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Abstract. We obtain the regularity of solutions in Sobolev spaces for the mixed
Dirichlet-conormal problem for parabolic operators in cylindrical domains with
time-dependent separations, which is the first of its kind. Assuming the boundary
of the domain to be Reifenberg-flat and the separation to be locally sufficiently
close to a Lipschitz function of m variables, where m = 0, . . . , d − 2, with respect
to the Hausdorff distance, we prove the unique solvability for p ∈ (2(m + 2/(m +
3), 2(m + 2)/(m + 1))). In the case when m = 0, the range p ∈ (4/3, 4) is optimal in
view of the known results for Laplace equations.
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1. Introduction

In this paper, we obtain the maximal regularity for divergence form parabolic
equations with mixed boundary conditions:

Pu − λu = Digi + f in QT,

Bu = gini on NT,

u = 0 on DT,

(1.1)

where for some T ∈ (−∞,∞], QT = (−∞,T) ×Ω is a cylinder with the base Ω ⊂ Rd

being either bounded or unbounded. The lateral boundary of QT is decomposed
into two non-intersecting componentsDT andNT on which we impose two differ-
ent types of boundary conditions. We consider both cases whenDT,NT, and their
interfacial boundary (separation) ΓT are cylindrical and non-cylindrical.
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Figure 1. Domains with cylindrical and non-cylindrical Γ

We also consider the equations in a finite height cylinder, in which case, we
impose the zero initial condition at t = S for some finite S < T. For the parabolic
operator P and the conormal derivative operator B

Pu = −ut +Di(ai jD ju + aiu) + biDiu + cu,

Bu = (ai jD ju + aiu)ni,

where n = (n1, . . . ,nd) is the outward unit normal to ∂Ω, we always assume that the
leading coefficients (ai j) are symmetric, and that there exists Λ ∈ (0, 1] satisfying

ai j(t, x)ξ jξi ≥ Λ|ξ|
2, |ai j(t, x)| ≤ Λ−1

for any ξ ∈ Rd and (t, x) ∈ R ×Rd. We also always assume

|ai
| + |bi

| + |c| ≤ K

for some K > 0.
Elliptic and parabolic equations with mixed boundary conditions arise natu-

rally in physics and material science. For example, when a block of floating ice
is melting into liquid water, the ice-water interface maintains zero temperature
(Dirichlet) while the ice-air interface is insulated (Neumann). Such problem also
has applications in the combustion theory. See, for example, [27, 28]. We also
refer to [21] for an application in modelling exocytosis, which is a form of active
transport mechanism. It is worth mentioning that the mixed problems for the heat
or Laplace equations are commonly called Zaremba problem in the literature.
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In contrast to the purely Dirichlet or conormal boundary value problem, solu-
tions to mixed boundary value problems can be non-smooth near the separation Γ
even if the domain, coefficients, and boundary data are all smooth. In the literature,
elliptic equations with mixed boundary conditions have been studied quite exten-
sively both from the PDE perspective and harmonic analysis point of view. We
refer the reader to [33, 29, 3, 31, 19, 17] and [35, 2, 4, 7, 10] and the references therein.
In these papers, regularity of solutions in Hölder, Sobolev, and Besov spaces as well
as the non-tangential maximal function estimates were obtained. We also refer the
reader to [1, 12] for results about the Kato square root problem for elliptic equations
and systems with mixed boundary conditions and their applications.

However, there are relatively few papers dealing with parabolic equations with
mixed boundary conditions. In [34], Skubachevskii and Shamin established the ex-
istence, uniqueness, and stability of solutions to parabolic equations in a cylindrical
domain with time-independent separation Γ under minimal regularity assump-
tions on initial data, by using a semigroup approach and properties of difference
operators in L2-based Sobolev spaces. Hieber and Rehberg [20] studied systems of
reaction-diffusion equations with mixed Dirichlet-Neumann boundary conditions
in 2D and 3D cylindrical Lipschitz domains satisfying Gröger’s regular condition.
Assuming an implicit topological isomorphism condition on the second-order op-
erator, they proved the maximal Lp estimates by using harmonic analysis and a
heat-kernel method. See also [18] for a further result about equations with nonho-
mogeneous boundary data as well as an earlier result in [16] about the elliptic mixed
boundary value problem. We also mention the work [32, 23] for parabolic equa-
tions in non-cylindrical domains. In [32] Savaré considered parabolic equations
in a non-cylindrical domain with C1,1 boundary and separation Γ. Under certain
condition on the excess of Γ with respect to t, he introduced an approximation
approach to general abstract evolution equations in L2-based Sobolev spaces and
obtained optimal regularity under quite weak assumptions on the data. Recently
in [23], Kim and Cao studied linear and semilinear parabolic equations in non-
cylindrical domains with the mixed Dirichlet, Neumann, and Robin conditions
and Lipschitz leading coefficients. They considered smooth domains which are C1

in t and C2 in x and general DT and NT, and proved the solvability in L2-based
Sobolev spaces. In [11], a maximal regularity result was established for parabolic
equations with time irregular coefficients and mixed boundary conditions when
the exponents are in a neighborhood of 2. See also [14] for an optimal Lp maximal
regularity result when p ≤ 2 and the coefficients are BV in the x variable. We
remark that in all these work, either p is assumed to be 2 or an implicit condition
is imposed on the operator, so that p needs to be sufficiently close to 2.

In this paper, we consider parabolic equations in a cylindrical domain with
rough boundary and separation and with vanishing mean oscillation (VMO) co-
efficients. Let m = 0, . . . , d − 2 be an integer. Our main result, Theorem 2.4, reads
that if ∂Ω is Reifenberg-flat and the separation Γ is locally sufficiently close to a
Lipschitz function of m variables with respect to the Hausdorff distance, then for
any p ∈

(
2(m+2)

m+3 ,
2(m+2)

m+1

)
, f , gi ∈ Lp(QT), and sufficiently large λ, there is a unique

solution u ∈ H1
p (QT) to (1.1). See Section 2.1 for the definitions of function spaces.

In the special case when Γ is Reifenberg-flat of co-dimension 2, i.e., m = 0, we get
the solvability when p ∈ (4/3, 4), which is an optimal range in view of the known
results for the Laplace equation in [33] and for elliptic equations in [7].
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Let us give a brief description of the proof. In the first step, we show the L2
solvability by approximating Γ by piecewise time-independent separations andΩ
by extension domains, and solve the approximating equations using the Galerkin
method. Note that one cannot directly test the equation with u because the usual
Steklov average argument is not applicable here. The second step is to derive an
estimate of the form

∥Du∥Lx′
p Lt,x′′
∞ (Q+1/2) ≤ C∥Du∥L1(Q+1 ), ∀p ∈

[
2,

2(m + 2)
m + 1

)
,

where u is a weak solution to a homogeneous equation with constant coefficients
in the half cylinder Q+1 = {(t, x) : t ∈ (−1, 0), |x| < 1, x1 > 0}. It satisfies the mixed
homogeneous boundary conditions on the flat boundary {x1 = 0} with a time-
independent separation Γ defined by a {x2 = ϕ(x3, . . . , xm+2)}, where ϕ is a Lipschitz
function, x′ = (x1, . . . , xm+2) and x′′ = (xm+3, . . . , xd). This will be achieved by
a boundary Caccioppoli type inequality and the corresponding elliptic estimate
obtained in [10], which in turn is a consequence of the Besov type estimate estab-
lished in [31, 4]. Since ∂Ω and Γ are not smooth, the usual flattening boundary
argument does not work in our case. To approximate the domain by domains with
flat boundaries and separations, the third step in the proof is to apply the cutoff
and reflection argument first used in [8, 9] for equations with the pure Dirichlet or
conormal boundary condition. Such argument was also used recently in [6, 10] for
elliptic equations with mixed boundary conditions. Here an additional difficulty
is the extra ut term which appears on the right-hand side after the reflection. For
this, we use a delicate multi-step decomposition procedure. Finally, we complete
the proof of Theorem 2.4 by utilizing a level set argument introduced by Caffarelli
and Peral [5] and the “crawling of ink spots” lemma due to Krylov and Safonov
[30, 25].

The rest of the paper is organized as follows. In Section 2, we introduce the
notation and function spaces, and then give our main result, Theorem 2.4 for the
solvability of (1.1) in Sobolev spaces. In Section 3, we prove several auxiliary
results including the L2 solvability, Poincaré and embedding inequalities suitable
to our problem, and a reverse Hölder’s inequality for weak solutions to the mixed
boundary value problem. Section 4 is devoted to the boundary estimates for
equations with constant coefficients near a curved boundary or a flat boundary. In
Section 5, we give the proof of Theorem 2.4.

2. Notation and main results

2.1. Notation. Throughout the paper, we always assume thatΩ is a domain (open
and connected, but not necessarily bounded) in Rd and Q = (−∞,∞) × Ω is an
infinitely long cylinder, which is a subset of

Rd+1 = {X = (t, x) : t ∈ R, x = (x1, . . . , xd) ∈ Rd
}.

We also assume that the boundary ofQ, denoted by ∂Q = (−∞,∞)×∂Ω, is divided
into two disjoint portionsD andN , separated by Γ. More precisely, letD ⊂ ∂Q be
an open set (relative to ∂Q) and

N = ∂Q \D, Γ = D∩N .
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Note that the separation Γ between D and N is time-dependent unless explicitly
specified otherwise. In Section 2.2, we will impose certain regularity assumptions
on ∂Ω and Γ.

For T ∈ (−∞,∞], we define

Q
T = {X ∈ Q : t < T}

and similarly defineDT,NT, and ΓT. For R > 0, we set

BR(x) = {y ∈ Rd : |x − y| < R}, ΩR(x) = Ω ∩ BR(x),

QR(X) = (t − R2, t) × BR(x), QR(X) = Q ∩QR(X),

QR(X) = (t − R2, t + R2) × BR(x).
We use the abbreviations BR = BR(0) and ΩR = ΩR(0), etc. For a function f on Q,
we denote

( f )Q =
1
|Q|

∫
Q

f dX = −
∫

Q
f dX.

Now we introduce function spaces and the notion of weak solutions to mixed
boundary value problems. To start with, we use the unified notation for cylinders
with finite or infinite height: for given S,T with −∞ ≤ S < T ≤ ∞, we set

Q̃ = {X ∈ Q : S < t < T},

D̃ = {X ∈ D : S < t < T},

Ñ = {X ∈ N : S < t < T}.

(2.1)

We write X = (t, x) = (t, x′, x′′) ∈ Rd+1, where x′ ∈ Rd1 and x′′ ∈ Rd2 , d1 + d2 = d. For
p, q ∈ [1,∞), we define L(t,x′′)

q Lx′
p (Q̃) to be the set of all functions u such that

∥u∥L(t,x′′ )
q Lx′

p (Q̃) :=
( ∫
Rd2+1

( ∫
Rd1

|u|pI
Q̃

dx′
)q/p

dx′′ dt
)1/q

< ∞,

where I
Q̃

is the usual characteristic function. Similarly, we define L(t,x′′)
q Lx′

p (Q̃) with

p = ∞ or q = ∞, and Lx′
p L(t,x′′)

q (Q̃). We abbreviate

Lt
qLx

p(Q̃) = Lq,p(Q̃), Lp,p(Q̃) = Lp(Q̃).

Let C∞
D̃

(Q̃) be the set of all infinitely differentiable functions on Rd+1 having a

compact support in [S,T]×Ω and vanishing in a neighborhood of D̃. We denote by
W0,1

q,p,D̃
(Q̃) and W1,1

q,p,D̃
(Q̃) the closures of C∞

D̃
(Q̃) in W0,1

q,p (Q̃) and W1,1
q,p (Q̃), respectively,

where

W0,1
q,p (Q̃) = {u : u,Du ∈ Lq,p(Q̃)}, W1,1

q,p (Q̃) = {u : u,Du,ut ∈ Lq,p(Q̃)}.

