TIME FRACTIONAL PARABOLIC EQUATIONS WITH
MEASURABLE COEFFICIENTS AND EMBEDDINGS FOR
FRACTIONAL PARABOLIC SOBOLEV SPACES
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ABSTRACT. We consider time fractional parabolic equations in divergence and
non-divergence form when the leading coefficients a®/ are measurable functions
of (t,z1) except for all which is a measurable function of either ¢ or z1. We
obtain the solvability in Sobolev spaces of the equations in the whole space,
on a half space, and on a partially bounded domain. The proofs use a level set
argument, a scaling argument, and embeddings in fractional parabolic Sobolev
spaces for which we give a direct and elementary proof.

1. INTRODUCTION

We study time fractional parabolic equations of the form

—9pu+ Di(a” Dju) = D;g; + f, (1.1)
—0%u+a“Diju = f, (1.2)
where 9w is the Caputo fractional time derivative of order « € (0, 1):

- ﬁ%/o (t =)~ [u(s,2) — u(0,2)] ds.

See Section 2 for a precise definition of 0f'u. We prove that, for given f,g; €
L,((0,T)xR%), 1 < p < oo, d > 1, there exist unique solutions in parabolic Sobolev
spaces ’H;’OI and ng’g (see Section 2 for the definitions of ’H;’Ol and H;’g ) to the
equations (1.1) and (1.2) with the zero initial condition. The main contribution of
this paper is that the coefficients a*/ = a% (¢, x;), as functions of (t,z;) € R x R, re-
quire no regularity assumptions except the uniform ellipticity condition. Equations
with coefficients measurable in one direction typically arise in homogenization of
layered materials. See, for instance, [2].

In [9] we proved the unique solvability of the non-divergence type equation (1.2)
in parabolic Sobolev spaces Hg”g when a¥(t,z) are merely measurable in ¢ and

ofu(t, x)

have locally small mean oscillations in « € R%. For the divergence type equation
(1.1), we obtained in [10] the corresponding solvability results when the coefficients
a¥(t,z1,2") are merely measurable in r; € R and have locally small mean oscil-
lations in (¢,2'), ' € R4"1. In this paper, we deal with both divergence form
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equations (DE) and non-divergence form equations (NDE) when the coefficients
are merely measurable both in ¢ and one spatial variable, say, z; € R, except a'l,
which needs to be a function of either ¢ or 1, that is, a'* = a'(t) or a'! = a''(z1).
As such, the class of leading coefficients in this paper is strictly larger than those
in [9, 10] as long as the coefficients a/ are independent of 2/ € R4~!. In fact,
one can also consider coefficients a% (¢, x1,2’) that are measurable in (¢, 1), ex-
cept a'', and have an appropriate regularity assumption as functions of 2/, such as
the small mean oscillation condition, so that the coefficients in [9, 10] can be cov-
ered as proper subclasses. Such coefficients for time fractional parabolic equations
will be discussed in a forthcoming paper in a much general weighted parabolic
Sobolev space setting. As an application of the main results, we also prove the
solvability of the equations (1.1) and (1.2) on a half space (0,7) x R%, where
RY = {(z1,2') € RY : z; > 0}, and on a spatially partially bounded domain
(0,7) x (0, R) x R¥Y = {(t,z1,2") : t € (0,T),z1 € (0,R),z’ € R}, In par-
ticular, the unique solvability results for the equations on the spatially partially
bounded domain will be used to build the solvability theory for equations with
variable coefficients in (¢,z) € R x R? under appropriate regularity assumptions as
functions of the remaining variables 2’ € R%~! especially when the equations are
studied in the frame work of weighted parabolic Sobolev spaces.

Among the advantages of having merely measurable coefficients, particularly
noteworthy is that the solvability of equations with coefficients measurable in one
spatial variable in the whole Euclidean space gives without much effort (by only
using a simple extension argument) the corresponding result for equations on a half
space, and further for those on a bounded domain if the boundary is sufficiently
smooth. See Theorem 6.1 and Proposition 6.2 in this paper. Because of mathe-
matical interests and various potential applications including the boundary value
problems mentioned above, classes of merely measurable coefficients have been ac-
tively considered for elliptic equations and the usual parabolic equations, that is,
the equations as in (1.1) and (1.2) with du replaced with the usual time derivative
term wu;. For parabolic equations with u., in [15, 16] Krylov considered both DE and
NDE with the coefficients a* (¢, z) having no regularity assumptions in ¢ and locally
small mean oscillations in 2 € RY. Coefficients a% (¢, 21, 2') merely measurable in
x1 € R are considered in [13, 5] for parabolic NDE. As to parabolic DE, see, for
instance, [8, 1]. For more information about elliptic and parabolic equations with
measurable coefficients, see the review paper [7] and references therein. In view of
these results, it is important to examine to what extent one can remove regularity
assumptions on the coefficients for time fractional parabolic equations as in (1.1)
and (1.2). Thus, what we present in this paper is an affirmative answer that the
coefficients a/, as functions of (¢,71) € R?, for time fractional parabolic equations
can be as general as those for the usual parabolic equations.

Regarding our restriction that a!! needs to be either a'l(¢) or a'l(xy), Krylov
showed in [17] that it is not possible to obtain a unique solvability result for p €
(1,3/2) or p € (3,00) if all of the coefficients a*/, i, = 1,...,d, are functions of
(t,z1) € R x R with no regularity assumptions even when d = 1. This indicates
that the class of coefficients in this paper may be optimal.

Parabolic equations with time fraction derivatives have many important appli-
cations in probability and mechanics. For instance, such equations can be used to
model anomalous diffusions. See [14] and references therein. In particular, there
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has been study of time fractional parabolic equations in Sobolev spaces in the pa-
pers [21, 22, 14, 12, 9, 10, 11]. In [21], equations as in (1.2) and Volterra type
equations are considered in mixed-norm Lebesgue spaces with time independent
sectorial operators. Equations as in (1.1) with more general time derivatives are
studied in [22] in the Hilbert space setting. See also [18, 3] for earlier work. The
authors of [14] studied equations as in (1.2) in mixed L, spaces when a"(t,z) are
uniformly continuous in x € R? and piecewise continuous in ¢ € R. These results
are extended in [12] for the time fractional heat equation in weighted mixed L,
spaces. Note that in [14, 12] the order « of the Caupto fractional derivative be-
longs not only to (0, 1), but also to the hyperbolic regime (1,2). As mentioned
earlier, when o € (0,1), NDE and DE with coefficients measurable in ¢ or z; are
studied in [9, 10], respectively, in L, spaces and, in [11] the solvability results are
obtained for NDE in mixed Sobolev spaces with Muckenhoupt weights. Thus, this
paper can be considered as a sequel to the papers [9, 10, 11] pursuing the unique
solvability of NDE and DE in Sobolev spaces with or without weights when the
order « of the Caupto fractional derivative is in the parabolic regime (0, 1).

To prove the main results of this paper, we use the level set method utilized in
[9, 10]. However, since the coefficients a™(t,z1) are merely measurable, we only
obtain estimates for D,u, where D,» = D, for j = 2,...,d when dealing with
DE (1.1). To obtain estimates for the full gradient, we use a scaling argument (see
Lemma 3.4) so that the estimates for the full gradient D,u can be obtained from
those for D,u along with the right-hand side of the equation. Once we resolve DE,
we derive desired estimates for NDE from those for DE upon the observation that
the spatial derivatives of solutions to NDE can be regarded as solutions to DE. In
particular, following the argument in [6] we turn NDE into those in divergence form
with non-symmetric a”/. We here remark that the coefficients a* in this paper are
not necessarily symmetric. In the case a'! = a'l(x;), we also use a change of x;
variable. Combining all these different ingredients in a proof is quite delicate. To
obtain the unique solvability results of equations on a half space and on a spatially
partially bounded domain, we make use of (odd, even, and periodic) extension
arguments, for which it is essential that the coefficients a” have no regularity
assumptions so that they can be discontinuous when they are periodically extended.

In this paper7 we also present detailed proofs of embeddings for parabolic Sobolev
spaces ’Hp 5, which serve as solutions spaces to time fractional parabolic DE. See
Theorem 7.3 for Holder embeddings and Theorem 7.5 for Sobolev embeddings. It is
clear that such embeddings are necessary when studying PDEs in the framework of
Sobolev spaces. We use the embeddings in the proof of Proposition 6.2 in this paper.
Embeddings for Ha 2 and Ha’] are proved in [9, 10] with somewhat less optimal
exponents. On the other hand one can also find embeddings for fractional Sobolev
spaces in [23, 24], which are based on the so called mized derivative theorem (see
[19] and [4, Proposition 3.2]) with vector-valued Triebel-Lizorkin type spaces and
their interpolation spaces. We believe that elementary and self-contained proofs
of the embeddings are of interest to a wider audience, and the last section of this
paper is devoted to provide such arguments. In particular, our proof for Sobolev
embedding uses mollifications of functions, which turn out to be very handy when
dealing with embeddings or boundary traces of functions.

The remainder of the paper is organized as follows. In the next section, we
introduce some notation and state the main results of the paper. In Section 3, we
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deal with equations with coefficients a® either being functions of only t or only z;.
We also show that the estimates for the full gradient can be obtained from those of
D,u and the right-hand side as long as a'! = a'l(t) or a'! = a'!(z;). In Section
4, we use the level set method to obtain estimates of D, u for DE. We complete
the proofs of our main results in Section 5. Equations on a half space and on a
spatially partially bounded domain are discussed in Section 6. In the last section,
as noted above, we present self-contained proofs of embeddings for ”H,Z"’é .

