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ABSTRACT. We consider elliptic equations and systems in divergence form with
the conormal or the Robin boundary conditions, with small BMO (bounded
mean oscillation) or variably partially small BMO coefficients. We propose a
new class of domains which are locally close to a half space (or convex domains)
with respect to the Lebesgue measure in the system (or scalar, respectively)

case, and obtain the WP1 estimate for the conormal problem with the homo-

geneous boundary condition. Such condition is weaker than the Reifenberg
flatness condition, for which the closeness is measured in terms of the Haus-
dorff distance, and the semi-convexity condition. For the conormal problem
with inhomogeneous boundary conditions, we also assume that the domain is
Lipschitz. By using these results, we obtain the WZ} and weighted WZ} esti-
mates for the Robin problem in these domains.

1. INTRODUCTION

In this paper, we consider second-order elliptic equations and systems in diver-
gence form

Di(af’Dju’) = Dif +¢* i Q, (1.1)

where Q € R? is a bounded or unbounded domain. Here the unknown is a vector

(u®)™_; and a typical point is x = (x1,...,24) € R% We assume the strong

ellipticity condition: for some x € (0, 1] and for any = € R?,
apf (2)€0e] > KlE? VE=(6) €RP™ and [aff ()] <k (1.2)

Let n = (n1,...,nq) be the outer normal direction on 9. We are interested in two
types of boundary conditions: the conormal boundary condition

aijDjuBni = ffn; +¢“ on 09, (1.3)
and the Robin boundary condition
a%ﬁDjuﬁni +4*fuP = fon;  on 9. (1.4)

For the Robin problem, we impose the following non-degeneracy condition on y*# =
2B (z): for some o € (0,1) and E C 99 with |E| > 0,

Y > P on EC9Q YneR™, |y¥F| < Tt (1.5)
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For the conormal problem, we also assume the necessary compatibility condition

/mtp“:/Qg“’ (1.6)

which is not needed for the Robin problem.

The L, estimates for elliptic equations with the conormal or the Robin boundary
condition have been studied extensively in the literature. See, for instance, [3, 8,
24, 26] and the references therein. The novelty of our results below is that the
domain 2 can be very irregular.

The conormal problem for second and higher order elliptic systems in Reifenberg
flat domains was studied in [8]. Roughly speaking, in all small scale the boundary
of a Reifenberg flat domain is trapped in a thin disc. The leading coefficients are
assumed to be of variably partially small BMO, i.e., they are merely measurable in
one direction and have small mean oscillation in the orthogonal directions in each
small ball, with the direction allowed to depend on the ball. We note that such
class of coefficients was first introduced in [18]. We also refer the reader to [3] for
an earlier result about scalar equations with small BMO coefficients, and [13] for
elliptic equations and systems with symmetric small BMO coefficients in Lipschitz
domain when p is in restricted ranges, as well as [24] for a weighted estimate for
scalar elliptic equations with symmetric small BMO coefficients in bounded semi-
convex domains.

This paper is motivated by recent work [26], where among other results the
authors obtained the weighted VVp1 estimates for the Robin problem of scalar elliptic
equations with symmetric and small BMO coefficients in bounded C' or semi-
convex domains in R% d > 3. Recall that a domain is semi-convex if and only
if it is Lipschitz and satisfies the uniform exterior ball condition. The proof in
[26] relies on the Moser iteration as well as a reverse Holder’s inequality for Du.
Especially, the authors used a reverse Holder’s inequality for the non-tangential
maximal function of Du on 9 for a harmonic function w satisfying the Robin
boundary condition established in [23, Theorems 1.2 and 3.2]. The proofs of the
latter two theorems are based on the estimates of the fundamental solution of the
Laplace operator and a solvability result obtained in [19, Theorem 4.3]. Another
important ingredient of the proof is [26, Theorems 3.1], which is in the spirit of a
level set argument originally used in [4]. See also, for example, in [3, 22, 8].

The objective of this paper is twofold. First, we generalize the results in [3, 8, 24]
for elliptic equations and systems with the conormal boundary conditions to more
general domains. For elliptic systems with the homogeneous conormal boundary
condition, we assume that in small scale 0f2 is locally close to hyperplanes with re-
spect to the Lebesgue measure in R%. As to the coefficients, similar to [8], we impose
the variably partially small BMO condition. See Assumption 2.1 for details. Our
condition on {2 can be even weaker for scalar equations with symmetric coefficients:
in small scale it is locally close to convex domains with respect to the Lebesgue
measure. However, in this case, we additionally impose the small BMO condition on
the leading coefficients. See the WZ} estimates and solvability in Theorems 2.3 and
2.14. Such conditions are weaker than the Reifenberg flat condition used in [3, 8],
where the flatness of 0f) is measured in terms of the Hausdorff distance. For the
conormal problem with inhomogeneous boundary conditions, we assume that the
domain is also Lipschitz so that the trace and extension operators are well defined.
See Theorems 2.6 and 2.15. This is also weaker than the C' and the semi-convexity
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conditions used, for example, in [25, 24]. In the proof, to deal with the nonsmooth
boundary 92 we adapted a reflection argument used in [8] with a new observation
that to estimate certain error terms arising from the reflection, it suffices to have a
small measure condition instead of the flatness condition. For scalar equations, we
also exploit a local Lipschitz estimate in [2] for harmonic functions satisfying the
Neumann boundary condition in convex domains.

Second, we extend the result in [26] for the Robin problem to elliptic equations
and systems with small BMO or variably partially small BMO coefficients in do-
mains satisfying the same conditions as in the conormal case. See Theorems 2.8
and 2.16. Similar to [26], a key ingredient of our proof is a reverse Holder’s in-
equality for the Robin problem with homogeneous right-hand side. See Lemma 4.6.
However, our proof of such reverse Holder’s inequality is very different from that in
[26]. In particular, we do not use the Moser iteration which is not valid for elliptic
systems, or any non-tangential maximal function estimates. Instead, we appeal to
our results for the conormal problem (Theorems 2.6 and 2.15) and use a delicate
decomposition and localization argument. Given the corresponding results for the
Dirichlet problem (see, for instance, [7]), it seems to us that for the conormal or
Robin problem the domain under consideration can be less regular.

For simplicity, in this paper we choose not to consider lower-order terms. Our
results can be readily extended to elliptic systems of the form

Di(a%ﬁDjuﬁ + 0208 + 62 D’ + PuP — Mu® = Dife + g% in Q,
(a?jﬁDju*B + 0220 n; = [P0+ @ on 89,
when b?ﬂ , E?B , and ¢*? are bounded and A > 0 is sufficiently large constant. In
the case of scalar equations, we can take A = 0 under proper sign conditions. See
[8, Theorems 2.4 and 2.6] for details. Similar extensions can be made to the results
about the Robin problem.

The remaining part of paper is organized as follows. In the next section, we
state two groups of the main results: first for elliptic systems and then for scalar
equations. In Section 3, we prove the estimates and solvability for the conormal
problem of elliptic systems. Section 4 is devoted to the proof of Theorem 2.8, which
is regarding the estimates and solvability for the Robin problem of elliptic systems.
In Section 5, we deal with scalar elliptic equations with symmetric coefficients in
more general domains.

Notation. Suppose Q@ C R? is a domain and p € (1,00). For a point z =
(1,...,2q) = (2, z4), we define

Q) =QN Br(z), Bu(a')={y Iy —2'| <r}.

We use the following notation for the average in terms of the Lebesgue measure:
for a set B with finite Lebesgue measure |B], let

<f>3=7éf=ﬁ/3f.

