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ABSTRACT. We establish existence of finite energy weak solutions to the kinetic
Fokker-Planck equation and the linear Landau equation near Maxwellian, in
the presence of specular reflection boundary condition for general domains.
Moreover, by using a method of reflection and the S}, estimate of [5], we prove
regularity in the kinetic Sobolev spaces Sp and anisotropic Hélder spaces for
such weak solutions. Such S, regularity leads to the uniqueness of weak solu-
tions.
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1. Introduction and Main results.

1.1. Introduction. We consider the following generalized kinetic Fokker-Planck
equation in a bounded domain 2 with the specular boundary condition:
Of+v-Vuf — ayi(aij(t,x,v)avjf) +b(t,z,v)-Vyuf =g

flt,z,v) = f(t,x, Ryv), (x,v) € v_. (1.1)

Here
Ryv=v—2(ng - v)ny

is the specular reflected velocity, and n,, is the outward unit normal vector at x € 052,
and

ve = {(z,v) : x € 0N, £n, - v > 0}
is the outgoing/incoming set. In this paper, we will study two important cases of
the generalized Fokker-Planck equations: the celebrated Kolmogorov-Fokker-Planck
equation, which is given by Eq. (1.1) with a* = ¢,;, and the linear Landau equation,
which we introduce below.

A fundamental model in plasma physics is the nonlinear kinetic Landau equation
with the specular reflection boundary condition given by

OF +v-V,F=Q[F,Flin (0,T) x Q x R,
F(0,2z,v) = Fy(z,v), (z,v) € Q x R3, F(t,z,v) = F(t,z, Ryv), (z,v) € ~_,
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where Q is the Landau (Fokker-Planck) collision operator with Coulomb interaction
defined as

Q[F, Fr)(v) =V, - g O(v— ') [F1(v )V Fo(v) — Fo(v)(V, Fr) ()] dv',  (1.2)

d(v) = (13 - %‘ ® |Z|) o] L.

Let pu(v) := n=3/2e~1"I" be the Maxwellian, which is a steady state of Eq. (1.2).
We rewrite the equation near the Maxwellian by replacing Q [F, F| with Q[u +
pt2f, 4 2 f):
Ohf +v-Vof +Lf =T[f,f]=01in (0,T) x Q x R?,
£(0,2,v) = fo(z,v), (z,v) € AxR3, f(t,z,v) = f(t,z, Ryv), (z,v) € ~_,
where
L=-A—K Af=p"2Q[uuf], Kf=p"2Q[u"2f, 4],
Mg, f1=p= 2 Q[u'" 29, "2 f].
We consider the linear version of Eq. (1.3) given by
Ohf +v-Vof +Lf —Tlg, f]=0in (0,T) x Q x R3,

f(0,z,v) = fo(z,v), (z,v) GQXR?)a f(t,z,v) = f(t,z, Ryv), (x,v) €7-.
(1.5)
Such an equation is useful for proving the global in time well-posedness of (1.3) for
sufficiently small initial data (see, for example, [4], [10], [15]). Furthermore, we can
rewrite (1.5) in the divergence form
Of+v-Vof =Vy (06Vef)+ag Vof +Kyf in (0,T) x Q x R?,
(0, 2,v) = fo(z,v), (z,v) € Ax R, f(t,z,v) = f(t,z, Rev), (z,v) € v_,

where

(1.3)

(1.4)

(1.6)

o=0xp, og=0+Px (%), a =-07x(v;p'?g+pu'%0,9), (1.7)

K,=K+Jy, (1.8)

Jof = 0, (c7v;) f — v, f (1.9)
— 0y, (D7 5 (11120,,9)) f + (DY % (v;11/%0,,9)) f.