2. NOTATION AND MAIN RESULTS

For @ ¢ R? and T > 0, we denote Q7 = (0,7) x . In particular, we have
]R% = (0,T) x RY. We write Du or D u to denote Dy;u, j=1,2,...,d, whereas by
Dyru, we mean Dy u, j =2,...,d. For a € (0, 1], we denote the parabolic cylinders
by

QT1,T2 (t7 l‘) = (t - T%/a7 t) X B, (Z‘), Qr(ta JZ) = Qr,r(t7 J))
We often write B, and @, for B,.(0) and Q,(0,0). We use the notation (u)p to
denote the average of u over D, where D is a subset of R¥T1. For (tg,z) € R x R?
and a function f defined on (—o0,T) x R% with T € (—o0, 00|, we set

Mf(to, z0) = sup ][ |f(3ay)|1(—oo,T)de dyds
Qr(t,.’L')B(to,.'I)o) Qr(taw)

and
SMf(tozo)=  sup ][ |F(5 )L (oo e dy ds.
Qry,ro (,2)3(t0,20) v Qry ry (t,x

For a € (0,1) and S € R, we denote the a-th integral

I30(t) = % / (t— )21 p(s) ds

a) Js

for ¢ € L1(S,00), where
Ia) = / t*te tat.
0

In this paper we often write I instead of I§ for the a-th integral with the origin
0. For a sufficiently smooth function ¢(t), we set

DEE(t) = GI560) = s gy L (=9 el ds

and
t

Oelt) = ey [ =9 ) ds

S

e [ =9 ) — ) ds.

Note that if p(S) = 0, then
Dip = 0I5~ "¢) = 0.

Since there is no information about the origin S in the notation Df* and 0f, we
sometimes write atlé_o‘ in place of D¢ (or 05 whenever appropriate) to indicate
the origin.
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For1<p<oo,a€(0,1),and k € {1,2,...}, we set
HS* ((S,T) x Q) = {u € L, : 15 “u, DPu€ L,, 0 < |8| < k}
with the norm

Hu”fﬁlg‘k((s,T)xQ) = ||8t[éfa“||Lp((S,T)xﬂ) + Z ||D§U||Lp((s,T)xQ),
0<|B|<k

where by 9,15~ *u we mean that there exists g € L, ((S,T) x Q) such that

/ / (t,x)(t,x) dedt = / /Il “u(t, x)0pp(t, x) dz dt (2.1)

for all ¢ € C§° ((S,T) x Q). Recall that 9,15 *u can be denoted by Dgu. Next,
HF ((S,T) x Q) is defined by

HO* ((S,T) x Q)
= {u € ]ﬁlgk ((S,T) x Q) : (2.1) is satisfied for all ¢ € C5° ([S,T) x Q)}

with the same norm as for ﬁg’k ((S,T) x Q). Note that test functions for the space
HS-* ((S,T) x Q) are not necessarily zero at ¢ = S. We then define H;’g((S, T)xQ)
to be the set of functions in HY*((S,T) x Q) each of which is approximated by
a sequence {u,(t,z)} C C°°([S,T] x ) such that w, vanishes for large |x| and
un (S, z) = 0.

By w € H,' ((S,T) x Q) we mean that there exist f,g; € L, ((S,T) x Q), i =

.,d, such that
w=D;g;+ f

n (S,7T) x Q in the distribution sense and

||wHH;1((S,T)xQ)

d
= inf {Z lgillz,«s,myxe) + 1z, (smxq) : w = Digi + f} < o0

i=1
We also write
w=divg+ f,

where g = (g1, ..., ).
For u € Ly ((S,T) x Q), we say Du € H;' ((S,T) x Q) if there exist f,g; €
L, ((S,T)xQ),i=1,...,d, such that, for any ¢ € C§° ((5,T) x Q),

T T T
/ /Ié_auﬁtwda:dt:/ /giDigodxdt—/ /fgodxdt. (2.2)
S Q S Q S Q

Let 7—21‘}71 ((S,T) x Q) be the collection of functions u € L, ((S,T) x Q) such that
Dyu € L, ((S,T) x Q) and D§fu € H 1 ((S,T) x Q). For u € HI'((S,T) x Q), if
(2.2) holds for any ¢ € Cg° ([S,T) x ), we say that u € H' ((S,T) x Q) with
the norm

[l

o150 = Il (smxe) + 1DeullL,(smx0) + 1D ully=1 (s, x0)-
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We then define 7—[;"7’01 ((S,T) x Q) to be the collection of u € H' ((S,T) x Q) sat-
isfying the following. There exists a sequence of {u,} C C* ([S,T] x ) such that
uy, vanishes for large |z|, u, (S, x) = 0, and

[un = ullyasmyxa) =0

as n — 0o.
Throughout the paper, we assume that the leading coefficients a" satisfy the
uniform ellipticity condition: there exists 6 € (0,1) such that

a&&; > 8|E?, |a] <67t

for any ¢ € R? and (t,z) € R x R?. The following assumption on a” means that
a% are independent of 2/ € R%~! with no regularity assumptions except that a'! is
either a function of only ¢ or only x;.

Assumption 2.1. The coefficients a satisfy either (i) or (ii) of the following.
(i) a'' =a''(t), a¥ = a¥(t,21) for (i, j) # (1,1).
(11) att = all(xl)v a’ = aij(tvxl) for (Zaj) # (17 1)

The following is our main result for equations in divergence form.

Theorem 2.2 (Divergence case with measurable coefficients). Let A > 0, a €
(0,1), p € (1,00), T € (0,00), and a® satisfy Assumption 2.1. Then, for u €
Hg"’ol (R4.) satisfying

—0yu+ D, (aiiju) —\u=D;g;+ f (2.3)

in R%, where g;, f € L,(R%), we have, for A >0,

No
[ Dullz, ga) + \f/\HUHL},(R%) < Nollgllz, re) + 7/\||f||Lp(R%)7 (2.4)

7

and, for A >0,
[1Dullz, @) < Nollgllz, @) + NOT(X/QHfHL,,(Rg); (25)
ullz, @) < NOTQ/QHQHLP(RdT) + NoT*|| fll ., (re

where Ny = No(d, 6, «, p). Moreover, for any g;, f € LP(R%), there exists a unique
u € Hoy (RE) satisfying (2.3).

For a domain 2 in R? and T € (S, 00), we say that u € H;’é ((S,T) x Q) satisfies
the divergence form equation

—0fu+ D; (aiiju) —du=D;g;+ f
in (S,T) x Q, where g;, f € L, ((S,T) x Q) if

T T
/ /Ié_o‘ucpt dxdtJr/ / (—=a" DjuD; — ugp) dzdt
S Q S Q

T
=/ /(fw—gti) da dt
s Ja
for all ¢ € C5° ([S,T) x Q).
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Remark 2.3. Theorem 2.2 holds when p = 2. See Proposition 4.2 in [10] with the
comment above it saying that no regularity assumptions on a¥ are needed when
p = 2. See also Theorem 2.1 in [10], in particular, the A = 0 case, where the
estimate (2.5) is stated so that Ny and NyT® are replaced with a constant N which
also depends on T'. Nevertheless, one can turn the constant IV into those as in the
estimate (2.5) by using a scaling T~ 2u(T%/“t, Tx) since the coefficients a* only
need to satisfy the ellipticity condition.

Remark 2.4. Under the assumptions of Theorem 2.2, for u € 7—[;“7’01 (R4) and A >0
satisfying (2.3), we also have

lullzggr way < Nllglle, ey + NIz, @)

provided that N depends not only on d, d, «, p, T, but also on A. The constant NV
can be chosen as an increasing function with respect to A. To see this, we estimate
”ut”H,jl(]R%) by using the equation with the estimates in Theorem 2.2.

The theorem below is our main result for equations in non-divergence form.

Theorem 2.5 (Non-divergence case with measurable coefficients). Let A > 0,
a € (0,1), p € (1,00), T € (0,00), and a* satisfy Assumption 2.1. Then, for
u € Hg:g (R4.) satisfying

—0%u+a¥Dijju— X u=f (2.6)
in RE, where f € L,(R%), we have
105 ull L, ey + ||D2UHL1,(R%) + \F/\”DUHLD(R%) + AMlullp, ®ey < Nollfllz,®e), (2.7)
where Ny = No(d, 0, a, p). We also have
[ullge2@ay < NIz, @) (2.8)

where N = N(d,d,a,p, T). Moreover, for any f € L,(R%), there exists a unique
u € Hff,’g(R%) satisfying (2.6).

3. AUXILIARY RESULTS FOR EQUATIONS WITH MEASURABLE COEFFICIENTS

In this section, as an intermediate step toward the proof of Theorem 2.2, we show
that the Ly-norm of Du is controlled by the L,-norms of Dy u = (Dau, ..., Dgu)
and the right-hand side of the equation if u € ’Hg‘y’é (R4) satisfies an equation as in
(2.3) and a'! is a measurable function of either ¢ or z;. For this, in this section
we first consider coefficients a%/ satisfying Assumption 3.1 below, where a* are
measurable functions of either ¢ or x1. Note that Assumption 2.1 is strictly more
general than Assumption 3.1 in that the coefficients a®, (i, j) # (1,1), in the former
assumption are allowed to be merely measurable in (¢, x1).

Assumption 3.1. The coefficients % satisfy either (i) or (ii) of the following.
(i) a¥ =a¥(t) for alli,j =1,...,d.
(i) a¥ = a%(xy) for alli,j =1,...,d.

We first observe the following lemma.

