét,x:/)u||L2(Qj) Sa ki IDUllL,qp)- (4.9)

Proof. By the same argument used in the proof of Lemma 4.3, we obtain the bounds
of the first two terms in (4.8). The bound of the last term in (4.8) and also the
inequality (4.9) follow from the Caccioppoli inequality and the fact that members
of Dit,x,,)u satisfy the same equation and the boundary conditions in Qg, for any
R’ < R. We omit the details. |

We are now ready to present the proof of Proposition 4.4.

Proof of Proposition 4.4. Due to Agmon’s idea, it suffices to prove the proposition

for A = 0. Also by a change of variables, we may assume that ag = 0jj.
We first claim that

IIDMIIL,;/ L1 ) Saamp IDullL,Q1)- (4.10)

For almost every (t,x”’) with -1 <t < 0 and |x”| < 1, the function v = u(t, -, x"”)
satisfies

Ayv=f in Béh,
Div=0 on N/,
v=0 on D,

where we set
f = ut(tr r x,/) - Ax”u(tr Yy x,,)r

Bg/4 = {x/ c IRm+2 : |x'| < 3/4}, Bé74 = Bé/4 N {xl € Rm+2 Dxq > 0},
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D' =By, Nix e R™?:x1 =0, > ),

N = B§/4 (X e R"™2:x,=0,x, < o}

Notice from Lemma 4.5 that f € L»(Bj),). Thus by a rescaled version of [10, Lemma

3.2] with a change of variables, we have
IDx I, 51,y Samp IDxllyy,) + 1 fllaeg,)-
Taking L, norm in {(t,x") : =1 < t < 0, |x”| < 1/2} and using Lemma 4.5, we obtain

IDull S IPulle,p)

‘LY@,
and thus by Minkowski’s inequality, we have

[|Dul| < [1Dull, ).

Lx’ L(M’”)(Q+ )

From the above inequality with scaling and the fact that the members of D(t ol
satisfy the same equation and the boundary condition in any smaller cylinder Qz,

with R’ < 1, we also have
IDDY, el e @) SAAMpi IDull, 1)

forie {1,2,...}, where we also used Lemma 4.5. Therefore, by the Sobolev embed-
ding in (¢, x”"), there exists k such that

||Du||Lg’LfL""’(Q* Z ”DD(t X")u||L;‘;/L(2t’XN)(QT/2) S ”Du”Lz(QI’)/

which implies the claim (4.10).

It is well known that (4.10) holds (with p = c0) when u satisfies purely Dirich-
let/conormal derivative boundary conditions. The corresponding interior estimate
also holds. Hence, by scaling and a covering argument, one can see that for
O<p<r<l,

m+2

||Du||Lv’L(“"”)(Q+ ~ (T - p) b |Du||L2(Q+)/
which corresponds to (4.5). Similarly as in the proof of Proposition 4.1, we conclude
that

IDul| < IDullr, -

L" L(f Y”) Q+ )

This proves the proposition for A = 0. The proposition is proved. ]

5. Proor or THEOREM 2.4

This section is devoted to the proof of Theorem 2.4.

5.1. Decomposition. In this subsection, we consider the operator £ without
lower-order terms, i.e.,

Pu = —u; + Di(aiiju).

Recall that
If1
= Dul+ YAlu|, F=l¢|+ .
SN
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Proposition 5.1. Let

P>2, 96(0/1)/

1

a (O' 160 Vd +3 ]
and Ay = Ao(d, ) be the constant from Proposition 3.3. If Assumptions 2.2 (y; m, M)
and 2.3 (0) are satisfied with these y and O, then the following assertion holds. Let
u€H,  (Q) satisfy

Pu-Au=Digi+f inQ,

Bu = gin; on NT,

u=0 on DT,
where A > 0, A > Ao, § = (§1,---,84) € Lp1oc(@"), and f € L, 10c(QT). Then for any
Xo € QT andR € (0, Ry], there exist

W, Ve LZ(Q‘UR(XO))I

where 1 = 25, such that

U<W+V in Qur(Xo),

2y1/2 1/2-1/po (7 po\1/Po 2\1/2
(W)@t Siamp (v +0) U)oy * Faey (5.1)
and for q € [1, %),
9)1/1 1/po 2,1/2
(V )QyR(XO) Sd,A,M,Pr‘i (WO)QR/Z(XO) + (F )QR(XO)’ (52)

where py = po(d, A, M, p) € (2,p) is from Lemma 3.12.