We write W0,1
p,p(Q̃) =W0,1

p (Q̃), etc.
By u ∈ H−1

p,D̃
(Q̃) we mean that there exist g = (g1, . . . , gd) ∈ Lp(Q̃)d and f ∈ Lp(Q̃)

such that
u = Digi + f in Q̃, gini = 0 on Ñ ,

where n = (n1, . . . ,nd) is the outward unit normal to ∂Ω, in the distribution sense
and the norm

∥u∥H−1
p,D̃

(Q̃) = inf
{
∥g∥Lp(Q̃) + ∥ f ∥Lp(Q̃) : u = Digi + f in Q̃, gini = 0 on Ñ

}



6 J. CHOI, H. DONG, AND Z. LI

is finite. We set
H

1
p,D̃(Q̃) =

{
u : u ∈W0,1

p,D̃
(Q̃), ut ∈H

−1
p,D̃(Q̃)

}
equipped with a norm

∥u∥
H1

p,D̃
(Q̃) = ∥u∥W0,1

p (Q̃) + ∥ut∥H−1
p,D̃

(Q̃).

When Q̃ has a finite height (i.e., −∞ < S < T < ∞), we define V2(Q̃) as the set of
all functions in W0,1

2 (Q̃) having the following finite norm

∥u∥V2(Q̃) = ess sup
S<t<T

∥u(t, ·)∥L2(Ω) + ∥Du∥L2(Q̃).

When Q̃ has an infinite height, we define V2(Q̃) as the set of u ∈ V2(Q̃ ∩ {(t, x) : |t| <
T0}) for all T0 > 0 having the finite norm ∥u∥V2(Q̃). We then denote by V2,D̃(Q̃) the
closure of W0,1

2,D̃
(Q̃) in V2(Q̃).

We write u ∈ Lq,p,loc(Q̃) if ηu ∈ Lq,p(Q̃) for any infinitely differentiable function η
on Rd+1 having a compact support, and similarly defineH1

p,D̃,loc
(Q̃), etc.

Definition 2.1. We say that u ∈ H1
p,D̃,loc

(Q̃) satisfies the mixed boundary value
problem 

Pu = Digi + f in Q̃,
Bu = gini on Ñ ,
u = 0 on D̃,

(2.2)

where g = (g1, . . . , gd) ∈ Lp,loc(Q̃)d and f ∈ Lp,loc(Q̃) if∫
Q̃

uφt dX +
∫
Q̃

(−ai jD juDiφ − aiuDiφ + biDiuφ + cuφ) dX =
∫
Q̃

(−giDiφ + fφ) dX

for all φ ∈ C∞
D̃

(Q̃) that vanishes for t = S and T. For S > −∞, we also say that
u ∈ H1

p,D̃,loc
(Q̃) satisfies (2.2) with the initial condition u(S, ·) = ψ on Ω, where

ψ ∈ Lp,loc(Ω) if∫
Q̃

uφt dX +
∫
Q̃

(−ai jD juDiφ − aiuDiφ + biDiuφ + cuφ) dX

= −

∫
Q̃

(giDiφ − fφ) dX −
∫
Ω

ψφ(S, ·) dx
(2.3)

for all φ ∈ C∞
D̃

(Q̃) that vanishes for t = T.

2.2. Main result. We impose the following regularity assumptions on the domain
and the leading coefficients. The first one is the so-called Reifenberg flat conditions
on ∂Ω and Γ.

Assumption 2.2 (γ; m,M). Let m ∈ {0, 1, . . . , d − 2} and M ∈ (0,∞).

(a) For any x0 ∈ ∂Ω and R ∈ (0,R0], there is a coordinate system depending on x0
and R such that in this coordinate system, we have

{y : y1 > x1
0 + γR} ∩ BR(x0) ⊂ ΩR(x0) ⊂ {y : y1 > x1

0 − γR} ∩ BR(x0). (2.4)
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(b) For any X0 = (t0, x0) ∈ Γ and R ∈ (0,R0], there exist a spatial coordinate system
and a Lipschitz function ϕ of m variables with Lipschitz constant M, such that
in the new coordinate system (called the coordinate system associated with
(X0,R)), we have (2.4),(

∂Q ∩QR(X0) ∩ {(s, y) : y2 > ϕ(y3, . . . , ym+2) + γR}
)
⊂ D,(

∂Q ∩QR(X0) ∩ {(s, y) : y2 < ϕ(y3, . . . , ym+2) − γR}
)
⊂ N ,

and
ϕ(x3

0, . . . , x
m+2
0 ) = x2

0.

Here, if m = 0, then the function ϕ is understood as the constant function
ϕ ≡ x2

0.

The second is the small BMO condition on the leading coefficients.

Assumption 2.3 (θ). For any X0 ∈ Q and R ∈ (0,R0], we have

−

∫
QR(X0)

|ai j(X) − (ai j)QR(X0)| dX ≤ θ.

Our theorems deal with cylinders with infinite or finite height. We rewrite (1.1)
in the unified form 

Pu − λu = Digi + f in Q̃,
Bu = gini on Ñ ,
u = 0 on D̃,

(2.5)

where Q̃, Ñ , and D̃ are defined in (2.1), and −∞ ≤ S < T ≤ ∞. The main theorem
of the paper is the following solvability result for (2.5) in Sobolev spaces.

Theorem 2.4. Let R0 ∈ (0, 1], m ∈ {0, 1, . . . , d − 2}, M ∈ (0,∞), and p ∈
(

2(m+2)
m+3 ,

2(m+2)
m+1

)
.

There exist constants γ, θ ∈ (0, 1) and λ0 ∈ (0,∞) with

(γ, θ) = (γ, θ)(d,Λ,M, p), λ0 = λ0(d,Λ,M, p,K,R0),

such that if Assumptions 2.2 (γ; m,M) and 2.3 (θ) are satisfied with these γ and θ, then
the following assertions hold.

(a) When S = −∞, for any λ ≥ λ0, g = (g1, . . . , gd) ∈ Lp(Q̃)d, and f ∈ Lp(Q̃), there exists
a unique solution u ∈ H1

p,D̃
(Q̃) to (2.5), which satisfies

∥Du∥Lp(Q̃) + λ
1/2
∥u∥Lp(Q̃) ≤ C∥g∥Lp(Q̃) + Cλ−1/2

∥ f ∥Lp(Q̃), (2.6)

where C = C(d,Λ,M, p).
(b) For the initial boundary value problem on a cylindrical domain of finite height, we can

take λ = 0, i.e., when S = 0 and T ∈ (0,∞), for any g = (g1, . . . , gd) ∈ Lp(Q̃)d and
f ∈ Lp(Q̃), there exists a unique solution u ∈ H1

p,D̃
(Q̃) to (2.5) with λ = 0 and the

initial condition u(0, ·) ≡ 0 on Ω. Moreover, we have

∥u∥
H1

p,D̃
(Q̃) ≤ C∥g∥Lp(Q̃) + C∥ f ∥Lp(Q̃),

where C = C(d,Λ,M, p,K,R0,T).
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3. Auxiliary results

Throughout this paper, we use the following notation.

Notation 3.1. For nonnegative (variable) quantities A and B, we denote A ≲ B if
there exists a generic positive constant C such that A ≤ CB. We add subscript
letters like A ≲a,b B to indicate the dependence of the implicit constant C on the
parameters a and b.

3.1. L2 estimate. In this subsection, we prove the solvability of the mixed bound-
ary value problem in V2,D̃(Q̃) under the following assumption that the boundary
portions D and N vary continuously in t, which is weaker than the condition (b)
in Assumption 2.2 (γ; m,M); see Lemma A.1.

Assumption 3.2. For any ε > 0 and L > 0, there exist a time partition

max{S,−L} = t0 < t1 < · · · < tn = min{T,L}

and decompositions ∂Ω = Dtk ∪Ntk , k ∈ {1, . . . ,n}, such that

D(t) ⊂ Dtk , Hd(D(t),Dtk ) < ε, ∀t ∈ [tk−1, tk), (3.1)

where D(t) = {x ∈ ∂Ω : (t, x) ∈ D} and Hd is the usual d-dimensional Hausdorff
distance.

Note that Assumption 3.2 excludes the following possibility:

t

x

Γ

DN

Q

In the proposition below, we do not impose any regularity assumptions on
ai j = ai j(t, x). It generalizes the classical solvability result in [26] by allowing a
rough Ω and a time-varying Γ.

Proposition 3.3. Let Ω be a bounded or unbounded domain in Rd. Under Assumption
3.2, there exists λ0 ≥ 0 depending only on d, Λ, and K such that the following assertions
hold. For any λ ≥ λ0, g = (g1, . . . , gd) ∈ L2(Q̃)d, f ∈ L2(Q̃), and ψ ∈ L2(Ω), there exists a
unique u ∈ V2,D̃(Q̃) satisfying

Pu − λu = Digi + f in Q̃,
Bu = gini on Ñ ,
u = 0 on D̃,
u = ψ on {S} ×Ω if S > −∞.

(3.2)

Moreover, we have

∥Du∥L2(Q̃) + λ
1/2
∥u∥L2(Q̃) ≲d,Λ ∥g∥L2(Q̃) + λ

−1/2
∥ f ∥L2(Q̃) + ∥ψ∥L2(Ω) (3.3)
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and
∥u∥L∞,2(Q̃) ≤ ∥ψ∥L2(Ω) + C(d,Λ)

(
∥g∥L2(Q̃) + λ

−1/2
∥ f ∥L2(Q̃)

)
. (3.4)

Here the initial condition u = ψ and the term ∥ψ∥L2(Ω) in the estimates only appear when
S > −∞.

The rest of this subsection is devoted to the proof of Proposition 3.3. In the fol-
lowing, we call a domainΩ(⊂ Rd) an extension domain if it is bounded and admits
an bounded extension W1

2(Ω) → W1
2(Rd). In particular, the compact embedding

W1
2,D(Ω) ↪→ L2(Ω) holds. The following lemma should be classical, which we state

explicitly for completeness.

Lemma 3.4. Let Ω be an extension domain in Rd and D ⊂ ∂Ω. Then there exists an
orthogonal basis {wi} for W1

2,D(Ω) satisfying∫
Ω

wiw j dx = δi j,

where δi j is the Kronecker delta symbol.

Proof. The lemma follows from the same argument used in [13, §6.5], by finding
Laplacian eigenfunctions with the help of the compact embedding W1

2(Ω) ↪→ L2(Ω)
and the spectral theory for compact operators. We omit the details. ■

Using Lemma 3.4 and the Galerkin method, we obtain the following L2 solv-
ability of the mixed problem (3.2) with a cylindrical separation.

Lemma 3.5. Proposition 3.3 holds when D̃ and Ñ are time-independent.

Proof. Approximating g and f by L2 functions with compact support in time, it
suffices to consider the case when −∞ < S < T < ∞. When the spatial domain Ω
is a bounded and regular (i.e., an extension domain), the lemma follows from the
standard Galerkin method together with Lemma 3.4. The energy inequalities (3.3)
and (3.4) are standard, with constants independent of the spatial domain. See, for
example, [26, §4, Chapter III].

When Ω is unbounded or irregular, we take a sequence of expanding smooth
domainsΩk

⊂ Ω∩Bk such that for any x ∈ (∂Ωk)∩Bk, dist(x, ∂Ω) < 1/k, i.e.,Ωk
↗ Ω

as k→∞. Set
Nk = {x ∈ ∂Ωk : dist(x,N) < 1/k},

where N = {x ∈ ∂Ω : (t, x) ∈ Ñ}. We also set

Qk = (S,T) ×Ωk, Nk = (S,T) ×Nk, Dk = (S,T) × (∂Ωk
\Nk).

We may assume that k is sufficiently large so that Dk and Nk are not empty. Now
we solve the mixed problem in Qk with zero Dirichlet boundary condition on Dk,
homogeneous conormal boundary condition on Nk, and initial data ψ. Since Ωk is
an extension domain, the solution uk

∈ V2,Dk (Qk) exists and is uniformly bounded.
We extend uk to be zero, still denoted by uk, on

Q̃k := (S,T) × {x ∈ Ω \Ωk : dist(x,N) > 2/k}.