Lemma 3.2. Leta € (0,1), p € (1,00), T € (0,00), and Q C R%. Fork=1,...,d,
Dy, u € 7—[;‘”& (Qr) whenever u € Hg”g (Qr).
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Proof. Denote Dy, u by Dyu. To show that Dyu € ’H,;’Ol (Qr), we need to check
that Dyu € H'(Qr) and there exists a sequence {v,} € C> ([0, T] x €2) such that
vy, vanishes for large |z|, v,(0,2) = 0, and

||Un — DkU”Hg,l(QT) —0

as m — 0o.
Note that Dyu, DDyu € L,(Qr). Also note that, for any ¢ € C5° ([0,T) x ),

T T
/ /I&—a(Dku) 3tcpd:r,dt:/ /3t (Ié—au) Dy da dt.
0o Ja o Ja

Thus, Dyu € HY'(Qr) and
01y~ (Dru) = Dy, (91 “u) € H ' (Q7). (3.1)

To find a sequence {v,} satisfying the aforementioned properties, we recall that
u € Hgy’g (Qr), which means that there exists a sequence {u,} C C* ([0,T] x Q)
such that w, vanishes for large |z|, u,(0,2) = 0, and

[tn — ullye2 (g =0 (3:2)

as n — 0o. Set v, = Dyuy,. Then, {v,} C C* ([0,T] x Q), v, vanishes for large
||, v (0,2) = 0, and

H’Un — Dku”LP(QT) + HD’Un — DDkuHLp(QT) — 0
as n — co. We also have
Hatfé_avn — 8tlé_a(Dku)||H;1(QT) —0
as n — oco. Indeed, (3.1) shows that
O (Ig™ % — Iy *(Dyuw)) = Dy (0py ™ “un — 041y~ ") .
Hence,
18:I5 ™ v = BTy~ (D) lgg, 1 0y < 101y~ un — eIy~ “ul| 1, 0) = O

as n — 0o, where the convergence of the right-hand side is guaranteed by (3.2).
The lemma is proved. (]

We now prove an Ly-estimate for equations in divergence form when a% are
either functions of only ¢ or x;. In fact, the result follows from the previous results
in [9, 10] combined with the above lemma.

Proposition 3.3 (Divergence case). Let o € (0,1), p € (1,00), T € (0,00), and

a¥ satisfy Assumption 3.1. Then, for any u € 7—[;‘”& (R4.) satisfying

—8to‘u + D; (aiiju) = Digi + f (33)
in RE, where g;, f € Ly(RE), we have
1 Dullz, gy < Nollgllz, ey + NOTO‘/QHfHLp(ng (3.4)

where Ny = No(d, 0, a, p).
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Proof. By scaling, without loss of generality we may assume that 7' = 1. In the
case that a*/ = a (1), the result follows from [10, Theorem 2.1]. In particular, see
the estimate (2.4) in [10, Theorem 2.1].

To deal with the case that a”/ = a%(t), for each k = 1,2,...,d, by using [9,
Theorem 2.1] find a unique wy, € Hg"’g (RY) satisfying

—0fwy, + a” (t)Dijwi, = g
in RY with the estimate
I1D*wi ||, mey < Nollgrllr, re)» (3.5)

where Ny = Ny(d, d, «,p). There also exists a unique wy € Hg,’g (RY) satisfying

in RY with the estimate

HDwOHLp(Rff) < N1||f||Lp(1R<f)7 (3.6)

where N7 = Ni(d,d,,p). By Lemma 3.2, Dywy € Hg"’é(R'f). Clearly, wy €
”H;“(} (R$). Moreover, Dywy, and wy satisfy the divergence type equations

—0 Dyywy, + D; (a" (t)D; Dywy) = Dygy,

*8?100 + DZ (aij(t)Djwo) = f,
respectively, in RY. Now we set

d
v=1wo+ Y Dywy,
k=1
which belongs to Hg)’g(R‘f) and satisfies (3.3). Then, if p € [2,00), by [10, Lemma
4.1] v equals to u, which shows that the estimate (3.4) follows from (3.5) and (3.6).
For p € (1,2), we use the duality argument to obtain the estimate (3.4). See the
proofs of [10, Theorem 2.1] and Proposition 6.2 below. O

We now present the main result of this section. The proof is based on Proposition
3.3 and the scaling argument used, for instance, in [8]. Since the regularity of a%/
for (4,7) # (1,1) does not play any role, we allow them to be only measurable.

Lemma 3.4. Let a € (0,1), p € (1,00), T € (0,00), and a'! satisfy Assumption
2.1. The other coefficients a¥, (i,5) # (1,1), are measurable functions of (t,z).
Then, for any u € "H;"’(}(R‘%) satisfying
—0;u+ D; (a” Dju) = Dig; + f
in R%, where g;, f € L,(R%), we have
|1 Dull 1wy < Noll Dol rey + Nollgllz, wey + NoT?[| 1l 1, (ray, (3.7)

where Ny = No(d, 0, a, p).
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Proof. Let w(t,zy,2') = u(p~=2/“t, p~ 'y, 2') with an appropriate positive constant
1 to be chosen below. Note that w belongs to H;’g ((0, p2/oT) x ]Rd) and satisfies

d d
— 0fw+ Dy (@' Dyw) + =Y D; (@ Dyw) + 'Y Dy (@ Djw)
i=2 j=2

po? ZD @ Djw) = p~2D;gi + p 2 (3.8)
4,j=2
in (0, u?/°T) x R?, where

&11 — all(‘u—Q/at) or &11 — all(u—lxl)’

A (t T, ) = aij(ﬂiz/ataﬂilzlax/)v (17]) 7é (17 1)a
g(tv Ty, l’) = (/Lgla g2, ... 7gd)(M72/at’ ,uilxlv l‘/),

f(ta 1, xl) = f(”iz/af, ,Uilxla l‘/).
By adding A, w to both sides of (3.8), we write

d d
~ofw+ Dy (8" Dyw) + Y DPw = D, (;rzgl Y au‘pjw>
i=2 j
d d }
+ Z D; <u2§i + Dyw — p @' Dyw — 2 Z EL”Djw> + 2 f
i=2 j=2
in (0, u?/*T) x R?. Since the coefficients on the left-hand side of the above equation
satisfy Assumption 3.1 (indeed, a'! is a measurable function of only ¢ or x; and
the other coefficients are constant), we apply Proposition 3.3 to get

||Dw||p < No (HD:L”pr + N_lHDpr + M_QHDw’w”p
721G, ) + No(u® “T)* 2= fll,

where || - ||, = | - |z, ((0,u2/21)xre) and No = No(d, d,, p). In particular, because
the ellipticity constant of a'! is the same as that of a'!, Ny is independent of x. We
choose p sufficiently large such that Nou~! < 1/2 and absorb the || Dw||, term to
the left-hand side. Finally, we return back to u to obtain the estimate (3.7). The
lemma is proved. O

4. LEVEL SET ARGUMENT FOR EQUATIONS IN DIVERGENCE FORM WITH
MEASURABLE COEFFICIENTS

This section is devoted to the estimate of the superlevel set of D, u for solutions
to divergence form equations.

Lemma 4.1. Let o € (0,1), po € (1,00), —00 < S <t < T <00, 0 <1 <
R < oo and a¥ satisfy Assumption 2.1. If Theorem 2.2 holds with this py and
veEH,, ((S T) x Bgr) satisfies

—3?11 + Dz (aiijv) = D1\I/z

in (S,T) x Br, where 03 = 0, I ® and W; € Ly, ((S,T) x Bg) with ¥; = 0
n (to,T) x Bg, then for any infinitely differentiable function n(t) defined on R
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= 0 for t < tg, the function Dy(nv), ¢ = 2,...,d, belongs to
B,) and satisfies

—05 (De(nw)) + Di (a¥ D;De(1v)) = G (4.1)
in (to,T) X By, where 0 = BtItlofo‘ and

such that n(t)
x

Holy (6o, T)

Gr = m/s (t— 5)_a_1 (n(s) = n(t)) Dev(s, x) ds.

Moreover, for £ =2,...,d,
1Dyt 093,y < NIy (00770 + NNGel 1y (10120 (4:2)

where N = N(d,d,a,po,7, R). If we additionally assume that a” = a%(t), then
Dy (nv) € ’H;‘O’}O ((to,T) x By) and D1(nv) satisfies (4.1) and (4.2) with £ = 1.
Proof. Without loss of generality, we assume that ¢ty = 0. First, by Lemma 3.4 in
[10] nv belongs to Hgé,lo ((0,T) x Bg) and satisfies

OF (o) = 0uly ™" (o) = nd Ly v — F
in the sense of distribution in (0,T) x Bgr, where

/S (t—8)"*"t(n(s) —n(t)) v(s,x)ds.

(0%

Flt, ) = =———
(1:2) = T

That is, if
oIy “v=D;g;i + f

in (S,T) x Bg for ¢, f € Ly, ((S,T) x Br), then

a1y~ (nv) = Di(ng:) +nf - F (4.3)
in (0,T) x Br. In particular, we have

0 (nv) + D; (a” Dj(nu)) = F (4.4)
in (O,T) X BR.

Next, we consider
t heg) — v(t —
Agppo(t,z) = vtz + e}f) il ’x), 0<h< R2 "

which belongs to H, ((0,T) x Bg,), where Ry = (R+1)/2 and e, is the unit

vector in the z,-direction. Since v, Dv € Ly, ((S,T) x Bg), we have
”Aé,hv - D[U”Lpo((S,T)XBRl) —0 (4'5)

as h — 0. Upon noting that the coefficients a* are functions of only (t,z1), from
(4.4) we see that Ay pv, £ =2,...,d, satisfies

=08 (nAgpv) + Di (a7 Dj(nAgpv)) = Ge, (4.6)
in (0,T) x Bg,, where

Oun = Ty L (=97 (1(5) = 0(0) Arpv(s.a) ds.