Remark 5.2. In the proposition above, by applying the reverse Holder’s inequality
in Lemma 3.12 to (5.1) and (5.2), we have that

241/2 1/2-1/po (1 72\1/2 poy1/Po
(W)gurix S +0) ") guxy) + e

and
N 2\1/2 poy\1/Po
VDaucxy = agy + Fayy
Proof of Proposition 5.1. Based on a covering argument and Lemma A .2, it suffices
to consider the following four cases:

(1) Qr(Xp) CcQ, (i) Xp€dQ, Qr(Xg)NdQcC D,

(iii) Xo €dQ, Qr(Xo)NIQC N, (iv) Xp€eT.
Note that the first three cases can be proved by reducing the proof of Case (iv),
in which we need to deal with mixed Dirichlet-conormal boundary conditions.
Therefore, we only present here the detailed proof of the proposition with u = 1/96
for Case (iv).

By translation we may assume that Xy = (0, 0). Fix the coordinate system asso-
ciated with the origin and R satisfying the conditions in Assumption 2.2 (y; m, M),
ie.,

{x:yR<x1}ﬂBRCQRC{x:—yR<x1}ﬂBR,

(0QNQr N i(t,x):2* > ¢+ yR}) Cc D,
(0QN Qr N {(t,x): x* <p—yR}) C N.
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Let x = x(x) be an infinitely differentiable function defined on R? such that

1+M
<x<l1 Dx| < .
O—X— s | X'—vd )/R 7 (53)
x=0 in{x:x' <yR, x*>¢p—-yR},
and
x=1 in R\ {x:x! <2yR, x* > ¢ — 2yR}. (5.4)
We define

Pou = —u; + Di(af)iju),
where agj = (a')q, is symmetric, and denote by B, the conormal derivative operator
associated with Py. Observe that yu satisfies
Po(xu) — A(xu) = Dig; + f* in Qgrya,
Bo(xu) = gin; on (—(R/4)?,0) X Ngys, (5.5)
u=0 on (—(R/4)?,0) X Dg/a,
where
DR/4 =0JQnN BR/4 Ni{x: x> qi) - )/R},
NR/4 = anBR/4 N{x: ¥ < (Z) —)/R},
f*=a"DuDx - giDix + fx, (56)
g = (ag - aij)Dj()(u) + aijuDj)( + giX. (5.7)
Note that the separation between Ng/4 and Dg/4 is time-independent. We decom-
pose
Xu= M(l) + u(2) in QR/4, (5.8)
where ) € H (Q°) is a unique weak solution of the problem
P()M(l) - /\u(l) = Di(g;]IQRM) + f* ]IQRM in QO’
Bou = (g1lg,, )i on (—c0,0) X Ngy4, (5.9)
u® =0 on (—=00,0) X (9€2\ Ng4).
Note that the existence of u® is due to Lemma 3.5, and that u® € H, (Qg/4) satisfies
Pou® —Au® =0 in Qga,
Bou? =0 on (—(R/4)?,0) X Ny, (5.10)
u=20 on (—(R/4)2, 0) X DR/4.

We divide the rest of the proof into several steps.
Step 1. In this first step, we estimate

u® = 1Du®| + VA

and
U@ = Du®+ VAu®|, U® = Dul|+ VA,

where Uﬁz) is well defined in Qg/s due to Proposition 4.1. Since the boundary
portions in (5.9) are time-independent, we can apply u'! as a test function to get

f (0, )2 dx + f a/ Du®DuMdx + A | uOPdx
Q Q° Q0
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= fa 0 §lg,, Diu® dX — fao f Igq,u® dX.
By Young’s inequality, the Poincaré inequality, and (5.6)-(5.7), this implies that
|(ag —a")D(xu)|