Then uk is in V2(Qk
∪ Q̃k) and vanishes on

{(t, x) ∈ D̃ : dist(x,N) > 2/k}.
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By a diagonal argument, we can pick a subsequence, again denoted by uk, such
that as k→∞,

uk ⇀ u, Duk ⇀ Du weakly in L2((S,T) × K),

uk ∗
⇀ u weakly∗ in L∞,2((S,T) × K)

for any compact set K ⊂ Ω. Due to the estimates (3.3) and (3.4), which are uniform
with respect to k, by taking the limit in the weak formulation and using Hölder’s
inequality, we see that u ∈ V2,D̃(Q̃) satisfies (3.2) as well as the estimates (3.3) and
(3.4). The lemma is proved. ■

We are ready to prove Proposition 3.3.

Proof of Proposition 3.3. Again, by the standard approximation argument, it suffices
to consider the case when −∞ < S < T < ∞. Let ε > 0 be given. By Assumption
3.2, there exists a time partition

S = t0 < t1 < · · · < tn = T

and decompositions ∂Ω = Dtk ∪ Ntk , k ∈ {1, 2, . . . ,n}, such that (3.1) holds. From
Lemma 3.5, for k ∈ {1, 2, . . . ,n}, there exists a unique uk

ε ∈ V0,1
2 ((tk−1, tk)×Ω) satisfying

Puk
ε − λuk

ε = Digi + f in (tk−1, tk) ×Ω,
Buk

ε = gini on (tk−1, tk) ×Ntk ,

uk
ε = 0 on (tk−1, tk) ×Dtk ,

uk
ε = uk−1

ε on {tk−1} ×Ω,

(3.5)

where u0
ε = ψ, with the estimates

∥Duk
ε∥L2((tk−1,tk)×Ω) + λ

1/2
∥uk

ε∥L2((tk−1,tk)×Ω)

≲d,Λ ∥g∥L2((tk−1,tk)×Ω) + λ
−1/2
∥ f ∥L2((tk−1,tk)×Ω) + ∥uk−1

ε (tk−1, ·)∥L2(Ω)

and

∥uk
ε(t, ·)∥L∞,2((tk−1,tk)×Ω)

≤ ∥uk−1
ε (tk−1, ·)∥L2(Ω) + C(d,Λ)

(
∥g∥L2((tk−1,tk)×Ω) + λ

−1/2
∥ f ∥L2((tk−1,tk)×Ω)

)
.

We then see that the function uε defined by

uε =
n∑

k=1

uk
εI(tk−1,tk)×Ω in Q̃ = (S,T) ×Ω

belongs to V2,D̃(Q̃) and that the estimates (3.3) and (3.4) hold with uε in place
of u. Thus from the weak compactness and Alaoglu’s theorems, there exist a
subsequence of {uε}, denoted by {uεi }, and a function u ∈ V2,D̃(Q̃) such that

uεi ⇀ u, Duεi ⇀ Du weakly in L2(Q̃),

uεi

∗
⇀ u weakly∗ in L∞,2(Q̃).

Moreover, u satisfies (3.3) and (3.4).
To prove that the limit function u satisfies (3.2), we let φ ∈ C∞

D̃
(Q̃) vanishing for

t = T. Since φ vanishes in a neighborhood of D̃ and has the compact support, we
see that

dist(suppφ, D̃) > 0.
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Hence, for sufficiently large i, dist(suppφ, D̃) > εi, which in turn implies that φ
vanishes in a neighborhood of

ni⋃
k=1

(t(i)
k−1, t

(i)
k ) ×Dt(i)

k ,

where t(i)
k and Dt(i)

k are given in Assumption 3.2. By testing (3.5) with φ, we have

−

∫
Ω

uk
εi

(t(i)
k , ·)φ(t(i)

k , ·) dx +
∫ t(i)

k

t(i)
k−1

∫
Ω

uk
εi
φt dx dt

+

∫ t(i)
k

t(i)
k−1

∫
Ω

(−ai jD juk
εi

Diφ − aiuk
εi

Diφ + biDiuk
εi
φ + (c − λ)uk

εi
φ) dx dt

= −

∫ t(i)
k

t(i)
k−1

∫
Ω

(giDiφ − fφ) dx dt −
∫
Ω

uk−1
εi

(t(i)
k−1, ·)φ(t(i)

k−1, ·) dx.

Thus, by taking summation with respect to k, and then sending i→∞, we see that
u satisfies (2.3). The proposition is proved. ■

3.2. Poincaré and embedding inequalities. In this subsection, we present some
inequalities suitable to our problem. The first lemma is a Sobolev-Poincaré in-
equality on small Reifenberg flat domains, proved in [6].

Lemma 3.6 ([6, Theorem 3.5]). Let p ∈ (1, d) and Ω be a domain in Rd satisfying
Assumption 2.2 (a) with γ ∈ (0, 1/48], and let x0 ∈ ∂Ω and R ∈ (0,R0/4]. Then for any
u ∈W1

p(Ω2R(x0)), we have

∥u − (u)ΩR(x0)∥Ldp/(d−p)(ΩR(x0)) ≲d,p ∥Du∥Lp(Ω2R(x0)).

When u = 0 on a surface ball, we can remove the average from the left-hand
side.

Lemma 3.7. Let Ω be a domain in Rd satisfying Assumption 2.2 (a) with γ ∈ (0, 1/48].
Let x0 ∈ ∂Ω, R ∈ (0,R0/4], and u ∈ W1

p(Ω2R(x0)). If there exist some z0 ∈ ∂Ω ∩ BR(x0)
and α ∈ (0, 1) such that

BαR(z0) ⊂ BR(x0), u = 0 on ∂Ω ∩ BαR(z0),

then
∥u∥Ldp/(d−p)(ΩR(x0)) ≲d,p,α ∥Du∥Lp(Ω2R(x0)), (3.6)

provided that p ∈ (1, d), and

∥u∥Lp(ΩR(x0)) ≲d,p,α R∥Du∥Lp(Ω2R(x0)), (3.7)

provided that p ∈ (1,∞). The same results hold for x0 ∈ Ω and R ∈ (0,R0/8] withΩ5R(x0)
in place of Ω2R(x0).

Proof. The estimate (3.7) is a simple consequence of Hölder’s inequality and (3.6),
the proof of which is the same as that of [7, Corollary 3.2 (a)]. Here the chain of
inclusions

ΩR(x0) ⊂ Ω2R(z0) ⊂ Ω4R(z0) ⊂ Ω5R(x0)

is also used when x0 ∈ Ω. ■
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We have the following parabolic Sobolev-Poincaré inequalities with mixed
norms, the proof of which is based on the embedding results in [22, Lemmas
5.3 and 5.4] along with Sobolev-Poincaré inequalities for each x and t variables.
We present the proof in Appendix A. Note that the usual zero extension technique
as in [7, Corollary 3.2] does not work for the parabolic case, since ut might not be
inH−1

q,p after the extension.

Lemma 3.8. Let Ω be a domain in Rd satisfying Assumption 2.2 (a) with γ ∈ (0, 1/48],
and let X0 ∈ Q and R ∈ (0,R0/4] such that either

Q2R(X0) ⊂ Q or X0 ∈ ∂Q.

If p, q ∈ [1,∞], p0 ∈ [p,∞], q0 ∈ (q,∞], and

d
p
+

2
q
< 1 +

d
p0
+

2
q0
,

then for u ∈W0,1
q,p (Q2R(X0)) satisfying

ut = Digi in Q2R(X0)

in the distribution sense, where g = (g1, . . . , gd) ∈ Lq,p(Q2R(X0))d, we have

∥u − (u)QR(X0)∥Lq0 ,p0 (QR(X0))

≲d,p,q,p0,q0 R1+d/p0+2/q0−d/p−2/q
(
∥Du∥Lq,p(Q2R(X0)) + ∥g∥Lq,p(Q2R(X0))

)
.

(3.8)

If we further assume that there exist Y0 ∈ ∂Q and α ∈ (0, 1) such that

u = 0 on QαR(Y0) ∩ ∂Q, QαR(Y0) ⊂ QR(X0),

then we have

∥u∥Lq0 ,p0 (QR(X0)) ≲d,p,q,p0,q0,α R1+d/p0+2/q0−d/p−2/q
(
∥Du∥Lq,p(Q2R(X0)) + ∥g∥Lq,p(Q2R(X0))

)
. (3.9)

To end this subsection, we prove the following inequality which will be fre-
quently used in our cut-off argument.

Lemma 3.9. Let p ∈ (1,∞) and Assumption 2.2 (γ; m,M) be satisfied withγ ∈
(
0, 1

160
√

d+3

]
,

and let X0 ∈ Γ, R ∈ (0,R0], and ρ ∈ [R/8,R]. Then for any u ∈ W0,1
p (Qρ(X0)) vanishing

onD∩Qρ(X0), we have

∥uIA∥Lp(Qρ/2(X0)) ≲d,M,p γρ∥Du∥Lp(Qρ(X0)),

where
A = {(s, y) : y1 < x1

0 + 2γR, y2 > ϕ − 2γR}
in the coordinate system associated with (X0,R).

Proof. By translation we may assume that X0 = (0, 0). Fix the coordinate system
associated with the origin and R, and we denote byDgrid the set of all grid points
z = (γR, kγR), where k = (k2, . . . , kd) ∈ Zd−1, such that

z ∈ Ωρ/2, Ω√d+3γR(z) ∩ {x : x2 > ϕ} , ∅.

By Lemma 3.7 applied to Ω2
√

d+3γR(z), we have

∥u(t, ·)∥Lp(Ω2
√

d+3γR(z)) ≲d,M,p γR∥Du(t, ·)∥Lp(Ω10
√

d+3γR(z)).
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Since (
Ωρ/2 ∩ A

)
⊂

⋃
z∈Dgrid

Ω2
√

d+3γR(z) ⊂
⋃

z∈Dgrid

Ω10
√

d+3γR(z) ⊂ Ωρ,

we have that
∥u(t, ·)IA∥Lp(Ωρ/2) ≲ γR∥Du(t, ·)∥Lp(Ωρ),

from which we get the desired estimate. ■

3.3. Localization and reverse Hölder’s inequality. In this subsection, we assume
that the lower-order coefficients of P are all zero, i.e.,

Pu = −ut +Di(ai jD ju).

We do not impose any regularity assumptions on ai j. Hereafter in this paper, we
always assume that T ∈ (−∞,∞].

We first localize the estimate in Proposition 3.3.

Lemma 3.10. Let Ω ⊂ Rd and Assumption 3.2 be satisfied. If u ∈ H1
2,DT ,loc(QT) satisfies

Pu = Digi in QT,

Bu = gini on NT,

u = 0 on DT,

(3.10)

where g = (g1, . . . , gd) ∈ L2,loc(QT)d, then for any X0 ∈ Q
T and R ∈ (0, 1], we have

∥Du∥L2(QR/2(X0)) ≲d,Λ R−1
∥u∥L2(QR(X0)) + ∥g∥L2(QR(X0)).

Proof. We give a proof which also works when the L2 norms are replaced by the Lp
norms provided that the corresponding global estimate is available. By translation
we may assume that X0 = (0, 0). Let

Rk = R(1 − 2−k), k ∈ {1, 2, . . .}

and ηk be an infinitely differentiable function on Rd+1 such that

0 ≤ ηk ≤ 1, ηk ≡ 1 on QRk , supp ηk ⊂ QRk+1 ,

|(ηk)t| + |Dηk|
2 ≲ R−222k.

Then ηku ∈ H1
2,D0 (Q0) satisfies

P(ηku) − λk(ηku) = Digk
i + gk in Q0,

B(ηku) = gk
i ni on N0,

ηku = 0 on D0,

(3.11)

where λk ≥ λ0, λ0 = λ0(d,Λ) ≥ 0 is from Proposition 3.3, and

gk
i = ηkgi +

d∑
j=1

ai jD jηku,

gk = −

d∑
i=1

Diηkgi − (ηk)tu +
d∑

i, j=1

ai jD juDiηk − λk(ηku).
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By (3.3) applied to (3.11), we have

∥D(ηku)∥L2(Q0) +
√
λk∥ηku∥L2(Q0) ≲

(
2k

R
+

22k

R2
√
λk
+

√
λk

)
∥u∥L2(QR)

+

(
1 +

2k

R
√
λk

)
∥g∥L2(QR) +

2k

R
√
λk
∥D(ηk+1u)∥L2(Q0).