Note that G, € Ly, ((0,T) x Bg,) with

1Genl L,y (0.7)xBR,) < NIAewv| L, ((51)%xBr,) < NIDV| L, (s1)xBR), (4.7)
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where N depends only on «, pg, S, T, and the bound of ’. See [10, Lemma 3.4].
The first inequality in (4.7) combined with (4.5) shows that

1Gen = GellLyy 01y xBR,) < NI Aeav = Devlly, ((s.1)x8,,) = 0 (4.8)

as h — 0. We now apply [10, Lemma 4.3] (this local estimate is available whenever
the corresponding global estimate, i.e., Theorem 2.2 holds) to the equation (4.6) to
obtain

N
DAL Ly, (0.7)xB) < Fry MAe V] L, (0,7 Br, )

+N(R-r) w0 (0.7)xBry) < NIDv|L,, ((5,7)xBr)s

where N = N(d,d, a,po,r, R). From this estimate with a slightly larger r, it fol-
lows that DD,/ (nv) € Ly, ((0,T) x B,) for r" € (r, Ry), which combined with the
property of A, implies

|D(nA¢,pv) — DDe(nv)|lL,, (0.7)xB,) — 0 (4.10)

as h — 0. Moreover, thanks to (4.5) and (4.8), by letting h — 0 in the first
inequality in (4.9), we have

[DDe(no)llL,, (0.1yxB,) < NI De(nv)llz,, 0.1yxBr) + NGellL,, (0.1)%xBR), (4.11)
where N = N(d, d, «, po, 7, R). Now, since
Iy~ (nAgpv) = I~ (pDev) i Ly, ((0,T) x )
as h — 0, by (4.6) we see that DfDy(nv) € H, ! ((0,T) x B,) an

(4.9)

D (De(nv)) = Di (a Dj(De(nv)) = Ge, €=2,....d, (4.12)
n (0,7) x B, with
D7 (De(nv)) = 67 (1Aen0) [l 0,1y <8,y — 0 (4.13)

as h — 0. In particular, the equality (4.12) holds in the sense that

T
| [ e ot pdsar
0o JB,
T N T
:/ / a”Dj(Dg(nv))Dl-cpdacdtJr/ / Gepdxdt (4.14)
o JB. o JB.

for all ¢ € C§° ([0,T) x B,). Note that by the observations made above we have
Dy (1), DDy (v) € Ly, ((0,T) X B,), DDy (nv) € H, ' ((0,T) x By),
from which and (4.14), however, one can only conclude that
Dy (qv) € H' ((0,T) x By).
Since ’H,g‘[;l is a strict super set of 7—[;‘(;710 (see Section 3 in [10]), to complete the proof,

we need to find a sequence {w,} such that w, € C* ([0,T] x B;.), w,(0,2) = 0,
and

[|lwn, — Dl(nv)”;{gdl((oj)xBr) = [[|wn — De(no)| + |Dwy, — DDZ(nv)mLpo(((O,T)xBr)
+ | Dffwn — Dt (De(nv)) ||H;01((0,T)><BT) —0

as n — 00. Assuming for the moment the existence of such a sequence and (4.12),
one can conclude that Dy(nv), £ = 2,...,d, belongs to Hpo 0 ((0,T) x By) and
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satisfies (4.1). To see that (4.2) holds, we simply combine (4.11) and (4.12) upon
recalling the definition of the Hg(;l—norm, in particular, that of the H,

-norm.
To find a sequence {w,}, since v € 7—[;(;710 ((S,T) x Bgr), we recall that there

exists a sequence {v,} such that v, € C* ([S,T] x Bg), v, (S, z) =0, and
lvn — 'UHngél((SyT)XBR) =0
as n — 0o. We then consider the sequence {Ay 5 (nvn)}h,n, which satisfies
Agp(nuy) € C®([0,T) x By), Agp(nv,)(0,2) =0,

and
[De(nv) — Agn(nvn)]

as n — oo and h — 0. Indeed, the above quantity is bounded by

M (0,T)xB,) 7 0

[ De(nv) — Af,h(m’)”Hgdl((o,T)xB,.) + 1Aen (n(v —v,)) ||7-L§[;1((0,T)><B,.)7

where the first term converges to zero as h — 0 due to (4.5), (4.10), and (4.13), and
the second term can be made arbitrary small due to the choice of {v,} by letting
n — oo after a sufficiently small h is fixed. In particular, since D(v —v,,) vanishes
as n — oo in H ' ((S,T) x Bg), there exist g7, f* € Ly, ((S,T) x Bg) such that
g7, f* —=0in Ly, ((S,T) x Bg) and

Dy (v —wvp) = Digi" + f"
in (S,T) x Br. Then, as seen in (4.3),
Dy App (n(v —wn)) = Di (A n(ngi')) + Den(nf™) — Fa, (4.15)

Fo = Ty [ =977 0l =) Ao =) (s, s,

and, for each h > 0, the terms

Apn(ng'), Aen(nf"), and F,

on the right-hand side of (4.15) vanish as n — 0. Therefore, one can come up with
a desired sequence {wy, } by choosing a subsequence {Ay 1, (nvy,, )} with appropriate

hr — 0 and ngx — oo.
If a¥ = a%(t), we repeat the above proof with A; pv. In particular, nA; ,v
satisfies (4.6) with ¢ = 1 because a¥/ are independent of x1. The lemma is proved.
O

Proposition 4.2. Let a € (0,1), pp € (1,00), T € (0,00), and a* satisfy Assump-
tion 3.1. If Theorem 2.2 holds with this py and u € H;‘(;’lo(RdT) satisfies

—0fu+ D; (a¥ Dju) = Dyg;
in (0,T) x RY, where g; € Ly, (R%), then for any (to,xo) € [0,T] x RY and R €
(0,00), there exist

weHply ((to = B t0) x BY) v € Aty (S.t0) x BY).

Po,0
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where S := min{0,ty — R*/*}, satisfying the following.

(i) u=w+v in Qgr(to,xo0),

. 1 1
(i) (IDw) 7%, 20y < N (9175 0 00
1/p1 1/ — —ka 1/
(W) (Do) ) < N U9 Gman o) T N D227 (1Darul™) G0, oy
k=0
where Q% (to, x9) = (to — (2F1 L 1R, to) x Bgr(zg), N = N(d,d,a,po), and
p1 =p1(d, @, po) € (po, 0] wzth
1 1 1
>

P po d+2/a’
Here we understand that v and g; are extended to be zero for t < 0 and

1/p1 —
ODI,UVH)QT/Q@MO) B ”DmlU”Loo(Qrm(tho))

provided that p1 =

Proof. The proof is almost the same as that of Proposition 5.1 in [10]. In particular,
we use Lemma 4.1 and Corollaries 7.4 and 7.6 to establish the desired estimate for
D,sv. See the corresponding estimate (5.7) in [10]. O

Let v € (0,1). Also let pg € (1,00) and p1 € (po, 0] be from Proposition 4.2.
Denote

A(s) = {(t,z) € (—00,T) x R : |Dyru(t,z)| > s}

and
B(s) = {(t,x) € (—00,T) x R*:

VT (Mgl (1, 2)) ! P (SMIDarufP (8 2)) VP > s}
where we extend involved functions to be zero for ¢ < S if they are defined on
(S,T) x R%. Set

Cr(t,z) = (t — R¥* t + R¥*) x Br(z), Cgr(t,z)=Cgr(t,z)N{t <T}.

Since Proposition 4.2 is now available, by following the proof of Lemma 5.2 in
[10], we obtain the following lemma. Note that in the definition of .A(s) we have
D, ru, not Du.

Lemma 4.3. Let a € (0,1), pg € (1,00), T € (0,00), and a satisfy Assumption
3.1. If Theorem 2.2 holds with this py and u € 'H;‘OIO(Rd) satisfies
—8f‘u + Dz (aiiju) = ngz
in R%, where g; € Ly, (R?), then there exists a constant k = r(d,d,,po) > 1 such
that the following holds: for (ty,xo) € (—oo, T] x R? and s > 0, if
|Crya(to, z0) N A(ks)| > v |Crya(to, zo)|,
then
Crya(to, xo) C B(s).
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5. PROOFS OF THEOREMS 2.2 AND 2.5

In this section we present the proofs of Theorems 2.2 and 2.5.

Proof of Theorem 2.2. As noted in Remark 2.3, the theorem holds when p = 2.
Suppose that the theorem holds for some py € [2,00), which is indeed true for
po = 2. Then, we fix p; € (pg, 00| from Proposition 4.2 and prove Theorem 2.2 for
p € (po,p1). We first assume that A = 0 and f = 0. In this case by Lemma 4.3 and
following the proof of Theorem 2.1 in [10], we obtain

| Dorullz, ey < Nligllz,®ay,

where N = N(d,d,a,p). This estimate combined with Lemma 3.4 proves (2.5)
with f = 0. Then by using S. Agmon’s idea (see [15, Lemma 5.5]), we see that, for
u € Hg”é (R4) and A > 0 satisfying (2.3) in R4, the estimate (2.4) holds. To prove
(2.5) with non-zero f and A = 0, we write the equation (2.3) as

—0fu+ D; (aiiju) —Mu=D;g; + f—Au, A>0,

and apply the estimate (2.4) to this equation to get
N
[ DullL, @a) + ﬁHu”LP(R%) < Nlgllz, ey + ﬁ”fHLP(]R%) + NﬁHUHLP(Rg),

where N = N(d, d, «, p). By combining this estimate with Lemma 4.1 in [10], which
is an estimate for the last term in the above inequality and does not require any
regularity on the coefficients a*/, we obtain

N
[Dullz, ®a) + \/XHUHLP(R%) < Nlgllz, ey + ﬁ”f”Lp(R%)
+ NVA (T2l 2, 24 + TNz, 09 )

where N = N(d,6,a,p). By choosing A = T~%, we arrive at (2.5) for non-zero f
and A = 0. To prove (2.5) for A > 0, we see that the estimates follow easily from
(2.4) when A > 1/(2NoT*). If 0 < A < 1/(2NoyT?), we move Au to the right-hand
side and use (2.5) for A = 0. Because of the range of A, the term involving [|ul|, (g4
is absorbed to the left-hand side.