Notice from Lemma 3.12 that # is in 7‘{;0 loc (Q"). Hence, by Holder’s inequality and

1
||u( )”LZ(QO) Sd,/\ ||F||L2(QR/4)+||Du]ISupp D}(||L2(QR/4)+ LZ(QR/4)+||uDX||Lz(QR/4)'

Lemma 3.9, we have

y Rd+2)1 /2-1/po

||Du]IsuppD)(”L2(QR/4) < ( ”Du”L,,O(QR/z)

and
.)/Rd+2)1/2—1/p(]
||uDX”L2(QR/4) S y—R”uI[SuppDX”LPO(QRM)

< (PRTA)VZUPIDUIIL, @y (.11)
which together with Assumption 2.3 (0) yields

e - aHD0c, o,

ij i
< ”aO - al]”szo/(po_z)(QRm)||Dul|Lp0(QR/4) + ||MDX||L2(QR/4)

1/2-1/po p(d+2)/2 poy1/Po
$(O+7y) REZE(IDul)g, -
Combining the estimates above, we reach
1/2 - 1/ 1/2
(U2, Saamp O +)10(Duf) " + (F) 2. (5.12)

For the estimates of U® and U;Z), we use (5.8), (5.11), and (5.12) to obtain
(UPP)g2, < (UOP)g2 +((W)g?, + (uDxP)g”

Qra Qr/4 Qr4 Qr/a
p 1/po 2\1/2
S U + (P2
Therefore, by Proposition 4.1 we get
1 1 1
(AP + RA(UDYIGE Sanmp UMl +F)GE (5.13)

Step 2. In this step, we decompose u?. Since u® satisfies (5.10), yu® satisfies

Po(xu®) — A(xu®) = Dihi + - in Qf,,

Bo(xu®) = hyn; on (—(R/4)?,0) x Ny ,, (5.14)
xu® =0 on (—(R/4)%,0) x Dy, Py

where
ks = (~(R/4)%,0)x By ., By, =BriaNix:x' >R,
Dys = BriaNix: x' =yR, x* > ¢ —yR},
lew =BruaNix: X' = ¥R, < ¢ — YR},
h(t, x) = [agD]-u(z)Di)(](t, X) + [uimx + agD]-u(z)Di)( + Au@ X1, )1 (v),
h(t, x) = [a(l)j Dj)(u(z)](t, X) + [a(l)j D]-u(2))(](t, 2)q-(x),
and forie{2,...,d},
hi(t, x) = [ang)(u(z)](t, X) — [angu(z))(](t, 2y ().
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In the above, we denote
z=Rx=Q2yR—-x',2%,...,x%)
to be the reflection x with respect to {x! = yR} and

Q = {(x', %) : @QyR—x',x") € Qrjs \ B, ,} N B,

R/4} R/4"

Indeed, one can check that (5.14) holds as follows. Let ¢ € C°°(Q /4) which
vanishes on (— (R/4)2 0) x ( B£/4\ R/4) and {t = —(R/4)?, }><B£/4 We extend ¢ to
[-(R/4)?,0] X {x : x' > YR} by setting ¢ = 0 on [-(R/4)?,0] x ({x : x! > yR} \ B,
and define

")

Bt 7) = @(t, x) if x! > yR,
! @(t,2yR —x', 22, ..., x%) otherwise.

Since x¢ belongs to C*(Qg/s) and vanishes on [-(R/ 4)2,0] x (dQg/a \ Ngys), we can
test (5.10) with x¢ to get

f (u(z))((p +a ]D]-u(z)Di()((p) ax + /\u(z))(([)) dX =0.
Qrys
From this identity and the definition of ¢, it follows that

f’ (()(u(Z))t(p + ang()(u(z))D,-(p + /\)(u(2)(p) ax

R/4

= f 4y Djxu®DipdX ~ f@ 2y Du®xDipdX

}a/4 R/4\QR/4

—fv angu(z)Di)((de
Qkya

- f (u(z))( + a”Dju(z)Di)( + /\u(z))()([) ax
Qria\Qp 4

= f , (miDig — he) dX,

R/4
which is exactly the weak formulation of (5.14).
Now we decompose

au® = u® +u® in Q)
where u® € H. 1(( 00,0) x B, R/ »/4) 18 @ unique weak solution of the problem

