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Abstract. We consider time fractional parabolic equations in divergence and
non-divergence form when the leading coefficients aij are measurable functions

of (t, x1) except for a11 which is a measurable function of either t or x1. We

obtain the solvability in Sobolev spaces of the equations in the whole space,
on a half space, and on a partially bounded domain. The proofs use a level set

argument, a scaling argument, and embeddings in fractional parabolic Sobolev

spaces for which we give a direct and elementary proof.

1. Introduction

We study time fractional parabolic equations of the form

−∂αt u+Di(a
ijDju) = Digi + f, (1.1)

−∂αt u+ aijDiju = f, (1.2)

where ∂αt u is the Caputo fractional time derivative of order α ∈ (0, 1):

∂αt u(t, x) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−α [u(s, x)− u(0, x)] ds.

See Section 2 for a precise definition of ∂αt u. We prove that, for given f, gi ∈
Lp((0, T )×Rd), 1 < p <∞, d ≥ 1, there exist unique solutions in parabolic Sobolev

spaces Hα,1
p,0 and Hα,2

p,0 (see Section 2 for the definitions of Hα,1
p,0 and Hα,2

p,0 ) to the

equations (1.1) and (1.2) with the zero initial condition. The main contribution of
this paper is that the coefficients aij = aij(t, x1), as functions of (t, x1) ∈ R×R, re-
quire no regularity assumptions except the uniform ellipticity condition. Equations
with coefficients measurable in one direction typically arise in homogenization of
layered materials. See, for instance, [2].

In [9] we proved the unique solvability of the non-divergence type equation (1.2)

in parabolic Sobolev spaces Hα,2
p,0 when aij(t, x) are merely measurable in t and

have locally small mean oscillations in x ∈ Rd. For the divergence type equation
(1.1), we obtained in [10] the corresponding solvability results when the coefficients
aij(t, x1, x

′) are merely measurable in x1 ∈ R and have locally small mean oscil-
lations in (t, x′), x′ ∈ Rd−1. In this paper, we deal with both divergence form
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equations (DE) and non-divergence form equations (NDE) when the coefficients
are merely measurable both in t and one spatial variable, say, x1 ∈ R, except a11,
which needs to be a function of either t or x1, that is, a

11 = a11(t) or a11 = a11(x1).
As such, the class of leading coefficients in this paper is strictly larger than those
in [9, 10] as long as the coefficients aij are independent of x′ ∈ Rd−1. In fact,
one can also consider coefficients aij(t, x1, x

′) that are measurable in (t, x1), ex-
cept a11, and have an appropriate regularity assumption as functions of x′, such as
the small mean oscillation condition, so that the coefficients in [9, 10] can be cov-
ered as proper subclasses. Such coefficients for time fractional parabolic equations
will be discussed in a forthcoming paper in a much general weighted parabolic
Sobolev space setting. As an application of the main results, we also prove the
solvability of the equations (1.1) and (1.2) on a half space (0, T ) × Rd

+, where

Rd
+ = {(x1, x′) ∈ Rd : x1 > 0}, and on a spatially partially bounded domain

(0, T ) × (0, R) × Rd−1 = {(t, x1, x′) : t ∈ (0, T ), x1 ∈ (0, R), x′ ∈ Rd−1}. In par-
ticular, the unique solvability results for the equations on the spatially partially
bounded domain will be used to build the solvability theory for equations with
variable coefficients in (t, x) ∈ R×Rd under appropriate regularity assumptions as
functions of the remaining variables x′ ∈ Rd−1, especially when the equations are
studied in the frame work of weighted parabolic Sobolev spaces.

Among the advantages of having merely measurable coefficients, particularly
noteworthy is that the solvability of equations with coefficients measurable in one
spatial variable in the whole Euclidean space gives without much effort (by only
using a simple extension argument) the corresponding result for equations on a half
space, and further for those on a bounded domain if the boundary is sufficiently
smooth. See Theorem 6.1 and Proposition 6.2 in this paper. Because of mathe-
matical interests and various potential applications including the boundary value
problems mentioned above, classes of merely measurable coefficients have been ac-
tively considered for elliptic equations and the usual parabolic equations, that is,
the equations as in (1.1) and (1.2) with ∂αt u replaced with the usual time derivative
term ut. For parabolic equations with ut, in [15, 16] Krylov considered both DE and
NDE with the coefficients aij(t, x) having no regularity assumptions in t and locally
small mean oscillations in x ∈ Rd. Coefficients aij(t, x1, x

′) merely measurable in
x1 ∈ R are considered in [13, 5] for parabolic NDE. As to parabolic DE, see, for
instance, [8, 1]. For more information about elliptic and parabolic equations with
measurable coefficients, see the review paper [7] and references therein. In view of
these results, it is important to examine to what extent one can remove regularity
assumptions on the coefficients for time fractional parabolic equations as in (1.1)
and (1.2). Thus, what we present in this paper is an affirmative answer that the
coefficients aij , as functions of (t, x1) ∈ R2, for time fractional parabolic equations
can be as general as those for the usual parabolic equations.

Regarding our restriction that a11 needs to be either a11(t) or a11(x1), Krylov
showed in [17] that it is not possible to obtain a unique solvability result for p ∈
(1, 3/2) or p ∈ (3,∞) if all of the coefficients aij , i, j = 1, . . . , d, are functions of
(t, x1) ∈ R × R with no regularity assumptions even when d = 1. This indicates
that the class of coefficients in this paper may be optimal.

Parabolic equations with time fraction derivatives have many important appli-
cations in probability and mechanics. For instance, such equations can be used to
model anomalous diffusions. See [14] and references therein. In particular, there
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has been study of time fractional parabolic equations in Sobolev spaces in the pa-
pers [21, 22, 14, 12, 9, 10, 11]. In [21], equations as in (1.2) and Volterra type
equations are considered in mixed-norm Lebesgue spaces with time independent
sectorial operators. Equations as in (1.1) with more general time derivatives are
studied in [22] in the Hilbert space setting. See also [18, 3] for earlier work. The
authors of [14] studied equations as in (1.2) in mixed Lp spaces when aij(t, x) are
uniformly continuous in x ∈ Rd and piecewise continuous in t ∈ R. These results
are extended in [12] for the time fractional heat equation in weighted mixed Lp

spaces. Note that in [14, 12] the order α of the Caupto fractional derivative be-
longs not only to (0, 1), but also to the hyperbolic regime (1, 2). As mentioned
earlier, when α ∈ (0, 1), NDE and DE with coefficients measurable in t or x1 are
studied in [9, 10], respectively, in Lp spaces and, in [11] the solvability results are
obtained for NDE in mixed Sobolev spaces with Muckenhoupt weights. Thus, this
paper can be considered as a sequel to the papers [9, 10, 11] pursuing the unique
solvability of NDE and DE in Sobolev spaces with or without weights when the
order α of the Caupto fractional derivative is in the parabolic regime (0, 1).

To prove the main results of this paper, we use the level set method utilized in
[9, 10]. However, since the coefficients aij(t, x1) are merely measurable, we only
obtain estimates for Dx′u, where Dx′ = Dxj

for j = 2, . . . , d when dealing with
DE (1.1). To obtain estimates for the full gradient, we use a scaling argument (see
Lemma 3.4) so that the estimates for the full gradient Dxu can be obtained from
those for Dx′u along with the right-hand side of the equation. Once we resolve DE,
we derive desired estimates for NDE from those for DE upon the observation that
the spatial derivatives of solutions to NDE can be regarded as solutions to DE. In
particular, following the argument in [6] we turn NDE into those in divergence form
with non-symmetric aij . We here remark that the coefficients aij in this paper are
not necessarily symmetric. In the case a11 = a11(x1), we also use a change of x1
variable. Combining all these different ingredients in a proof is quite delicate. To
obtain the unique solvability results of equations on a half space and on a spatially
partially bounded domain, we make use of (odd, even, and periodic) extension
arguments, for which it is essential that the coefficients aij have no regularity
assumptions so that they can be discontinuous when they are periodically extended.

In this paper, we also present detailed proofs of embeddings for parabolic Sobolev
spaces Hα,1

p,0 , which serve as solutions spaces to time fractional parabolic DE. See
Theorem 7.3 for Hölder embeddings and Theorem 7.5 for Sobolev embeddings. It is
clear that such embeddings are necessary when studying PDEs in the framework of
Sobolev spaces. We use the embeddings in the proof of Proposition 6.2 in this paper.
Embeddings for Hα,2

p,0 and Hα,1
p,0 are proved in [9, 10] with somewhat less optimal

exponents. On the other hand, one can also find embeddings for fractional Sobolev
spaces in [23, 24], which are based on the so called mixed derivative theorem (see
[19] and [4, Proposition 3.2]) with vector-valued Triebel-Lizorkin type spaces and
their interpolation spaces. We believe that elementary and self-contained proofs
of the embeddings are of interest to a wider audience, and the last section of this
paper is devoted to provide such arguments. In particular, our proof for Sobolev
embedding uses mollifications of functions, which turn out to be very handy when
dealing with embeddings or boundary traces of functions.

The remainder of the paper is organized as follows. In the next section, we
introduce some notation and state the main results of the paper. In Section 3, we
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deal with equations with coefficients aij either being functions of only t or only x1.
We also show that the estimates for the full gradient can be obtained from those of
Dx′u and the right-hand side as long as a11 = a11(t) or a11 = a11(x1). In Section
4, we use the level set method to obtain estimates of Dx′u for DE. We complete
the proofs of our main results in Section 5. Equations on a half space and on a
spatially partially bounded domain are discussed in Section 6. In the last section,
as noted above, we present self-contained proofs of embeddings for Hα,1

p,0 .

2. Notation and Main results

For Ω ⊂ Rd and T > 0, we denote ΩT = (0, T ) × Ω. In particular, we have
Rd

T = (0, T )×Rd. We write Du or Dxu to denote Dxj
u, j = 1, 2, . . . , d, whereas by

Dx′u, we mean Dxj
u, j = 2, . . . , d. For α ∈ (0, 1], we denote the parabolic cylinders

by

Qr1,r2(t, x) = (t− r
2/α
1 , t)×Br2(x), Qr(t, x) = Qr,r(t, x).

We often write Br and Qr for Br(0) and Qr(0, 0). We use the notation (u)D to
denote the average of u over D, where D is a subset of Rd+1. For (t0, x0) ∈ R×Rd

and a function f defined on (−∞, T )× Rd with T ∈ (−∞,∞], we set

Mf(t0, x0) = sup
Qr(t,x)∋(t0,x0)

–

∫
Qr(t,x)

|f(s, y)|1(−∞,T )×Rd dy ds

and

SMf(t0, x0) = sup
Qr1,r2

(t,x)∋(t0,x0)

–

∫
Qr1,r2 (t,x)

|f(s, y)|1(−∞,T )×Rd dy ds.

For α ∈ (0, 1) and S ∈ R, we denote the α-th integral

IαSφ(t) =
1

Γ(α)

∫ t

S

(t− s)α−1φ(s) ds

for φ ∈ L1(S,∞), where

Γ(α) =

∫ ∞

0

tα−1e−t dt.

In this paper we often write Iα instead of Iα0 for the α-th integral with the origin
0. For a sufficiently smooth function φ(t), we set

Dα
t φ(t) =

d

dt
I1−α
S φ(t) =

1

Γ(1− α)

d

dt

∫ t

S

(t− s)−αφ(s) ds

and

∂αt φ(t) =
1

Γ(1− α)

∫ t

S

(t− s)−αφ′(s) ds

=
1

Γ(1− α)

d

dt

∫ t

S

(t− s)−α [φ(s)− φ(S)] ds.

Note that if φ(S) = 0, then

Dα
t φ = ∂t(I

1−α
S φ) = ∂αt φ.