Set
Uk = ∥D(ηku)∥L2(Q0), U = ∥u∥L2(QR), F = ∥g∥L2(QR).

By multiplying both sides of the above inequality by εk and summing the terms
respect to k, we obtain

∞∑
k=1

εk
Uk ≤ CU

∞∑
k=1

εk
(

2k

R
+

22k

R2
√
λk
+

√
λk

)

+ CF
∞∑

k=1

εk
(
1 +

2k

R
√
λk

)
+ C0

∞∑
k=1

εk2k

R
√
λk
Uk+1,

where we may assume C0 ≥ (λ0+1)1/2, and each summation is finite upon choosing

ε = 1/4, λk =

(
C02k+2

R

)2

.

Indeed we have
∞∑

k=1

εk
(

2k

R
+

22k

R2
√
λk
+

√
λk

)
≤

C
R
,

∞∑
k=1

εk
(
1 +

2k

R
√
λk

)
≤ C,

C0

∞∑
k=1

εk2k

R
√
λk
Uk+1 =

∞∑
k=1

εk+1
Uk+1 =

∞∑
k=2

εk
Uk.

Therefore,
∞∑

k=1

εk
Uk ≤

C
R
U + CF +

∞∑
k=2

εk
Uk,

which implies the desired estimate. ■

Lemma 3.11. Let α ∈ (0, 1), q1 ∈
(

2(d+2)
d+4 , 2

)
, and γ ∈

(
0, 1

48

]
. If Assumptions 2.2 (a) and

3.2 are satisfied, and if for any X ∈ Γ and ρ ∈ (0,R0/4], there exists Y ∈ ∂Q such that

Qαρ(Y) ∩ ∂Q ⊂ D, Qαρ(Y) ⊂ Qρ(X), (3.12)

then the following assertion holds. Let u ∈ H1
2,DT ,loc(QT) satisfy (3.10) with g =

(g1, . . . , gd) ∈ L2,loc(QT)d. Then for any X0 ∈ Q
T and R ∈ (0,R0] satisfying either

QR/2(X0) ⊂ Q or X0 ∈ ∂Q,

we have
(|Du|2)1/2

QR/16(X0) ≲d,Λ,α,q1 (|Du|q1 )1/q1

QR(X0) + (|g|2)1/2
QR(X0).
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Proof. By translation, we may assume that X0 = (0, 0). In the case when QR/2 ⊂ Q,
by Lemma 3.10 applied to u − (u)QR/4 , we have

(|Du|2)1/2
QR/8
≲ R−1(|u − (u)QR/4 |

2)1/2
QR/4
+ (|g|2)1/2

QR/4
,

from which together with (3.8), we get the desired estimate. In the case when
X0 ∈ ∂Q, we consider the following two cases:

QR/4 ∩ Γ , ∅, QR/4 ∩ Γ = ∅.

(i) QR/4 ∩ Γ , ∅. Due to Lemma 3.10, it suffices to show that

R−1(|u|2)1/2
QR/2
≲ (|Du|q1 )1/q1

QR
+ (|g|2)1/2

QR
. (3.13)

We aim to apply Lemma 3.8. For this, we first fix some X ∈ QR/4 ∩ Γ. By the
assumption, we can find some Y0 ∈ ∂Ω satisfying (3.12) with ρ = R/4. Noting
u vanishes on QαR/4(Y0) ⊂ QR/4(X) ⊂ QR/2, by (3.9) with R/2 in place of R, we
conclude (3.13).

(ii) QR/4 ∩ Γ = ∅. In this case, we have either(
QR/4 ∩ ∂Q

)
⊂ D or

(
QR/4 ∩ ∂Q

)
⊂ N ,

where the proof of the first case is the same as in (i) and the second case is the
same as the interior case.

The lemma is proved. ■

From Lemma 3.11 along with Gehring’s lemma and Agmon’s idea, we conclude
the following reverse Hölder’s inequality. For a given constant λ > 0 and functions
u, f , and g = (g1, . . . , gd), we write

U = |Du| +
√

λ|u|, F = |g| +
| f |
√
λ
.

We also denote for a function v defined on a domain Q that

v = vIQ.

Lemma 3.12. Let α ∈ (0, 1), p > 2, and γ ∈
(
0, 1

48

]
. If Assumptions 2.2 (a) and 3.2 are

satisfied, and if for any X ∈ Γ and ρ ∈ (0,R0/4], there exists Y ∈ ∂Q such that (3.12)
holds, then we have the following. Let u ∈ H1

2,DT ,loc(QT) satisfy
Pu − λu = Digi + f in QT,

Bu = gini on NT,

u = 0 on DT,

(3.14)

where λ > 0, g = (g1, . . . , gd) ∈ Lp,loc(QT)d, and f ∈ Lp,loc(QT). There exists a constant
p0 ∈ (2, p) depending only on d, Λ, α, and p, such that for any X0 ∈ Rd+1 and R ∈ (0,R0],
we have (

U
p0
)1/p0

QR/2(X0)
≲d,Λ,α,p

(
U

2)1/2

QR(X0)
+

(
F

p0
)1/p0

QR(X0)
.

The same result holds with |Du| and |g| in place of U and F, respectively, provided that
λ = 0 and f ≡ 0.
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Proof. We first prove the lemma for λ = 0 and f ≡ 0. More precisely, we show
that there exists p1 ∈ (2, p], depending only on d, Λ, α, and p, such that for any
p0 ∈ (2, p1], X0 ∈ Rd+1, and R ∈ (0,R0], we have(

|Du|p0
)1/p0

QR/2(X0)
≲d,Λ,α,p

(
|Du|2

)1/2

QR(X0)
+

(
|g|p0

)1/p0

QR(X0)
. (3.15)

Fix a number q1 ∈
(

2(d+2)
d+4 , 2

)
. Then by Lemma 3.11 with a covering argument, we

have that for X0 ∈ Rd+1 and R ∈ (0,R0],

−

∫
QR/2(X0)

Φ2/q1 dX ≲d,Λ,α

(
−

∫
QR(X0)

Φ dX
)2/q1

+ −

∫
QR(X0)

Ψ2/q1 dX,

where Φ = |Du|q1 and Ψ = |g|q1 . Thus by Gehring’s lemma (see, for instance, [15,
Ch.V]), we get the desired result (3.15).

For the case when λ > 0, we use an idea by S. Agmon. Denote by (t, z) = (t, x, τ)
a point in Rd+2, where z = (x, τ) ∈ Rd+1. We define

û(t, z) = u(t, x)η(τ), η(τ) = cos(
√

λτ + π/4),

Q̂ = {(t, z) : t ∈ R, z ∈ Ω ×R}, Q̂T = {(t, z) ∈ Q̂ : t < T},

D̂ = {(t, z) : t ∈ R, z ∈ D ×R}, D̂T = {(t, z) ∈ D̂ : t < T},

N̂ = {(t, z) : t ∈ R, z ∈ N ×R}, N̂T = {(t, z) ∈ N̂ : t < T},

Q̂r(t0, z0) = (t0 − r2, t0) × {z ∈ Rd+1 : |z − z0| < r}.

Since u satisfies (3.14), we see that û ∈ H1
2,D̂T ,loc

(Q̂T) satisfies

Pû +Dττû =
d∑

i=1

Di(giη) + fη in Q̂T,

Bû =
d∑

i=1

giηni on N̂T,

û = 0 on D̂T.

(3.16)

Since nτ = 0, the operator B is also the conormal derivative operator associated
with P +Dττ. Note that the coefficients of P +Dττ satisfy the ellipticity condition
with the same constant Λ, and that Q̂, D̂, and N̂ satisfy the same conditions of the
lemma. Moreover, we can rewrite the source term in the divergence form since

fη = Dτ( f η̂), where η̂(τ) =
sin(
√
λτ + π/4)
√
λ

.

Hence, we can apply the above result for λ = 0 to (3.16) to see that there exists p2 ∈

(2, p] determined by d + 1, Λ, α, and p, such that for any p0 ∈ (2, p2], (t0, z0) ∈ Rd+2,
and R ∈ (0,R0], (

|Dzû|p0
)1/p0

Q̂R/2(t0,z0)

≲
(
|Dzû|2

)1/2

Q̂R(t0,z0)
+

(
|giη|

p0
)1/p0

Q̂R(t0,z0)
+

(
| f η̂|p0

)1/p0

Q̂R(t0,z0)

≲d,Λ,M,p

(
|Dzû|2

)1/2

Q̂R(t0,z0)
+

(
F

p0
)1/p0

QR(t0,z0)
. (3.17)
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Now we fix p0 such that 2 < p0 ≤ min{p1, p2}, where p1 is the constant from the case
λ = 0. Then by (3.17) with z0 = (x0, 0) ∈ Rd+1 and the fact that

−

∫
−R/4

R/4
|η|p0 dτ ≳p0 1, |Du(t, x)η(τ)| ≤ |Dzû(t, z)| ≤ U(t, x),

we have (
|Du|p0

)1/p0

QR/4(t0,x0)
≲

(
|Dzû|p0

)1/p0

Q̂R/2(t0,z0)
≲

(
U

2)1/2

QR(t0,x0)
+

(
F

p0
)1/p0

QR(t0,x0)
.

Similarly, using the fact that

−

∫
−R/4

R/4
|η′|p0 dτ ≳p0 λ

p0/2, |u(t, x)η′(τ)| ≤ |Dzû(t, z)| ≤ U(t, x),

we get (∣∣∣√λu
∣∣∣p0

)1/p0

QR/4(t0,x0)
≲

(
|Dzû|p0

)1/p0

Q̂R/2(t0,z0)
≲

(
U

2)1/2

QR(t0,x0)
+

(
F

p0
)1/p0

QR(t0,x0)
.

Combining these together and using a covering argument, we get the desired
estimate. The lemma is proved. ■

4. Estimates with time-independent separation and constant coefficients

In this section, we derive various estimates when the separation is time-independent
and the coefficients are all constants. Throughout the section, we consider

P0u = −ut +Di(a
i j
0 D ju),

where the coefficients ai j
0 are constants. The corresponding conormal derivative of

u is denoted by B0u.

4.1. Estimates near curved boundary. Recall that

U = |Du| +
√

λ|u|,

and set
Ut = |Dut| +

√

λ|ut|.

Compared to Lemma 3.12, in the following proposition we further estimate some
time derivatives. Here, Γ is assumed to be time-independent, which clearly satisfies
Assumption 3.2, and P is replaced with the constant-coefficient operator P0.

Proposition 4.1. Let α ∈ (0, 1) and γ ∈
(
0, 1

48

]
. Suppose that the spatial domain Ω

satisfies Assumption 2.2 (a), the separation Γ betweenD andN is time-independent, and
for any X ∈ Γ and ρ ∈ (0,R0/4], there exists Y ∈ ∂Q such that (3.12) holds. Let (0, 0) ∈ Γ,
R ∈ (0,R0], and u ∈W0,1

2 (QR) satisfy
P0u − λu = 0 in QR,

B0u = 0 on QR ∩N ,

u = 0 on QR ∩D,

(4.1)

where λ ≥ 0. Then ut ∈W0,1
2 (QR/2) and

Rd+2− d+2
p0 ∥U∥Lp0 (QR/2) + Rd+4− d+2

p0 ∥Ut∥Lp0 (QR/2) ≲d,Λ,α ∥U∥L1(QR),

where p0 = p0(d,Λ, α) ∈ (2, 4) is from Lemma 3.12 with gi = f = 0.
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Remark 4.2. In the proposition above and throughout the paper, u ∈ W0,1
p (QR) is

said to satisfy (4.1) if u vanishes on QR ∩D and∫
QR

uφt dX −
∫
QR

ai j
0 D juDiφ dX − λ

∫
QR

uφ dX = 0

for any φ ∈W1,1
p/(p−1)(QR) that vanishes on ∂QR \ N .