7)0”@) - Au(S) = Di<hiI[Q£/1e> + h]IQE/lé in QR/4’

Bou® = (hi]IQ’,g,m)ni on (—o0,0) X N R/4, (5.15)
4@ =0 on (=e0,0) x (9B, \ Ny ),
and u® e 7{21(Q£ 14) satisfies
Pou® —Au® =0 in Qp
Bou® =0 on (=(R/16)*,0) X Ny, (5.16)
u® =0 on (-(R/16)?,0) x D),

R/16°
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Step 3. In this step, we estimate
u® := (IDu®l+ VA )y .
R/4

By applying u® as a test function to (5.15), we see that

6
C(UPYdX s Z T
Qe i=1
where
= |U(2)DX||DU(3)|dX,
;/(/16
]2 = f‘/ |[Du(2)X](t, Z)]IQ*(X)“Du(s)ldX,
}?/16
h:f |Du® D) dx,
;é/lb
]4 = f}/ |[u§2)X](t, Z)]IQ»(x)||u(3)|dX’
R/16
J5= f |[D”(2)DX](trZ)]IQ*(X)“u(s)IdX,
R/16
]6 - f‘/ |[/\u(2)X](t/Z)HQ*(X)“L{(:'})IdX
k16
Set

- 1/ 2
K =12 1/p0R(d+2)/2((upO)Q;52 + (FZ)gR )||u(3)||L2(Q£/4)_
Similar to (5.11), we have
”u(Z)DX”LZ(QR/l&) s (VRd+2)1/2_1/po“Du(z)”Lpo(QR/ﬁ)‘
Thus by (5.13) we get |1 < K. Using Holder’s inequality and (5.13), we obtain

@ , on
J2 5 IDU =Ny @epie\0 ) P )
4+241/2-1/p ) ) &)
S (PR TPIDUEL, @une\) ) IPH gy, 0 S K
and
Jo 5 VA liy@yi0y, - VANl ) < K
Similarly, we obtain

- 2
Rd+2)1/2 1/po||u§ )”L

e e NG
Ja < M@\ 1 i) = 7 @i\l I a0

d+2y1/2~1/po p2 2 3) y
S ORI RIDUPN, Il ) S K,
where we also applied Lemma 3.8 to u§2) and the boundary Poincaré inequality on

half balls to u®. To estimate J3 and J5, we note that by the same argument as in the
proof of Lemma 3.9, we have

©) , (©) . ©) .
[l ]IsuppD)(”Lz(Q}mé) + [lu ]ISUPP(DXOR)”Lz(Q}Um) < yR||Du HLZ(QM)'
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where R is the reflection map: Rx = (2yR — x!,x2,...,x%). This together with
Holder’s inequality and (5.13) yields that

]3+]5 < ||D1/l( )l[suppD;\”Lz(QR/u,) 7/ (“M ]IsuppD)(“Lz(QR 1) +||1/l l[supp(D)(oR)||L2(QR/16)) s K.
Collecting the estimates for J; and using Young’s inequality, we conclude that
3)y2y1/2 1/2-1 1/ 241/2
(U2, sy PP r(U)g! + (F)g?). (5.17)

Step 4. We are ready to complete the proof of the proposition. From the decom-
positions above, we have

u=w+v, USW+V in Qg

where
— (1= @ _ (2) (2 , ()] — @7
=1-xu+u’+0-x)u” +xu ]IQR/4\Q%/4+u HQM’ v=1u ]IQM’
and
= |Dw|+ YAjw|, V =|Dv|+ VALl
Observe that

W< (1 - U+ uDx| +U® + (1 - )u® + [u@®Dy| + |u<2>1IQR/4\Qﬁ/4| +U®
where by Holder’s inequality, (5.13), and Lemma 3.9, we have

1/2 - 1/
(=202, Sy UM,

1
1/2 12 o
(IMD)(I)Q/R4 R(W]Isupp(Dx)DQ/“ < Y2 1oy )