Since there is no information about the origin S in the notation Dα
t and ∂αt , we

sometimes write ∂tI
1−α
S in place of Dα

t (or ∂αt whenever appropriate) to indicate
the origin.
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For 1 ≤ p ≤ ∞, α ∈ (0, 1), and k ∈ {1, 2, . . .}, we set

H̃α,k
p ((S, T )× Ω) =

{
u ∈ Lp : ∂tI

1−α
S u, Dβ

xu ∈ Lp, 0 ≤ |β| ≤ k
}

with the norm

∥u∥H̃α,k
p ((S,T )×Ω) = ∥∂tI1−α

S u∥Lp((S,T )×Ω) +
∑

0≤|β|≤k

∥Dβ
xu∥Lp((S,T )×Ω),

where by ∂tI
1−α
S u we mean that there exists g ∈ Lp ((S, T )× Ω) such that∫ T

S

∫
Ω

g(t, x)φ(t, x) dx dt = −
∫ T

S

∫
Ω

I1−α
S u(t, x)∂tφ(t, x) dx dt (2.1)

for all φ ∈ C∞
0 ((S, T )× Ω). Recall that ∂tI

1−α
S u can be denoted by Dα

t u. Next,
Hα,k

p ((S, T )× Ω) is defined by

Hα,k
p ((S, T )× Ω)

=
{
u ∈ H̃α,k

p ((S, T )× Ω) : (2.1) is satisfied for all φ ∈ C∞
0 ([S, T )× Ω)

}
with the same norm as for H̃α,k

p ((S, T )× Ω). Note that test functions for the space

Hα,k
p ((S, T )× Ω) are not necessarily zero at t = S. We then define Hα,k

p,0 ((S, T )×Ω)

to be the set of functions in Hα,k
p ((S, T ) × Ω) each of which is approximated by

a sequence {un(t, x)} ⊂ C∞ ([S, T ]× Ω) such that un vanishes for large |x| and
un(S, x) = 0.

By w ∈ H−1
p ((S, T )× Ω) we mean that there exist f, gi ∈ Lp ((S, T )× Ω), i =

1, . . . , d, such that

w = Digi + f

in (S, T )× Ω in the distribution sense and

∥w∥H−1
p ((S,T )×Ω)

= inf

{
d∑

i=1

∥gi∥Lp((S,T )×Ω) + ∥f∥Lp((S,T )×Ω) : w = Digi + f

}
<∞.

We also write

w = div g + f,

where g = (g1, . . . , gd).
For u ∈ Lp ((S, T )× Ω), we say Dα

t u ∈ H−1
p ((S, T )× Ω) if there exist f, gi ∈

Lp ((S, T )× Ω), i = 1, . . . , d, such that, for any φ ∈ C∞
0 ((S, T )× Ω),∫ T

S

∫
Ω

I1−α
S u ∂tφdx dt =

∫ T

S

∫
Ω

giDiφdx dt−
∫ T

S

∫
Ω

fφ dx dt. (2.2)

Let H̃α,1
p ((S, T )× Ω) be the collection of functions u ∈ Lp ((S, T )× Ω) such that

Dxu ∈ Lp ((S, T )× Ω) and Dα
t u ∈ H−1

p ((S, T )× Ω). For u ∈ H̃α,1
p ((S, T )× Ω), if

(2.2) holds for any φ ∈ C∞
0 ([S, T )× Ω), we say that u ∈ Hα,1

p ((S, T )× Ω) with
the norm

∥u∥Hα,1
p ((S,T )×Ω) = ∥u∥Lp((S,T )×Ω) + ∥Dxu∥Lp((S,T )×Ω) + ∥Dα

t u∥H−1
p ((S,T )×Ω).
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We then define Hα,1
p,0 ((S, T )× Ω) to be the collection of u ∈ Hα,1

p ((S, T )× Ω) sat-

isfying the following. There exists a sequence of {un} ⊂ C∞ ([S, T ]× Ω) such that
un vanishes for large |x|, un(S, x) = 0, and

∥un − u∥Hα,1
p ((S,T )×Ω) → 0

as n→ ∞.
Throughout the paper, we assume that the leading coefficients aij satisfy the

uniform ellipticity condition: there exists δ ∈ (0, 1) such that

aijξiξj ≥ δ|ξ|2, |aij | ≤ δ−1

for any ξ ∈ Rd and (t, x) ∈ R × Rd. The following assumption on aij means that
aij are independent of x′ ∈ Rd−1 with no regularity assumptions except that a11 is
either a function of only t or only x1.

Assumption 2.1. The coefficients aij satisfy either (i) or (ii) of the following.

(i) a11 = a11(t), aij = aij(t, x1) for (i, j) ̸= (1, 1).
(ii) a11 = a11(x1), a

ij = aij(t, x1) for (i, j) ̸= (1, 1).

The following is our main result for equations in divergence form.

Theorem 2.2 (Divergence case with measurable coefficients). Let λ ≥ 0, α ∈
(0, 1), p ∈ (1,∞), T ∈ (0,∞), and aij satisfy Assumption 2.1. Then, for u ∈
Hα,1

p,0 (Rd
T ) satisfying

−∂αt u+Di

(
aijDju

)
− λu = Digi + f (2.3)

in Rd
T , where gi, f ∈ Lp(Rd

T ), we have, for λ > 0,

∥Du∥Lp(Rd
T ) +

√
λ∥u∥Lp(Rd

T ) ≤ N0∥g∥Lp(Rd
T ) +

N0√
λ
∥f∥Lp(Rd

T ), (2.4)

and, for λ ≥ 0,

∥Du∥Lp(Rd
T ) ≤ N0∥g∥Lp(Rd

T ) +N0T
α/2∥f∥Lp(Rd

T ),

∥u∥Lp(Rd
T ) ≤ N0T

α/2∥g∥Lp(Rd
T ) +N0T

α∥f∥Lp(Rd
T ),

(2.5)

where N0 = N0(d, δ, α, p). Moreover, for any gi, f ∈ Lp(Rd
T ), there exists a unique

u ∈ Hα,1
p,0 (Rd

T ) satisfying (2.3).

For a domain Ω in Rd and T ∈ (S,∞), we say that u ∈ Hα,1
p,0 ((S, T )× Ω) satisfies

the divergence form equation

−∂αt u+Di

(
aijDju

)
− λu = Digi + f

in (S, T )× Ω, where gi, f ∈ Lp ((S, T )× Ω) if∫ T

S

∫
Ω

I1−α
S uφt dx dt+

∫ T

S

∫
Ω

(
−aijDjuDiφ− λuφ

)
dx dt

=

∫ T

S

∫
Ω

(fφ− giDiφ) dx dt

for all φ ∈ C∞
0 ([S, T )× Ω).
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Remark 2.3. Theorem 2.2 holds when p = 2. See Proposition 4.2 in [10] with the
comment above it saying that no regularity assumptions on aij are needed when
p = 2. See also Theorem 2.1 in [10], in particular, the λ = 0 case, where the
estimate (2.5) is stated so that N0 and N0T

α are replaced with a constant N which
also depends on T . Nevertheless, one can turn the constant N into those as in the
estimate (2.5) by using a scaling T−2u(T 2/αt, Tx) since the coefficients aij only
need to satisfy the ellipticity condition.

Remark 2.4. Under the assumptions of Theorem 2.2, for u ∈ Hα,1
p,0 (Rd

T ) and λ ≥ 0

satisfying (2.3), we also have

∥u∥Hα,1
p (Rd

T ) ≤ N∥g∥Lp(Rd
T ) +N∥f∥Lp(Rd

T )

provided that N depends not only on d, δ, α, p, T , but also on λ. The constant N
can be chosen as an increasing function with respect to λ. To see this, we estimate
∥ut∥H−1

p (Rd
T ) by using the equation with the estimates in Theorem 2.2.

The theorem below is our main result for equations in non-divergence form.

Theorem 2.5 (Non-divergence case with measurable coefficients). Let λ ≥ 0,
α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞), and aij satisfy Assumption 2.1. Then, for

u ∈ Hα,2
p,0 (Rd

T ) satisfying

−∂αt u+ aijDiju− λu = f (2.6)

in Rd
T , where f ∈ Lp(Rd

T ), we have

∥∂αt u∥Lp(Rd
T ) + ∥D2u∥Lp(Rd

T ) +
√
λ∥Du∥Lp(Rd

T ) +λ∥u∥Lp(Rd
T ) ≤ N0∥f∥Lp(Rd

T ), (2.7)

where N0 = N0(d, δ, α, p). We also have

∥u∥Hα,2
p (Rd

T ) ≤ N∥f∥Lp(Rd
T ), (2.8)

where N = N(d, δ, α, p, T ). Moreover, for any f ∈ Lp(Rd
T ), there exists a unique

u ∈ Hα,2
p,0 (Rd

T ) satisfying (2.6).

3. Auxiliary results for equations with measurable coefficients

In this section, as an intermediate step toward the proof of Theorem 2.2, we show
that the Lp-norm of Du is controlled by the Lp-norms of Dx′u = (D2u, . . . ,Ddu)

and the right-hand side of the equation if u ∈ Hα,1
p,0 (Rd

T ) satisfies an equation as in

(2.3) and a11 is a measurable function of either t or x1. For this, in this section
we first consider coefficients aij satisfying Assumption 3.1 below, where aij are
measurable functions of either t or x1. Note that Assumption 2.1 is strictly more
general than Assumption 3.1 in that the coefficients aij , (i, j) ̸= (1, 1), in the former
assumption are allowed to be merely measurable in (t, x1).

Assumption 3.1. The coefficients aij satisfy either (i) or (ii) of the following.

(i) aij = aij(t) for all i, j = 1, . . . , d.
(ii) aij = aij(x1) for all i, j = 1, . . . , d.

We first observe the following lemma.

Lemma 3.2. Let α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞), and Ω ⊂ Rd. For k = 1, . . . , d,

Dxk
u ∈ Hα,1

p,0 (ΩT ) whenever u ∈ Hα,2
p,0 (ΩT ).
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Proof. Denote Dxk
u by Dku. To show that Dku ∈ Hα,1

p,0 (ΩT ), we need to check

that Dku ∈ Hα,1
p (ΩT ) and there exists a sequence {vn} ⊂ C∞ ([0, T ]× Ω) such that

vn vanishes for large |x|, vn(0, x) = 0, and

∥vn −Dku∥Hα,1
p (ΩT ) → 0

as n→ ∞.
Note that Dku,DDku ∈ Lp(ΩT ). Also note that, for any φ ∈ C∞

0 ([0, T )× Ω),∫ T

0

∫
Ω

I1−α
0 (Dku) ∂tφdx dt =

∫ T

0

∫
Ω

∂t
(
I1−α
0 u

)
Dkφdx dt.

Thus, Dku ∈ Hα,1
p (ΩT ) and

∂tI
1−α
0 (Dku) = Dk

(
∂tI

1−α
0 u

)
∈ H−1

p (ΩT ). (3.1)

To find a sequence {vn} satisfying the aforementioned properties, we recall that

u ∈ Hα,2
p,0 (ΩT ), which means that there exists a sequence {un} ⊂ C∞ ([0, T ]× Ω)

such that un vanishes for large |x|, un(0, x) = 0, and

∥un − u∥Hα,2
p (ΩT ) → 0 (3.2)

as n → ∞. Set vn = Dkun. Then, {vn} ⊂ C∞ ([0, T ]× Ω), vn vanishes for large
|x|, vn(0, x) = 0, and

∥vn −Dku∥Lp(ΩT ) + ∥Dvn −DDku∥Lp(ΩT ) → 0

as n→ ∞. We also have

∥∂tI1−α
0 vn − ∂tI

1−α
0 (Dku)∥H−1

p (ΩT ) → 0

as n→ ∞. Indeed, (3.1) shows that

∂t
(
I1−α
0 vn − I1−α

0 (Dku)
)
= Dk

(
∂tI

1−α
0 un − ∂tI

1−α
0 u

)
.

Hence,

∥∂tI1−α
0 vn − ∂tI

1−α
0 (Dku)∥H−1

p (ΩT ) ≤ ∥∂tI1−α
0 un − ∂tI

1−α
0 u∥Lp(ΩT ) → 0

as n → ∞, where the convergence of the right-hand side is guaranteed by (3.2).
The lemma is proved. □

We now prove an Lp-estimate for equations in divergence form when aij are
either functions of only t or x1. In fact, the result follows from the previous results
in [9, 10] combined with the above lemma.

Proposition 3.3 (Divergence case). Let α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞), and

aij satisfy Assumption 3.1. Then, for any u ∈ Hα,1
p,0 (Rd

T ) satisfying

−∂αt u+Di

(
aijDju

)
= Digi + f (3.3)

in Rd
T , where gi, f ∈ Lp(Rd

T ), we have

∥Du∥Lp(Rd) ≤ N0∥g∥Lp(Rd
T ) +N0T

α/2∥f∥Lp(Rd
T ), (3.4)

where N0 = N0(d, δ, α, p).
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Proof. By scaling, without loss of generality we may assume that T = 1. In the
case that aij = aij(x1), the result follows from [10, Theorem 2.1]. In particular, see
the estimate (2.4) in [10, Theorem 2.1].