Define the space Lllj to be the collection of all functions u € Ly 10c(2) with Du €
L,(92), equipped with the semi-norm || Dul|z, (). We also consider its quotient space
L}) = L}D /¢, for which we identify two functions that only differ by a constant. Then
I'/zl, equipped with || Dul[z, ) is a Banach space. For details, see [21, Section 1.1].
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It is worth mentioning that, when the Poincaré inequality
lu — (Wellr, @) < N|[DullL,@
holds, the space Lzl) can be identified with the usual Sobolev space
W, (@) n{(v)a = 0}.

The weighted Sobolev spaces will also be discussed in this paper. A weight w
is a non-negative locally integrable function. For p € (1,00), w is said to be of
Muckenhoupt A, class if

p—1
[w]a, := sup <][ w) (7[ w_l/(p_l)> < 00,
BCR? \JB B

where the sup is taken over all balls. For any measurable set F and a measurable
function u defined on €2, we denote

o(8) = [ @t Jols,. = ( [, |u<x>pw<x>dx)l/p.

The weighted Sobolev space Wplw is defined similarly. The weighted spaces with
the weight w =1 are the same with the usual L, and VVp1 spaces.
For a number p € (1,0), we denote

d
2L pe (4 00),
* _ _d
p = 1"‘5 p—ﬂ,
1 pe (1, 3%4),

where € can be any fixed positive number.
For elliptic systems, we sometimes use the following notation for vector-valued
functions

wi=(u)oly, o= (an g:=(9")am, and @ i= (")l

2. MAIN RESULTS

2.1. Results for elliptic systems. For elliptic systems, we consider domains that
are 6-close to hyperplanes (Assumption 2.1 (b) below) and variably partially BMO
coefficients—those coefficients that are measurable in the “almost normal” direction
while BMO in the other variables.

In Assumption 2.1 as well as Assumptions 2.12 and 2.13 below, Ry and M are
fixed constants, and € is a small parameter to be determined later.

Assumption 2.1 (0). There exists a constant Ry € (0,1] such that the following
hold.

(a) For any = €  and any r € (0, Rg] such that B,(z) C €, there is an orthogonal
coordinate system y = (y', y4) depending on x and r such that in the new coordinate

system, x = 0 and
1,

dy < 6. (2.1)

a‘(i);'ﬁ (yl7 yd) - ]é/ a?jﬁ(z/u yd) dZ/

s
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(b) For any x € 9Q and r € (0, Ry, besides (2.1) we also require that in the new
coordinate system,

Qf={y: ¥ €B., 0<ys < Mr} CQn(B. x (—=Mr, Mr)),

QN ((—oc0,—Mr) x BL.) =10,

0] <0|B.|, where Q :={y € B., —Mr <yq <0, y€Q},
where M > 1 is a constant which can be chosen to be independent of x.

Assumption 2.1 (b) is a generalization of the usual small Reifenberg flat condi-
tion. Here the closeness is measured in terms of the Lebesgue measure instead of
the Hausdorff' distance. Note that the Reifenberg flat condition (see, for instance,
[7, 8]) implies Assumption 2.1 (b).

Definition 2.2. We say that a function u € L;(Q),p € (1,00), is a weak solution
to the problem (1.1)-(1.3) if for any ¢ € C>(Q),

_/Qa/;');'BDjuBDi(ba = —/inaD@a-i-/an(éa —/{m ©*P°. (2.2)

Our first result is an a priori estimate for the problem (1.1)-(1.3) with zero
non-divergence source term g = 0 and homogeneous boundary condition ¢ = 0.

Theorem 2.3. Suppose that Q is a domain in R? (not necessarily bounded), p €
(1,00), and u € L})(Q;Rm) is a weak solution to (1.1)-(1.3) with f; € L,(Q?) and
g =@ = 0. Then we can find a sufficiently small 0y depending on d,m,rx, M, and
p, such that if Assumption 2.1 (6y) is satisfied, then we have

|Dulls, o < N (BeYP PIDull, o) + 1Fill o)) - (2.3)
where N = N(d,m, k, M, p).
We give the following remark on the solvability of (1.1)-(1.3) with g = ¢ = 0.

Remark 2.4. (a) The L% unique solvability follows from the Ly estimate by testing
the equation by v and the Lax-Milgram lemma.

(b) Under the assumptions of Theorem 2.3, if we further assume that || < co and
the local Sobolev-Poincaré inequality with index (2,2 — ¢) holds for some € > 0,
i.e., there exists some constant Nq ., such that for any v € Ly N Ig_s, all small
scales 7 < Ry, and x € Q,

o\ /2 1/(2—¢)
<][ v— ][ v‘ ) < Nq.r <][ |Dv|25) , (2.4)
Q. (z) Q. (z) Qo (z)

then we have the unique Lzl) solvability for any p € (1,00). Furthermore, the lower-
order term ||Du| 1, (o) on the right-hand side of (2.3) can be dropped. Indeed,
from the Caccioppoli inequality, (2.4), and Gehring’s lemma, we get a local higher
integrability of Du for L%—solution, which together with the proof of Theorem 2.3
below shows that, for any p € (2,00), the Li-solution in (a) is also in Lzl) The
solvability when p € (1,2) then follows from a duality argument. For more details,
see Section 3.3.

The so-called Jones flat domains in [16] are local WI} extension domains for any
p € [1,00), which further implies (2.4). In this case, we can take the index as in
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the Sobolev-Poincaré inequality: 2 — e = 2*. For a more concrete example, see [5,
Theorem 3.3] for the Reifenberg flat domain.

Now we turn to a discussion on bounded Lipschitz domains.

Definition 2.5. A domain  C R? is called a Lipschitz domain (with Lipschitz
constant M), if there exits a constant Ry > 0, such that for any z € 9, we can
find a Lipschitz function v : R¥~! — R with |D1| < M and a coordinate system
y = (v',yaq), in which

Qp, () = {y€ Br, () 1 ya > ¥(y')}.

Note that any Lipschitz domain is an W) -extension domain for p € [1,00] and
the trace operator W, (Q) — Wpl_l/p((’?Q) is well defined.

In this case, we consider the solvability in W, () of (1.1)-(1.3) with general
nonzero g € L,-(Q2) and ¢ € Wp_l/ P(09Q) satisfying the compatibility condition
(1.6). Here W;l/p(aﬁ) denotes the dual space of W;,/p(aﬂ), where p’ =p/(p—1).

Theorem 2.6. Suppose that 2 is a bounded Lipschitz domain and p € (1,00). Then
we can find a sufficiently small g > 0 depending on (d,m,r, M,p), such that if
Assumption 2.1 (o) is satisfied, the W, well-posedness holds for the problem (1.1)-
(1.3). Namely, for any f; € L,(), g € Lp-(R), and ¢ € Wp_l/p(aﬂ) satisfying
(1.6), there exists a unique solution u € WZ} (4 R™) with mean zero, satisfying

[ullwio) < NZHfi”Lp(Q) + Ngllz,. @ + Nllelly—1r 50

where N = N(d’ m, kK, M7p7 RO) |Q|)
The weak formulation of the Robin problem (1.1)-(1.4) is given as follows.

Definition 2.7. We say that a function u € VVp1 (Q),p € (1,00), is a weak solution
to the problem (1.1)-(1.4) if for any ¢ € C*°(Q),

—/a%BDjuﬁDiqﬁa—/ Vaﬂu6¢a:_/ffDi¢a+/ga¢a~
Q oN Q Q

For the Robin problem, we prove the following result.