((1 X)Z(u(z )2)1/2 < yl/Z 1/pg<(u’po)1/}70 (FZ)l/Z)

and
(W2DxP)g:  + (Plg, qp Pz, < 72U + (E)7)

R/4 QR/lb

These estimates together with (5.12) and (5.17) imply
(Wgr, < (r+ 0) 2yl + (F)g?). (5.18)

Qryie ~ Qr/2
It remains to obtain the estimate of V. Observe that

By 06 C Brias(yo) N {x 1 x' > R}

C Brpoa(yo) N{x 1 x' > yR} € Biz/w'

where 1o = (yR,—yR,0,...,0) € R%. Thus by Proposition 4.4 applied to (5.16),
V <U+ W, and (5.18), we have
N 2)1/2 2)1/2 2,1/2 poyL/po 2y1/2.
VI S (VL S UL+ WL < ) + ()Y

The proposition is proved. u
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5.2. Level set estimates. For a function v on QF, we define its maximal function
by
Muo(X) = sup [o(Y)|Igr dY.
Qr(Z)2XV Qr(2)
Letp > 2and py = po(d, A, M, p) € (2,p) be from Lemma 3.12. For any s > 0, denote
AS) = (X Q" : MUE(X))'? > s,

B(s)={X¢€ QT (MUZ(X))l/Z + (7/ + 9)1/p0_1/2(MFp“(X))1/P0 > s). (5.19)

Lemma 5.3. Under the same conditions of Proposition 5.1, for any q € [1, 2(7,’?:12 ) ), there

exists a constant Co > 0, depending only on d, A, M, p, and q, such that the following
holds. For any Xo = (to, x0) € QT, R € (0,Ro], x > 44+2/2 and s > 0, if
(y+0)2r 1
1Qur2(Xo) N A > Co T + =) IQura(Xo)l,

then
Qur/2(Xo) C B(8),
where 1 = 2.
Proof. By dividing the equation by s and translating the coordinates, we may

assume that s = 1 and Xy = (0,0). We prove the contrapositive of the statement.
Suppose that there is a point Y € Q,r/» satisfying

Y ¢ B(1).
By the definition of 5(1),
(MUE(Y)2 + (y + Q)P 2 MEP(Y)) e < 1. (5.20)
Set L
ts = min{(uR/2)%, T}, X = (£,0) € QT,
and observe that
Y e Q'L,R/z C QyR(XS) (5.21)
From the definition of the maximal function and (5.20), we have
2 . 1/2 1/p0_1/2 Po . 1/P0
(UP1q )Q“R(XB) +(y+0) (FIg )QHR(XB) <1

Hence, by Proposition 5.1 with the estimates in Remark 5.2, there exist functions
W,V defined on Qr(X}) such that

U<W+V in Qr(Xp),

WL e Sannty O+ OV, (U ynigpe 1 O
We now claim that for any X € Qg2 N A(x),
(MWl )0) " + (M(V2g ) )JX)) > (5.23)
By the definition of A, we can find Q,(Z) satisfying
1/2
X € Q,(2), (u21IQT)Qr(Z) > K. (5.24)
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We can always choose the time coordinate of Z to be at most T. Furthermore, we
have r < uR/2 because otherwise, from (5.20), (5.21), and the fact that

Qr(2) € Qu(Xy),
we get
o \172 @+2)72(1 727 \?

(u HQT)QAZ) <402(u ]IQT)QMXZ))
< 4(d+2)/2(Mu2(Y))1/2
< 4@2 <

which contradict (5.24). Since r < uR/2, we have
Qr(Z) € Qur(Xp),
and thus by (5.24),
e \1/2 e \12 e \12
< (U HQT)QY < (w JIQT)M) +(v HQT)Qy(Z)
) 1/2 ) 1/2
<(w HQM(XB))Q(Z) +(v ]IQ“R(XB))QV(Z)

1/2 1/2
< (M(WPTa,0x0)(X)) T+ (M(VPTg,e00)(X))
from which we get the claim.