To deal with the case that aij = aij(t), for each k = 1, 2, . . . , d, by using [9,

Theorem 2.1] find a unique wk ∈ Hα,2
p,0 (Rd

1) satisfying

−∂αt wk + aij(t)Dijwk = gk

in Rd
1 with the estimate

∥D2wk∥Lp(Rd
1)

≤ N0∥gk∥Lp(Rd
1)
, (3.5)

where N0 = N0(d, δ, α, p). There also exists a unique w0 ∈ Hα,2
p,0 (Rd

1) satisfying

−∂αt w0 + aij(t)Dijw0 = f

in Rd
1 with the estimate

∥Dw0∥Lp(Rd
1)

≤ N1∥f∥Lp(Rd
1)
, (3.6)

where N1 = N1(d, δ, α, p). By Lemma 3.2, Dkwk ∈ Hα,1
p,0 (Rd

1). Clearly, w0 ∈
Hα,1

p,0 (Rd
1). Moreover, Dkwk and w0 satisfy the divergence type equations

−∂αt Dkwk +Di

(
aij(t)DjDkwk

)
= Dkgk,

−∂αt w0 +Di

(
aij(t)Djw0

)
= f,

respectively, in Rd
1. Now we set

v = w0 +

d∑
k=1

Dkwk,

which belongs to Hα,1
p,0 (Rd

1) and satisfies (3.3). Then, if p ∈ [2,∞), by [10, Lemma

4.1] v equals to u, which shows that the estimate (3.4) follows from (3.5) and (3.6).
For p ∈ (1, 2), we use the duality argument to obtain the estimate (3.4). See the
proofs of [10, Theorem 2.1] and Proposition 6.2 below. □

We now present the main result of this section. The proof is based on Proposition
3.3 and the scaling argument used, for instance, in [8]. Since the regularity of aij

for (i, j) ̸= (1, 1) does not play any role, we allow them to be only measurable.

Lemma 3.4. Let α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞), and a11 satisfy Assumption
2.1. The other coefficients aij, (i, j) ̸= (1, 1), are measurable functions of (t, x).

Then, for any u ∈ Hα,1
p,0 (Rd

T ) satisfying

−∂αt u+Di

(
aijDju

)
= Digi + f

in Rd
T , where gi, f ∈ Lp(Rd

T ), we have

∥Du∥Lp(Rd) ≤ N0∥Dx′u∥Lp(Rd) +N0∥g∥Lp(Rd) +N0T
α/2∥f∥Lp(Rd), (3.7)

where N0 = N0(d, δ, α, p).
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Proof. Let w(t, x1, x
′) = u(µ−2/αt, µ−1x1, x

′) with an appropriate positive constant

µ to be chosen below. Note that w belongs to Hα,1
p,0

(
(0, µ2/αT )× Rd

)
and satisfies

− ∂αt w +D1

(
ã11D1w

)
+ µ−1

d∑
i=2

Di

(
ãi1D1w

)
+ µ−1

d∑
j=2

D1

(
ã1jDjw

)
+ µ−2

d∑
i,j=2

Di

(
ãijDjw

)
= µ−2Dig̃i + µ−2f̃ (3.8)

in (0, µ2/αT )× Rd, where

ã11 = a11(µ−2/αt) or ã11 = a11(µ−1x1),

ãij(t, x1, x
′) = aij(µ−2/αt, µ−1x1, x

′), (i, j) ̸= (1, 1),

g̃(t, x1, x) = (µg1, g2, . . . , gd)(µ
−2/αt, µ−1x1, x

′),

f̃(t, x1, x
′) = f(µ−2/αt, µ−1x1, x

′).

By adding ∆x′w to both sides of (3.8), we write

− ∂αt w +D1

(
ã11D1w

)
+

d∑
i=2

D2
iw = D1

(
µ−2g̃1 − µ−1

d∑
j=2

ã1jDjw

)

+

d∑
i=2

Di

(
µ−2g̃i +Diw − µ−1ãi1D1w − µ−2

d∑
j=2

ãijDjw

)
+ µ−2f̃

in (0, µ2/αT )×Rd. Since the coefficients on the left-hand side of the above equation
satisfy Assumption 3.1 (indeed, ã11 is a measurable function of only t or x1 and
the other coefficients are constant), we apply Proposition 3.3 to get

∥Dw∥p ≤ N0

(
∥Dx′w∥p + µ−1∥Dw∥p + µ−2∥Dx′w∥p

+µ−2∥g̃i∥Lp

)
+N0(µ

2/αT )α/2µ−2∥f̃∥p,

where ∥ · ∥p = ∥ · ∥Lp((0,µ2/αT )×Rd) and N0 = N0(d, δ, α, p). In particular, because

the ellipticity constant of ã11 is the same as that of a11, N0 is independent of µ. We
choose µ sufficiently large such that N0µ

−1 ≤ 1/2 and absorb the ∥Dw∥p term to
the left-hand side. Finally, we return back to u to obtain the estimate (3.7). The
lemma is proved. □

4. Level set argument for equations in divergence form with
measurable coefficients

This section is devoted to the estimate of the superlevel set of Dx′u for solutions
to divergence form equations.

Lemma 4.1. Let α ∈ (0, 1), p0 ∈ (1,∞), −∞ < S ≤ t0 < T < ∞, 0 < r <
R < ∞ and aij satisfy Assumption 2.1. If Theorem 2.2 holds with this p0 and
v ∈ Hα,1

p0,0
((S, T )×BR) satisfies

−∂αt v +Di

(
aijDjv

)
= DiΨi

in (S, T ) × BR, where ∂αt = ∂tI
1−α
S and Ψi ∈ Lp0

((S, T )×BR) with Ψi = 0
on (t0, T ) × BR, then for any infinitely differentiable function η(t) defined on R
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such that η(t) = 0 for t ≤ t0, the function Dℓ(ηv), ℓ = 2, . . . , d, belongs to

Hα,1
p0,0

((t0, T )×Br) and satisfies

−∂αt (Dℓ(ηv)) +Di

(
aijDjDℓ(ηv)

)
= Gℓ (4.1)

in (t0, T )×Br, where ∂
α
t = ∂tI

1−α
t0 and

Gℓ =
α

Γ(1− α)

∫ t

S

(t− s)−α−1 (η(s)− η(t))Dℓv(s, x) ds.

Moreover, for ℓ = 2, . . . , d,

∥Dℓ(ηv)∥Hα,1
p0

((t0,T )×Br)
≤ N∥Dℓ(ηv)∥Lp0 ((t0,T )×BR) +N∥Gℓ∥Lp0 ((t0,T )×BR), (4.2)

where N = N(d, δ, α, p0, r, R). If we additionally assume that aij = aij(t), then

D1(ηv) ∈ Hα,1
p0,0

((t0, T )×Br) and D1(ηv) satisfies (4.1) and (4.2) with ℓ = 1.

Proof. Without loss of generality, we assume that t0 = 0. First, by Lemma 3.4 in
[10] ηv belongs to Hα,1

p0,0
((0, T )×BR) and satisfies

∂αt (ηv) = ∂tI
1−α
0 (ηv) = η∂tI

1−α
S v −F

in the sense of distribution in (0, T )×BR, where

F(t, x) =
α

Γ(1− α)

∫ t

S

(t− s)−α−1 (η(s)− η(t)) v(s, x) ds.

That is, if

∂tI
1−α
S v = Digi + f

in (S, T )×BR for gi, f ∈ Lp0
((S, T )×BR), then

∂tI
1−α
0 (ηv) = Di(ηgi) + ηf −F (4.3)

in (0, T )×BR. In particular, we have

−∂αt (ηv) +Di

(
aijDj(ηv)

)
= F (4.4)

in (0, T )×BR.
Next, we consider

∆ℓ,hv(t, x) =
v(t, x+ heℓ)− v(t, x)

h
, 0 < h <

R− r

2
,

which belongs to H1
p0,0 ((0, T )×BR1

), where R1 = (R + r)/2 and eℓ is the unit
vector in the xℓ-direction. Since v,Dv ∈ Lp0

((S, T )×BR), we have

∥∆ℓ,hv −Dℓv∥Lp0((S,T )×BR1)
→ 0 (4.5)

as h → 0. Upon noting that the coefficients aij are functions of only (t, x1), from
(4.4) we see that ∆ℓ,hv, ℓ = 2, . . . , d, satisfies

−∂αt (η∆ℓ,hv) +Di

(
aijDj(η∆ℓ,hv)

)
= Gℓ,h (4.6)

in (0, T )×BR1
, where

Gℓ,h =
α

Γ(1− α)

∫ t

S

(t− s)−α−1 (η(s)− η(t))∆ℓ,hv(s, x) ds.

Note that Gℓ,h ∈ Lp0
((0, T )×BR1

) with

∥Gℓ,h∥Lp0
((0,T )×BR1

) ≤ N∥∆ℓ,hv∥Lp0
((S,T )×BR1

) ≤ N∥Dv∥Lp0
((S,T )×BR), (4.7)
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where N depends only on α, p0, S, T , and the bound of η′. See [10, Lemma 3.4].
The first inequality in (4.7) combined with (4.5) shows that

∥Gℓ,h − Gℓ∥Lp0
((0,T )×BR1

) ≤ N∥∆ℓ,hv −Dℓv∥Lp0((S,T )×BR1)
→ 0 (4.8)

as h→ 0. We now apply [10, Lemma 4.3] (this local estimate is available whenever
the corresponding global estimate, i.e., Theorem 2.2 holds) to the equation (4.6) to
obtain

∥D(η∆ℓ,hv)∥Lp0
((0,T )×Br) ≤

N

R− r
∥η∆ℓ,hv∥Lp0

((0,T )×BR1
)

+N(R− r)∥Gℓ,h∥Lp0
((0,T )×BR1

) ≤ N∥Dv∥Lp0
((S,T )×BR),

(4.9)

where N = N(d, δ, α, p0, r, R). From this estimate with a slightly larger r, it fol-
lows that DDx′(ηv) ∈ Lp0

((0, T )×Br′) for r
′ ∈ (r,R1), which combined with the

property of ∆ℓ,h implies

∥D(η∆ℓ,hv)−DDℓ(ηv)∥Lp0
((0,T )×Br) → 0 (4.10)

as h → 0. Moreover, thanks to (4.5) and (4.8), by letting h → 0 in the first
inequality in (4.9), we have

∥DDℓ(ηv)∥Lp0
((0,T )×Br) ≤ N∥Dℓ(ηv)∥Lp0

((0,T )×BR) +N∥Gℓ∥Lp0
((0,T )×BR), (4.11)

where N = N(d, δ, α, p0, r, R). Now, since

I1−α
0 (η∆ℓ,hv) → I1−α

0 (ηDℓv) in Lp0
((0, T )×Br)

as h→ 0, by (4.6) we see that Dα
t Dℓ(ηv) ∈ H−1

p0
((0, T )×Br) and

Dα
t (Dℓ(ηv)) = Di

(
aijDj(Dℓ(ηv)

)
− Gℓ, ℓ = 2, . . . , d, (4.12)

in (0, T )×Br with

∥Dα
t (Dℓ(ηv))− ∂αt (η∆ℓ,hv) ∥H−1

p0
((0,T )×Br)

→ 0 (4.13)

as h→ 0. In particular, the equality (4.12) holds in the sense that∫ T

0

∫
Br

I1−α
0 (Dℓ(ηv))φt dx dt

=

∫ T

0

∫
Br

aijDj (Dℓ(ηv))Diφdx dt+

∫ T

0

∫
Br

Gℓφdx dt (4.14)

for all φ ∈ C∞
0 ([0, T )×Br). Note that by the observations made above we have

Dx′(ηv), DDx′(ηv) ∈ Lp0 ((0, T )×Br) , Dα
t Dx′(ηv) ∈ H−1

p0
((0, T )×Br) ,

from which and (4.14), however, one can only conclude that

Dx′(ηv) ∈ Hα,1
p0

((0, T )×Br) .