The existence assertion for p € (pg,p1) follows from the a priori estimates just
proved above (also see Remark 2.4) combined with the method of continuity and
the existence result for equations having simple coefficients, for instance, in [10,
Theorem 2.1].

Now that we have proved Theorem 2.2 for p € [pg, p1), we repeat this procedure
until we have p; = oo as in the proof of [10, Theorem 2.1] so that the theorem holds
for all p € [2,00).

For p € (1,2), we use the duality argument as in the proof of [10, Theorem 2.1].
The theorem is proved. (]

We now prove Theorem 2.5 by following the proofs in [6], where the estimates
for the non-divergence case are derived from those for the divergence case.

Proof of Theorem 2.5. We first prove the a priori estimate (2.7) when A = 0. By
Lemma 3.2, we know that Dju € ’H;"’Ol (R%). Then one can check that w := Dju €
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7—[;“”01 (R4.) satisfies the divergence type equation

d d
—ataw + D1 (allDlw) + Ax/w = D1 (f - Z aijDZ-ju) + Z Dl (Dleu)
(i) #(1,1) i=2

in R%, where A, = Z?:2 D?. Since the coefficient matrix diag(a'l,1,...,1) of
the above equation satisfies Assumption 2.1 with the same ellipticity constant §,
by Theorem 2.2, it follows that

[DDyullp,gay = 1Dz, ®a) < NI fllL,@e) + NIDDorul L, @a), (5.1)

where N = N(d,d,a,p) and DDyu = D;ju with (4,5) # (1,1). To complete the
proof, we prove
”DDE/UHLP(]R%) < N”f”Lp(]R%)‘ (5.2)

This combined with (5.1) and the equation dfu = a¥ D;ju — f proves the estimate
(2.7). To prove (5.2) we consider two cases depending on whether a'! = a'l(t) or
atl = all(xy).
Case 1: a'! = a''(t). In this case, the assumption a'! = all(t) allows to write
a''(t)D}u = Di (a*'(t)Dyu), so that the equation (2.6) can be written as the
following divergence type equation.

~97u+ D; (@Y Dju) = f,

where

a't =a'l', av=a", i,j=2,....d,

av =0, j=2,....d, at=a"+dt, i=2,...,d.

Note that the coefficients @*/ satisfy Assumption 2.1 with the same ellipticity con-
stant. We then see that wy := Dyu, £ = 2,...,d, belongs to Hg‘& (R4) and satisfies

—0fwg + D; (@ Djwe) = Do f

in R%. By Theorem 2.2 again, where the symmetry of the coefficients, i.e., @ = a’?,
is not required, we obtain

”DDI’UHLP(]R%) = ”Dwf”Lp(R%) < N||fHLp(1R‘;)a

where N = N(d,d,a,p), which proves (5.2). Therefore, the estimate (2.7) with
A = 0 is proved for the case a'! = all(t).

Case 2: a'! = a''(x;). In this case, we make use of the following change of
variables:

T 1
ylzX(xl):/ 7d7", Yi = Ty, Z:277d
o a'l(r)
As seen in the proof of Theorem 4.1 in [6], v(t,y1,y") = u(t,x 1(y1),y’) satisfies
~8¢v+ D; (6YDjv) = f

in R%, where

—_

— A1j .
- . a =, =2,....d
v) att(x1(y1)) /
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Then, Dyv, £ =2,...,d, belongs to ’H;’Ol (R4) and satisfies

~0(Dgv) + D; (4 Dj(Dygv)) = Def (5.3)
in RZ. Note that a% satisfy Assumption 2.1 with an ellipticity constant depending
only on 4. Indeed,

d d d

i 1 ‘ i ij

av&&; = paE &+ E a&€ + E a & |+ E a’&;&;
= i=2

i,j=2
— a6 2 06 2 PP, E= (St ).
Thus, Theorem 2.2 applied to (5.3) shows

IDDevllz, mey < NI fllz, @),

from which we obtain (5.2). Therefore, the estimate (2.7) with A = 0 is also proved
for the case a'! = a'l(zy).

Now that we have proved (2.7) with A = 0, using S. Agmon’s idea as in the proof
of Theorem 2.2, we obtain the a priori estimate (2.7) for A > 0. To prove (2.8), we
write

—0fu+a“Diju= f+ M.
By following the proof of [9, Theorem 2.4], we have
lullz,@ay < NIfll,@ey + ANullL, @)
where N = N(d,d,a,p, T). If AN < 1/2, it follows that

||U||L,,(RdT) < 2N||fHL,J(RdT)-

From this estimate with (2.7) as well as an interpolation inequality with respect to
x we arrive at (2.8). If A > 1/(2N), the estimate (2.8) follows directly from (2.7).

Finally, we prove the existence of solutions. Thanks to a priori estimates estab-
lished above, we obtain the existence by using the method of continuity and the

unique solvability in Hg”g (R4) of equations with simple coefficients (for instance,

a”Diju = Au) in [14, 9]. O
6. BOUNDARY VALUE PROBLEMS
We denote RY = {2 = (z1,2") € R? : 21 > 0}.

Theorem 6.1 (Half space). The assertions in Theorems 2.2 and 2.5 hold if R? is
replaced with R‘j_ and u satisfies either the Dirichlet boundary condition (1) or the
Neumann type boundary condition (2) below.

(1) The Dirichlet boundary condition
u(t,0,2') =0 on (0,T) x RI~1. (6.1)
(2) (a) The divergence case: the conormal derivative boundary condition
aDju =g, on (0,T) x R,
(b) The non-divergence case: the Neumann boundary condition

Dyu(t,0,2') =0 on (0,T) x RI~L.



18 H. DONG AND D. KIM

Proof. We use even or odd extensions with respect to x;. See, for instance, the
proofs of [8, Theorem 2.4] and [13, Theorem 2.7]. In particular, if u € H;’Ol(QT) or

u € Hg)’g(QT), where = R, with the boundary condition (6.1), we see that ,
the odd extension of u with respect to z1 given by

- u(t,z1,2") for x>0,

u =
—u(t,—x1,2") for mz <0,
belongs to 7—[;‘7’5 (RL) or sz’g (R4.), respectively. We have the same conclusion for
the even extension of u with respect to x1 when the conormal derivative boundary
condition or the Neumann boundary condition is imposed. O

Proposition 6.2 (Partially bounded domain). Let o € (0,1), p € (1,00), T €
(0,00), R € (0,00), and

M= {(z1,2') eR:0< 2, < Rz’ ¢ RI1},

Under Assumption 2.1, for any u € 7—[;7’01 (II7) and A > 0 satisfying (2.3) in Ir,
where g;, f € L,(Ily), with the Dirichlet boundary condition

u(t,z) =0 on (0,T) x OII, (6.2)

we have the estimates (2.4) when A\ > 0 and (2.5) when A > 0, with R replaced
by I, where Ny again depends only on d, 8, «, and p. Moreover, for any g;, f €
L,(Il7) and X > 0, there exists a unique u € H§7’&(HT) satisfying (2.3) in I with
the boundary condition (6.2).

Similar assertions hold for the divergence type equation (2.3) with the conormal
derivative boundary condition and the non-divergence type equation (2.6) with either
the Dirichlet boundary condition or the Neumann boundary condition.

Proof. Since the coefficients are measurable functions of ¢, z1, or (¢,x1), and the
desired estimates as in (2.4) and (2.7) (the constant Ny in (2.5) as well) are inde-
pendent of 7', one can use a scaling argument. Thus, we may assume R = 1.

We first prove the a priori estimates. We only give details for the divergence
case with the Dirichlet boundary condition. The other cases are proved similarly.

Let u € 7—[;,’(} (II7) satisfy (2.3) with the Dirichlet boundary condition (6.2). We
first take the odd extension of u with respect to {x; = 0} and then take the periodic
extension of it to the whole space R, so that the extended function, which is still
denoted by wu, is in H;"’IEC(RCIT). Similarly, we take the odd (and even) extensions of
fand g;,i =2,...,d (and g1) with respect to {z1 = 0} and then take the periodic
extensions of them to the whole space. For the coefficients a'/ and a?', j = 2,...,d,
we take the periodic extensions (again denoted by a'?) of the oddly extended ones
with respect to {x; = 0}. For the remaining coefficients, we take the periodic
extensions of the evenly extended ones with respect to {z; = 0}. The extended
coeflicients satisfy Assumption 2.1 as well as the uniform ellipticity condition. Next
let n € C§°(B2) be such that n =1 on B; and nr(-) = n(-/R) for R > 10. Then it
is easily seen that ung € ’H;‘,’é (R%) satisfies

—0y(ung) + D; (¢ Dj(unr)) — Aunr = D;(nrgs) + nrf
+D; (¢ (Djnr)u) + a”? DingDju — (Ding)g;
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in R%. We first prove (2.4) with R% replaced with II7. By applying Theorem 2.2
to the above equation, we get

DL, (re) + \F)‘HURUHLP(R%) < Nolllnrg| + |(Dnr)ulll L, &)
No
+ ﬁl”ﬁRﬂ + |DnrDul + |(Dnr)l|glll, (ze)

where Ny = Ny(d, d, ,p). This together with the periodicity of u, f, and g; in x4
and the bound |Dngr| < NR™! gives
1 Dul + VAulllz, (0.1)x 0.1)x B, ) < Nolllg| + R™Mulll, (0,1 %(0,1)x B,)

R/2

No - _
+ ﬁ”\ﬂ + R Dul + R YglllL, (0,1 % (0,1)x B, »
where B! = {2/ € R?"! : |2/| < r}. Taking the limits as R — co gives the desired
estimate

No
| Dullz, ) + ﬁHUHLp(HT) < Nollgllz, i) + ﬁ”f”Lp(HT),

where Ny = Ny(d, §, o, p). Similarly, we obtain (2.5) from Theorem 2.2.