Theorem 2.8. Suppose that Q is a bounded Lipschitz domain, p € (1,00), and
w e Ay. We can find a sufficiently small 0y depending on d,m,x, M,p, and [w]a,,
such that if Assumption 2.1 (0y) is satisfied, then we have the Wp{w well-posedness
for (1.1)-(1.4): for any f; € L, and g € Ly e, there exists a unique solution
u e W), (S5R™) satisfying

lullws @) < N Y I Fille,u@ +Ngle, o)

where the constant N = N(d,m,x, M,p, Ro,v0,Q, E,[w]a,). Here the exponents q
and a can be taken from either of the following two cases.

(a) ¢ = py := m(< p) and a = p,/p, where p > 1 depends on [w]a,
and can be any constant satisfying Lemma 4.1(b), which is usually close to 1 for

general w € Ap.

_ dp . d—1
(b) ¢q= T and a = g
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Remark 2.9. Let us make some remarks on the index p,. By Holder’s inequality,
we have Ly, ,(Q2) C L, wv./»(§2). Hence the theorem holds for g € Ly, ,(2). Also,
when w = 1, we can take p = p. In this case, p, = p*, which recovers the unweighted
estimate in Theorem 4.4. Note that we always have p,, > p*.

Remark 2.10. The boundedness of v in Theorem 2.8 can be generalized. If the
weight w is in the reverse Holder class RH, (see the definition after Lemma 4.1),
then for the case (a), it suffices to assume

{Lps<d1>+5 when ps/(s —1) > d
ye

5—1)d

(2.5)
Lg_1+e when ps/(s — 1) < d,

where € can be an arbitrarily small positive number. For the case (b), we also
require conditions coming from the duality, say, (2.5) with (p,s) replaced with
(p',s'") where 1/p+1/p/ =1 and s is the constant such that w=?/? € RH,. Note
that s and s’ are typically slightly bigger than 1.

When w = 1, we can take s = s’ = co. Except for an ¢ loss in the case
when p > d, the condition (2.5) is consistent with the one in Remark 4.5 for the

unweighted solvability and estimate.

Remark 2.11. In the above theorems, when the leading coefficients are of small
BMO (in all variables, instead of partial BMO), the strong ellipticity condition can
be generalized to the Legendre-Hadamard condition, i.e., the condition (1.2) holds
with £* being of the form (;n®, where ¢ € R? and n € R™.

2.2. Results for scalar elliptic equations. The last part of this paper will be
devoted to the scalar equation

Clearly, the scalar equation is a special case of the aforementioned elliptic system.
We prove that the assumption on the 9€2 can be relaxed when the leading coefficients
are symmetric and of small BMO. Let us assume that

aij&& > KIEP VEERY, ay| < k7Y ay = aj.

Assumption 2.12 (6). There exists some Ry > 0 such that

sup f laij(y) — (aij) B, (z)nal dy < 0.
z,0<r<Ro J B,.(z)NQ

In the following assumption, instead of a (d — 1)-dimensional hyperplane, 92 is
locally close (in the sense of the Lebesgue measure) to the boundary of a convex
domain.

Assumption 2.13 (). For any z € 9Q and r < Ry, there is an orthogonal
coordinate system in which x = 0 and

QF i={z: 2’ € B, ¥(z') <wmqg < 2Mr} C QN ((—Mr,2Mr) x B.),
Q1 ((—s0, ~Mr) x B) =0,
Q.| <0|B.|, where Q ={z: 2’ € B., —Mr <x4<9(z'), z€Q},

where 1 is a convex function (with Lipschitz constant say M/10 in the chosen
coordinate system).
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It is easy to check that the semi-convex domains considered in [25, 24] and [26]
satisfy Assumption 2.13 with vanishing constant, i.e., for arbitrarily small 8 > 0,
we can find Ry(6) > 0 such that Assumption 2.13 () is satisfied. Note that in
the theorems below, the choice of small 6 is independent of the constant Ry, which
means that our theorems hold for semi-convex domains.

As in the system case, we first consider the conormal boundary condition

ai;Djun; = fing+¢ on 0OS. (2.7)

In the same spirit as Theorems 2.3 and 2.6, we prove the following two theorems
regarding the conormal boundary value problem.

Theorem 2.14. Suppose that  is a domain in R (not necessarily bounded),
p € (1,00), and u € L(Q) is a weak solution to (2.6)-(2.7) with f; € L,(Q) and
g =@ =0. Then we can find a sufficiently small 6y depending on d,x, M, and p,
such that if Assumptions 2.12 (0y) and 2.13 (0y) are satisfied, then we have
d(1/p—1
|Dullz, @) < NRGV 1 Dull @) + il ).

where N = N(d, k, M, p).

The discussions on the solvability is the same as in Remark 2.4, which we will

omit here. As before, when € is also a Lipschitz domain, we can include non-zero
@ and g, with the compatibility condition

/mw:/ﬂg (2.8)

Theorem 2.15. Consider the problem (2.6)-(2.7) on a bounded Lipschitz domain
Q. For anyp € (1,00), we can find a sufficiently small 6y depending on (d, x, M, p),
such that if Assumptions 2.12 (0y) and 2.13 (0y) are satisfied, the Wp1 well-posedness

holds. Namely, for any f; € L,(R), g € L,=(Q), and ¢ € Wpfl/p(ﬁﬂ) satisfying
(2.8), there exists a unique solution u € W, () with mean zero, satisfying

lullwa@) < Nl fillz, @) + I9llL,- @) + 1@lly=170 90y
where N = N(d, k, M, p, Ry, |Q|) is a constant.
We also consider the Robin boundary condition
ai; Djun; +vyu = fin; on 0Q. (2.9)
For the boundary operator, we assume for some o € (0, 1],
¥>v on ECoQwith |E| >0, <7,

Theorem 2.16. On a bounded Lipschitz domain, we consider the problem (2.6)-
(2.9). Foranyp € (1,00), we can find a sufficiently small 0y depending on d, k, M, p,
and [w]a,, such that if Assumption 2.12 (6y) and 2.13 (6y) are satisfied, then we
have the Wp{w well-posedness for any we Ap,. To be more specific, for any f € Ly,
and g € Ly e, there exists a unique solution u € Wz}w satisfying

ullwy @) < Nl fillz, o) + 192, 0 @),

where the constant N = N(d, k, M, p, Ry, 7,2, E, [w]a,), and q and a can be taken
as in Theorem 2.8.
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3. ELLIPTIC SYSTEMS WITH CONORMAL BOUNDARY CONDITIONS

3.1. Decomposition lemma. The key step in proving Theorem 2.3 is the follow-
ing decomposition lemma.

Proposition 3.1. Suppose that Assumption 2.1 (0) is satisfied with some 6 € (0,1)
and for some q € (1,00), u € Lé(Q;Rm) is a weak solution to (1.1)-(1.3) with
fi € Ly(Q) and g = ¢ = 0. Then, for any p € (1,q), r € (0, Ry), and z € Q, we
can find non-negative functions V,W &€ Lﬁ(Qr/(AL\/EM)(‘r)) satisfying |Du| < V+W
and

py\1/P 1/p—1/q a\l/a py\1/P
W20+ rouny () < NO (|1Du|) gy + NEP)S (3.1)
1
1V Lo, vnny o)) < N(ID|D) %) + N(FD)E, (3.2)

where F'= 3%, |f| and N = N(d,m,x,M,q,p) > 0.

Proof. The proof is similar to that of [8, Lemma 5.1] even though our assumption
on the boundary is more general. Below we only give a sketch of the proof. Let
c=1/(vdM) < 1. We discuss three cases.