Since Hα,1
p0

is a strict super set of Hα,1
p0,0

(see Section 3 in [10]), to complete the proof,

we need to find a sequence {wn} such that wn ∈ C∞ ([0, T ]×Br), wn(0, x) = 0,
and

∥wn −Dℓ(ηv)∥Hα,1
p0

((0,T )×Br)
= ∥|wn −Dℓ(ηv)|+ |Dwn −DDℓ(ηv)|∥Lp0 (((0,T )×Br)

+ ∥Dα
t wn −Dα

t (Dℓ(ηv)) ∥H−1
p0

((0,T )×Br)
→ 0

as n→ ∞. Assuming for the moment the existence of such a sequence and (4.12),

one can conclude that Dℓ(ηv), ℓ = 2, . . . , d, belongs to Hα,1
p0,0

((0, T )×Br) and
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satisfies (4.1). To see that (4.2) holds, we simply combine (4.11) and (4.12) upon
recalling the definition of the Hα,1

p0
-norm, in particular, that of the H−1

p0
-norm.

To find a sequence {wn}, since v ∈ Hα,1
p0,0

((S, T )×BR), we recall that there

exists a sequence {vn} such that vn ∈ C∞ ([S, T ]×BR), vn(S, x) = 0, and

∥vn − v∥Hα,1
p0

((S,T )×BR) → 0

as n→ ∞. We then consider the sequence {∆ℓ,h(ηvn)}h,n, which satisfies

∆ℓ,h(ηvn) ∈ C∞ ([0, T ]×Br) , ∆ℓ,h(ηvn)(0, x) = 0,

and

∥Dℓ(ηv)−∆ℓ,h(ηvn)∥Hα,1
p0

((0,T )×Br)
→ 0

as n→ ∞ and h→ 0. Indeed, the above quantity is bounded by

∥Dℓ(ηv)−∆ℓ,h(ηv)∥Hα,1
p0

((0,T )×Br)
+ ∥∆ℓ,h (η(v − vn)) ∥Hα,1

p0
((0,T )×Br)

,

where the first term converges to zero as h→ 0 due to (4.5), (4.10), and (4.13), and
the second term can be made arbitrary small due to the choice of {vn} by letting
n→ ∞ after a sufficiently small h is fixed. In particular, since Dα

t (v− vn) vanishes
as n → ∞ in H−1

p0
((S, T )×BR), there exist gni , f

n ∈ Lp0
((S, T )×BR) such that

gni , f
n → 0 in Lp0

((S, T )×BR) and

Dα
t (v − vn) = Dig

n
i + fn

in (S, T )×BR. Then, as seen in (4.3),

Dα
t ∆ℓ,h (η(v − vn)) = Di (∆ℓ,h(ηg

n
i )) + ∆ℓ,h(ηf

n)−Fn, (4.15)

Fn =
α

Γ(1− α)

∫ t

S

(t− s)−α−1 (η(s)− η(t))∆ℓ,h(v − vn)(s, x) ds,

and, for each h > 0, the terms

∆ℓ,h(ηg
n
i ), ∆ℓ,h(ηf

n), and Fn

on the right-hand side of (4.15) vanish as n→ 0. Therefore, one can come up with
a desired sequence {wn} by choosing a subsequence {∆ℓ,hk

(ηvnk
)} with appropriate

hk → 0 and nk → ∞.
If aij = aij(t), we repeat the above proof with ∆1,hv. In particular, η∆1,hv

satisfies (4.6) with ℓ = 1 because aij are independent of x1. The lemma is proved.
□

Proposition 4.2. Let α ∈ (0, 1), p0 ∈ (1,∞), T ∈ (0,∞), and aij satisfy Assump-

tion 3.1. If Theorem 2.2 holds with this p0 and u ∈ Hα,1
p0,0

(Rd
T ) satisfies

−∂αt u+Di

(
aijDju

)
= Digi

in (0, T ) × Rd, where gi ∈ Lp0
(Rd

T ), then for any (t0, x0) ∈ [0, T ] × Rd and R ∈
(0,∞), there exist

w ∈ Hα,1
p0,0

(
(t0 −R2/α, t0)× Rd

)
, v ∈ Hα,1

p0,0

(
(S, t0)× Rd

)
,
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where S := min{0, t0 −R2/α}, satisfying the following.

(i) u = w + v in QR(t0, x0),

(ii) (|Dw|p0)
1/p0

QR(t0,x0)
≤ N (|g|p0)

1/p0

Q2R(t0,x0)
,

(iii) (|Dx′v|p1)
1/p1

QR/2(t0,x0)
≤ N (|g|p0)

1/p0

Q2R(t0,x0)
+N

∞∑
k=0

2−kα (|Dx′u|p0)
1/p0

Qk
R(t0,x0)

,

where Qk
R(t0, x0) =

(
t0 − (2k+1 + 1)R2/α, t0

)
× BR(x0), N = N(d, δ, α, p0), and

p1 = p1(d, α, p0) ∈ (p0,∞] with

1

p1
≥ 1

p0
− 1

d+ 2/α
.

Here we understand that u and gi are extended to be zero for t < 0 and

(|Dx′v|p1)
1/p1

Qr/2(t1,0)
= ∥Dx′v∥L∞(Qr/2(t1,0))

provided that p1 = ∞.

Proof. The proof is almost the same as that of Proposition 5.1 in [10]. In particular,
we use Lemma 4.1 and Corollaries 7.4 and 7.6 to establish the desired estimate for
Dx′v. See the corresponding estimate (5.7) in [10]. □

Let γ ∈ (0, 1). Also let p0 ∈ (1,∞) and p1 ∈ (p0,∞] be from Proposition 4.2.
Denote

A(s) =
{
(t, x) ∈ (−∞, T )× Rd : |Dx′u(t, x)| > s

}
and

B(s) =
{
(t, x) ∈ (−∞, T )× Rd :

γ−1/p0 (M|g|p0(t, x))
1/p0 + γ−1/p1 (SM|Dx′u|p0(t, x))

1/p0 > s
}
,

where we extend involved functions to be zero for t ≤ S if they are defined on
(S, T )× Rd. Set

CR(t, x) = (t−R2/α, t+R2/α)×BR(x), ĈR(t, x) = CR(t, x) ∩ {t ≤ T}.

Since Proposition 4.2 is now available, by following the proof of Lemma 5.2 in
[10], we obtain the following lemma. Note that in the definition of A(s) we have
Dx′u, not Du.

Lemma 4.3. Let α ∈ (0, 1), p0 ∈ (1,∞), T ∈ (0,∞), and aij satisfy Assumption

3.1. If Theorem 2.2 holds with this p0 and u ∈ Hα,1
p0,0

(Rd
T ) satisfies

−∂αt u+Di

(
aijDju

)
= Digi

in Rd
T , where gi ∈ Lp0(Rd), then there exists a constant κ = κ(d, δ, α, p0) > 1 such

that the following holds: for (t0, x0) ∈ (−∞, T ]× Rd and s > 0, if∣∣CR/4(t0, x0) ∩ A(κs)
∣∣ ≥ γ

∣∣CR/4(t0, x0)
∣∣ ,

then

ĈR/4(t0, x0) ⊂ B(s).
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5. Proofs of Theorems 2.2 and 2.5

In this section we present the proofs of Theorems 2.2 and 2.5.

Proof of Theorem 2.2. As noted in Remark 2.3, the theorem holds when p = 2.
Suppose that the theorem holds for some p0 ∈ [2,∞), which is indeed true for
p0 = 2. Then, we fix p1 ∈ (p0,∞] from Proposition 4.2 and prove Theorem 2.2 for
p ∈ (p0, p1). We first assume that λ = 0 and f = 0. In this case by Lemma 4.3 and
following the proof of Theorem 2.1 in [10], we obtain

∥Dx′u∥Lp(Rd) ≤ N∥g∥Lp(Rd),

where N = N(d, δ, α, p). This estimate combined with Lemma 3.4 proves (2.5)
with f = 0. Then by using S. Agmon’s idea (see [15, Lemma 5.5]), we see that, for

u ∈ Hα,1
p,0 (Rd

T ) and λ > 0 satisfying (2.3) in Rd
T , the estimate (2.4) holds. To prove

(2.5) with non-zero f and λ = 0, we write the equation (2.3) as

−∂αt u+Di

(
aijDju

)
− λu = Digi + f − λu, λ > 0,

and apply the estimate (2.4) to this equation to get

∥Du∥Lp(Rd
T ) +

√
λ∥u∥Lp(Rd

T ) ≤ N∥g∥Lp(Rd
T ) +

N√
λ
∥f∥Lp(Rd

T ) +N
√
λ∥u∥Lp(Rd

T ),

where N = N(d, δ, α, p). By combining this estimate with Lemma 4.1 in [10], which
is an estimate for the last term in the above inequality and does not require any
regularity on the coefficients aij , we obtain

∥Du∥Lp(Rd
T ) +

√
λ∥u∥Lp(Rd

T ) ≤ N∥g∥Lp(Rd
T ) +

N√
λ
∥f∥Lp(Rd

T )

+N
√
λ
(
Tα/2∥g∥Lp(Rd

T ) + Tα∥f∥Lp(Rd
T )

)
,

where N = N(d, δ, α, p). By choosing λ = T−α, we arrive at (2.5) for non-zero f
and λ = 0. To prove (2.5) for λ > 0, we see that the estimates follow easily from
(2.4) when λ ≥ 1/(2N0T

α). If 0 < λ < 1/(2N0T
α), we move λu to the right-hand

side and use (2.5) for λ = 0. Because of the range of λ, the term involving ∥u∥Lp(Rd
T )

is absorbed to the left-hand side.
The existence assertion for p ∈ (p0, p1) follows from the a priori estimates just

proved above (also see Remark 2.4) combined with the method of continuity and
the existence result for equations having simple coefficients, for instance, in [10,
Theorem 2.1].

Now that we have proved Theorem 2.2 for p ∈ [p0, p1), we repeat this procedure
until we have p1 = ∞ as in the proof of [10, Theorem 2.1] so that the theorem holds
for all p ∈ [2,∞).

For p ∈ (1, 2), we use the duality argument as in the proof of [10, Theorem 2.1].
The theorem is proved. □

We now prove Theorem 2.5 by following the proofs in [6], where the estimates
for the non-divergence case are derived from those for the divergence case.

Proof of Theorem 2.5. We first prove the a priori estimate (2.7) when λ = 0. By

Lemma 3.2, we know that D1u ∈ Hα,1
p,0 (Rd

T ). Then one can check that w := D1u ∈
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Hα,1
p,0 (Rd

T ) satisfies the divergence type equation

−∂αt w +D1

(
a11D1w

)
+∆x′w = D1

(
f −

d∑
(i,j)̸=(1,1)

aijDiju

)
+

d∑
i=2

Di (DiD1u)

in Rd
T , where ∆x′ =

∑d
i=2D

2
i . Since the coefficient matrix diag(a11, 1, . . . , 1) of

the above equation satisfies Assumption 2.1 with the same ellipticity constant δ,
by Theorem 2.2, it follows that

∥DD1u∥Lp(Rd
T ) = ∥Dw∥Lp(Rd

T ) ≤ N∥f∥Lp(Rd
T ) +N∥DDx′u∥Lp(Rd

T ), (5.1)

where N = N(d, δ, α, p) and DDx′u = Diju with (i, j) ̸= (1, 1). To complete the
proof, we prove

∥DDx′u∥Lp(Rd
T ) ≤ N∥f∥Lp(Rd

T ). (5.2)

This combined with (5.1) and the equation ∂αt u = aijDiju− f proves the estimate
(2.7). To prove (5.2) we consider two cases depending on whether a11 = a11(t) or
a11 = a11(x1).
Case 1: a11 = a11(t). In this case, the assumption a11 = a11(t) allows to write
a11(t)D2

1u = D1

(
a11(t)D1u

)
, so that the equation (2.6) can be written as the

following divergence type equation.

−∂αt u+Di

(
ãijDju

)
= f,

where
ã11 = a11, ãij = aij , i, j = 2, . . . , d,

ã1j = 0, j = 2, . . . , d, ãi1 = a1i + ai1, i = 2, . . . , d.