We now prove the existence of unique solutions to the equations. Thanks to
the a priori estimates just proved above, the uniqueness is guaranteed whenever
solutions exist. Thus, we only prove the existence of solutions, for which by the a
priori estimates and the method of continuity, in the divergence case it is enough
to show the existence of a solution u € 'Hg”ol (II7) to the equation

—0fu+ Au=D;g; + f (6.3)

in Iy, where g;, f € L,(II7), with either the Dirichlet boundary condition or the
conormal derivative boundary condition. Indeed, even if equations have simple
coefficients as in (6.3), the corresponding solvability result does not seem available
in the literature when the spatial domain is II. We give here details for the case
with the Dirichlet boundary condition (6.2).

By using the density argument and the a priori estimates, without loss of gen-
erality we may assume that g; and f are smooth with compact support in IIp. In
the proof below whenever g; and f are considered in R%, those are the extended
ones as in the proof of the a priori estimates.

Case 1: p = 2. In this case, the solvability follows from the Galerkin method.
See [22].

Case 2: p € (1,2). From Case 1, we know that (6.3) has a solution u €
”Hgol (II7). This solution is also in 7—[;‘)’(} (II7). Indeed, we take the extension of
u as in the proof of the a priori estimates. Then it is easily seen that ungr €
'H;i’ol (R4) N ’Hgol (R4.) satisfies

=07 (unr) + A(unr) = Di(nrgi) + rf
+2D; (Ding)u) — (Anr)u — (Dinr)gi
in R%. By applying Theorem 2.2 to the above equation we get
T2 D(ngu)|l 1, @a) + Inrull L, @e) < NoT*?|Inrgl + [(Dnr)ull L, za)
+ NoT®[[[nrf| + [(Anr)ul + [(Dnr)llglll L, @),
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where Ng = Ny(d, 0, a, p). This together with the periodicity of u, f, and g; in x;
and the bounds |Dng| < NR™!, |Ang| < NR™2 gives

Ta/2”Du”Lp((O,T)x(O,l)xB}%/Z) +llullz, 0. x0.1)xBy,,)

< NoT*"2|[lg] + B[l (0% (0,1) % By )
+ NoT|[1f] + R 2[ul + R glll L, ((0.7)x (0,1) x BL -
By Holder’s inequality,

R™Mull £, (0,7 (0,1)x By )

< NTYP= 2 REIFEDQD=D ) 0.y x 0,1 x B )

Combining the above two inequalities and sending R — oo, we see that u, Du €
L,(Il7) provided that 1/p —1/2 < 1/(d — 1). In the general case, we take a
sequence of decreasing exponents {p;}7, C (1,2) such that py = 2, p,, = p, and
1/piv1—1/p; < 1/(d—1) for i =0,...,m — 1. By the proof above with p = p;, we
have u, Du € Ly, (Il7). With p; and p» in place of 2 and p in the proof, we further
deduce u, Du € Ly, (Il7). Repeating this procedure gives u, Du € L,(IIr). Finally,
by using the equation, we have u € ’Hg;& (I7).

Case 3: p € (2,00). As in Case 2, (6.3) has a solution u € 7—[3”01 (IIr). Next, we
show th?t u € 7—[;’01 (II7) by using a duality argument. Let ¢ = p/(p — 1) € (1,2)
and g;, f € C§°(Ilp). By the result proved in Case 2, we know that the equation

—0%(t,x) + Av(t,z) = Dig(T — t,x) + f(T —t,z)
in I has a unique solution v € H?,’&(HT) N /H,;’Ol (I7) and

| Dvll, ey + 10l @r) < Nlgll, e + NIz, @) (6.4)
where N = N(d,6,a,q,T). Let w(t,x) = v(T —t,x). By duality, it is easily seen
that

/ (Dyug; — uf) dxdt = / (D;ywg; — wf) dxdt.
It I

Therefore, by Holder’s inequality and (6.4),
| [ (D =) dat] < NIl ol ) + Nl 1], )
T
= N||Dv| gl L, a1y + NlvllL, a1z, a1

< N (13l + 1z ) (92 + 112 1))

Since §;, f € C3°(Ilr) are arbitrary and C§°(Il7) is dense in Ly (TI7), we see that
u, Du € L,(II7). It then follows from the equation that u € 7—[;’01 (I17).

For non-divergence form equations, we need to show the existence of a solution

u € Hg”g (II7) to the equation

—fu+Au=f (6.5)

in IIp, where f € L,(IIr), with either the Dirichlet boundary condition or the
Neumann boundary condition. By the solvability of divergence form equations
obtained above, (6.5) has a unique solution u € 7—[;‘”01 (IIr). To show that u €

Hi’g (1), we again use the extension argument. Clearly, ung € ’H;’(} (R4) satisfies
=0 (unr) + A(ungr) = nrf + 2(Dinr)(Diu) + (Anr)u (6.6)
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in R4, where u and f are extended ones as above. Since the right-hand side of (6.6)
is in L,(R%), by Theorem 2.5, there is a unique solution @ € H;YOQ (R4) to (6.6). By
the inclusion Hg"’og (R4) C 7—[;"’01 (R%) and the uniqueness of ’H;’é (R4.)-solutions, we
have 4 = ung. Thus, by Theorem 2.5 again, it holds that

lungllgs>@a)y < Nlnrf + 2(Ding)(Diu) + (Angr)ully, @g)-
As before, by sending R — oo, we reach

ullgg 2 gy < NI, aur)-
p (1)

The proposition is proved. |

7. OPTIMAL EMBEDDINGS FOR Hg”ol

In this section we present elementary and self-contained proofs of Holder embed-
dings (Theorem 7.3) and Sobolev embeddings (Theorem 7.5) for fractional parabolic
Sobolev spaces H.\.

We begin with the following two lemmas.

Lemma 7.1. Let a € (0,1), T € (0,00), and u,n € C* ([0,T)) with u(0) = n(T) =
0. Then

T T
| wonwde= - [ orieutn g o) an (7.1)
0 0

where
1

T
_ p\a—1
(o) /t (s —t)* w(s)ds.
If Jgn'(t) € C ([0, 7)), we further have

JEo(t) =

T T
| wonwa = [ 1euw ooz a (7.2)
0

0
Proof. Since u(0) = 0, by Lemma A.4 in [9] we have

I§ DM u(t) = I507 u(t) = u(t).

Hence,

T T T
/0 o' (t)n(t) dt:f/ u(t)n'(t) dt = 7/0 I§ D u(t) n' (t) dt

0
1 r ! a—1na /
:—m/o /0 (t—8)* " Dgu(s)dsn'(t) dt

1 T - 4 a—1,7 — _ ! 1o, () J% (s) ds
= —1_‘(01)/O Dy u(s)/s (t—1s) 7' (t)dtds = /0 atlo (s)J7n' (s) ds,

which gives (7.1). If J%9/(t) € C* ([0, T]), using integration by parts with
T2 u(s) om0 = J27/ ()|t = 0,
we arrive at (7.2). O
Lemma 7.2. Let T € (0,00), a € (0,1), and p € (1,00) such that
og:=1-(d+2/a)/p>0.
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Also let u € C§° ([0, T] x RY) satisfy u(0,2) =0 and

T T T
/ / Iy “upy da dt = / / 9iD;p dx dtf/ fodzdt (7.3)
0 R4 0 R4 0 Rd

for any ¢ € C§° ([0, T) x RY), where g;, f € Ly,(R}). Then, for t1,ts € [0,T] with
ty <ty and r > 0, we have

/ (ulta, 7) — ults, 2)) 6(x) dz
By(x1)

< Ntz = 10) 77 (gl gy + 1z, @) 90w, (5,0 (74)
where ¢ € C§° (Br(z1)), N = N(«,p), and 1/p+1/p' = 1.

Proof. Without loss of generality, we assume that z; = 0. Let {(s) be an infinitely
differentiable function such that ¢(s) > 0, ((s) =0 for s > 0, and

[cas= [ Ooo C(s)ds =

Set (.(s) = e 1((s/e) and

ne(t) = /OO Lty 20 (8)Ce(t — 5) ds.