Case 1: the interior case B, 4(x) C Q. The construction is the standard
freezing coefficient procedure, in which no boundary condition is involved. See for
example [7, Lemma 8.3 (i)].

Case 2: z € 09). We will focus on this case. Here the smallness also comes
from the approximation of the boundary. We choose the coordinate system as in
Assumption 2.1.

We first construct W using the reflection technique in [8]. In the following, we
denote

L. = 0% n{y? =0}.
A direct computation shows that u satisfies
{Dl(aZBD]Uﬁ) = Diﬁq in Q+

cro
d%ﬁDjuﬁni = fon; on I,
where
Zaf aBq 1 ’
a%] - a (yd) a’ij (y 7yd) dy
B1.(0)
and {f?} are defined as follows. Fori=1,...,d — 1,

Je = 12+ Dil(@ = a5 )Dju’) + gy e, (1 = ai D) 0 T(y) )
and
J§ = 1§ + Dal(@y = a3 )Du’) = 1ycqn, (£ = af’ D) 0 T()),
where
T(y',ya) = (¥, —ya)-
To see this, we can take any test function ¢ € C*(Q} UT..) and construct a

legitimate test function for the original problem on QN (B.,. X (—Mer, Mcr)) with
conormal boundary condition on 9Q N B, x (—=Mer, Mer) by

+
£ = 10) in QF
poT in Q,

For details of this computation, we refer the reader to [8, Lemma 4.2].
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Now we find a function w € W (€,) satisfying

Di(d%BDij) = Dif_'ia in er’ (3 3)
d%ﬂDjw'Bni = fon; on I, .

with Dw being controlled. Indeed, this can be achieved by considering an extended
and mollified problem. Let B be a smooth domain which is symmetric with respect
to the y4-hyperplane, with

B! x (=Mecr,Mcr) C B € Bj,, x (=2Mer,2Mer).
Next, we construct an extended problem on B with coefficients d%ﬁ . First, let
a®’ = a2’ on QF . and in B, x (—Mer,0),

1] (%] cry
iy g o L85 Cv) dj<dori=j=d, (3.4
A —a;f(~ys) i=dj<dori<dj=d.

Near the boundary of B, simply let &%ﬁ be §;;045. In between, let d?jﬁ changes
smoothly. Clearly, we can construct in the way that the oddness and evenness in
(3.4) and the ellipticity condition (1.2) are always satisfied. To extend f, we first
take the even/odd extension with respective to the yg-hyperplane to B.,.x (—Mer, 0)
for {f;}icq and fq, respectively. In B\ (B, x (—=Mer, Mcr)), we simply take the
zero extension. Now we solve

{Dl(dZﬂD]wﬂ) = Diﬁ-a in B

- 3.5
w* =0 on OB. (3:5)

According to [7, Theorem 8.6 (iii)], there is a unique solution w = (w*)7_; to (3.5)
in W3 (B;R™), with

[Dwly, ) < N(dms i, 5) 31 (3.6)
where the fact that the constant N is independent of r can be seen by using a
scaling argument. Clearly, the solution w is even in the y?-variable, from which

we can deduce that (3.3) is satisfied. Furthermore, from (3.6), Holder’s inequality,
Assumption 2.1 (), and our construction,

(IDwl?) 7 < N(feP)YE

p\1/P 5\1/D _« a p\1/P
<N (U + (lggayeas Dul)g? + (@5 — i )DlP)E)  (3.7)

ol o
ap\1/p 5 1
<N (121167 + /7= Duf )

Now, v := u — w satisfies

Dya}’Djpf)=0 in Qf,

d%ﬁDjvﬁni =0 on I'.,.
Since the problem has coefficients depending only on y¢, the Lipschitz estimate
holds:

~ 5\1/p
1Doll, ) < N(dom, s, p) (Do) 7 (3.8)

This can be obtained by using [8, Lemma 3.7], where the right-hand side is given
by the L, average. To replace the Lo average on the right-hand side with the L;
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average, we apply a standard iteration argument which involves rescaling, Holder’s
inequality, and Young’s inequality. See for example [14, Lemma 8.18], or (4.8)-(4.9)
below. Now, we define

D QF D QF

W J 1Pl o and Vo PV er

| Du| Q 0 Q.

The estimate (3.1) then follows from (3.7) and Holder’s inequality
”D’U’HLI;(Q;T) < N(errd)1/ﬁ71/qHDu”Lq(Qr(z))' (3.9)
The estimate (3.2) follows from (3.8), the inequality |Dv| < |Du|+|Dw|, and (3.7).
Case 3: z ¢ 0Q and B, /4(xz) N0 # 0. In this case, we find a point y € 0Q

satisfying |z — y| < er/4. Let r1 = (1 — ¢/4)r. By the previous case, we get the
decomposition of u in Q. (y), and V, W satisfy

51/ e 1 p\1/P
(WGP ) < NOVP=Ya(|Dujr)g o+ N(EP)?

cr?

(y

1/ 5\1/5
VL@ 2wy < N(Du|N G ) + NED)G" ).

Finally, it remain to observe that by the triangle inequality,

ch/B(x) C Qcm/?(y)7 QCT/4(‘%') - QCT1 (y)a Qh (y) - QT(x>
The proposition is proved. ]

3.2. Level set argument and proof of Theorem 2.3. Once we have the de-
composition lemma, the proof of Theorem 2.3 is more or less standard by using a
level set argument. More precisely, we prove by deriving that the measure of the
level set of M(|Du|?) decays with a proper rate. Here M is the Hardy-Littlewood
maximal function: for f € Ly 10.(€),

M(f) = sup ]é()lf(y)lﬂady-

x€R >0

Such idea was introduced in [4] and is relied on a measure theoretical lemma in
[17]. In this section, we give a sketch of the proof. For details, we refer the reader
to [8, Section 5] and [6, Sections 5.2, 5.3].

For two constants (p, ¢) with p < ¢ < p to be chosen later, we interpolate the Wﬁl—
estimate and the Lipschitz estimate in Proposition 3.1, by comparing the following
two level sets:

A(s) :={z e Q: (MUP)H/? > s}
and

B(s) :={x € Q: (MUY 4~ V/PH/YM(FP)VP > s},

U:=> [Du® and F:=>» |f].

The decomposition in Proposition 3.1 leads to the following stability-type result.

where

Lemma 3.2. Suppose 0 € Q. Under the same hypothesis of Proposition 3.1, there
exist constants k1 and N depending on d, m, k, p, p, and M, such that for all
k> max{2¥? ki1} and s > 0, the following holds: if for some r < Ry,

1, savarny NAKS)| = NETPOVPIIQ, 00 a0, (3.10)
then Q. soanr C B(s).
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Proof. We prove the lemma by contradiction. Suppose that there exists some y €
Q. avanr N (B(s))¢. Then by definition,

(MUN)V(y) + 0~ PHAMFP) P (y) < s. (3.11)
Furthermore, we can decompose the solution according to Proposition 3.1 to obtain

V and W on BT/(4\/3M) satisfying U <V + W on Br/(4\/EM)v

< Nis, and (WP)YP < NygY/P=Vag, (3.12)

V2B, ovany) < B, (avan)

Choose k1 = 2N;. Now for any point z € QT/(32\/3M) N A(ks), by definition,
M(UP)/P(z) > ks. Furthermore, the condition k > 2%/7 (3.11), and Hoélder’s

inequality guarantee that
N 1/p
(f U7) " > ks (3.13)
B, (z)

can only occur at small scale 7 < r/(16v/dM), since otherwise because B;(z) C
BQT (y)a

\1/P ~ \1/P i
(£, 00)" <2e(f, 7)< 2w <,
BT(Z) B?T(y)

which contradicts (3.13).
Now at such scale, by (3.12),

IWVILwB. @) S WV lLw(B,, g, < k18/2 < ks/2,

so we must have

_ _ N 1/p
MWLz, o D7) 2 (F W) > ks

B.(2)

Since this is true for any z € Qr/(32\/EM) N A(ks), it follows from the weak-type
(1,1) estimate of the Hardy-Littlewood maximal function and (3.12) that

|Qr/(32\/3M) NA(ks)| < ’{(M(Wﬁ]IBT/W/EM)))l/ﬁ(z) > 55/2}‘

W D

Wi,
(ks)?