Note that the coefficients ãij satisfy Assumption 2.1 with the same ellipticity con-
stant. We then see that wℓ := Dℓu, ℓ = 2, . . . , d, belongs to Hα,1

p,0 (Rd
T ) and satisfies

−∂αt wℓ +Di

(
ãijDjwℓ

)
= Dℓf

in Rd
T . By Theorem 2.2 again, where the symmetry of the coefficients, i.e., ãij = ãji,

is not required, we obtain

∥DDx′u∥Lp(Rd
T ) = ∥Dwℓ∥Lp(Rd

T ) ≤ N∥f∥Lp(Rd
T ),

where N = N(d, δ, α, p), which proves (5.2). Therefore, the estimate (2.7) with
λ = 0 is proved for the case a11 = a11(t).
Case 2: a11 = a11(x1). In this case, we make use of the following change of
variables:

y1 = χ(x1) =

∫ x1

0

1

a11(r)
dr, yi = xi, i = 2, . . . , d.

As seen in the proof of Theorem 4.1 in [6], v(t, y1, y
′) = u(t, χ−1(y1), y

′) satisfies

−∂αt v +Di

(
âijDjv

)
= f̂

in Rd
T , where
â11(y1) =

1

a11(χ−1(y1))
, â1j = 0, j = 2, . . . , d,

âi1(t, y1) = â11(y1)
(
a1i(t, χ−1(y1)) + ai1(t, χ−1(y1))

)
, i = 2, . . . , d,

âij(t, y1) = aij(t, χ−1(y1)), i, j = 2, . . . , d,

f̂(t, y1, y
′) = f(t, χ−1(y1), y

′).
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Then, Dℓv, ℓ = 2, . . . , d, belongs to Hα,1
p,0 (Rd

T ) and satisfies

−∂αt (Dℓv) +Di

(
âijDj(Dℓv)

)
= Dℓf̂ (5.3)

in Rd
T . Note that âij satisfy Assumption 2.1 with an ellipticity constant depending

only on δ. Indeed,

âijξiξj =
1

a11

ξ21 +

d∑
j=2

a1jξiξj +

d∑
i=2

ai1ξiξ1

+

d∑
i,j=2

aijξiξj

= aij ξ̃iξ̃j ≥ δ|ξ̃|2 ≥ δ3|ξ|2, ξ̃ =

(
ξ1
a11

, ξ2, . . . , ξd

)
.

Thus, Theorem 2.2 applied to (5.3) shows

∥DDℓv∥Lp(Rd
T ) ≤ N∥f̂∥Lp(Rd

T ),

from which we obtain (5.2). Therefore, the estimate (2.7) with λ = 0 is also proved
for the case a11 = a11(x1).

Now that we have proved (2.7) with λ = 0, using S. Agmon’s idea as in the proof
of Theorem 2.2, we obtain the a priori estimate (2.7) for λ > 0. To prove (2.8), we
write

−∂αt u+ aijDiju = f + λu.

By following the proof of [9, Theorem 2.4], we have

∥u∥Lp(Rd
T ) ≤ N∥f∥Lp(Rd

T ) + λN∥u∥Lp(Rd
T ),

where N = N(d, δ, α, p, T ). If λN ≤ 1/2, it follows that

∥u∥Lp(Rd
T ) ≤ 2N∥f∥Lp(Rd

T ).

From this estimate with (2.7) as well as an interpolation inequality with respect to
x we arrive at (2.8). If λ ≥ 1/(2N), the estimate (2.8) follows directly from (2.7).

Finally, we prove the existence of solutions. Thanks to a priori estimates estab-
lished above, we obtain the existence by using the method of continuity and the
unique solvability in Hα,2

p,0 (Rd
T ) of equations with simple coefficients (for instance,

aijDiju = ∆u) in [14, 9]. □

6. Boundary value problems

We denote Rd
+ = {x = (x1, x

′) ∈ Rd : x1 > 0}.

Theorem 6.1 (Half space). The assertions in Theorems 2.2 and 2.5 hold if Rd is
replaced with Rd

+ and u satisfies either the Dirichlet boundary condition (1) or the
Neumann type boundary condition (2) below.

(1) The Dirichlet boundary condition

u(t, 0, x′) = 0 on (0, T )× Rd−1. (6.1)

(2) (a) The divergence case: the conormal derivative boundary condition

a1jDju = g1 on (0, T )× Rd−1.

(b) The non-divergence case: the Neumann boundary condition

D1u(t, 0, x
′) = 0 on (0, T )× Rd−1.



18 H. DONG AND D. KIM

Proof. We use even or odd extensions with respect to x1. See, for instance, the
proofs of [8, Theorem 2.4] and [13, Theorem 2.7]. In particular, if u ∈ Hα,1

p,0 (ΩT ) or

u ∈ Hα,2
p,0 (ΩT ), where Ω = Rd

+, with the boundary condition (6.1), we see that ū,
the odd extension of u with respect to x1 given by

ū =

{
u(t, x1, x

′) for x1 > 0,

−u(t,−x1, x′) for x1 < 0,

belongs to Hα,1
p,0 (Rd

T ) or Hα,2
p,0 (Rd

T ), respectively. We have the same conclusion for
the even extension of u with respect to x1 when the conormal derivative boundary
condition or the Neumann boundary condition is imposed. □

Proposition 6.2 (Partially bounded domain). Let α ∈ (0, 1), p ∈ (1,∞), T ∈
(0,∞), R ∈ (0,∞), and

Π = {(x1, x′) ∈ Rd : 0 < x1 < R, x′ ∈ Rd−1}.

Under Assumption 2.1, for any u ∈ Hα,1
p,0 (ΠT ) and λ ≥ 0 satisfying (2.3) in ΠT ,

where gi, f ∈ Lp(ΠT ), with the Dirichlet boundary condition

u(t, x) = 0 on (0, T )× ∂Π, (6.2)

we have the estimates (2.4) when λ > 0 and (2.5) when λ ≥ 0, with Rd
T replaced

by ΠT , where N0 again depends only on d, δ, α, and p. Moreover, for any gi, f ∈
Lp(ΠT ) and λ ≥ 0, there exists a unique u ∈ Hα,1

p,0 (ΠT ) satisfying (2.3) in ΠT with

the boundary condition (6.2).
Similar assertions hold for the divergence type equation (2.3) with the conormal

derivative boundary condition and the non-divergence type equation (2.6) with either
the Dirichlet boundary condition or the Neumann boundary condition.

Proof. Since the coefficients are measurable functions of t, x1, or (t, x1), and the
desired estimates as in (2.4) and (2.7) (the constant N0 in (2.5) as well) are inde-
pendent of T , one can use a scaling argument. Thus, we may assume R = 1.

We first prove the a priori estimates. We only give details for the divergence
case with the Dirichlet boundary condition. The other cases are proved similarly.

Let u ∈ Hα,1
p,0 (ΠT ) satisfy (2.3) with the Dirichlet boundary condition (6.2). We

first take the odd extension of u with respect to {x1 = 0} and then take the periodic
extension of it to the whole space Rd, so that the extended function, which is still
denoted by u, is in Hα,1

p,loc(Rd
T ). Similarly, we take the odd (and even) extensions of

f and gi, i = 2, . . . , d (and g1) with respect to {x1 = 0} and then take the periodic
extensions of them to the whole space. For the coefficients a1j and aj1, j = 2, . . . , d,
we take the periodic extensions (again denoted by a1j) of the oddly extended ones
with respect to {x1 = 0}. For the remaining coefficients, we take the periodic
extensions of the evenly extended ones with respect to {x1 = 0}. The extended
coefficients satisfy Assumption 2.1 as well as the uniform ellipticity condition. Next
let η ∈ C∞

0 (B2) be such that η = 1 on B1 and ηR(·) = η(·/R) for R ≥ 10. Then it

is easily seen that uηR ∈ Hα,1
p,0 (Rd

T ) satisfies

−∂αt (uηR) +Di

(
aijDj(uηR)

)
− λuηR = Di(ηRgi) + ηRf

+Di

(
aij(DjηR)u

)
+ aijDiηRDju− (DiηR)gi
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in Rd
T . We first prove (2.4) with Rd

T replaced with ΠT . By applying Theorem 2.2
to the above equation, we get

∥D(ηRu)∥Lp(Rd
T ) +

√
λ∥ηRu∥Lp(Rd

T ) ≤ N0∥|ηRg|+ |(DηR)u|∥Lp(Rd
T )

+
N0√
λ
∥|ηRf |+ |DηRDu|+ |(DηR)||g|∥Lp(Rd

T ),

where N0 = N0(d, δ, α, p). This together with the periodicity of u, f , and gi in x1
and the bound |DηR| ≤ NR−1 gives

∥|Du|+
√
λ|u|∥Lp((0,T )×(0,1)×B′

R/2
) ≤ N0∥|g|+R−1|u|∥Lp((0,T )×(0,1)×B′

2R)

+
N0√
λ
∥|f |+R−1|Du|+R−1|g|∥Lp((0,T )×(0,1)×B′

2R),

where B′
r = {x′ ∈ Rd−1 : |x′| < r}. Taking the limits as R → ∞ gives the desired

estimate

∥Du∥Lp(ΠT ) +
√
λ∥u∥Lp(ΠT ) ≤ N0∥g∥Lp(ΠT ) +

N0√
λ
∥f∥Lp(ΠT ),

where N0 = N0(d, δ, α, p). Similarly, we obtain (2.5) from Theorem 2.2.
We now prove the existence of unique solutions to the equations. Thanks to

the a priori estimates just proved above, the uniqueness is guaranteed whenever
solutions exist. Thus, we only prove the existence of solutions, for which by the a
priori estimates and the method of continuity, in the divergence case it is enough
to show the existence of a solution u ∈ Hα,1

p,0 (ΠT ) to the equation

−∂αt u+∆u = Digi + f (6.3)

in ΠT , where gi, f ∈ Lp(ΠT ), with either the Dirichlet boundary condition or the
conormal derivative boundary condition. Indeed, even if equations have simple
coefficients as in (6.3), the corresponding solvability result does not seem available
in the literature when the spatial domain is Π. We give here details for the case
with the Dirichlet boundary condition (6.2).

By using the density argument and the a priori estimates, without loss of gen-
erality we may assume that gi and f are smooth with compact support in ΠT . In
the proof below whenever gi and f are considered in Rd

T , those are the extended
ones as in the proof of the a priori estimates.

Case 1: p = 2. In this case, the solvability follows from the Galerkin method.
See [22].

Case 2: p ∈ (1, 2). From Case 1, we know that (6.3) has a solution u ∈
Hα,1

2,0 (ΠT ). This solution is also in Hα,1
p,0 (ΠT ). Indeed, we take the extension of

u as in the proof of the a priori estimates. Then it is easily seen that uηR ∈
Hα,1

p,0 (Rd
T ) ∩Hα,1

2,0 (Rd
T ) satisfies

−∂αt (uηR) + ∆(uηR) = Di(ηRgi) + ηRf

+2Di ((DiηR)u)− (∆ηR)u− (DiηR)gi

in Rd
T . By applying Theorem 2.2 to the above equation we get

Tα/2∥D(ηRu)∥Lp(Rd
T ) + ∥ηRu∥Lp(Rd

T ) ≤ N0T
α/2∥|ηRg|+ |(DηR)u|∥Lp(Rd

T )

+N0T
α∥|ηRf |+ |(∆ηR)u|+ |(DηR)||g|∥Lp(Rd

T ),
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where N0 = N0(d, δ, α, p). This together with the periodicity of u, f , and gi in x1
and the bounds |DηR| ≤ NR−1, |∆ηR| ≤ NR−2 gives

Tα/2∥Du∥Lp((0,T )×(0,1)×B′
R/2

) + ∥u∥Lp((0,T )×(0,1)×B′
R/2

)

≤ N0T
α/2∥|g|+R−1|u|∥Lp((0,T )×(0,1)×B′

2R)

+N0T
α∥|f |+R−2|u|+R−1|g|∥Lp((0,T )×(0,1)×B′

2R).

By Hölder’s inequality,

R−1∥u∥Lp((0,T )×(0,1)×B′
2R)

≤ NT 1/p−1/2R−1+(d−1)(1/p−1/2)∥u∥L2((0,T )×(0,1)×B′
2R).