The rest of this subsection is devoted to the proof of Proposition 4.1.

Lemma 4.3. Under the same conditions in Proposition 4.1 with λ = 0, we have that for
r ∈ (0,R), ut ∈W1,1

2 (Qr) and

(R − r)∥ut∥L2(Qr) + (R − r)2
∥Dut∥L2(Qr) + (R − r)3

∥utt∥L2(Qr) ≲d,Λ ∥Du∥L2(QR).

Proof. By a standard mollification technique, it suffices to prove the desired esti-
mate under the assumption that u and Du are smooth with respect to t. For ρ, τ
with 0 < ρ < τ ≤ R, let ηρ,τ be an infinitely differentiable function inRd+1 such that

0 ≤ ηρ,τ ≤ 1, ηρ,τ ≡ 1 in Qρ, supp ηρ,τ ⊂ Qτ,

|Dηρ,τ|2 + |(ηρ,τ)t| ≲d (τ − ρ)−2.

Since the boundary portions in (4.1) are time-independent, we can apply η2
ρ,τu as a

test function to get the usual Caccioppoli inequality

∥Du∥L2(Qρ) ≲d,Λ (τ − ρ)−1
∥u∥L2(Qτ).

Since ut satisfies the same equation and boundary conditions, we also have

∥Dut∥L2(Qρ) ≲ (τ − ρ)−1
∥ut∥L2(Qτ). (4.2)

Let
ρ ≤ ρ1 < ρ2 ≤ τ, ρ0 =

ρ1 + ρ2

2
.

We test (4.1) again with η2
ρ1,ρ0

ut to get∫
Qρ0

|ηρ1,ρ0 ut|
2 dX = −

∫
Qρ0

η2
ρ1,ρ0

ai j
0 D juDiut dX

− 2
∫
Qρ0

ηρ1,ρ0 Diηρ1,ρ0 ai j
0 D juut dX.

By Young’s inequality and (4.2) with ρ0 and ρ2 in place of ρ and τ, respectively, we
have ∫

Qρ1

|ut|
2 dX ≤

C
(ρ2 − ρ1)2

∫
Qρ2

|Du|2 dX + ε
∫
Qρ2

|ut|
2 dX

for ε ∈ (0, 1), where C = C(d, ε) > 0. Since the above inequality holds for any ρ1, ρ2
with ρ ≤ ρ1 < ρ2 ≤ τ, by a standard iteration argument, we get

∥ut∥L2(Qρ) ≲ (τ − ρ)−1
∥Du∥L2(Qτ). (4.3)

From (4.2) with τ replaced by (ρ + τ)/2 and (4.3) with ρ replaced by (ρ + τ)/2, we
obtain

∥Dut∥L2(Qρ) ≲ (τ − ρ)−1
∥ut∥L2(Q(ρ+τ)/2) ≲ (τ − ρ)−2

∥Du∥L2(Qτ). (4.4)
Again, since we can differentiate the problem in t, the utt estimate follows from
(4.3) with u replaced by ut and (4.4), with parameters chosen properly

∥utt∥L2(Qρ) ≲ (τ − ρ)−1
∥Dut∥L2(Q(ρ+τ)/2) ≲ (τ − ρ)−3

∥Du∥L2(Qτ)
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The lemma is proved. ■

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Due to Agmon’s idea (cf. the proof of Lemma 3.12), it
suffices to prove the proposition for λ = 0. By a rescaled version of Lemma 3.12
and a covering argument, we see that for 0 < ρ < τ ≤ R,

∥Du∥Lp0 (Qρ) ≲ (τ − ρ)
d+2
p0
−

d+2
2 ∥Du∥L2(Qτ). (4.5)

From Hölder’s and Young’s inequalities, we have

∥Du∥Lp0 (Qρ) ≤ ε∥Du∥Lp0 (Qτ) + Cε−
p0

p0−2 (τ − ρ)(d+2)(1/p0−1)
∥Du∥L1(Qτ), (4.6)

for any ε > 0, where C = C(d,Λ, α, ε). Set

τk =
3R
4
+

R
4

(1 − 2−k), k ∈ {0, 1, 2, . . .}.

Then by (4.6) with τk and τk+1 in place of ρ and τ, respectively, we get

∥Du∥Lp0 (Qτk ) ≤ ε∥Du∥Lp0 (Qτk+1 ) + Cε−
p0

p0−2 R(d+2)(1/p0−1)2(d+2)(1−1/p0)k
∥Du∥L1(Qτk+1 ).

Multiplying both sides of the above inequality by εk and summing the terms with
respect to k = 0, 1, . . ., we obtain that

∞∑
k=0

εk
∥Du∥Lp0 (Qτk ) ≤

∞∑
k=1

εk
∥Du∥Lp0 (Qτk )

+ Cε−
p0

p0−2 R(d+2)(1/p0−1)
∞∑

k=0

(
ε2(d+2)(1−1/p0)

)k
∥Du∥L1(Qτk+1 ),

where each summation is finite upon choosing ε = 2−1−(d+2)(1−1/p0). This yields

∥Du∥Lp0 (Q3R/4) ≲ R
d+2
p0
−(d+2)

∥Du∥L1(QR). (4.7)

Since ut satisfies the same equation and the boundary conditions, by (4.7), Hölder’s
inequality, and Lemma 4.3, we have

∥Dut∥Lp0 (QR/2) ≲ R
d+2
p0
−

d+2
2 ∥Dut∥L2(Q2R/3) ≲ R

d+2
p0
−

d+2
2 −2
∥Du∥L2(Q3R/4) ≲ R

d+2
p0
−d−4
∥Du∥L1(QR).

The proposition is proved. ■

4.2. Estimates near flat boundary. Now, we prove that the problem that we per-
turb from – the problem with constant coefficients, cylindrical separation, and flat
boundary, can reach the optimal regularity Du ∈ Lx′

p L(t,x′′)
∞ . In this subsection, we

additionally assume that (ai j
0 ) is symmetric and set

Q+R = QR ∩ {(t, x) : x1 > 0},

D = B1 ∩ {x : x1 = 0, x2 > ϕ},

N = B1 ∩ {x : x1 = 0, x2 < ϕ},

where
ϕ = ϕ(x3, . . . , xm+2) : Rm

→ R
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is a Lipschitz function of m variables with Lipschitz constant M and satisfying
ϕ(0, . . . , 0) = 0. Here, m ∈ {0, 1, . . . , d − 2} and if m = 0, then ϕ is understood as the
constant function ϕ ≡ 0. We write X = (t, x) = (t, x′, x′′) ∈ Rd+1, where

x′ = (x1, . . . , xm+2) ∈ Rm+2, x′′ = (xm+3, . . . , xd) ∈ Rd−2−m.

Proposition 4.4. If u ∈W0,1
2 (Q+1 ) satisfy
P0u − λu = 0 in Q+1 ,
B0u = 0 on (−1, 0) ×N
u = 0 on (−1, 0) ×D,

where λ ≥ 0, then for p ∈
[
2, 2(m+2)

m+1

)
we have that

U ∈ Lx′
p L(t,x′′)
∞ (Q+1/2)

and
∥U∥Lx′

p L(t,x′′)
∞ (Q+1/2) ≲d,Λ,M,p ∥U∥L1(Q+1 ).

The rest of this subsection is devoted to the proof of Proposition 4.4.

Lemma 4.5. Under the same conditions in Proposition 4.4 with λ = 0, we have that for
0 < r < R ≤ 1,

u ∈W1,1
2 (Q+r ), ut,Dku ∈W0,1

2 (Q+r ), k ∈ {m + 3, . . . , d}

and
∥ut∥L2(Q+r ) + ∥Dut∥L2(Q+r ) + ∥DDx′′u∥L2(Q+r ) ≲d,Λ,r,R ∥Du∥L2(Q+R). (4.8)

Generally, for i ∈ {0, 1, 2, . . .}, we have

∥DDi
(t,x′′)u∥L2(Q+r ) ≲d,Λ,r,R,i ∥Du∥L2(Q+R). (4.9)

Proof. By the same argument used in the proof of Lemma 4.3, we obtain the bounds
of the first two terms in (4.8). The bound of the last term in (4.8) and also the
inequality (4.9) follow from the Caccioppoli inequality and the fact that members
of Di

(t,x′′)u satisfy the same equation and the boundary conditions in Q+R′ for any
R′ < R. We omit the details. ■

We are now ready to present the proof of Proposition 4.4.

Proof of Proposition 4.4. Due to Agmon’s idea, it suffices to prove the proposition
for λ = 0. Also by a change of variables, we may assume that ai j

0 = δi j.
We first claim that

∥Du∥Lx′
p L(t,x′′)
∞ (Q+1/2) ≲d,Λ,M,p ∥Du∥L2(Q+1 ). (4.10)

For almost every (t, x′′) with −1 < t < 0 and |x′′| < 1, the function v = u(t, ·, x′′)
satisfies 

∆x′v = f in B′+3/4,
D1v = 0 on N′,
v = 0 on D′,

where we set
f = ut(t, ·, x′′) − ∆x′′u(t, ·, x′′),

B′3/4 = {x
′
∈ Rm+2 : |x′| < 3/4}, B′+3/4 = B′3/4 ∩ {x

′
∈ Rm+2 : x1 > 0},
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D′ = B′3/4 ∩ {x
′
∈ Rm+2 : x1 = 0, x2 > ϕ},

N′ = B′3/4 ∩ {x
′
∈ Rm+2 : x1 = 0, x2 < ϕ}.

Notice from Lemma 4.5 that f ∈ L2(B′+3/4). Thus by a rescaled version of [10, Lemma
3.2] with a change of variables, we have

∥Dx′v∥Lp(B′+1/2) ≲Λ,M,p ∥Dx′v∥L2(B′+3/4) + ∥ f ∥L2(B′+3/4).

Taking L2 norm in {(t, x′′) : −1 < t < 0, |x′′| < 1/2} and using Lemma 4.5, we obtain

∥Du∥L(t,x′′)
2 Lx′

p (Q+1/2) ≲ ∥Du∥L2(Q+1 ),

and thus by Minkowski’s inequality, we have

∥Du∥Lx′
p L(t,x′′)

2 (Q+1/2) ≲ ∥Du∥L2(Q+1 ).

From the above inequality with scaling and the fact that the members of Di
(t,x′′)u

satisfy the same equation and the boundary condition in any smaller cylinder Q+R′
with R′ < 1, we also have

∥DDi
(t,x′′)u∥Lx′

p L(t,x′′ )
2 (Q+1/2) ≲d,Λ,M,p,i ∥Du∥L2(Q+1 )

for i ∈ {1, 2, . . .}, where we also used Lemma 4.5. Therefore, by the Sobolev embed-
ding in (t, x′′), there exists k such that

∥Du∥Lx′
p L(t,x′′ )
∞ (Q+1/2) ≲

k∑
i=0

∥DDi
(t,x′′)u∥Lx′

p L(t,x′′)
2 (Q+1/2) ≲ ∥Du∥L2(Q+1 ),

which implies the claim (4.10).
It is well known that (4.10) holds (with p = ∞) when u satisfies purely Dirich-

let/conormal derivative boundary conditions. The corresponding interior estimate
also holds. Hence, by scaling and a covering argument, one can see that for
0 < ρ < r ≤ 1,

∥Du∥Lx′
p L(t,x′′)
∞ (Q+ρ ) ≲ (τ − ρ)

m+2
p −

d+2
2 ∥Du∥L2(Q+r ),

which corresponds to (4.5). Similarly as in the proof of Proposition 4.1, we conclude
that

∥Du∥Lx′
p L(t,x′′)
∞ (Q+1/2) ≲ ∥Du∥L1(Q+1 ).

This proves the proposition for λ = 0. The proposition is proved. ■

5. Proof of Theorem 2.4

This section is devoted to the proof of Theorem 2.4.

5.1. Decomposition. In this subsection, we consider the operator P without
lower-order terms, i.e.,

Pu = −ut +Di(ai jD ju).