By (5.22), (5.23), and the Hardy-Littlewood theorem, we have

1Qur/2 N A(x)|

= |{X : (M<W2]IQPR(XS))(X)>1/2 + (M(VZ]IQHR(XE))(X))l/z > K}|
1/2

< (X (MW, )X)) > x/2])|
fx: (M 00)0) > 2]

C e C v
< 2IWIL o) + VIl @
(y + 0)!2r q

2

SC( + =
KT

)|QHR<X5>|

(y+0)=2r q
< C(T + E)lQ“R/ZL

where C = C(d, A, M, p, q). This completes the proof. ]

Asa consequence of the previous lemma, we have the following regularity result
for H, weak solutions.

Lemma 5.4. Let p € (2, %) and Ao = Ao(d, A) be from Proposition 3.3. There exist
constants y,0 € (0,1) depending only on d, A, M, and p, such that if Assumptions 2.2
(y; m, M) and 2.3 (0) are satisfied with these y and 0, then the following assertions hold.

Let u € H, . (Q") satisfy

Pu—/\uzDigi+f in QT,
Bu = gin; on NT,
u=0 on DT,
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where A > 0, A > Ao, and g;, f € Lo(Q") N L,(QT). Then u belongs to ‘H;/DT(QT) and
satisfies
Ul @y Saamp RSP 2NUNL@r) + 1FIl, @r)- (5.25)
Moreover, if u vanishes outside Q,r,(Xo) for some Xo € R4, then
UL, @ry Saamp I, @) (5.26)
Proof. We denote

1( +2(m—+2))€( ’2(m+2)).

1= 2P T T m+1
Let v, 6, and « be positive constants to be chosen later, such that
1
€l0, ———| 0€(0,1), x=44I72
’ ( 160 Vd + 3]
and that .y
+0)y 1
&= CO(% + —) <1,
K el

where Cy = Co(d, A, M, p,q) = Co(d, A, M, p) is the constant from Lemma 5.3. Recall
the notation (5.19). By the Hardy-Littlewood theorem, we have

AN < IR g 527)

Using this, Lemma 5.3, and the “crawling of ink spots” lemma in [30, 25], we get
|Aks)| < Ca(d)e|B(s)]

for any s > sp, where

G

2

s; = —~——IIUll
07 ex|Qur 2l

Hence, for a sufficiently large S > s,

2
L@")"

xS S
f |A(s)|sP 1 ds = «P f |A(ks)|sP ! ds
0 0

So S
< f A" ds + Coer f Be)ls" 1 ds
0 So

=1+ 1.
By (5.27) we have
I Sap € PPREPIIUN o
To estimate I, observe that
1
B(s) C A(s/2) U{X €@ : (y + ) 2 (MPr(x)) " > 5/2),

from which together with the Hardy-Littlewood maximal function theorem, we
obtain

S
I < Coex? f \A(s/2)ls" ™" ds + Cer? (y + O UPTUBME) N o
So P

xS
< C.ex? f (AG)s" " ds + Coex? (y + OPUPTIDF o0
0 4
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where C, = C.(d,p). Note that by (5.27),

xS
f |A(s)|sP ! ds < oo.
0

Thus by taking « sufficiently large, and then, choosing 6 and y sufficiently small
such that

Coexl’ = C*CO(KP_Z(V ) K”‘q) < %,

we conclude that for any S > 0,

xS
p1 @2)(1p/2)y 1 e p
‘f(; |ﬂ(S)|3 dS Sd,A,M,p RQ ||u||L2(QT) + “F”Lﬁ(QT)'

This shows (5.25). If we further assume that u vanishes outside Q,r,(Xo), then
by using (5.25), Holder’s inequality, and choosing again y sufficiently small, we
conclude (5.26). The lemma is proved. [ |

5.3. Proof of Theorem 2.4. Thanks to Proposition 3.3 and a duality argument, it
suffices to consider the case when p € (2, 25;”:12)

For the a priori estimate (2.6) in the assertion (a), by moving all the lower-order
terms to the right-hand side of the equation, we may assume that the lower-order
coefficients of P are all zero. Then the a priori estimate follows from (5.26) and
the standard partition of unity argument. For the solvability in the assertion (a),
thanks to the a priori estimate and the method of continuity, we only need to
consider the case when the lower-order terms are all zero, which follows from the
regularity result in Lemma 5.4 and the a priori estimate along with the standard
approximation argument. Finally, the proof of the assertion (b) is by considering
the equation of ue™'; cf. [8, Theorem 8.2 (iii)]. [

APPENDIX A.