Combining the above two inequalities and sending R → ∞, we see that u,Du ∈
Lp(ΠT ) provided that 1/p − 1/2 < 1/(d − 1). In the general case, we take a
sequence of decreasing exponents {pi}mi=0 ⊂ (1, 2) such that p0 = 2, pm = p, and
1/pi+1 − 1/pi < 1/(d− 1) for i = 0, . . . ,m− 1. By the proof above with p = p1, we
have u,Du ∈ Lp1

(ΠT ). With p1 and p2 in place of 2 and p in the proof, we further
deduce u,Du ∈ Lp2

(ΠT ). Repeating this procedure gives u,Du ∈ Lp(ΠT ). Finally,

by using the equation, we have u ∈ Hα,1
p,0 (ΠT ).

Case 3: p ∈ (2,∞). As in Case 2, (6.3) has a solution u ∈ Hα,1
2,0 (ΠT ). Next, we

show that u ∈ Hα,1
p,0 (ΠT ) by using a duality argument. Let q = p/(p − 1) ∈ (1, 2)

and g̃i, f̃ ∈ C∞
0 (ΠT ). By the result proved in Case 2, we know that the equation

−∂αt v(t, x) + ∆v(t, x) = Dig̃i(T − t, x) + f̃(T − t, x)

in ΠT has a unique solution v ∈ Hα,1
q,0 (ΠT ) ∩Hα,1

2,0 (ΠT ) and

∥Dv∥Lq(ΠT ) + ∥v∥Lq(ΠT ) ≤ N∥g̃∥Lq(ΠT ) +N∥f̃∥Lq(ΠT ), (6.4)

where N = N(d, δ, α, q, T ). Let w(t, x) = v(T − t, x). By duality, it is easily seen
that ∫

ΠT

(Diug̃i − uf̃) dxdt =

∫
ΠT

(Diwgi − wf) dxdt.

Therefore, by Hölder’s inequality and (6.4),∣∣∣ ∫
ΠT

(Diug̃i − uf̃) dxdt
∣∣∣ ≤ N∥Dw∥Lq(ΠT )∥g∥Lp(ΠT ) +N∥w∥Lq(ΠT )∥f∥Lp(ΠT )

= N∥Dv∥Lq(ΠT )∥g∥Lp(ΠT ) +N∥v∥Lq(ΠT )∥f∥Lp(ΠT )

≤ N
(
∥g̃∥Lq(ΠT ) + ∥f̃∥Lq(ΠT )

)(
∥g∥Lp(ΠT ) + ∥f∥Lp(ΠT )

)
.

Since g̃i, f̃ ∈ C∞
0 (ΠT ) are arbitrary and C∞

0 (ΠT ) is dense in Lq(ΠT ), we see that

u,Du ∈ Lp(ΠT ). It then follows from the equation that u ∈ Hα,1
p,0 (ΠT ).

For non-divergence form equations, we need to show the existence of a solution
u ∈ Hα,2

p,0 (ΠT ) to the equation

−∂αt u+∆u = f (6.5)

in ΠT , where f ∈ Lp(ΠT ), with either the Dirichlet boundary condition or the
Neumann boundary condition. By the solvability of divergence form equations
obtained above, (6.5) has a unique solution u ∈ Hα,1

p,0 (ΠT ). To show that u ∈
Hα,2

p,0 (ΠT ), we again use the extension argument. Clearly, uηR ∈ Hα,1
p,0 (Rd

T ) satisfies

−∂αt (uηR) + ∆(uηR) = ηRf + 2(DiηR)(Diu) + (∆ηR)u (6.6)
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in Rd
T , where u and f are extended ones as above. Since the right-hand side of (6.6)

is in Lp(Rd
T ), by Theorem 2.5, there is a unique solution ũ ∈ Hα,2

p,0 (Rd
T ) to (6.6). By

the inclusion Hα,2
p,0 (Rd

T ) ⊂ Hα,1
p,0 (Rd

T ) and the uniqueness of Hα,1
p,0 (Rd

T )-solutions, we
have ũ = uηR. Thus, by Theorem 2.5 again, it holds that

∥uηR∥Hα,2
p (Rd

T ) ≤ N∥ηRf + 2(DiηR)(Diu) + (∆ηR)u∥Lp(Rd
T ).

As before, by sending R→ ∞, we reach

∥u∥Hα,2
p (ΠT ) ≤ N∥f∥Lp(ΠT ).

The proposition is proved. □

7. Optimal embeddings for Hα,1
p,0

In this section we present elementary and self-contained proofs of Hölder embed-
dings (Theorem 7.3) and Sobolev embeddings (Theorem 7.5) for fractional parabolic

Sobolev spaces Hα,1
p,0 .

We begin with the following two lemmas.

Lemma 7.1. Let α ∈ (0, 1), T ∈ (0,∞), and u, η ∈ C1 ([0, T ]) with u(0) = η(T ) =
0. Then ∫ T

0

u′(t)η(t) dt = −
∫ T

0

∂tI
1−α
0 u(t)Jα

T η
′(t) dt, (7.1)

where

Jα
T v(t) =

1

Γ(α)

∫ T

t

(s− t)α−1v(s) ds.

If Jα
T η

′(t) ∈ C1 ([0, T ]), we further have∫ T

0

u′(t)η(t) dt =

∫ T

0

I1−α
0 u(t) ∂t (J

α
T η

′(t)) dt. (7.2)

Proof. Since u(0) = 0, by Lemma A.4 in [9] we have

Iα0 D
α
t u(t) = Iα0 ∂

α
t u(t) = u(t).

Hence,∫ T

0

u′(t)η(t) dt = −
∫ T

0

u(t)η′(t) dt = −
∫ T

0

Iα0 D
α
t u(t) η

′(t) dt

= − 1

Γ(α)

∫ T

0

∫ t

0

(t− s)α−1Dα
t u(s) ds η

′(t) dt

= − 1

Γ(α)

∫ T

0

Dα
t u(s)

∫ T

s

(t− s)α−1η′(t) dt ds = −
∫ T

0

∂tI
1−α
0 u(s)Jα

T η
′(s) ds,

which gives (7.1). If Jα
T η

′(t) ∈ C1 ([0, T ]), using integration by parts with

I1−α
0 u(s)|s=0 = Jα

T η
′(s)|s=T = 0,

we arrive at (7.2). □

Lemma 7.2. Let T ∈ (0,∞), α ∈ (0, 1), and p ∈ (1,∞) such that

σ := 1− (d+ 2/α)/p > 0.
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Also let u ∈ C∞
0

(
[0, T ]× Rd

)
satisfy u(0, x) = 0 and∫ T

0

∫
Rd

I1−α
0 uφt dx dt =

∫ T

0

∫
Rd

giDiφdx dt−
∫ T

0

∫
Rd

fφ dx dt (7.3)

for any φ ∈ C∞
0

(
[0, T )× Rd

)
, where gi, f ∈ Lp(Rd

T ). Then, for t1, t2 ∈ [0, T ] with
t1 < t2 and r > 0, we have∣∣∣∣∣

∫
Br(x1)

(u(t2, x)− u(t1, x))ϕ(x) dx

∣∣∣∣∣
≤ N(t2 − t1)

α−1/p
(
∥g∥Lp(Rd

T ) + ∥f∥Lp(Rd
T )

)
∥ϕ∥W 1

p′ (Br(x1)), (7.4)

where ϕ ∈ C∞
0 (Br(x1)), N = N(α, p), and 1/p+ 1/p′ = 1.

Proof. Without loss of generality, we assume that x1 = 0. Let ζ(s) be an infinitely
differentiable function such that ζ(s) ≥ 0, ζ(s) = 0 for s ≥ 0, and∫

R
ζ(s) ds =

∫ 0

−∞
ζ(s) ds = 1.

Set ζε(s) = ε−1ζ(s/ε) and

ηε(t) =

∫ ∞

−∞
1(t1,t2)(s)ζε(t− s) ds.

Note that ηε is an approximation of 1(t1,t2) and ηε(t) = 0 for t ≥ t2. We then write

u(t2, x)− u(t1, x) =

∫ t2

t1

∂tu(t, x) dt =

∫ t2

0

∂tu(t, x)1(t1,t2)(t) dt

= lim
ε→0

∫ t2

0

∂tu(t, x)ηε(t) dt = lim
ε→0

∫ t2

0

I1−α
0 u(t, x)∂t

[
Jα
t2η

′
ε(t)

]
dt,

where the last equality follows from Lemma 7.1 with t2 in place of T along with
the observations that u(0, x) = ηε(t2) = 0 and Jα

t2η
′
ε(t) ∈ C1([0, T ]). Then, for

ϕ ∈ C∞
0 (Br),∫

Br

(u(t2, x)− u(t1, x))ϕ(x) dx = lim
ε→0

∫
Rd

∫ t2

0

∂tu(t, x)ηε(t) dt ϕ(x) dx

= lim
ε→0

∫ t2

0

∫
Rd

I1−α
0 u(t, x)∂t

[
Jα
t2η

′
ε(t)ϕ(x)

]
dx dt

= lim
ε→0

(∫ t2

0

∫
Rd

gi(t, x)J
α
t2η

′
ε(t)Diϕ(x) dx dt−

∫ t2

0

∫
Rd

f(t, x)Jα
t2η

′
ε(t)ϕ(x) dx dt

)
,

where the last equality is due to (7.3), which is satisfied with t2 in place T since
Jα
t2η

′
ε(t)ϕ(x) ∈ C∞

0

(
[0, t2)× Rd

)
and Jα

t2η
′
ε(t)ϕ(x) = 0 for t ≥ t2. This shows that∣∣∣∣∫

Br

(u(t2, x)− u(t1, x))ϕ(x) dx

∣∣∣∣ ≤ lim sup
ε→0

∣∣∣∣∫ t2

0

∫
Rd

f(t, x)Jα
t2η

′
ε(t)ϕ(x) dx dt

∣∣∣∣
+ lim sup

ε→0

∣∣∣∣∫ t2

0

∫
Rd

gi(t, x)J
α
t2η

′
ε(t)Diϕ(x) dx dt

∣∣∣∣ , (7.5)
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where, for each ε > 0,∣∣∣∣∫ t2

0

∫
Rd

gi(t, x)J
α
t2η

′
ε(t)Diϕ(x) dx dt

∣∣∣∣
≤ ∥g∥Lp(Rd

T )∥Dϕ∥Lp′ (Br)

(∫ t2

0

∣∣Jα
t2η

′
ε(t)

∣∣p′

dt

)1/p′

(7.6)

and∣∣∣∣∫ t2

0

∫
Rd

f(t, x)Jα
t2η

′
ε(t)ϕ(x) dx dt

∣∣∣∣
≤ ∥f∥Lp(Rd

T )∥ϕ∥Lp′ (Br)

(∫ t2

0

∣∣Jα
t2η

′
ε(t)

∣∣p′

dt

)1/p′

. (7.7)

We now prove that(∫ t2

0

∣∣Jα
t2η

′
ε(t)

∣∣p′

dt

)1/p′

≤ N(α, p)(t2 − t1)
α−1/p. (7.8)

If this holds, we obtain (7.4) by combining (7.5), (7.6), (7.7), and (7.8). To prove
(7.8), we note that

ηε(t) =

∫ t2

t1

ζε(t− s) ds =

∫ t−t1

t−t2

ζε(s) ds.

This gives

η′ε(t) = ζε(t− t1)− ζε(t− t2)

and

Γ(α)Jα
t2η

′
ε(t) =

∫ t2

t

(s− t)α−1ζε(s− t1) ds−
∫ t2

t

(s− t)α−1ζε(s− t2) ds

=


∫ t1−t

0

(t1 − t− s)α−1ζε(−s) ds−
∫ t2−t

0

(t2 − t− s)α−1ζε(−s) ds, 0 ≤ t ≤ t1,

−
∫ t2−t

0

(t2 − t− s)α−1ζε(−s) ds, t1 < t ≤ t2,

where the last equality is due to the choice of ζ so that ζε(s) = 0 for s ≥ 0. That
is, if we denote

ζ̃ε(s) = ζε(−s),
then

Jα
t2η

′
ε(t) =

{
(Iα0 ζ̃ε)(t1 − t)− (Iα0 ζ̃ε)(t2 − t), 0 ≤ t ≤ t1,

−(Iα0 ζ̃ε)(t2 − t), t1 < t ≤ t2,

and

∥Jα
t2η

′
ε(t)∥

p′

Lp′ (0,t2)
=

∫ t1

0

∣∣∣(Iα0 ζ̃ε)(t1 − t)− (Iα0 ζ̃ε)(t2 − t)
∣∣∣p′

dt

+

∫ t2

t1

∣∣∣(Iα0 ζ̃ε)(t2 − t)
∣∣∣p′

dt := K1 +K2.
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By Lemma A.2 in [9] along with α− 1 + 1/p′ = α− 1/p > 0, we have

K
1/p′

2 = ∥Iα0 ζ̃ε∥Lp′ (0,t2−t1) ≤ N(t2 − t1)
α−1+1/p′

∥ζ̃ε∥L1(0,t2−t1)

≤ N(t2 − t1)
α−1/p, (7.9)

where N = N(α, p). To estimate K1, we write

Γ(α)
[
(Iα0 ζ̃ε)(t1 − t)− (Iα0 ζ̃ε)(t2 − t)

]
=

∫ t1−t

0

(t1 − t− s)α−1ζ̃ε(s) ds−
∫ t2−t

0

(t2 − t− s)α−1ζ̃ε(s) ds

=

∫ t1−t

0

(
(t1 − t− s)α−1 − (t2 − t− s)α−1

)
ζ̃ε(s) ds

−
∫ t2−t

t1−t

(t2 − t− s)α−1ζ̃ε(s) ds.