< Nk—ﬁ@“’a/qlﬂr/(swamh

<N

which contradicts (3.10) and hence finishes the proof of the lemma. O
From Lemma 3.2, we can prove the following decay estimate.

Corollary 3.3. Under the same hypothesis of Proposition 3.1, there exists a con-
stant N = N(d,m, k,q,p, M) > 0 such that for k > {2¥? ki, ko} and

§> 80 1= N‘91/q71/ﬁ||U||L5|BR0/(32\/&M)‘71/ﬁa (3.14)

we have
|A(ks)| < NE~P0'P/9|B(s)],
were ki is the constant in Lemma 3.2 and ko is a constant such that

Nk, Por/p=1/1 < 1/3, (3.15)
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The proof is by the “crawling of ink spots” lemma in [17, Section 2]. Or, one
can refer to the proof of [6, Corollary 5.7] via a stopping time argument. Note that
the condition (3.14) allows us to start the stopping time argument at the radius
r = Ry, while combined with the Lebesgue differentiation theorem, (3.15) means
that such argument would stop at finite time (radius).

As the last step, the L, estimate follows by estimating

/000 |A(s)|sP~ ds. (3.16)

Let us now choose some parameters: fix p = (p+2)/3 and ¢ = (p+1)/2 both lying
between 1 and p, and then we fix k£ to be some constant satisfying the condition in
Corollary 3.3 with 8 = 1, so that it is satisfied for any § < 1. For (3.16), we take
the change of variable s — ks and then split the integral into two parts. For s < s,
we apply the weak-(1, 1) estimate. For s > s¢, we apply Corollary 3.3. From these,
we obtain

/ [A(s)|s? "V ds < Ny RSP PP |U |+ Nz/ kP=P91=P/1|B(s)|sP ds,
0 0

where Ny = Ny(d, m, k,p, M, k,0) and No = Na(d, m, k,p, M). Splitting B(s) as
B(s) € {(MU)Y1 > s/2y U {0~ /PHIM(FP)) VP > s/2)

and using the representation formula for the L, norm, we obtain
IME@IE? < Ny (RSP PP |0IR + |MEP)E? )

+ NakP=POL=Pla | pm(u) |/

where N3 = N3(d,m,x,p, M, k,0) and Ny = Ny(d, m,k,p, M). Now, noting that
Ue€ L,(Q) and p < g < p, we can use the Hardy-Littlewood maximal function
estimate to obtain

1UIE, < N5 (ReTPPIOIE o) + IFIE, ) + Nak =g laur

By Holder’s inequality and Young’s inequality, we can replace the L norm on the
right-hand side with

1
NaRGCPNUIE, o) + 3 o,

where Nj is another constant still depending on (d,m, k,p, M, k,0). Finally, we
absorb the L, norm on the right-hand side by choosing ¢ small enough, noting that
N, is independent of 6.

3.3. Solvability and proof of Theorem 2.6. Before we prove Theorem 2.6, let
us first show how to obtain Remark 2.4 (b). For p > 2, actually having the Sobolev-
Poincaré inequality (2.4) in hand, under the assumptions of Theorem 2.3, instead
of the a priori estimate, we can prove a regularity result: any solution u € L% with
fi € Lp(Q) is also in Lll). The proof is almost the same as that of Theorem 2.3.
First, by (2.4), Gehring’s lemma, and the standard Ly estimate, we can derive the
following reverse Holder inequality: for any z € Q and r < Ry,

(IDuP) 0 < N (D)2, + PP ), (3.17)
where 1 > 1 is a constant depending on d, m, &, p, €, and Nq .. The proof of such
reverse Holder inequality is classical and can be found in [14, Section 6.5] and [6,
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Lemma 3.3]. This improves the regularity by a little bit, from L} to L1 - To further

improve the regularity all the way up to L.Ilj, we apply the level set argument. We
first apply Proposition 3.1 with p = 2 and ¢ = 2u to find V and W. Then, by
(3.17), the estimates (3.1) and (3.2) can be improved:

1/2 — 1/2 1/(2
W) o aue) S NOLTHCO(Du) ) o NP2,

2y1/2 2p\1/(21)
||V||Loo(9r/<s\/aM)(x)) < N(|Du] )Slr(z) +N(F M)Qr(af) :

From this, the aforementioned level set argument shows that u € L;(Q) and
||D’U,||LP(Q) S N(d, m,K,p,E&, NQ,S) (Rg(l/pfl/Q) ||DU||L2(Q) —+ ||F||LP(Q)) .

Furthermore, the ||Du||r, o) term on the right-hand side can be dropped by using
the Lo estimate, Holder’s inequality, and the condition || < oo.

Once we have the unique solvability and estimate for p > 2, the result for
p € (1,2) can be obtained by duality.

Now we are in the position of proving Theorem 2.6.

Proof of Theorem 2.6. We first deal with the nonzero ¢ and g. Let p’ be the
conjugate exponent of p: 1/p'+1/p =1 and (p*)’ be the conjugate exponent of p*.
When p* =1, (p*)’ = co. For each «, consider the linear functional ¢, defined by

(0 = [ o0 [ o
a0 Q
Due to the embeddings

1-1/p’
Wh(Q) = Wy VP (09) and  WL(Q) < Lgyey ()

/ w“=/g“7
o0 Q

we know that ¢ is well-defined and bounded on the homogeneous space Lzl), Q)
equipped with the norm Zi||Di¢HLP/(Q). According to [11, Theorem I1.8.2], which
is obtained by the Hahn-Banach theorem and the Riesz representation theorem, we
can find functions hY € L,(£2), such that

and the compatibility condition

€)= [ heDio.
Q
Furthermore, we have the bound

ZHh;‘XHLP(Q) = ||£||(L:),(Q))’ < N\\@a||W;1/P(351) + NHQQHLT,*(Q)-
Noting the weak formulation (2.2) and the fact that on a Lipschitz domain the
space I'/;, can be identified with the space W, (Q) N { [, ¢ = 0}, now we only need
to deal with (1.1)-(1.3) with g = ¢ =0, and f, replaced with f, + h;.
After this reduction, the situation is the same as Theorem 2.3. The estimate
and the solvability follows from Remark 2.4. (]
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4. WEIGHTED ESTIMATE FOR ROBIN BOUNDARY VALUE PROBLEMS

4.1. Properties of A, weights and an interpolation lemma. In this section,
we summarize some properties of A, weights which will be used in this paper. The
properties in Lemma 4.1 are standard. See for example, [15].

Lemma 4.1. Suppose that w € A, for some p € (1,00). There exist constants s
and p depending on d, p, and [w]a,, such that the following hold.