— 00

Note that 7). is an approximation of 1y, ;,y and n.(t) = 0 for ¢ > t5. We then write

tz t2
u(ta, ) —u(ty,x) = Opu(t,z) dt = Opu(t, )1y, 1, (1) dt
¢ 0
to ' to 1
. — /
= ;1_% ; Opu(t, x)n.(t) dt = ;1_% ; I~ “u(t, )0, [J2nl(t)] dt,

where the last equality follows from Lemma 7.1 with ¢5 in place of T along with
the observations that u(0,z) = n.(tz) = 0 and J2n.(t) € C'([0,T]). Then, for
¢ € C5°(B,),

[ a0 = uttnotords =i [ [ outtom.(0dtota) do

e—0

=T  * T)Ot |Jy x x
; //Rdl u(t, )0 [JonL(t)(x)] du dt

e—0

to to
112%(/0 /Rdgi(t,x)JgnE(t)Digb(x)d:cdt—/0 Rdf(t,x)JgnE(t)qb(x)dxdt),

where the last equality is due to (7.3), which is satisfied with ¢ in place T since
JEnl(t)e(z) € C§° ([0,t2) x RY) and J2nL(t)¢(x) = 0 for t > to. This shows that

/ (u(te, ) — u(ty,z)) ¢(x) dzx

r

< lim sup
e—0

ta
|7 [ stz i
0 R4

to
/0 /R il ) () Di () d |

+ lim sup (7.5)

e—0
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where, for each € > 0,

to
/0 /R it )T () Di(a) o dt’

to . 1/p’
< gl qaty 1DS Nz, 5 (/ e ()] dt) (7.6)

and

/ S pa) T () de dt’
0 R4

to p/ 1/1)/
<1l w6l 5y (/ el )] dt) . @

‘We now prove that

to , 1/p’
([ Vel @) <Nt - (r5)
0

If this holds, we obtain (7.4) by combining (7.5), (7.6), (7.7), and (7.8). To prove
(7.8), we note that

n:(t) = /tt Ce(t —s)ds = /tttl C-(s) ds.

—to
This gives
Me(t) = Ce(t —t1) — Ge(t — t2)

and
T (a)Jen.(t) = / (5= )71 (s — tr) ds — / (s )7 (s — o) ds

t1—t to—t
/ (t1 —t —8)* ¢ (—s)ds — / (ty —t —8)* "¢ (—s)ds, 0 <t <ty
0 0

to—t
— / (ty —t —8)* 71 (—8)ds, t; <t <ty
0

where the last equality is due to the choice of ¢ so that (.(s) = 0 for s > 0. That
is, if we denote

Ce(s) = C(—s),
then ) i
{(L‘f@)(tl —t) = (I§¢)(ta — 1), 0<t<ty,
—(I§C) (t2 — 1), t <t <t

and

’

ISC) (8 — ) — (I8E) (ta — 0| at

’ b
| J5nL(t) ||I£p, (0,t2) = /o

to ~ p/
+/ (18C.) (ts — t)‘ dt = Ky + Ko.
t1
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By Lemma A.2 in [9] along with a« — 14+ 1/p' = o — 1/p > 0, we have
1/p oz ae ;) o~
K7 = |18 Gl 0ta—ts) < Ntz — 1) VP NGl Ly 0,00—1)
< N(tg —t1)>7 VP, (7.9)

where N = N(a,p). To estimate K7, we write
P(0) [(I88) (0 = ) = (158 (12— )]
t1—t ~ to—t _
:/ (t —t— $)°1C.(s) ds —/ (ts — t — $)°1E.(s) ds

0 0

:/0 U (bt )™~ (b — t— 5)* 1) &u(s) ds
—/tr (ts — t — 5)°=1E.(s) ds.

1—t

Thus,

) ti—t -
Kll/p <N’/0 (t1—t—8)*"" = (ta—t—5)*"") ((s)ds

Lp/ (0,t1)

to—t
+N/ (ty —t — 5)* "1 (s) ds
t

1—t

Lp/ (O,tl)

t1 t1—s , 1/p/ _
< N/ (/ |(tr =t —8)*" = (ta =t — 5)* 7| dt) C-(s) ds
0 0

to to , 1/p’
_ pa—1|P p
+N/0 (/tl |(t2 —)* 7| dt> C.(s) ds,

where we used Minkowski’s inequality for the second inequality. Since @ > 1—1/p’,
we readily see that

(/t2 (ty — )@= V¥ dt> v = N(a,p)(ty — t1)*"/P. (7.10)

t1

From the proof of Lemma A.14 in [9] we also see that

ti=s RNV
(/ (=t =) =t =t =) dt) < N(a,p)(ts — )",
0

From this and (7.10) together with the fact that the L;-norm of 55 on R equals 1,
we obtain that

K< N(@up)(t = 1),
which together with (7.9) proves (7.8). The lemma is proved. O

We complete the proof of the Holder continuity of functions in 7—[;”01 for p >
d+2/a.

Theorem 7.3 (Holder continuity). Let T € (0,00), o € (0,1), and p € (1,00) such
that

o:=1-(d+2/a)/p>0.
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Then, for u € 7—[;‘7’01 (R4), we have
[ulgoarzems) < N(d, @, p)|ullyer ga)-

Proof. By mollifications, we may assume that v € C§° ([O,T] X Rd) such that
u(0,2) = 0 and

T T T
/ / Ié—augpt dx dt = / / giDipdx dt — / fodxdt
0 JR4 0 JRd 0 JRd

for any ¢ € C5° ([0,T) x RY), where g;, f € L,(R%). Define

[u(t, x) —u(s,y)|
|t — s + |z —y|”

K:sup{ :(t,x),(s,y)eR%,0<t1—t2|g+|x—y|<1}.

To prove the estimate, we take (t1,z), (t2,y) € R% and set
p=¢ (|f1 — % + Ix—yl) <1
where € € (0,1) is to be specified below. We write
u(tl,l') - u(tQuy) = (u(thx) - U(tz,l’)) + (U(fg,.’l}) - U(t27y)) = Jl + J2~
To estimate Jy, for z € B,(x), we have
Ji = (u(ty, @) —ulty, 2)) + (u(ty, 2) — ultz, 2)) + (u(tz, 2) — u(tz, ))
< 2Kp? + (u(ty, z) — u(te, 2)) .
Take ¢(z) € C§° (B,(x)) such that ¢(z) > 0,

/B ( )¢(Z) dz=1, |8z, (B,@) = Np~ /v, 1Dol1,, (B,@) = Np~4/p=1,

(7.12)
where N = N(d,p). Then by multiplying both sides of the inequality (7.11) by ¢
and integrating over B,(x), we have

Ji1 < 2Kp° +/B ( )(u(tl,z) — u(ts, 2)) &(2) dz.

(7.11)

Using this and a corresponding inequality for —.J;, it follows from Lemma 7.2,
(7.12), and the choice of p that

1] < 2Kp% + Nlta = 4212720~ (gl gy + 11, e )

o —24+2/(x o
< 2Kp7 + Ne~ 07 (g1, gy + 1l )

where N = N(d, a, p).
To estimate |.J|, we have that, for s € (ty — p'/, t3 + p*/*) N (0,T),

|J2| < |U(t2,l’) - 'LL(S,.’E)| + |U(S,{,C) - ’LL(87y)| + |U(S,y) - u(t27 y)|
< 2Kp7 + N(d,p)le =y~ u(s, ) s ey
where we used the usual Sobolev embedding for functions in 2 € RY and the
condition that 1 — d/p > 0. Then by taking the average of Jy over the interval
(ty — p*/*, ty + p*/*) N (0,T) with respect to s along with Holder’s inequality, we
get
| Ja2| < 2Kp7 + Ne™ 77| |u| + | Dyul| 1, mt -
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Collecting the estimates for J; and J; above, we see that
_ o —242/(ap) —1+d/p o
[ultr, @) = ultz,y)| <4Kp” + N (e e 7 ull e g,
which implies that
- —1-d/p | _—2/(ap)
K <4eK + N(d,a,p)(e +e )HUHH;‘J(R@'
By choosing € > 0 small enough so that 4¢? < 1, we obtain

K < N(d, ) [l - (7.13)
To finish the proof, it suffices to show that
lully o ey < N(ds ) ull ez s, (7.14)

Indeed, for any (¢, ), (s,y) € R4, by the triangle inequality we have
lu(t, z)| < |u(t, z) — u(s, y)| + [u(s, y)|

Taking the averages of both sides of the above inequality with respect to (s, y) over
the set

{(s.;9) eRT: [t — 8| +]o —y| < 1}
and using (7.13), we get (7.14). The lemma is proved. O
Corollary 7.4. Let T € (0,00), 0 < r < R < o0, a € (0,1), and p € (1,00) such
that

o:=1—-(d+2/a)/p>0.

Then, for u € H;‘v’é ((0,T) x Br), we have

[ulgoarze(omyxp,) < N(d a,p,r R)||ullyoo.1)xBr)- (7.15)

Proof. Take an infinitely differentiable function 1 (z) defined on R? such that ¢(x) =
1 on B, and 9(z) = 0 on R?\ Bg, and consider ¢u, which belongs to 7—[;’01 (R4).
In particular,
Of (Yu) = Di(vgi) + v f — g:Dip
in RY if
Ofu=Dig; + f
in (0,7) x Bg. Then by Theorem 7.3, we have

lullcaarza(o,ryxB,) < Nlbtllcoarze@ey < NlYullyer gy,

where N = N(d, a, p). We then obtain the desired estimate upon noting that the
last term in the above inequality is bounded by the right-hand side of (7.15), where
the constant depends on r and R as well. O

We now prove Theorem 7.5, which is about Sobolev embeddings.

Theorem 7.5 (Sobolev embedding). Let T € (0,00), o € (0,1), and p,po € (1,00)

such that pg > p and

_d+2/a - d+2/a
P~ P

1

(7.16)
Then, for u € H;‘V’é (RL), we have

”uHLPU(R%) < NHUHH;‘J(R%)’ (7.17)
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where N = N(d, «, p,po). More precisely,

d+2/a d+2/a 2+ d+2 /a7d+ /o
||u||Lp0 re) < Newwo lull L, (ray + Ne™ ro 1Nz, @®e)

1+ d,-;2/a7d+2/a (\

(7.18)

+ Ne IDullL, gy + I9)l2, e )

for any € > 0, where N = N(d, «, p,po) provided that

/ / Iy~ augatdxds—/ / gi lgpd:vdsf/ feodxds (7.19)
Rd Rd Rd

for any ¢ € C5° ([0,T) x RY), where g = (g1, ..., 9a), f € Lp(R%). In particular, if
the equality holds in (7.16), we have

1/2 1/2
el ety < Nl gy 113 gy + N (IDul, oay + gl eey ) - (7:20)

Proof. 1t suffices to prove (7.18) for u € C* ([0,T] x R?) such that u(0,z) = 0
and wu(t, z) vanishes for large |z|. Throughout the proof, u(¢,x) is extended to be
zero for ¢ < 0. Note that the equality (7.19) holds with ¢ € [0,7T] in place of T if
¢ € Cg° ([0,t) x RY).