Thus,

K
1/p′

1 ≤ N

∥∥∥∥∫ t1−t

0

(
(t1 − t− s)α−1 − (t2 − t− s)α−1

)
ζ̃ε(s) ds

∥∥∥∥
Lp′ (0,t1)

+N

∥∥∥∥∫ t2−t

t1−t

(t2 − t− s)α−1ζ̃ε(s) ds

∥∥∥∥
Lp′ (0,t1)

≤ N

∫ t1

0

(∫ t1−s

0

∣∣(t1 − t− s)α−1 − (t2 − t− s)α−1
∣∣p′

dt

)1/p′

ζ̃ε(s) ds

+N

∫ t2

0

(∫ t2

t1

∣∣(t2 − t)α−1
∣∣p′

dt

)1/p′

ζ̃ε(s) ds,

where we used Minkowski’s inequality for the second inequality. Since α > 1−1/p′,
we readily see that(∫ t2

t1

(t2 − t)(α−1)p′
dt

)1/p′

= N(α, p)(t2 − t1)
α−1/p. (7.10)

From the proof of Lemma A.14 in [9] we also see that(∫ t1−s

0

∣∣(t1 − t− s)α−1 − (t2 − t− s)α−1
∣∣p′

dt

)1/p′

≤ N(α, p)(t2 − t1)
α−1/p.

From this and (7.10) together with the fact that the L1-norm of ζ̃ε on R equals 1,
we obtain that

K
1/p′

1 ≤ N(α, p)(t2 − t1)
α−1/p,

which together with (7.9) proves (7.8). The lemma is proved. □

We complete the proof of the Hölder continuity of functions in Hα,1
p,0 for p >

d+ 2/α.

Theorem 7.3 (Hölder continuity). Let T ∈ (0,∞), α ∈ (0, 1), and p ∈ (1,∞) such
that

σ := 1− (d+ 2/α)/p > 0.
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Then, for u ∈ Hα,1
p,0 (Rd

T ), we have

[u]Cσα/2,σ(Rd
T ) ≤ N(d, α, p)∥u∥Hα,1

p (Rd
T ).

Proof. By mollifications, we may assume that u ∈ C∞
0

(
[0, T ]× Rd

)
such that

u(0, x) = 0 and∫ T

0

∫
Rd

I1−α
0 uφt dx dt =

∫ T

0

∫
Rd

giDiφdx dt−
∫ T

0

∫
Rd

fφ dx dt

for any φ ∈ C∞
0

(
[0, T )× Rd

)
, where gi, f ∈ Lp(Rd

T ). Define

K = sup

{
|u(t, x)− u(s, y)|

|t− s|σα
2 + |x− y|σ

: (t, x), (s, y) ∈ Rd
T , 0 < |t1 − t2|

α
2 + |x− y| ≤ 1

}
.

To prove the estimate, we take (t1, x), (t2, y) ∈ Rd
T and set

ρ = ε
(
|t1 − t2|α/2 + |x− y|

)
< 1,

where ε ∈ (0, 1) is to be specified below. We write

u(t1, x)− u(t2, y) = (u(t1, x)− u(t2, x)) + (u(t2, x)− u(t2, y)) := J1 + J2.

To estimate J1, for z ∈ Bρ(x), we have

J1 = (u(t1, x)− u(t1, z)) + (u(t1, z)− u(t2, z)) + (u(t2, z)− u(t2, x))

≤ 2Kρσ + (u(t1, z)− u(t2, z)) .
(7.11)

Take ϕ(z) ∈ C∞
0 (Bρ(x)) such that ϕ(z) ≥ 0,∫

Bρ(x)

ϕ(z) dz = 1, ∥ϕ∥Lp′ (Bρ(x)) = Nρ−d/p, ∥Dϕ∥Lp′ (Bρ(x)) = Nρ−d/p−1,

(7.12)
where N = N(d, p). Then by multiplying both sides of the inequality (7.11) by ϕ
and integrating over Bρ(x), we have

J1 ≤ 2Kρσ +

∫
Bρ(x)

(u(t1, z)− u(t2, z))ϕ(z) dz.

Using this and a corresponding inequality for −J1, it follows from Lemma 7.2,
(7.12), and the choice of ρ that

|J1| ≤ 2Kρσ +N |t2 − t1|α−1/pρ−d/p−1
(
∥g∥Lp(Rd

T ) + ∥f∥Lp(Rd
T )

)
≤ 2Kρσ +Nε−2+2/(αp)ρσ

(
∥g∥Lp(Rd

T ) + ∥f∥Lp(Rd
T )

)
,

where N = N(d, α, p).
To estimate |J2|, we have that, for s ∈ (t2 − ρ1/α, t2 + ρ1/α) ∩ (0, T ),

|J2| ≤ |u(t2, x)− u(s, x)|+ |u(s, x)− u(s, y)|+ |u(s, y)− u(t2, y)|

≤ 2Kρσ +N(d, p)|x− y|1−d/p∥u(s, ·)∥W 1
p (Rd),

where we used the usual Sobolev embedding for functions in x ∈ Rd and the
condition that 1 − d/p > 0. Then by taking the average of J2 over the interval
(t2 − ρ2/α, t2 + ρ2/α) ∩ (0, T ) with respect to s along with Hölder’s inequality, we
get

|J2| ≤ 2Kρσ +Nε−1+d/pρσ∥|u|+ |Dxu|∥Lp(Rd
T ).



26 H. DONG AND D. KIM

Collecting the estimates for J1 and J2 above, we see that

|u(t1, x)− u(t2, y)| ≤ 4Kρσ +N
(
ε−2+2/(αp) + ε−1+d/p

)
ρσ∥u∥Hα,1

p (Rd
T ),

which implies that

K ≤ 4εσK +N(d, α, p)(ε−1−d/p + ε−2/(αp))∥u∥Hα,1
p (Rd

T ).

By choosing ε > 0 small enough so that 4εσ < 1, we obtain

K ≤ N(d, α, p)∥u∥Hα,1
p (Rd

T ). (7.13)

To finish the proof, it suffices to show that

∥u∥L∞(Rd
T ) ≤ N(d, α, p)∥u∥Hα,1

p (Rd
T ). (7.14)

Indeed, for any (t, x), (s, y) ∈ Rd
T , by the triangle inequality we have

|u(t, x)| ≤ |u(t, x)− u(s, y)|+ |u(s, y)|.

Taking the averages of both sides of the above inequality with respect to (s, y) over
the set

{(s, y) ∈ Rd
T : |t− s|α/2 + |x− y| ≤ 1}

and using (7.13), we get (7.14). The lemma is proved. □

Corollary 7.4. Let T ∈ (0,∞), 0 < r < R < ∞, α ∈ (0, 1), and p ∈ (1,∞) such
that

σ := 1− (d+ 2/α)/p > 0.

Then, for u ∈ Hα,1
p,0 ((0, T )×BR), we have

[u]Cσα/2,σ((0,T )×Br) ≤ N(d, α, p, r, R)∥u∥Hα,1
p ((0,T )×BR). (7.15)

Proof. Take an infinitely differentiable function ψ(x) defined on Rd such that ψ(x) =

1 on Br and ψ(x) = 0 on Rd \ BR, and consider ψu, which belongs to Hα,1
p,0 (Rd

T ).
In particular,

∂αt (ψu) = Di(ψgi) + ψf − giDiψ

in Rd if

∂αt u = Digi + f

in (0, T )×BR. Then by Theorem 7.3, we have

∥u∥Cσα/2,σ((0,T )×Br) ≤ N∥ψu∥Cσα/2,σ(Rd
T ) ≤ N∥ψu∥Hα,1

p (Rd
T ),

where N = N(d, α, p). We then obtain the desired estimate upon noting that the
last term in the above inequality is bounded by the right-hand side of (7.15), where
the constant depends on r and R as well. □

We now prove Theorem 7.5, which is about Sobolev embeddings.

Theorem 7.5 (Sobolev embedding). Let T ∈ (0,∞), α ∈ (0, 1), and p, p0 ∈ (1,∞)
such that p0 > p and

1− d+ 2/α

p
≥ −d+ 2/α

p0
. (7.16)

Then, for u ∈ Hα,1
p,0 (Rd

T ), we have

∥u∥Lp0
(Rd

T ) ≤ N∥u∥Hα,1
p (Rd

T ), (7.17)
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where N = N(d, α, p, p0). More precisely,

∥u∥Lp0
(Rd

T ) ≤ Nε
d+2/α

p0
− d+2/α

p ∥u∥Lp(Rd
T ) +Nε2+

d+2/α
p0

− d+2/α
p ∥f∥Lp(Rd

T )

+Nε1+
d+2/α

p0
− d+2/α

p

(
∥Du∥Lp(Rd

T ) + ∥g∥Lp(Rd
T )

) (7.18)

for any ε > 0, where N = N(d, α, p, p0) provided that∫ T

0

∫
Rd

I1−α
0 uφt dx ds =

∫ T

0

∫
Rd

giDiφdx ds−
∫ T

0

∫
Rd

fφ dx ds (7.19)

for any φ ∈ C∞
0

(
[0, T )× Rd

)
, where g = (g1, . . . , gd), f ∈ Lp(Rd

T ). In particular, if
the equality holds in (7.16), we have

∥u∥Lp0
(Rd

T ) ≤ N∥u∥1/2
Lp(Rd

T )
∥f∥1/2

Lp(Rd
T )

+N
(
∥Du∥Lp(Rd

T ) + ∥g∥Lp(Rd
T )

)
. (7.20)

Proof. It suffices to prove (7.18) for u ∈ C∞ (
[0, T ]× Rd

)
such that u(0, x) = 0

and u(t, x) vanishes for large |x|. Throughout the proof, u(t, x) is extended to be
zero for t ≤ 0. Note that the equality (7.19) holds with t ∈ [0, T ] in place of T if
φ ∈ C∞

0

(
[0, t)× Rd

)
.

Set η(t) to be an infinitely differentiable function defined on R such that η(t) ≥ 0,
η(t) = 0 for t /∈ (1/2, 1), and ∫

R
η(t) dt = 1.

Also set ψ(x) to be an infinitely differentiable function defined on Rd such that
ψ(x) ≥ 0, ψ(x) = 0 for x ∈ Rd \B1, and∫

Rd

ψ(x) dx = 1.

Then, for (t, x) ∈ Rd
T , we define

u(ε)(t, x) =

∫ T

0

∫
Rd

u(s, y)ηε2/α(t− s)ψε(x− y) dy ds

=

∫ t

−∞

∫
Rd

u(s, y)ηε2/α(t− s)ψε(x− y) dy ds,

where

ηε2/α(t) = ε−2/αη(t/ε2/α), ψε(x) = ε−dψ(x/ε),

and in the second equality we used the facts that u(s, y) = 0 for s < 0 and ηε2/α(t−
s) = 0 for s > t. Set a ∈ [1,∞] so that

1

p
+

1

a
=

1

p0
+ 1. (7.21)

Indeed, we see that a ∈ [1, p0] because 1 ≤ p ≤ p0. By Young’s convolution
inequality it follows that

∥u(ε)∥Lp0
(Rd

T ) ≤ Nε
d+2/α

p0
− d+2/α

p ∥u∥Lp(Rd
T ). (7.22)

For (t, x) ∈ Rd
T , we now consider

u(t, x)− u(ε)(t, x) =

∫ t

−∞

∫
Rd

(u(t, x)− u(s, y)) ηε2/α(t− s)ψε(x− y) dy ds.
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Let

τ(λ) =
(
(1− λ2/α)t+ λ2/αs, (1− λ)x+ λy

)
, λ ∈ [0, 1].