(a) There exists a constant s > 1 depending on d, p, and [w]a,, such that for any

ball B C Ry, »
(]i w(zx)® dx) < Nwa(x) dx, (4.1)

where N = N(d,p, [w]a,)-

(b) There exists a constant p € (1,p) depending on d, p, and |[w]a,, such that
w € Ap/ﬁ

(c) Letp' be the conjuga/te exponent of p, namely 1/p+1/p' =1, then w™P /P € Ay,
where [w™P /Py, = [wmp/p.

(d) For any constant § € (0,1), w® € Aspy1—s with

§ 5
[w ]A5p+175 < [W]Ap'

A weight w satisfying (4.1) is said to belong to the reverse Holder class RH,
where the optimal constant N is usually denoted to be [w]|rm, -
The second lemma includes two embedding results for weighted spaces.

Lemma 4.2. Suppose that w € A,, for some p € (1,00).
(a) For any q € [p,00), we have the embedding

qu/(sfl),loc — Lq,w,loe — Lq/p,lc167

where s > 0 can be any constant satisfying (4.1).
(b) For any u € W;},w we have the following Poincaré type inequality

=€l sy @) < N(dyp, M, (W] a,) QY |()] V0| Dull, (62

where )
c=—4u or —— [ uw.
]é w(€2) /Q

The first embedding can be proved simply by Hoélder’s inequality and the defi-
nition of A, weights. The second embedding was established in [9, Theorem 1.5].
See also [26, Lemma 5.9].

The idea of proving the W;’w well-posedness is again by interpolation. Compared
to Section 3.2, here we need a modified level set argument which allows us to include
the weight w. For brevity, we state a ready-to-use interpolation theorem, which can
be simply derived from [26, Theorem 3.1]. Recall from Lemma 4.1 that for any A,-
weight w, we can find p € (1,p) and s > 1 depending on d,p, [w]a, such that
weAyyandwe RH.

Theorem 4.3. Let Q C R? be a bounded Lipschitz domain with parameters Ry and
M, pe(l,00), we Ay, and F be a non-negative function defined on 2. Let p1,
P2, 3, and v be parameters satisfying

P2
1—v

s
p1<p, ve,IL), p3>p71, and < p.
P
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Suppose that U € Ly, () is a non-negative function such that for any x € Q and
any v < Ry, we have a non-negative decomposition U < V + W in Q,.(x) with
estimates

1/p1 1/p2
1/ps
(f V”3) gcl][ un e |92T(x)\”f Fp2
Q,(x) Qo () Qo ()

and
1/P2
1/P1
(][ Wpl) <Gy <92r($)l” F’”) :
Qr () Qar ()

where C1 and Co are constants independent of U, F, x, and r. Then if F €
Lpoywpo/p, we have U € Ly, ., with

o [ < 1)l [ )

Here pg is a constant given by 1/pg = 1/p+ v/p2 and N is a constant depending
only on ROv Mv Cl, CQ; dap13p23p7 and [W]Ap'

4.2. Unweighted L, estimate and a reverse Holder inequality. As a prepa-
ration, we first prove the unweighted estimate. In this case, we consider a more
general Robin boundary condition

a%ﬁDjuﬁni +7PuP = fen; + 0% on 99, (4.2)
where ¢® € W, /?(89).
Theorem 4.4. Under the assumptions of Theorem 2.8, we have the Wz} well-
posedness of (1.1)-(4.2) for any p € (1,00). In other words, for any f; € Ly,

g € Ly, and ¢ € W;””(aﬂ). there exists a unique solution w € W, (€;R™),
satisfying

lullwca) < N (X 1Sl + 9], @ + 12l /oon, )

where N = N(d, m,k, M,p, Ry, 7,9, E) > 0.
We prove this by using the estimate for the conormal problem.

Proof. When p = 2, the result is standard and no smallness condition on 6 is
needed. It follows from the Lax-Milgram lemma, the Sobolev embedding W3 () <
Laqj(a—2)(2), the trace lemma, and the Friedrichs inequality: for v € W3 and
E C 09 with |E| > 0, there exists some constant N = N(d, E, ) such that

Lr < ([ [ ).

The above Friedrichs inequality is classical. See, for example, [19, Appendix| and
10].

| L‘or the case when p > 2, we apply a bootstrap argument. Let 6 be small enough
such that Theorem 2.6 with the integrability exponent between 2 and p holds.
First, since f; € Ly(0Q) C Ly(09), g € Lp+(Q) C Ly+ (), and o € W, /7(8Q) C
W;l/z(aQ), we can solve for a weak solution u € W} (). By the trace theorem
and embedding,

u € WH(Q) < Wy ?(09) — W, 1(09),
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where ¢ > 2 satisfying —1/2+ (d —1)/2 = 1/q+ (d — 1) /q. Using Theorem 2.6, we
can improve the regularity of u to Wélin (o, q}(Q) with the corresponding estimate.
Repeating this if needed, in finite steps we reach the required WZ} regularity.

As usual, the case when p € (1,2) can be obtained by duality. The theorem is
proved. (I

Remark 4.5. For the unweighted WI} solvability and estimate, the boundedness on
~ can be generalized to

e Lya-1)/4 when p > d
Lg 14c when p < d,

where € can be any positive number.

Next, we prove a local result: a reverse Holder inequality for the Robin problem
with homogeneous right-hand side. This plays the key role in the proof of Theorem
2.8. Compared to the localization argument for conormal problems, here we do not
have the freedom of subtracting any constant ¢ from a solution. In the proof, we
instead subtract a function which is obtained by solving a conormal problem with
an inhomogeneous boundary condition.

Lemma 4.6. Letp € (1,00), z9 € 9Q, andr € (0, Ro/2). Suppose thatuw € W, (2)
is a weak solution to (1.1)-(1.4) with po > 1 and f, = g =0 in Qa.(x0). Then we
have

1 1
([ul) g% oy + (IDu) " < N(Ju)ay, ) + N(Dul)as, (a0)
where N > 0 depends on d,m,k, M,p, Ry, ||, and ~o.

Proof. Without loss of generality, we assume that zog = 0 and p > 2. By using a
bootstrap argument similar to the proof of Theorem 4.4, we know that v € Wp1 ()
for any 1 € (0,2r). In the following, for r > 0, denote

A, :=900NB,.

We take a smooth cutoff function ¢ € Co(Bz,) such that ( = 1 on Bs, /. Take
another function p® € L,(99) such that supp(¢®) C Az, * = y*Pu’¢ on Ag,,

[ =00 a1 < N
Denote ¢ := (¢%)q. Let w = (w*)q € W, (4 R™) be a solution to
Di(a%BDjw*B) =0 in Q
with the inhomogeneous conormal boundary condition
a%ﬁDijni =—p* on 99,

and satisfies (w)
and satisfies

Q = (u)q,. ,,. According to Theorem 2.6, such solution exists
3r/2 3r/2

HDwHLp(Q) < N”SO”WZjl/P(aQ)'
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Noting that ¢ has mean zero and has support on As,., we have
= sup

/Agrsowﬁ ¢/A3T¢~<¢—<¢>A3r>

¢ — (¢)A3r ||Lpf(A37~)

lelly -1 90 = sup
W OO gy

;//p(/\sr):

1

< Nsipl\SDHLp(Aav-)

= Nr'/?lell L, (s (4.3)
where ||- l[4i-1/» is the usual homogeneous semi-norm for the fractional Sobolev space.
In order to obtain (4.3), we used the following fractional Sobolev inequality

”f - (f)Aar ||Lp/(A-31') < N(d7 M,p/, S)TSHfHW;, (Asy) (44)

and Holder’s inequality. The inequality (4.4) can be found, for example, in [1].
Hence,