See the details in [4], [9], [15]. To establish the existence of the finite energy strong
solution to the problem (1.6) (see Definition 1.9), we work with the equation

af +uv- vmf = Vv : (UGva) +VAvf
+ay-Vof =AM +hin (0,T) x Q x R3,
(0, 2,v) = fo(z,v), (z,v) € Q x R3,
f_(t,$,’U)=f+(t,1‘,RxU), (CE,’U) €7,
where v > 0, A > 0. We call this equation simplified viscous linear Landau equation.
While such boundary problems play an important role in many applications,
there have been very limited study due to possible singularity forming from the
grazing set (see [8]). The paper [11] initiated the study of the regularity of the

boundary-value problems for generalized kinetic Fokker-Planck equations. For the
related works, we refer the reader to [1], [12], [13], [14]. The boundary-value problem

(1.10)



4 HONGJIE DONG, YAN GUO, AND TIMUR YASTRZHEMBSKIY

for the Landau equation is considered in the articles [2], [4], [L0]. Our paper serves
as a foundation of the linear theory for the nonlinear Landau equation used in the
works [4], [10]. The article is organized as follows. Section 1.2 contains the necessary
notation. In Section 1.3, we present the main results of this paper. We explain the
key ideas of the proof in Section 2. The proof of the main results is divided into 3
sections: Sections 3, 4, and 5.

1.2. Notation. To state precisely our results, we now introduce necessary notation
as follows. In this subsection, G C R” is an open set, a € (0,1}, p € (1,00],
6 €]0,00), and T € (0, 0).
e Geometric notation:
z=(t,z,v),t ER,z,v €R3, Bp(xg) ={€€R>: | — x| <7},
Q C R? is a bounded domain, Q,.(z) = QN B,(z), R = {z € R®: +23 > 0},
Hy = {(z,v) e RL xR}, HL ={z€(0,T) x Hy}, (1.11)
RT. ={z€ (0,7) xR}, %7 =(0,T) x Q x R,
i = {(z,v) 1 x € N, %n, -v >0}, 0 = {(z,v) :np-v =0}, L = (0,T) x y+.
e Matrices. By I3, we denote the 3 x 3 identity matrix and we set Sym(¢),d €

(0,1) to be the collection of 3 x 3 symmetric matrices a such that

SlE[* < aVgig; < 6THEP, VEER®.

Yf=08,f+v-Vof.

e Function spaces.

— C(G) - the set of all bounded continuous functions on G.

~ CY(G) - the set of all continuously differentiable functions in G that vanish
for large z.

— C8°(D), D C R7 is the set of all infinitely differentiable functions with
support contained in D.

— Anisotropic Holder space. For an open set D C RS, by Cﬁ{f”a(ﬁ), we
denote the set of bounded functions f = f(z,v) such that

[flegss~m)

|f(z1,v1) = f(z2,02)]

= sup < oQ.
(zi,0:)€D:(1,01)#(22,02) (|1 — :E2|1/3 + |v1 — va|)*
Furthermore,
1 lge s ) = 1w + [Floase o) (1.12)

— Weighted Lebesgue space. For a locally integrable function w(z,v) such
that w > 0 a.e., by L, (G, w) we denote the set of all Lebesgue measurable
functions w such that

ull () = 0 Pull L, c) < oo
In particular, for
(0) = (14 |v]})'2,
we set
Lyo(G) = Ly(G, (v)?).
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— Sobolev spaces. Let H(G) := {f € L,(G) : V, f € Ly(G)} be the Banach
space equipped with the norm

[l = 11+ Vo fllliz, -

Furthermore, H, ! (G) is the set of all functions f on G such that there
exists f; € L,(G),i=0,1,2,3, such that

f="Jo+ 0 fi
The H,; ' (G)-norm is given by

3
[ flle ey = ian 1 fill L)
i=0

where the infimum is taken over all such f;,i =0,1,2,3.