We then write

u(t, x)− u(s, y) = u (τ(0))− u (τ(1))

=

∫ 1

0

2

α
λ

2
α−1(t− s)ut (τ(λ)) dλ+

∫ 1

0

∇u (τ(λ)) · (x− y) dλ.

Hence,

u(t, x)− u(ε)(t, x)

=
2

α

∫ t

−∞

∫
Rd

∫ 1

0

λ
2
α−1(t− s)ut (τ(λ)) ηε2/α(t− s)ψε(x− y) dλ dy ds

+

∫ t

−∞

∫
Rd

∫ 1

0

(x− y) · ∇u (τ(λ)) ηε2/α(t− s)ψε(x− y) dλ dy ds

=: K1 +K2.

(7.23)

To estimate K1, we denote

ζ(t) := tη(t).

By the change of variables
(
(1− λ2/α)t+ λ2/αs, (1− λ)x+ λy

)
→ (s, y),

K1 =
2

α
ε−d

∫ 1

0

λ−d−1

∫ t

−∞

∫
Rd

ut(s, y) ζ

(
t− s

ε2/αλ2/α

)
ψ

(
x− y

ελ

)
dy ds dλ

=
2

α

∫ ε

0

λ−d−1

∫ t

−∞

∫
Rd

ut(s, y) ζ

(
t− s

λ2/α

)
ψ

(
x− y

λ

)
dy ds dλ,

where the second equality is due to the change of variable ελ → λ. For each
t ∈ [0, T ], by Lemma 7.1 with t in place of T and the fact that, as a function of s,
ζ
(

t−s
λ2/α

)
= 0 at s = t and u(s, y) = 0 for s ≤ 0,∫ t

−∞
ut(s, y) ζ

(
t− s

λ2/α

)
ds =

∫ t

0

ut(s, y) ζ

(
t− s

λ2/α

)
ds

=

∫ t

0

I1−α
0 u(s, y) ∂s

(
Jα
t ζ̃

′(s)
)
ds,

(7.24)

where

ζ̃(s) = ζ

(
t− s

λ2/α

)
, Jα

t ζ̃
′(s) ∈ C1 ([0, t]) .

By setting

H(t) := Iα0 ζ
′(t) =

1

Γ(α)

∫ t

0

(t− r)α−1ζ ′(r) dr,

we see that

Jα
t ζ̃

′(s) = −λ−2/α 1

Γ(α)

∫ t

s

(r − s)α−1ζ ′
(
t− r

λ2/α

)
dr

= −λ−2/α 1

Γ(α)

∫ t−s

0

(t− s− r)α−1ζ ′
( r

λ2/α

)
dr

= −λ2−2/αH

(
t− s

λ2/α

)
,

(7.25)
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where H satisfies

H(t) ≤ N(α) for t ∈ (0, 2), H(t) ≤ N(α)tα−2 for t ≥ 2. (7.26)

Indeed, the first inequality in (7.26) follows from Lemma A.2 in [9] so that

∥H∥L∞(0,2) = ∥Iα0 ζ ′∥L∞(0,2) ≤ N∥ζ ′∥Lµ(0,2),

where µ ∈ (1,∞) with α > 1/µ. The second inequality in (7.26) follows from

Γ(α)H(t) =

∫ 1

0

(t− r)α−1ζ ′(r) dr = (α− 1)

∫ 1

0

(t− r)α−2ζ(r) dr ≤ Ntα−2

provided that t ≥ 2, where we used integration by parts along with the fact that
ζ(r) = 0 for r ≥ 1 or r ≤ 0. Considering (α− 2)a+1 < 0, the inequalities in (7.26)
imply that

∥H∥La(0,∞) ≤ N(α, p, p0). (7.27)

From (7.24) and (7.19) with t in place of T , it follows that∫ t

−∞

∫
Rd

ut(s, y) ζ

(
t− s

λ2/α

)
ψ

(
x− y

λ

)
dy ds

=

∫ t

0

∫
Rd

I1−α
0 u(s, y) ∂s

[
Jα
t ζ̃

′(s)ψ

(
x− y

λ

)]
dy ds

= −λ−1

∫ t

0

∫
Rd

gi(s, y)J
α
t ζ̃

′(s) (Diψ)

(
x− y

λ

)
dy ds

−
∫ t

0

∫
Rd

f(s, y)Jα
t ζ̃

′(s)ψ

(
x− y

λ

)
dy ds.

Thus,

K1 =
2

α

∫ ε

0

λ−d− 2
α

∫ t

0

∫
Rd

gi(s, y)H

(
t− s

λ2/α

)
(Diψ)

(
x− y

λ

)
dy ds dλ

+
2

α

∫ ε

0

λ−d+1− 2
α

∫ t

0

∫
Rd

f(s, y)H

(
t− s

λ2/α

)
ψ

(
x− y

λ

)
dy ds dλ

:= K1,1(t, x) +K1,2(t, x).

To estimate K1,1, upon recalling (7.21) with Young’s convolution inequality with
respect to x ∈ Rd and Minkowski’s inequality, we have

∥K1,1(t, ·)∥Lp0
(Rd) ≤ N

∫ ε

0

λ−d− 2
α+ d

a

∫ t

0

∣∣∣∣H (
t− s

λ
2
α

)∣∣∣∣ ∥g(s, ·)∥Lp(Rd) ds dλ, (7.28)

where we used (7.25) and N = N(d, α, p, p0). We now consider two cases.
Case 1 for K1,1: 1− (d+ 2/α)/p > −(d+ 2/α)/p0. In this case by taking the

Lp0
-norms of both sides of the inequality in (7.28) along with Young’s convolution

inequality with respect to t ∈ (0, T ), we have

∥K1,1∥Lp0
(Rd

T ) =
∥∥∥∥K1,1(t, ·)∥Lp0

(Rd)

∥∥∥
Lp0

(0,T )

≤ N∥g∥Lp(Rd
T )

∫ ε

0

λ−d−2/α+d/a
∥∥∥H ( ·

λ2/α

)∥∥∥
La(0,∞)

dλ,

where by (7.27) ∥∥∥H ( ·
λ2/α

)∥∥∥
La(0,∞)

≤ N(α, p, p0)λ
2/(αa).
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Thus, because

−d− 2/α+ d/a+ 2/(αa) = d/p0 − d/p+ (1/p0 − 1/p)2/α > −1,

we arrive at

∥K1,1∥Lp0
(Rd

T ) ≤ N∥g∥Lp(Rd
T )

∫ ε

0

λ−d− 2
α+ d

a+ 2
αa dλ

= Nε
1+ d

p0
− d

p+
2
α

(
1
p0

− 1
p

)
∥g∥Lp(Rd

T ),

(7.29)

where N = N(d, α, p, p0).
Case 2 for K1,1: 1− (d+2/α)/p = −(d+2/α)/p0. In this case, we change the

order of the integrations in (7.28) and use the following estimate from (7.26)

∣∣∣∣H (
t− s

λ
2
α

)∣∣∣∣ ≤

N

(
t− s

λ
2
α

)α−2

for 0 < λ <

(
t− s

2

)α
2

,

N for λ ≥
(
t− s

2

)α
2

.

Thus, the integral with respect to λ in (7.28) is estimated as∫ ε

0

λ−d− 2
α+ d

a

∣∣∣∣H (
t− s

λ
2
α

)∣∣∣∣ dλ ≤ N

∫ ( t−s
2 )

α
2

0

λ−d− 2
α+ d

a

(
t− s

λ
2
α

)α−2

dλ

+N

∫ ∞

( t−s
2 )

α
2

λ−d− 2
α+ d

a dλ = N(t− s)−1+ 1
p−

1
p0 ,

where the calculation relies on the equality 1 − (d + 2/α)/p = −(d + 2/α)/p0,
α ∈ (0, 1), and 1/p > 1/p0, so that

− d− 2/α+ d/a− (α− 2)2/α = 2/α+ d/p0 − d/p− 2

= 2/α+
2

α
(1/p− 1/p0)− 3 > −1

and

−d− 2/α+ d/a = −2/α+ d/p0 − d/p < −1.

Hence,

∥K1,1(t, ·)∥Lp0
(Rd) ≤ N

∫ t

0

(t− s)−1+1/p−1/p0∥g(s, ·)∥Lp(Rd) ds.

Since 1/p− 1/p0 ∈ (0, 1), the Hardy-Littlewood-Sobolev theorem of fractional inte-
gration (see, for instance, [20, p.119, Theorem 1]) applied to the above inequality
gives that

∥K1,1∥Lp0
(Rd

T ) =
∥∥∥∥K1,1(t, ·)∥Lp0 (Rd)

∥∥∥
Lp0

(0,T )

≤ N

∥∥∥∥∫ ∞

−∞
|t− s|−1+ 1

p−
1
p0 ∥g(s, ·)∥Lp(Rd)10<s<T ds

∥∥∥∥
Lp0 (R)

≤ N∥g∥Lp(Rd
T ),

(7.30)

where N = N(d, α, p, p0).
To estimate K1,2, for both cases

1− (d+ 2/α)/p > −(d+ 2/α)/p0 and 1− (d+ 2/α)/p = −(d+ 2/α)/p0,
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similarly as in Case 1 for K1,1, we have

∥K1,2∥Lp0 (R
d
T ) =

∥∥∥∥K1,2(t, ·)∥Lp0
(Rd)

∥∥∥
Lp0

(0,T )

≤ N

∫ ε

0

λ−d+1− 2
α+ d

a

∥∥∥∥H (
·
λ

2
α

)∥∥∥∥
La(0,∞)

∥f∥Lp(Rd
T ) dλ

≤ N∥f∥Lp(Rd
T )

∫ ε

0

λ
1+ d

p0
− d

p+
2
α

(
1
p0

− 1
p

)
dλ

= Nε
2+ d

p0
− d

p+
2
α

(
1
p0

− 1
p

)
∥f∥Lp(Rd

T ),

(7.31)

where 1 + d/p0 − d/p+ (1/p0 − 1/p)2/α ≥ 0 and N = N(d, α, p, p0).
The estimate of K2 is almost the same as K1,1 with ∇u and η in place of g and

|H|, respectively. If 1− (d+ 2/α)/p > −(d+ 2/α)/p0, by following the calculation
in Case 1 for K1,1, we have

∥K2∥Lp0 (R
d
T ) ≤ Nε1+d/p0−d/p+(1/p0−1/p)2/α∥Du∥Lp(Rd

T ), (7.32)

where N = N(d, α, p, p0). If 1 − (d + 2/α)/p = −(d + 2/α)/p0, we follow the
calculation in Case 2 for K1,1 to get

∥K2∥Lp0 (R
d
T ) ≤ N∥Du∥Lp(Rd

T ), (7.33)

where N = N(d, α, p, p0).
From the estimates (7.32), (7.33) for K2, and the estimates (7.29), (7.30), (7.31)

for K1,1 and K1,2 along with (7.22) and (7.23), we obtain the inequality (7.18),
which implies (7.17) by the choice of, for instance, ε = 1. In particular, if 1 + (d+
2/α)/p0 = (d+ 2/α)/p, the inequality (7.18) becomes

∥u∥Lp0 (R
d
T ) ≤ Nε−1∥u∥Lp(Rd

T ) +Nε∥f∥Lp(Rd
T ) +N

(
∥Du∥Lp(Rd

T ) + ∥g∥Lp(Rd
T )

)
.

Minimizing the right-hand side with respect to ε > 0, we arrive at (7.20). The
theorem is proved. □

Corollary 7.6. Let α ∈ (0, 1), T ∈ (0,∞), 0 < r < R < ∞, and p, p0 ∈ (1,∞)

satisfy p0 > p and (7.16). For u ∈ Hα,1
p,0 ((0, T )×BR), we have

∥u∥Lp0
((0,T )×Br) ≤ N∥u∥Hα,1

p ((0,T )×BR),

where N = N(d, α, p, p0, r, R).

Proof. The proof is the same as that of Corollary 7.4 with Cσα/2,σ replaced by
Lp0

. □
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