1DwllL, @) < NePl@lL, ) < N Y I Pu’ L, (s

Since (w)q,, ,, = (4)q,,,,, by the Poincaré inequality and the trace lemma with a
scaling, for any ¢ € (0, 1), we have

[wllwi(as,,.)
< ||Dw||Lp(er/2) + [lw — (w)ﬂsr/z ”Lp(er/z) + H<w)Q3T/2||LP(Q3T/2)
< NTl/pH’YaBUHCHLp(é’Q) + Nrd/pid”u”Ll(er/z)

< NeP (Dl + 7 Ly(an) + N7 1, 0y, )

< (DUl 1, @) + [l @) + N7 (1| Dullz, 0, + [0l 24010

< erl| D, () + N(E)rY? 4 (rl|Dul £y ,,) + 2] £y (@20)) (4.6)
where ¢ > 1 satisfies
111
g d\ p '

Here in (4.5) we also used Holder’s inequality and Young’s inequality, and in (4.6)
we used the interpolation inequality.
Let v := u — w, which satisfies the homogeneous equation
Di (G/Z'BDJ’UB) =0 in Qgr/z
with the homogeneous conormal boundary condition
a?jﬁDjvﬁni =0 on Ag .

We can localize the estimate in Theorem 2.6 to obtain the estimate for v. For
B, C Bs; C B C Bs, 2, let n € C°(B;) be a usual cut-off function with 7 =1 on
Bs and |Dn| < N/(t — s). Then vn solves

Di(afjﬁDj(vﬁn)) = Di(a?jﬁvﬁDjn) + a%ﬁDjvﬁDm in Q (4.7)

with the conormal boundary condition on 9. By Theorem 2.6 applied to (4.7)
and our construction of 7,

1 1
Do, 0.) <N —lvl, @00 + 7——IDvlL,. 0. ] -
t—s t—s
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Applying Holder’s inequality and Young’s inequality to the second term on the
right-hand side, we obtain that for some small € to be determined later,

1
Doz, . < ellDvlr @00 + Ni—lvlL,@n0)
+ N(e)(t = 8)~ " ?||Dv]|, @\0)- (4.8)

We absorb the first term on the right-hand side by an iteration argument. Take
an increasing sequence 7, := 3r/2 — 27 %r. Note that r; = r and 7o, = 3r/2. Now
taking t = r11 and s = ry in (4.8), we obtain

1Dv]|L, ., ) <ellDv||L, @ + N2k+17"_1||v||Lp(Q,«k+l\Qrk)

7'k+1)

+ N(&‘) (2k+1r71)d7d/p||D'UHL1(Q1vk+1\Qv-k)'

Choosing e small enough such that 2¢9-%?¢ < 1, multiplying both sides by &*, then
adding up in k, we have

1DV 1,0, < NrY[vllL, () + Nr™ P Dol| 1y 0y,,)- (4.9)

To estimate the first term on the right-hand side of (4.9), by using (v)q,,,, = 0,
the Sobolev-Poincaré inequality, Holder’s inequality and Young’s inequality, for any
small constant £ > 0,

_ 1 *\1/p* 1
P (o), < N(DuP )P < e(IDofP)g?  + N(e)(Dv))e,, . (4.10)

From (4.10) and (4.9), we obtain

P ([oP)? + (1DvP)? < 2(1DvfP)g? |+ N(e)(|Dvl)a,, )

< e(|DwP)?  +e(|DuP)y?  + N(e)(|Dol)

Q3,72 Q3,/2 Q3r/2°

Combining (4.6) and (4.11), by the triangle inequality we obtain
(") + (1Dul’)g”
1
< N@)(ul)ay, + NE)(|Dul)a,, + Ne(r +1)(| Dul?)} .
Finally, an iteration argument gives the desired estimate. O

4.3. Proof of Theorem 2.8. Now we turn to the proof of Theorem 2.8.

Proof of Case (a). Since the estimates involving f and g require versions of
Theorem 4.3 with different parameters, we treat them separately. For some p; > 1
to be chosen later, by Theorem 4.4, we solve for u{ and u§, which are W;l weak
solutions to

Di(agf’ Dyuf) = Diff in Q
a?jﬁDjufni +~28uf = fen,  on 90
and

(4.12)

D;(ag Djug) = g in €,
a?jBDjugni + Waﬁug =0 on Of.

We will show that uf,u§ € W;}w and satisfy the desired estimates. We first
estimate u{*. The interpolation in Theorem 4.3 requires the further decomposition
of uf: the “V” part which satisfies the self-improving property — the reverse Holder
inequality, and the “W” part which is small. More precisely, for any zy € 0f, let



20 HONGJIE DONG AND ZONGYUAN LI

¢ be a cut-off function supported on Bs,.(x¢) with ( =1 on B,.(z¢). Now solve for
wf € Wy, (), which is the unique solution to

Di(aff Dywl) = Dy(f¢) in @
with the boundary condition
a2/ Dywin; + v w] = f2Cn; on 0,
satisfying

1 1 1
(Jwa )2y + (1 Dwa PP < NZ FP)el -

Again, the existence and estimate for w{* are guaranteed by Theorem 4.4. Then
v = uf — w{ satisfies the conditions in Lemma 4.6. Hence,

1 1
(|’01|p3) /ps + (|Dv1|p3)Q/TZEZD) < N(|v1|)92r(10) + N(|Dv1|)92r(ﬂﬂo)

(o)

1 1
< N(jt1 ), ro) + N(ID1 )y, (o) + N(|w1[P) P, + N(IDwr [P

1
< N(jt1 )y, (wo) + N(1Dw ey (mo) + N (£l )

7

(zo)

(4.13)

for arbitrarily large ps < oo. There is a similar decomposition in the interior of the

domain. Now, let
U=+ > (D], [F =121,

1,0

V=Y "[of[+ Y [Dwf|, and W= Z|w‘f‘|+Z|le‘)‘|
o 7,0

106

We apply Theorem 4.3 with p; = ps =p, po = p, v =0, and p3 = ps/(s — 1) + ¢,
where € can be any positive number, and p and s are from Lemma 4.1. We then
obtain

willwe ) < NZHEHLP,W(Q) + Nluillwy, @)
SN Mfilley o + N D I Fille,, @
<N Nfillz,.. @)

where we used Theorem 4.4 in the second inequality.
The estimate for u§ can be obtained similarly, by choosing a different group of
parameters. As before, we first solve

Di(a%BDng) = g%( in Q,
af}ﬁDngni +~*Pwd =0 on Q.
According to Theorem 4.4, such solution exists and satisfies

Uwﬂpl)?{f&  + (IDwa) " Y )SNTd/prd/zn(|g|P1‘)£1)/21:1(m0)_
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Now v§ = u§ — w§ satisfies the same equations as v{ in 9,.. Hence, similar to
(4.13), the following holds for arbitrarily large p3 < oo

1 2y 1
(|’l)2|p3)Q/fE‘;0) + (|D02|p3)g/rlzio) < N(|02|)er(a§0) + N(|Dv2|)92r($0)
1 1 1 1
< N(Jual)a, (z0) + N(1Dual)a, (r0) + N(|wal)7, ) + N(|Dwal? )7
* * 1 *
< N([u2])ay, (s0) + N(IDUs|)a, (ap) + NTU/Pi= 41 (g |h) 7"

Qa2 (z0)"
Define U, V, and W as before, and
Fi=>"lg°.
Now, applying Theorem 4.3 with
. . bs ANk A
pr=p, p2=(D)", p3s= 3—71+€’ po =Py, and v=1—(p)"/p,

we obtain

[uzllwy,, < Nllusllwi) +Nlglle, ...