Proof of Lemma 3.8. We may assume that Xy = (0,0) and u is smooth with respect
to t. By scaling, without loss of generality, we can also assume that R = 1.
We first prove (3.8). Take a function C € C;(€232) such that

0<C<], 1sfcdz, IDCl < 1.
Q

o(t) = fQ Cutt ) | fQ Cdx, o= ﬁ R

By [22, Lemmas 5.3 and 5.4] with scaling applied to u — c, we have

Set

lu — (el , @) < 2llu = clle,,, @) Sdpapoqe 11t —CllL, @)

(A1)
+ (IDule @ + I8l @)
where, by the triangle inequality, we obtain
”u - C”Lq,p(ayz) < ”l/l - U||Lq,}4(a3/2) + ”v - C”Lqm(Qgﬁ/z) = ]1 + ]2' (Az)

Note that
llu(t, ) — 0B, s S N1Ult, ) = (Ult, )l (©s) S DU, L, ©2)s
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where we used Lemma 3.6 and the interior Poincaré inequality with a covering
argument in the second inequality. This implies that

J1 < IDull., @,)-

By the Sobolev-Poincaré inequality in the ¢ variable, we get

0
s f f Cuy dx
322 1Ja

Since u; = D;g; and Chas compact support in (35, integrating by parts with respect
to x and using Holder’s inequality, we see that

dt.

J2 < 118llL, ,@y)-

Combining (A.1), (A.2), and the estimates of J;, we conclude (3.8).
We next prove (3.9). Let Yy = (so, yo). It is easily seen that the estimates above

still holds with
c= f o(t) dt.
Sofaz

lulle,, @) Sdpapoq IPUllL,, @) + I8llL,,@) +C-

Thus, we have

Therefore, it suffices to show that

¢ S llulle, (so-a2,s0xn) < IDUlL, @)/

which follows from Lemma 3.7 and Holder’s inequality. The lemma is proved. =

In the lemmas below, we set
I't)={xedQ:(x)eTl}
Similarly, we define D(t) and N(¢).

Lemma A.1. Fory > 0, the condition (b) in Assumption 2.2 (y; m, M) implies Assumption
3.2.

Proof. Let R € (0,Ro] and f € R. It suffices to show that, under the condition (b),
there exist decompositions

9Q = D U N’
such that
D(t) c D, HYD(t),D?) < 2yR, Vt € [ty — R?, t).
Indeed, this follows by defining D as the set of all points x = (x!,...,x%) € JQ
satisfying either x € D(ty) or
dist(x,T(fp)) <R and x*> ¢(x°,...,x"*?) —yR

in the coordinate system associated with ((t, xo), R), where xo € I'(ty) satisfies
dist(x, x9) = dist(x, I'(tp)). [ |
Lemma A.2. Suppose that the condition (b) in Assumption 2.2 (y;m, M) holds with
y €1[0,1).

(i) Let Xo = (to,x0) € T and R € (0, Ro]. Then for t € (ty — R?, to + R?),

Br(xp) NT(t) # 0.
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(ii) Let Xo = (to, xo) € Qand R € (0, Ro] with
BR(X()) N r(fo) =0.
Then
QR/Z(XO) NI =0.

Proof. We only prove the assertion (i) because (ii) is its easy consequence. Suppose
that there exists t € (tp — R?, to + R?) such that

Br(xg) NT(¢) = 0.
Then either
{t} X (Br(x9) N Q) C D(t) or {t} x (Br(xg) N Q) C N(1),
which contradicts with the fact that
{t} X (Br(xo) N9Q N {x: x* > ¢ + yR}) D),

{t} x (Br(xo) N 9Q N {x: x* < ¢ — yR}) € N(B),
and
¢(xg,...,xg) = xé.

in the coordinate system associated with (Xp, R). The assertion () is proved. [ |
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