— Kinetic (ultraparabolic) Sobolev spaces.
By S,0(G) = {f € Lyo(G) : YF,V,f,D2f € L,9(G)} we mean the
Banach space with the norm

1£1ls,.00c) = £+ Vo f1 + ID3F+ Y flll L, 000)- (1.13)

We also denote S,(G) := S, 0(G).
Furthermore, we set S,(G) to be the space of functions f such that
f,Vof € Ly(G), and Y f € H'(G). The norm is defined as follows:

1flls, (@) = I lmxe) + 1Y Fllgz1 ) (1.14)

e Traces. Let f € L,(XT) be a function such that Y f € L,(X7) for some
p € [1,00). Weset fi, f(0,-), f(T,-) to be the restrictions of the trace of f on
YT {0} x Q x R?, {T'} x Q x R3, respectively (see the definition on p. 393 of
[3] or in Remark 3.3).

e Space of initial values. For p € (1,00] and § > 0, by Op,,, we denote the set of
all functions u on € x R3 such that

u,v -V, Vo, D2u € Ly g(Q x R?), uy € Loo(v4, |v - ngl),
and
u_(z,v) = uy(x, Ryv) ae. (x,v) € y_.
The norm is given by

lullo, , = [ulo, s + [[ut]l Lo (va,jomal)s 115)
lulo, o = lllul + v Voul + [Vyu| + |Diul 1, ,xrs)- '

For 0 = 0, we set Op, = Op 0.
e Constants. By N = N(---) we mean a constant depending only on the pa-
rameters inside the parentheses. The constants N might change from line to

line. Sometimes, when it is clear what parameters N depends on, we omit
them.

1.3. Main results.



6 HONGJIE DONG, YAN GUO, AND TIMUR YASTRZHEMBSKIY

1.3.1. Kinetic Fokker-Planck equation. Let a be a measurable function taking values
in the set of symmetric d X d matrices.

Definition 1.1. Let 6 > 0,7 > 0 be numbers. We say that (f, fx, fF, fo) is a finite
energy weak solution to
Y =V, - (aVyf)+b-Vof+ =g, 2z€%7 (1.16)
with the specular boundary condition and the initial data fy if
i) fa vvf € L2,0(ET)7 ge L2,9(ZT)7 f:t € Loo(zia |U'nw|)7 fj*ﬁfO € LQ,G(Q X R3)7
ii) fX(t,x,v) = fi(t,x, Ryv) a.e. on ¥,
iii) for any ¢ € CA(X7),

- / (Y)f dz + / (Fh (e, 0)6(T, 2,0) — ol v)$(0, 2, v)) dado
»T QO xR3

+ / fio|v-ngldodt — / [rov-ng|dodt (1.17)
T T

wa ] f¢d2+/ZT(ava)~Vv¢dz+/ET(b-va)¢dz=/2Tg¢d2-

For the sake of brevity, in the sequel, we will say that f is a finite weak energy
solution to (1.16), thus, omitting f%, f7, fo.

Furthermore, we say that f is a finite energy strong solution to Eq. (1.16) if

— f is a finite energy weak solution,

— f € S2(37T), where Sy is defined in (1.13),

— the identity

Y=V, - (aVyf)=b-Vof —Af+g (1.18)
is satisfied a.e. in X7

Remark 1.1. The definition of a finite energy strong solution does not require 9 f

or v-V,f to be a measurable function. In fact, these objects are understood in the
sense of distributions. However, Y f is required to be an element of Lo(37).

Remark 1.2. We remark that Y f is not known to be in L,(X7T) for the natural
finite energy weak solutions. This is a basic difficulty in the study of boundary
value problems of the kinetic Fokker-Planck type of equations. We need to develop
extra SP(ET) estimates to ensure such a trace property.
If f is a finite energy strong solution to (1.16) then, the functions f}, f7, fo are
traces of f in the sense of [3], i.e.,
fa f;’ fj*"a fO
satisfy the Green’s identity (2.20) of [3] (see also (3.9)). Since f,Yf € Lao(X7T),
by Remark 3.2, f has traces f(0,), f(T\-), f+. Then, we multiply (1.18) by ¢ €
C}(2T), use the Green’s formula (3.9), and compare the resulting equality with
(1.17). This gives f(0,) = fo, f(T,") = f7, f+ = [% ae..
We impose the following assumptions on the coefficients and the domain ).
Assumption 1.2. There exists § € (0,1) such that Vz, a(z) € Sym(d), i.e.,
SIEP? < a¥(2)&8 <67 HE (1.19)
Assumption 1.3. There exists a constant K > 0 such that
[0l () < K. (1.20)
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Assumption 1.4. There exists a constant K > 0 such that
IVvallp sty < K, Vb€ Loo(E7). (1.21)
We present three results on the existence, uniqueness, and the Sp-regularity of

the finite energy weak solutions.