Recall that

U = |Du| +
√

λ|u|, F = |g| +
| f |
√
λ
.
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Proposition 5.1. Let

p > 2, γ ∈

(
0,

1

160
√

d + 3

]
, θ ∈ (0, 1),

and λ0 = λ0(d,Λ) be the constant from Proposition 3.3. If Assumptions 2.2 (γ; m,M)
and 2.3 (θ) are satisfied with these γ and θ, then the following assertion holds. Let
u ∈ H1

2,DT ,loc(QT) satisfy 
Pu − λu = Digi + f in QT,

Bu = gini on NT,

u = 0 on DT,

where λ > 0, λ ≥ λ0, g = (g1, . . . , gd) ∈ Lp,loc(QT)d, and f ∈ Lp,loc(QT). Then for any
X0 ∈ Q

T and R ∈ (0,R0], there exist

W, V ∈ L2(QµR(X0)),

where µ = 1
16·96 , such that

U ≤W + V in QµR(X0),

(W2)1/2
QµR(X0) ≲d,Λ,M,p (γ + θ)1/2−1/p0 (Up0 )1/p0

QR/2(X0) + (F2)1/2
QR(X0), (5.1)

and for q ∈
[
1, 2(m+2)

m+1

)
,

(Vq)1/q
QµR(X0) ≲d,Λ,M,p,q (Up0 )1/p0

QR/2(X0) + (F2)1/2
QR(X0), (5.2)

where p0 = p0(d,Λ,M, p) ∈ (2, p) is from Lemma 3.12.

Remark 5.2. In the proposition above, by applying the reverse Hölder’s inequality
in Lemma 3.12 to (5.1) and (5.2), we have that

(W2)1/2
QµR(X0) ≲ (γ + θ)1/2−1/p0 (U2)1/2

QR(X0) + (Fp0 )1/p0

QR(X0)

and
(Vq)1/q

QµR(X0) ≲ (U2)1/2
QR(X0) + (Fp0 )1/p0

QR(X0).

Proof of Proposition 5.1. Based on a covering argument and Lemma A.2, it suffices
to consider the following four cases:

(i) QR(X0) ⊂ Q, (ii) X0 ∈ ∂Q, QR(X0) ∩ ∂Q ⊂ D,

(iii) X0 ∈ ∂Q, QR(X0) ∩ ∂Q ⊂ N , (iv) X0 ∈ Γ.

Note that the first three cases can be proved by reducing the proof of Case (iv),
in which we need to deal with mixed Dirichlet-conormal boundary conditions.
Therefore, we only present here the detailed proof of the proposition with µ = 1/96
for Case (iv).

By translation we may assume that X0 = (0, 0). Fix the coordinate system asso-
ciated with the origin and R satisfying the conditions in Assumption 2.2 (γ; m,M),
i.e.,

{x : γR < x1
} ∩ BR ⊂ ΩR ⊂ {x : −γR < x1

} ∩ BR,(
∂Q ∩QR ∩ {(t, x) : x2 > ϕ + γR}

)
⊂ D,(

∂Q ∩QR ∩ {(t, x) : x2 < ϕ − γR}
)
⊂ N .
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Let χ = χ(x) be an infinitely differentiable function defined on Rd such that

0 ≤ χ ≤ 1, |Dχ| ≲d
1 +M
γR

, (5.3)

χ = 0 in {x : x1 < γR, x2 > ϕ − γR},
and

χ = 1 in Rd
\ {x : x1 < 2γR, x2 > ϕ − 2γR}. (5.4)

We define
P0u = −ut +Di(a

i j
0 D ju),

where ai j
0 = (ai j)QR is symmetric, and denote byB0 the conormal derivative operator

associated with P0. Observe that χu satisfies
P0(χu) − λ(χu) = Dig∗i + f ∗ in QR/4,

B0(χu) = g∗i ni on (−(R/4)2, 0) ×NR/4,

u = 0 on (−(R/4)2, 0) ×DR/4,

(5.5)

where
DR/4 = ∂Ω ∩ BR/4 ∩ {x : x2 > ϕ − γR},

NR/4 = ∂Ω ∩ BR/4 ∩ {x : x2 < ϕ − γR},

f ∗ = ai jD juDiχ − giDiχ + fχ, (5.6)

g∗i = (ai j
0 − ai j)D j(χu) + ai juD jχ + giχ. (5.7)

Note that the separation between NR/4 and DR/4 is time-independent. We decom-
pose

χu = u(1) + u(2) in QR/4, (5.8)

where u(1)
∈ H

1
2 (Q0) is a unique weak solution of the problem

P0u(1)
− λu(1) = Di(g∗iIQR/4 ) + f ∗ IQR/4 in Q0,

B0u(1) = (g∗iIQR/4 )ni on (−∞, 0) ×NR/4,

u(1) = 0 on (−∞, 0) × (∂Ω \NR/4).
(5.9)

Note that the existence of u(1) is due to Lemma 3.5, and that u(2)
∈ H

1
2 (QR/4) satisfies

P0u(2)
− λu(2) = 0 in QR/4,

B0u(2) = 0 on (−(R/4)2, 0) ×NR/4,

u = 0 on (−(R/4)2, 0) ×DR/4.

(5.10)

We divide the rest of the proof into several steps.
Step 1. In this first step, we estimate

U(1) := |Du(1)
| +
√

λ|u(1)
|

and
U(2) := |Du(2)

| +
√

λ|u(2)
|, U(2)

t := |Du(2)
t | +

√

λ|u(2)
t |,

where U(2)
t is well defined in QR/8 due to Proposition 4.1. Since the boundary

portions in (5.9) are time-independent, we can apply u(1) as a test function to get∫
Ω

|u(1)(0, ·)|2 dx +
∫
Q0

ai j
0 D ju(1)Diu(1) dX + λ

∫
Q0
|u(1)
|
2 dX
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=

∫
Q0

g∗iIQR/4 Diu(1) dX −
∫
Q0

f ∗ IQR/4 u(1) dX.

By Young’s inequality, the Poincaré inequality, and (5.6)-(5.7), this implies that

∥U(1)
∥L2(Q0) ≲d,Λ ∥F∥L2(QR/4)+∥DuIsupp Dχ∥L2(QR/4)+

∥∥∥(ai j
0−ai j)D(χu)

∥∥∥
L2(QR/4)

+∥uDχ∥L2(QR/4).

Notice from Lemma 3.12 that u is inH1
p0,loc(QT). Hence, by Hölder’s inequality and

Lemma 3.9, we have

∥DuIsupp Dχ∥L2(QR/4) ≲ (γRd+2)1/2−1/p0∥Du∥Lp0 (QR/2)

and

∥uDχ∥L2(QR/4) ≲
(γRd+2)1/2−1/p0

γR
∥uIsupp Dχ∥Lp0 (QR/4)

≲ (γRd+2)1/2−1/p0∥Du∥Lp0 (QR/2), (5.11)

which together with Assumption 2.3 (θ) yields∥∥∥(ai j
0 − ai j)D(χu)

∥∥∥
L2(QR/4)

≲ ∥ai j
0 − ai j

∥L2p0/(p0−2)(QR/4)∥Du∥Lp0 (QR/4) + ∥uDχ∥L2(QR/4)

≲ (θ + γ)1/2−1/p0 R(d+2)/2(|Du|p0 )1/p0

QR/2
.

Combining the estimates above, we reach

((U(1))2)1/2
QR/4
≲d,Λ,M,p (θ + γ)1/2−1/p0 (|Du|p0 )1/p0

QR/2
+ (F2)1/2

QR
. (5.12)

For the estimates of U(2) and U(2)
t , we use (5.8), (5.11), and (5.12) to obtain

((U(2))2)1/2
QR/4
≲ ((U(1))2)1/2

QR/4
+ ((χU)2)1/2

QR/4
+ (|uDχ|2)1/2

QR/4

≲ (Up0 )1/p0

QR/2
+ (F2)1/2

QR
.

Therefore, by Proposition 4.1 we get

((U(2))p0 )1/p0

QR/8
+ R2((U(2)

t )p0 )1/p0

QR/8
≲d,Λ,M,p (Up0 )1/p0

QR/2
+ (F2)1/2

QR
. (5.13)

Step 2. In this step, we decompose u(2). Since u(2) satisfies (5.10), χu(2) satisfies
P0(χu(2)) − λ(χu(2)) = Dihi + h in Qγ

R/4,

B0(χu(2)) = hini on (−(R/4)2, 0) ×Nγ
R/4,

χu(2) = 0 on (−(R/4)2, 0) ×Dγ
R/4,

(5.14)

where
Qγ

R/4 = (−(R/4)2, 0) × BγR/4, BγR/4 = BR/4 ∩ {x : x1 > γR},

Dγ
R/4 = BR/4 ∩ {x : x1 = γR, x2 > ϕ − γR},

Nγ
R/4 = BR/4 ∩ {x : x1 = γR, x2 < ϕ − γR},

h(t, x) =
[
ai j

0 D ju(2)Diχ
]
(t, x) + [u(2)

t χ + ai j
0 D ju(2)Diχ + λu(2)χ](t, z)IΩ∗ (x),

h1(t, x) =
[
a1 j

0 D jχu(2)
]
(t, x) +

[
a1 j

0 D ju(2)χ
]
(t, z)IΩ∗ (x),

and for i ∈ {2, . . . , d},

hi(t, x) =
[
ai j

0 D jχu(2)
]
(t, x) −

[
ai j

0 D ju(2)χ
]
(t, z)IΩ∗ (x).
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In the above, we denote

z = Rx = (2γR − x1, x2, . . . , xd)

to be the reflection x with respect to {x1 = γR} and

Ω∗ = {(x1, x′) : (2γR − x1, x′) ∈ ΩR/4 \ BγR/4} ∩ BγR/4.

Indeed, one can check that (5.14) holds as follows. Let φ ∈ C∞(Qγ
R/4) which

vanishes on (−(R/4)2, 0)×
(
∂BγR/4 \Nγ

R/4

)
and {t = −(R/4)2, 0} ×BγR/4. We extend φ to

[−(R/4)2, 0] × {x : x1
≥ γR} by setting φ ≡ 0 on [−(R/4)2, 0] × ({x : x1

≥ γR} \ BγR/4),
and define

φ̃(t, x) =

φ(t, x) if x1 > γR,
φ(t, 2γR − x1, x2, . . . , xd) otherwise.

Since χφ̃ belongs to C∞(QR/4) and vanishes on [−(R/4)2, 0]× (∂ΩR/4 \NR/4), we can
test (5.10) with χφ̃ to get∫

QR/4

(
u(2)

t χφ̃ + ai j
0 D ju(2)Di(χφ̃) dX + λu(2)χφ̃

)
dX = 0.

From this identity and the definition of φ̃, it follows that∫
Qγ

R/4

(
(χu(2))tφ + ai j

0 D j(χu(2))Diφ + λχu(2)φ
)

dX

=

∫
Qγ

R/4

ai j
0 D jχu(2)Diφ dX −

∫
QR/4\Q

γ
R/4

ai j
0 D ju(2)χDiφ̃ dX

−

∫
Qγ

R/4

ai j
0 D ju(2)Diχφ dX

−

∫
QR/4\Q

γ
R/4

(
u(2)

t χ + ai j
0 D ju(2)Diχ + λu(2)χ

)
φ̃ dX

=

∫
Qγ

R/4

(
hiDiφ − hφ

)
dX,

which is exactly the weak formulation of (5.14).
Now we decompose

χu(2) = u(3) + u(4) in Qγ
R/4,

where u(3)
∈ H

1
2 ((−∞, 0) × BγR/4) is a unique weak solution of the problem

P0u(3)
− λu(3) = Di

(
hiIQγ

R/16

)
+ hIQγ

R/16
in Qγ

R/4,

B0u(3) =
(
hiIQγ

R/16

)
ni on (−∞, 0) ×Nγ

R/4,

u(3) = 0 on (−∞, 0) ×
(
∂BγR/4 \Nγ

R/4

)
,

(5.15)

and u(4)
∈ H

1
2 (Qγ

R/4) satisfies
P0u(4)

− λu(4) = 0 in Qγ
R/16,

B0u(4) = 0 on (−(R/16)2, 0) ×Nγ
R/16,

u(4) = 0 on (−(R/16)2, 0) ×Dγ
R/16.