S NHgHL(ﬁ)*(Q) + NHgHLp Q)’

w,wpw/p(

where the second inequality is obtained by the unweighted estimate in Theorem
4.4. Now, applying the properties of A, weights in Lemma 4.1, we have w € A, /5,
and hence,

Pw/P
wP/ € Ap,/p+1-pu/p-

From the embedding in Lemma 4.2, we have
19012y < Nlgllz, /0@

because by the definition of p,,, we have

Pw

e (>
Pu/D+1—Dpu/p ?)

The case (a) of the theorem is proved.

Proof of Case (b). Note that the only difference in this case is the treatment of
the g part. More precisely, here we only need to deal with (4.12) with g% € Lg e,
where ¢ = dp/(d+p—1) and a = (d —1)/(d + p — 1). The proof is by duality.
By Lemma 4.1, wy := w?/? € A,. Using the result in (a) and Remark 2.9 (b),
for any function h{', G € Ly ., , there exists a unique solution v{* to the adjoint
equation of (1.1)-(1.4) with A and g* in place of f* and ¢g®*. Furthermore, such
solution satisfies

Zl\vf‘l\w;,‘wl <N I, ., + N> 13, - (4.14)
@ 1,0 @

In the following, the sup is always taken in the set

{@h) 1081z, . =15%IL,., =1},
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which is omitted in the computation. Now, for any weak solution u? := (u$), to
(4.12), we have

le2lr,.. +1Dwalls, . = up | D - g

g, =15, =1 1/

= sup /a%BDjv?Diug‘ +/ e Pubug
he g |Ja o9

= sup /'ul ~g’ = sup /'ulw_“/q - gw®/
he,ge 1o he g |Ja

< s Mgl [l .y,
o

< sup Nllg||z, .o llvillw, (4.15)
he.ge P

< sup Nlgllz, .. (IA¢]lz,,
he.ge

p/ wy

+150s,.,)  (416)

=Nllgllz, oo

Here, in (4.15) we used the embedding in Lemma 4.2 and Hélder’s inequality, noting
that
q = dp _ and w _ ¥
(d-1p-1) d-1 a p
The estimate in (4.16) follows from (4.14). This gives us the a priori estimate
for the case (b). The solvability can be obtained by approximation. By the first

embedding in Lemma 4.2 (a), we can choose a sufficiently large g such that
Ls(2) C Lp ()N Ly e (). (4.17)

Now we take a sequence of functions {fg;}72, C Lg(Q) and {gg'}72, C Lg such
that as k — oo,

Joi— fi in L, (), g7 — g% in Ly ,.(Q). (4.18)

By the unweighted qu solvability, we can find the corresponding solutions wg.
Using (4.17), the weighted a priori estimate proved above, and (4.18), we know
that {ug} is a Cauchy sequence in Wp{w. Upon passing to the limit in the weak
formulation of the equation, we see that the limiting function w € Wz},w is the
solution of the original problem. Hence, the theorem is proved.

We would like to mention that, here we used the V[/p1 estimate for conormal
problems with two exponents p = p; and p = p3 which depend on the properties
of the weight w. The small parameter 6y in the assumptions should be chosen
accordingly.

5. SCALAR EQUATIONS

In this section, we prove Theorems 2.14, 2.15, and 2.16 for scalar equations.
Here the only difference lies in the counterpart of Proposition 3.1, which gives a
decomposition of solutions at small scales. In this section, we will prove such decom-
position in Proposition 5.1. Once we have Proposition 5.1, all the three theorems
can be proved in the same way as in the system case: actually the condition that
09 is locally close to a hyperplane/convex domain is only used in constructing the
decomposition. For all the rest steps, we only require the boundary to be Lipschitz.
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More precisely, compared to Proposition 3.1 for the system case, here in Propo-
sition 5.1, the estimate for the regular part V is different. In the system case, the
regular part satisfies the homogeneous conormal boundary condition on a hyper-
plane, which led to a Lipschitz estimate. While for the scalar case, it satisfies the
homogeneous conormal boundary condition on part of the boundary of a convex
domain. In this case, the global Lipschitz estimate for the Poisson equation was
first established in [20]. Here, we refer to a local version in [2], which was proved
for the more general p-Laplacian equations.

Proposition 5.1. Suppose that Q is a bounded domain, q € (1,00), and Assump-
tions 2.12 (0) and 2.138 (0) are satisfied with some 6 € (0,1). Furthermore, let
u € L}I(Q) be a weak solution to (2.6)-(2.7) with f; € Ly(Q) and g = ¢ = 0.
Then for any p € (1,q), 7 < Ro, and x € Q, we can find non-negative functions
VW € Lp(Q, 4 /an () satisfying |[Du| <V + W,

i1/ e 1 5\1/P
WP)G? ooy S NOVPHA(DUD G + NPT, (5-1)
and
1
IV Lo, gm0 < N(DU ) + N(FP)E (5.2)

where F'=3%".|f;| and N = N(d,x,M,q,p) > 0.

Proof. As before, we only prove the case when z € 02, where the coordinate system
is taken as in Assumption 2.13. We denote

1
= — d T, =00 Nn{yt= 1.

The proof follows similar steps with that of Proposition 3.1. Indeed, the “reflection”
argument there can be adapted to this case. We define the reflection with respect
to the surface {2,y (')} by

T(z) = (2/,2¢(2") — zq).

Clearly, we have T? = I and det(DT) = 1. Then a direct calculation reveals that
if u is a weak solution to (2.6)-(2.7), then it satisfies

Di(aiiju) = le:l
in , with the conormal boundary condition on {z : 2’ € B., x4 = 1(z’)}, where
fi= fz—l—lT(w cas. ((fl aiiju)OT(:r)>, i=1,...,d—1,

fd - fd T(z)eNs, ((fd — adeju) o T(SE))
e (S0~ 0y o700)

Note that for this step, we only require v to be Lipschitz.
Now we construct the decomposition explicitly. We freeze the coeflicients a;; :=
(ai;)B,. Let w be the weak solution to

Dj(a;;Djw) = D;if; + Di((ay; — as;)Dyu) in Q)
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with the conormal boundary condition on 99,,.+. Since Q. is convex, according to
[12], such w exists and satisfies

IDwl ;) < N(dsp, M) fi + (@i — ai) Dyull o -
Now define W := [Dw|Io+ + [Dully,- . Combining this and Hélder’s inequality (cf.
(3.7) and (3.9)), we have
(WP)g?

5\1/P 5 1
P < N(fP)G] + NoYP9(|Duf?)g .
Now v := u — w satisfies
Di(&iijv) = O in Qcta
with the conormal boundary condition on I'.,. Noting that since a,; is symmetric,
by a linear transformation, v is harmonic satisfying the zero Neumann boundary
condition on the curved boundary, which is still convex. Now we denote V :=
Dvlg+ . By [2, Theorem 1.1] with p = 2 (i.e., the linear case) together with a
rescaling, covering, and iteration argument, we have
-1/
VL@ jatan € NOVIGE

Using (5.1) and the definition of V', we obtain
IVIl2 e @er ety < NIDuP)G? ) + N(IDwlP)? )

Qer(z
1 \1/5
< N(|IDul?) %, + N(FP)JT .
which gives (5.2). The proposition is proved. O

Remark 5.2. From the proof above, it is easily seen that instead of assuming (a;;)
to be symmetric, we only need to assume that (a;;) is locally close to some constant
symmetric matrix in the sense of the L; average.
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