Set n(t) to be an infinitely differentiable function defined on R such that 7(¢) > 0,
n(t)=0fort ¢ (1/2,1), and

/ n(t)dt = 1.
R

Also set ¥(x) to be an infinitely differentiable function defined on R? such that
P(x) >0, (x) =0 for x € R\ By, and

/ Y(x)dx = 1.
Rd
Then, for (t,z) € R, we define

T
W ta) = [ [ ulsgimarlt = s)unle = gy dyds
t
[ s mearett = vt~ ) dy s,

Nease(t) = €2/ On(t)¥%), ve(z) = e N(/e),
and in the second equality we used the facts that u(s,y) = 0 for s < 0 and 7,2/ (t —
s) =0 for s > t. Set a € [1,00] so that
Lo (7.21)
p a Po
because 1 < p < pg. By Young’s convolution

where

Indeed, we see that a € [1,po]
inequality it follows that

d+2/a d+2/a

”u(E)HLPO(R%) < Ne »o lullz, ®a)- (7.22)

For (t,r) € R%, we now consider

u(t.a) = ue) = [ [ (ut.a) = u(s) ¢ = 5)0 o = 9) dy s,
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Let

7(A) = ((1 —AYO)E 4 APos (1 M)z + )\y) . Aelo,1].
We then write

u(t, z) —u(s,y) = u(r(0)) —u(r(1))
:/ 20E 1= Sy (r d/\+/1Vu Az —y)dA.

Hence,
u(t, z) — u'® (¢, z
/ /R/ Lt = s)ur (T(N) newse (E = 8)tc (2 = y) dXdy ds
(7.23)
- /_oo /Rd /0 (@ —y) - Vu(r(N) nezva (t = s)ye(z — y) dhdy ds
=: K; + Ks.

To estimate K, we denote
¢(t) = tn(t).
By the change of variables ((1 — A¥ )t + A%, (1 — Az + Ay) — (s,9),

2 gt [t t—s T—y

K; =€ /0 A /_Oo/wut(&y)( 2/aNa/a ) o dy ds d\
A N t—s T —y
o o [ Lo (S ) v () s an

where the second equality is due to the change of variable eA — A. For each
t € [0,T], by Lemma 7.1 with ¢ in place of T and the fact that, as a function of s,
C(t_—é) =0at s=1¢and u(s,y) =0 for s <0,

2/

/ u(s,y) ¢ (23\2/&> ds—/o ut(s,y) ¢ <t)\2/0¢> ds

oo t (7.24)

:/ I %u(s,y) Oy (Jf‘f’(s)) ds,
0
where
O = P O )

By setting

we see that

= -\ /O’L e R Y it Va4 r
= a2 I‘(a)/o (t=s=1)7'¢ (537 ) dr (7.25)
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where H satisfies
H(t) < N(a) forte(0,2), H(t) < N()t*? fort>2. (7.26)
Indeed, the first inequality in (7.26) follows from Lemma A.2 in [9] so that
|z 02) = HG ¢ L 0,20 < NIIC|
where p € (1,00) with o > 1/u. The second inequality in (7.26) follows from

1 1
D(a)H(t) = /0 (t—r)*" ' (r)dr = (o — 1)/0 (t —r)*2¢(r) dr < Nt*2

provided that ¢ > 2, where we used integration by parts along with the fact that
¢(r)=0forr>1orr <0. Considering (o —2)a+ 1 < 0, the inequalities in (7.26)
imply that

L,l,(0,2)7

[H |1, (0,000 < N(ev, p,po). (7.27)
From (7.24) and (7.19) with ¢ in place of T, it follows that

[ fmtne () v (75 v

:i4(4d6%A&yﬁ%[#f%ﬁw(x;y>]dy%

3 [ ] ot o (52 dvas
[ ez (55

-2 vy

K _/)‘ /‘/Rdgzsy ()\Q/a)(DQ/]) (/\) dy dsdX
2 d+1-2 z—y

+a//\ ' / ]Rdf (/\2/a)1/)<)\> dy ds dA

= K171(t, ,I) + K172(t, 1‘)

Thus,

To estimate K71, upon recalling (7.21) with Young’s convolution inequality with
respect to z € R? and Minkowski’s inequality, we have

e t
t—s
||K171(t7')||Lp0(]Rd) SN/ )\*d7%+3/ H( 2 )
0 0 A®

where we used (7.25) and N = N(d, «, p, po). We now consider two cases.

Case 1 for Ky1: 1 — (d+2/a)/p > —(d+2/a)/po. In this case by taking the
L,,-norms of both sides of the inequality in (7.28) along with Young’s convolution
inequality with respect to t € (0,T"), we have

lg(s, )z, ey dsdA, (7.28)

101 ety = [1EA i e

—d—2/a+d/a
SNMMMMLAA

where by (7.27)
|7 (27 )]

PO (OaT)

" (5o)

dA,
L,(0,00)

§ N(Oé,p, po))\Q/(oca) .
L, (0,00)
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Thus, because
—d—2/a+d/a+2/(aa) =d/po—d/p+ (1/po —1/p)2/a > —1,

we arrive at

2

€
—d—244d
||K1,1||L,,O(Rg) SNHQHLP(R%)/O N d-atataa di

(7.29)
— N51+%_%+% (%_%)

||9||LP(R%)3

where N = N(d, a, p, po).
Case 2 for Ky 1: 1—(d+2/a)/p=—(d+2/a)/po. In this case, we change the
order of the integrations in (7.28) and use the following estimate from (7.26)

=3

t—s\*? t—s\?
; N (2> for 0 < )\ < (2) s
A=

Ao o\ 2
N for \ > (t 8) .
2
Thus, the integral with respect to A in (7.28) is estimated as

s - ()8 Lt
/ ATdmats H(t S)‘ dAgN/ ATdmae (t s) dA
0 A« 0 Aa

1

+ N/ AR RN = N(t—s) s,
(%)

where the calculation relies on the equality 1 — (d + 2/a)/p = —(d + 2/«)/po,
a € (0,1), and 1/p > 1/po, so that

—d—2/a+d/a—(a—2)2/a=2/a+d/py—d/p—2
=2/0t 2(1/p—1/po) 3> 1

and
—d—2/a+d/a=—-2/a+d/py—d/p < —1.

Hence,
t
|1 K1 (8, .)||Lp0(Rd) < N/ (t— s)*lJrl/Pfl/Png(s’ N, ra) ds.
0
Since 1/p—1/po € (0,1), the Hardy-Littlewood-Sobolev theorem of fractional inte-

gration (see, for instance, [20, p.119, Theorem 1]) applied to the above inequality
gives that

Il ay = [ e,

N PR (7.30)
—141_L
< NH/ t—s| 720 lg(s, )|, ray lo<s<r ds

< N||9||Lp(RdT)7

Lpy (R)
where N = N(d, o, p, po)-
To estimate K 2, for both cases

1= (d+2/a)/p> —(d+2/a)/po and 1-(d+2/a)/p=—(d+2/a)/po,
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similarly as in Case 1 for K ;, we have

R P (LRI AT .
£, me) dA

H ( .2>
AT/ o000 (7.31)
€
SN”f”Lp(R%)/ A (5 3)
0

€

24,d

< N/ ATHHa Y
0

_ N2t E (s )

where 1+ d/pO - d/p+ (1/]70 - ]_/p)2/0[ >0and N = N(dvavp7p0)'

The estimate of Ky is almost the same as K ; with Vu and 7 in place of g and
|H|, respectively. If 1 — (d +2/a)/p > —(d 4+ 2/a))/po, by following the calculation
in Case 1 for K, we have

< Neltd/po=d/pt(1/po=1/p)2/e| Dy (B> (7.32)
= pP\T

111, ety

K2z, me)

where N = N(d,a,p,pp). If 1 — (d+2/a)/p = —(d + 2/a)/po, we follow the
calculation in Case 2 for K ; to get

1Kz, ) < N Dullz, @g), (7.33)

where N = N(d, o, p, po).-

From the estimates (7.32), (7.33) for K3, and the estimates (7.29), (7.30), (7.31)
for K11 and K; o along with (7.22) and (7.23), we obtain the inequality (7.18),
which implies (7.17) by the choice of, for instance, ¢ = 1. In particular, if 1+ (d +
2/a)/po = (d + 2/a)/p, the inequality (7.18) becomes

el ey < Ve lullz, @) + Nellflo, @y + N (1Dulz,ze) + 9z, ze) ) -

Minimizing the right-hand side with respect to € > 0, we arrive at (7.20). The
theorem is proved. O

Corollary 7.6. Let a € (0,1), T' € (0,00), 0 < r < R < 00, and p,py € (1,00)
satisfy po > p and (7.16). For u € ’H;‘y’é ((0,T) x Br), we have

lullL,, (0,m)xBr) < Nlullyer (0.7)xBr):
where N = N(d,a, p,po, 7, R).

Proof. The proof is the same as that of Corollary 7.4 with C7%/%:7 replaced by
Ly,. O
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