(5.16)
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Step 3. In this step, we estimate

U(3) :=
(
|Du(3)

| +
√

λ|u(3)
|

)
IQγ

R/4
.

By applying u(3) as a test function to (5.15), we see that∫
Qγ

R/4

(U(3))2 dX ≲
6∑

i=1

Ji,

where

J1 =

∫
Qγ

R/16

|u(2)Dχ||Du(3)
| dX,

J2 =

∫
Qγ

R/16

∣∣∣[Du(2)χ](t, z)IΩ∗(x)

∣∣∣|Du(3)
| dX,

J3 =

∫
Qγ

R/16

∣∣∣Du(2)Dχ
∣∣∣|u(3)
| dX,

J4 =

∫
Qγ

R/16

∣∣∣[u(2)
t χ](t, z)IΩ∗ (x)

∣∣∣|u(3)
| dX,

J5 =

∫
Qγ

R/16

∣∣∣[Du(2)Dχ](t, z)IΩ∗ (x)
∣∣∣|u(3)
| dX,

J6 =

∫
Qγ

R/16

∣∣∣[λu(2)χ](t, z)IΩ∗ (x)
∣∣∣|u(3)
| dX.

Set
K = γ1/2−1/p0 R(d+2)/2

(
(Up0 )1/p0

QR/2
+ (F2)1/2

QR

)
∥U(3)

∥L2(Qγ
R/4).

Similar to (5.11), we have

∥u(2)Dχ∥L2(QR/16) ≲ (γRd+2)1/2−1/p0∥Du(2)
∥Lp0 (QR/8).

Thus by (5.13) we get J1 ≲ K . Using Hölder’s inequality and (5.13), we obtain

J2 ≲ ∥Du(2)
∥L2(QR/16\Q

γ
R/16)∥Du(3)

∥L2(Qγ
R/16)

≲ (γRd+2)1/2−1/p0∥Du(2)
∥Lp0 (QR/16\Q

γ
R/16)∥Du(3)

∥L2(Qγ
R/16) ≲ K

and
J6 ≲

√

λ∥u(2)
∥L2(QR/16\Q

γ
R/16) ·

√

λ∥u(3)
∥L2(Qγ

R/16) ≲ K .

Similarly, we obtain

J4 ≲ ∥u
(2)
t ∥L2(QR/16\Q

γ
R/16)∥u

(3)
∥L2(Qγ

R/16) ≲ (γRd+2)1/2−1/p0∥u(2)
t ∥Lp0 (QR/16\Q

γ
R/16)∥u

(3)
∥L2(Qγ

R/16)

≲ (γRd+2)1/2−1/p0 R2
∥Du(2)

t ∥Lp0 (QR/8)∥Du(3)
∥L2(Qγ

ρ/16) ≲ K ,

where we also applied Lemma 3.8 to u(2)
t and the boundary Poincaré inequality on

half balls to u(3). To estimate J3 and J5, we note that by the same argument as in the
proof of Lemma 3.9, we have

∥u(3)Isupp Dχ∥L2(Qγ
R/16) + ∥u

(3)Isupp(Dχ◦R)∥L2(Qγ
R/16) ≲ γR∥Du(3)

∥L2(Qγ
R/8).
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where R is the reflection map: Rx = (2γR − x1, x2, . . . , xd). This together with
Hölder’s inequality and (5.13) yields that

J3+J5 ≲ ∥Du(2)Isupp Dχ∥L2(QR/16) ·
1
γR

(
∥u(3)Isupp Dχ∥L2(Qγ

R/16)+∥u
(3)Isupp(Dχ◦R)∥L2(Qγ

R/16)

)
≲ K .

Collecting the estimates for Ji and using Young’s inequality, we conclude that

((U(3))2)1/2
QR/4
≲ γ1/2−1/p0

(
(Up0 )1/p0

QR/2
+ (F2)1/2

QR

)
. (5.17)

Step 4. We are ready to complete the proof of the proposition. From the decom-
positions above, we have

u = w + v, U ≤W + V in QR/4,

where

w = (1 − χ)u + u(1) + (1 − χ)u(2) + χu(2)I
QR/4\Q

γ
R/4
+ u(3)IQγ

R/4
, v = u(4)IQγ

R/4
,

and

W = |Dw| +
√

λ|w|, V = |Dv| +
√

λ|v|.

Observe that

W ≤ (1 − χ)U + |uDχ| +U(1) + (1 − χ)U(2) + |u(2)Dχ| + |u(2)I
QR/4\Q

γ
R/4
| +U(3),

where by Hölder’s inequality, (5.13), and Lemma 3.9, we have

((1 − χ)2U2)1/2
QR/4
≲ γ1/2−1/p0 (Up0 )1/p0

QR/4
,

(|uDχ|)1/2
QR/4
≲

1
γR

(|uIsupp(Dχ)|)
1/2
QR/4
≲ γ1/2−1/p0 (Up0 )1/p0

QR/2
,

((1 − χ)2(U(2))2)1/2
QR/8
≲ γ1/2−1/p0

(
(Up0 )1/p0

QR/2
+ (F2)1/2

QR

)
,

and

(|u(2)Dχ|2)1/2
QR/16
+ (|u(2)I

QR/4\Q
γ
R/4
|
2)1/2
QR/16
≲ γ1/2−1/p0

(
(Up0 )1/p0

QR/2
+ (F2)1/2

QR

)
.

These estimates together with (5.12) and (5.17) imply

(W2)1/2
QR/16
≲ (γ + θ)1/2−1/p0

(
(Up0 )1/p0

QR/2
+ (F2)1/2

QR

)
. (5.18)

It remains to obtain the estimate of V. Observe that

BγR/96 ⊂ BR/48(y0) ∩ {x : x1 > γR}

⊂ BR/24(y0) ∩ {x : x1 > γR} ⊂ BγR/16,

where y0 = (γR,−γR, 0, . . . , 0) ∈ Rd. Thus by Proposition 4.4 applied to (5.16),
V ≤ U +W, and (5.18), we have

(Vq)1/q
QR/96
≲ (V2)1/2

QR/16
≲ (U2)1/2

QR/16
+ (W2)1/2

QR/16
≲ (Up0 )1/p0

QR/2
+ (F2)1/2

QR
.

The proposition is proved. ■
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5.2. Level set estimates. For a function v on QT, we define its maximal function
by

Mv(X) = sup
Qr(Z)∋X

−

∫
Qr(Z)
|v(Y)|IQT dY.

Let p > 2 and p0 = p0(d,Λ,M, p) ∈ (2, p) be from Lemma 3.12. For any s > 0, denote

A(s) = {X ∈ QT : (MU2(X))1/2 > s},

B(s) = {X ∈ QT : (MU2(X))1/2 + (γ + θ)1/p0−1/2(MFp0 (X))1/p0 > s}.
(5.19)

Lemma 5.3. Under the same conditions of Proposition 5.1, for any q ∈
[
1, 2(m+2)

m+1

)
, there

exists a constant C0 > 0, depending only on d, Λ, M, p, and q, such that the following
holds. For any X0 = (t0, x0) ∈ QT, R ∈ (0,R0], κ ≥ 4(d+2)/2, and s > 0, if

|QµR/2(X0) ∩A(κs)| ≥ C0

( (γ + θ)1−2/p0

κ2 +
1
κq

)
· |QµR/2(X0)|,

then
QµR/2(X0) ⊂ B(s),

where µ = 1
16·96 .

Proof. By dividing the equation by s and translating the coordinates, we may
assume that s = 1 and X0 = (0, 0). We prove the contrapositive of the statement.
Suppose that there is a point Y ∈ QµR/2 satisfying

Y < B(1).

By the definition of B(1),

(MU2(Y))1/2 + (γ + θ)1/p0−1/2(MFp0 (Y))1/p0 ≤ 1. (5.20)

Set
t∗0 = min{(µR/2)2,T}, X∗0 = (t∗0, 0) ∈ QT,

and observe that
Y ∈ QµR/2 ⊂ QµR(X∗0). (5.21)

From the definition of the maximal function and (5.20), we have(
U2IQT

)1/2

QµR(X∗0)
+ (γ + θ)1/p0−1/2(Fp0IQT

)1/p0

QµR(X∗0)
≤ 1.

Hence, by Proposition 5.1 with the estimates in Remark 5.2, there exist functions
W,V defined on QµR(X∗0) such that

U ≤W + V in QµR(X∗0),

(W2)1/2
QµR(X∗0) ≲d,Λ,M,p (γ + θ)1/2−1/p0 , (Vq)1/q

QµR(X∗0) ≲d,Λ,M,p,q 1.
(5.22)

We now claim that for any X ∈ QµR/2 ∩A(κ),(
M

(
W2IQµR(X∗0)

)
(X)

)1/2
+

(
M

(
V2IQµR(X∗0)

)
(X)

)1/2
> κ. (5.23)

By the definition ofA, we can find Qr(Z) satisfying

X ∈ Qr(Z),
(
U2IQT

)1/2

Qr(Z)
> κ. (5.24)
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We can always choose the time coordinate of Z to be at most T. Furthermore, we
have r < µR/2 because otherwise, from (5.20), (5.21), and the fact that

Qr(Z) ⊂ Q4r(X∗0),

we get (
U2IQT

)1/2

Qr(Z)
≤ 4(d+2)/2

(
U2IQT

)1/2

Q4r(X∗0)

≤ 4(d+2)/2(MU2(Y))1/2

≤ 4(d+2)/2
≤ κ,

which contradict (5.24). Since r < µR/2, we have

Qr(Z) ⊂ QµR(X∗0),

and thus by (5.24),

κ <
(
U2IQT

)1/2

Qr(Z)
≤

(
W2IQT

)1/2

Qr(Z)
+

(
V2IQT

)1/2

Qr(Z)

≤

(
W2IQµR(X∗0)

)1/2

Qr(Z)
+

(
V2IQµR(X∗0)

)1/2

Qr(Z)

≤

(
M

(
W2IQµR(X∗0)

)
(X)

)1/2
+

(
M

(
V2IQµR(X∗0)

)
(X)

)1/2
,

from which we get the claim.
By (5.22), (5.23), and the Hardy-Littlewood theorem, we have

|QµR/2 ∩A(κ)|

≤

∣∣∣{X :
(
M

(
W2IQµR(X∗0)

)
(X)

)1/2
+

(
M

(
V2IQµR(X∗0)

)
(X)

)1/2
> κ

}∣∣∣
≤

∣∣∣{X :
(
M

(
W2IQµR(X∗0)

)
(X)

)1/2
> κ/2

}∣∣∣
+

∣∣∣{X :
(
M

(
V2IQµR(X∗0)

)
(X)

)1/2
> κ/2

}∣∣∣
≤

C
κ2 ∥W∥

2
L2(QµR(X∗0)) +

C
κq ∥V∥

q
Lq(QµR(X∗0))

≤ C
( (γ + θ)1−2/p0

κ2 +
1
κq

)
|QµR(X∗0)|

≤ C
( (γ + θ)1−2/p0

κ2 +
1
κq

)
|QµR/2|,

where C = C(d,Λ,M, p, q). This completes the proof. ■

As a consequence of the previous lemma, we have the following regularity result
forH1

2 weak solutions.

Lemma 5.4. Let p ∈
(
2, 2(m+2)

m+1

)
and λ0 = λ0(d,Λ) be from Proposition 3.3. There exist

constants γ, θ ∈ (0, 1) depending only on d, Λ, M, and p, such that if Assumptions 2.2
(γ; m,M) and 2.3 (θ) are satisfied with these γ and θ, then the following assertions hold.
Let u ∈ H1

2,DT (QT) satisfy 
Pu − λu = Digi + f in QT,

Bu = gini on NT,

u = 0 on DT,



30 J. CHOI, H. DONG, AND Z. LI

where λ > 0, λ ≥ λ0, and gi, f ∈ L2(QT) ∩ Lp(QT). Then u belongs to H1
p,DT (QT) and

satisfies
∥U∥Lp(QT) ≲d,Λ,M,p R(d+2)(1/p−1/2)

0 ∥U∥L2(QT) + ∥F∥Lp(QT). (5.25)

Moreover, if u vanishes outside QγR0 (X0) for some X0 ∈ Rd+1, then

∥U∥Lp(QT) ≲d,Λ,M,p ∥F∥Lp(QT). (5.26)

Proof. We denote

q =
1
2

(
p +

2(m + 2)
m + 1

)
∈

(
p,

2(m + 2)
m + 1

)
.

Let γ, θ, and κ be positive constants to be chosen later, such that

γ ∈

(
0,

1

160
√

d + 3

]
, θ ∈ (0, 1), κ ≥ 4(d+2)/2,

and that

ε := C0

( (γ + θ)1−2/p0

κ2 +
1
κq

)
< 1,

where C0 = C0(d,Λ,M, p, q) = C0(d,Λ,M, p) is the constant from Lemma 5.3. Recall
the notation (5.19). By the Hardy-Littlewood theorem, we have

|A(κs)| ≤
C1(d)
(κs)2 ∥U∥

2
L2(QT). (5.27)

Using this, Lemma 5.3, and the “crawling of ink spots” lemma in [30, 25], we get

|A(κs)| ≤ C2(d)ε|B(s)|

for any s > s0, where

s2
0 =

C1

εκ2|QµR0/2|
∥U∥2L2(QT).

Hence, for a sufficiently large S > s0,∫ κS

0
|A(s)|sp−1 ds = κp

∫ S

0
|A(κs)|sp−1 ds

≤ κp
∫ s0

0
|A(κs)|sp−1 ds + C2εκ

p
∫ S

s0

|B(s)|sp−1 ds

=: I1 + I2.

By (5.27) we have
I1 ≲d,p ε

1−p/2R(d+2)(1−p/2)
0 ∥U∥pL2(QT)

,

To estimate I2, observe that

B(s) ⊂ A(s/2) ∪
{
X ∈ QT : (γ + θ)1/p0−1/2

(
MFp0 (X)

)1/p0
> s/2

}
,

from which together with the Hardy-Littlewood maximal function theorem, we
obtain

I2 ≤ C2εκ
p
∫ S

s0

|A(s/2)|sp−1 ds + Cεκp(γ + θ)p(1/p0−1/2)
∥(MFp0 )1/p0∥

p
Lp(QT)

≤ C∗εκp
∫ κS

0
|A(s)|sp−1 ds + C∗εκp(γ + θ)p(1/p0−1/2)

∥F∥pLp(QT)
,
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where C∗ = C∗(d, p). Note that by (5.27),∫ κS

0
|A(s)|sp−1 ds < ∞.

Thus by taking κ sufficiently large, and then, choosing θ and γ sufficiently small
such that

C∗εκp = C∗C0

(
κp−2(γ + θ)1−2/p0 + κp−q

)
≤

1
2
,

we conclude that for any S > 0,∫ κS

0
|A(s)|sp−1 ds ≲d,Λ,M,p R(d+2)(1−p/2)

0 ∥U∥pL2(QT)
+ ∥F∥pLp(QT)

.

This shows (5.25). If we further assume that u vanishes outside QγR0 (X0), then
by using (5.25), Hölder’s inequality, and choosing again γ sufficiently small, we
conclude (5.26). The lemma is proved. ■

5.3. Proof of Theorem 2.4. Thanks to Proposition 3.3 and a duality argument, it
suffices to consider the case when p ∈

(
2, 2(m+2)

m+1

)
.

For the a priori estimate (2.6) in the assertion (a), by moving all the lower-order
terms to the right-hand side of the equation, we may assume that the lower-order
coefficients of P are all zero. Then the a priori estimate follows from (5.26) and
the standard partition of unity argument. For the solvability in the assertion (a),
thanks to the a priori estimate and the method of continuity, we only need to
consider the case when the lower-order terms are all zero, which follows from the
regularity result in Lemma 5.4 and the a priori estimate along with the standard
approximation argument. Finally, the proof of the assertion (b) is by considering
the equation of ue−λ0t; cf. [8, Theorem 8.2 (iii)]. ■

Appendix A.

Proof of Lemma 3.8. We may assume that X0 = (0, 0) and u is smooth with respect
to t. By scaling, without loss of generality, we can also assume that R = 1.

We first prove (3.8). Take a function ζ ∈ C∞0 (Ω3/2) such that

0 ≤ ζ ≤ 1, 1 ≲
∫
Ω

ζ dz, |Dζ| ≲ 1.

Set

v(t) =
∫
Ω

ζu(t, ·) dx
/ ∫
Ω

ζ dx, c =
∫ 0

−(3/2)2
v(t) dt.

By [22, Lemmas 5.3 and 5.4] with scaling applied to u − c, we have

∥u − (u)Q1∥Lq0 ,p0 (Q1) ≤ 2∥u − c∥Lq0 ,p0 (Q1) ≲d,p,q,p0,q0 ∥u − c∥Lq,p(Q3/2)

+
(
∥Du∥Lq,p(Q3/2) + ∥g∥Lq,p(Q3/2)

)
,

(A.1)

where, by the triangle inequality, we obtain

∥u − c∥Lq,p(Q3/2) ≤ ∥u − v∥Lq,p(Q3/2) + ∥v − c∥Lq,p(Q3/2) =: J1 + J2. (A.2)

Note that

∥u(t, ·) − v(t)∥Lp(Ω3/2) ≲ ∥u(t, ·) − (u(t, ·))Ω3/2∥Lp(Ω3/2) ≲ ∥Du(t, ·)∥Lp(Ω2),
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where we used Lemma 3.6 and the interior Poincaré inequality with a covering
argument in the second inequality. This implies that

J1 ≲ ∥Du∥Lq,p(Q2).

By the Sobolev-Poincaré inequality in the t variable, we get

J2 ≲

∫ 0

−(3/2)2

∣∣∣∣∣ ∫
Ω

ζut dx
∣∣∣∣∣ dt.

Since ut = Digi and ζ has compact support inΩ3/2, integrating by parts with respect
to x and using Hölder’s inequality, we see that

J2 ≲ ∥g∥Lq,p(Q2).

Combining (A.1), (A.2), and the estimates of Ji, we conclude (3.8).
We next prove (3.9). Let Y0 = (s0, y0). It is easily seen that the estimates above

still holds with

c =
∫ s0

s0−α2
v(t) dt.

Thus, we have

∥u∥Lq0 ,p0 (Q1) ≲d,p,q,p0,q0 ∥Du∥Lq,p(Q2) + ∥g∥Lq,p(Q2) + c.

Therefore, it suffices to show that

c ≲ ∥u∥L1((s0−α2,s0)×Ω1) ≲ ∥Du∥Lq,p(Q2),

which follows from Lemma 3.7 and Hölder’s inequality. The lemma is proved. ■

In the lemmas below, we set

Γ(t) = {x ∈ ∂Ω : (t, x) ∈ Γ}.

Similarly, we defineD(t) andN(t).

Lemma A.1. Forγ > 0, the condition (b) in Assumption 2.2 (γ; m,M) implies Assumption
3.2.

Proof. Let R ∈ (0,R0] and t0 ∈ R. It suffices to show that, under the condition (b),
there exist decompositions

∂Ω = Dt0 ∪Nt0

such that
D(t) ⊂ Dt0 , Hd(D(t),Dt0 ) ≤ 2γR, ∀t ∈ [t0 − R2, t0).

Indeed, this follows by defining Dt0 as the set of all points x = (x1, . . . , xd) ∈ ∂Ω
satisfying either x ∈ D(t0) or

dist(x,Γ(t0)) < R and x2 > ϕ(x3, . . . , xm+2) − γR

in the coordinate system associated with ((t0, x0),R), where x0 ∈ Γ(t0) satisfies
dist(x, x0) = dist(x,Γ(t0)). ■

Lemma A.2. Suppose that the condition (b) in Assumption 2.2 (γ; m,M) holds with
γ ∈ [0, 1).

(i) Let X0 = (t0, x0) ∈ Γ and R ∈ (0,R0]. Then for t ∈ (t0 − R2, t0 + R2),

BR(x0) ∩ Γ(t) , ∅.
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(ii) Let X0 = (t0, x0) ∈ Q and R ∈ (0,R0] with

BR(x0) ∩ Γ(t0) = ∅.

Then
QR/2(X0) ∩ Γ = ∅.

Proof. We only prove the assertion (i) because (ii) is its easy consequence. Suppose
that there exists t ∈ (t0 − R2, t0 + R2) such that

BR(x0) ∩ Γ(t) = ∅.

Then either

{t} × (BR(x0) ∩ ∂Ω) ⊂ D(t) or {t} × (BR(x0) ∩ ∂Ω) ⊂ N(t),

which contradicts with the fact that

{t} ×
(
BR(x0) ∩ ∂Ω ∩ {x : x2 > ϕ + γR}

)
⊂ D(t),

{t} ×
(
BR(x0) ∩ ∂Ω ∩ {x : x2 < ϕ − γR}

)
⊂ N(t),

and
ϕ(x3

0, . . . , x
d
0) = x2

0.

in the coordinate system associated with (X0,R). The assertion (a) is proved. ■

References

[1] Pascal Auscher, Nadine Badr, Robert Haller-Dintelmann, and Joachim Rehberg. The square root
problem for second-order, divergence form operators with mixed boundary conditions on Lp. J.
Evol. Equ. 15(1):165–208, 2015.

[2] Kevin Brewster, Dorina Mitrea, Irina Mitrea, and Marius Mitrea. Extending Sobolev functions
with partially vanishing traces from locally (ε, δ)-domains and applications to mixed boundary
problems. J. Funct. Anal. 266(7):4314–4421, 2014.

[3] Russell Brown. The mixed problem for Laplace’s equation in a class of Lipschitz domains. Comm.
Partial Differential Equations, 19(7-8):1217–1233, 1994.

[4] R. M. Brown and L. D. Croyle. Estimates for the Lq-mixed problem in C1,1-domains. Complex
Variables and Elliptic Equations, 0(0):1–13, 2020.

[5] L. A. Caffarelli and I. Peral. On W1,p estimates for elliptic equations in divergence form. Comm.
Pure Appl. Math., 51(1):1–21, 1998.

[6] Jongkeun Choi, Hongjie Dong, and Doyoon Kim. Conormal derivative problems for stationary
Stokes system in Sobolev spaces. Discrete Contin. Dyn. Syst., 38(5):2349–2374, 2018.

[7] Jongkeun Choi, Hongjie Dong, and Zongyuan Li. Optimal regularity for a Dirichlet-conormal
problem in Reifenberg flat domain. Appl. Math. Optim., 83(3):1547–1583, 2021.

[8] Hongjie Dong and Doyoon Kim. Higher order elliptic and parabolic systems with variably partially
BMO coefficients in regular and irregular domains. J. Funct. Anal., 261(11):3279–3327, 2011.

[9] Hongjie Dong and Doyoon Kim. The conormal derivative problem for higher order elliptic systems with
irregular coefficients, volume 581 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2012.

[10] Hongjie Dong and Zongyuan Li. The Dirichlet-conormal problem with homogeneous and inho-
mogeneous boundary conditions. Comm. Partial Differential Equations, 46(3):470–497, 2021.

[11] Karoline Disser, A. F. M. ter Elst, and Joachim Rehberg, On maximal parabolic regularity for
non-autonomous parabolic operators. J. Differential Equations 262(3):2039–2072, 2017.

[12] Moritz Egert. Lp-estimates for the square root of elliptic systems with mixed boundary conditions.
J. Differential Equations, 265(4):1279–1323, 2018.

[13] Lawrence Craig Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[14] Stephan Fackler. Non-autonomous maximal regularity for forms given by elliptic operators of
bounded variation. J. Differential Equations 263(6):3533–3549, 2017.

[15] Mariano Giaquinta. Multiple integrals in the calculus of variations and nonlinear elliptic systems, volume
105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983.



34 J. CHOI, H. DONG, AND Z. LI
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tions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 96:272–287, 312, 1980.
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