Theorem 1.5 (Existence of finite energy weak solutions). Let  be a bounded
C? domain. Under Assumptions 1.2 - 1., for any T > 0, 8 > 0, there exists
Ao = Ao(0,0,K) > 0 such that for any X > Ao and g € L2 o(XT) N Loo(ET),
fo € Lap(2 x R3) N Loo(Q x R3), Eq. (1.16) has a finite energy weak solution f,
and, in addition,
£ Lao @y + A2l Ly ooy + 1Vo fll Ly (27
< Nl Ly o2y + 1ol Lo g(exms)),

(1.22)
maX{||f7*“||Loo(ﬂxR3)7 Hf||Loo(2T)7 ”f:tHLoo(ZT,\v‘nzD}

<A Mgl =) + 1 folloo @xre),
where N = N (4, K,0) > 0.

The following corollary is derived from Theorem 1.5 by using an exponential
weight.

Corollary 1.1. One can take Ag = 0 in Theorem 1.5. However, in that case, the
constant N also depends on T, i.e., N = N(0,K,0,T).

We remark that the uniqueness of such weak solutions remains an open prob-
lem in general. By using the method of reflection (see Section 2), we prove the
uniqueness and higher regularity for Eq. (1.16) in the case when a = I.

Theorem 1.6 (S regularity of a finite energy weak solution). Let Q be a bounded
C? domain, T > 0,0 > 2 be numbers, and g € Lag_o(XT), fo € O29—2 (see (1.15)),
and a = I3. Under Assumptions 1.2 - 1.3, there exists \g = Ao(K,6,Q) > 0 such
that for any A > Ao, if f is a finite energy weak solution to Eq. (1.16) with parameter
0, then, f € So9—2(37) and f,V,f € L7/379_2(ZT). Furthermore, we have
[fllsyo_omry + I+ Vo fllL, s0_ocs7)
< N(||g||L2,972(ET) + |f0|o2,972 (123)
+ vafHLz‘e(ET) + ”fHLz,e—l(ET))v
where N = N(K,Q,0). Finally, f satisfies the identity (1.18) a.e., and, hence f is
a finite energy strong solution.

Corollary 1.2 (Uniqueness of finite energy solutions). Under assumptions of The-
orem 1.6, any two finite energy weak solutions to Eq. (1.16) must coincide.

Theorem 1.7 (Higher regularity of the finite energy strong solution). Let p > 14
and invoke the assumptions of Theorem 1.6 and assume, additionally, 0 > 16, and
g € Lpo-a(ET), fo € Opo_a(ET) (see (1.15)). Then, for any A > 0, one has
f€Spo-16(ET)NC(XT), and
1 llsy.0-r0m) + 11l 0,19, 00 @xmayy F IVe I 0.my.c000o @xray
< N(lgllzsp-osm) +llElL,0-asm)
+ |f0|02,972 + |f0‘op,974
HIVuflls oy + 1 ll2seizm))s
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where
-a=1-14/p,
- 0374,3’04(5 x R3) is the anisotropic Holder space defined in (1.12),
- N=N(p,0,K,Q).

1.3.2. Linear Landau equation.

Definition 1.8. Let H,4(X7) be the Hilbert space of all Lebesgue measurable
functions such that the norm

1/2
lu|ls0 := (/ (0 0,1 O, u + o w007 (v)? dz) (1.24)
»T
is finite. Here o is defined by (1.7). Since o is a positive definite matrix (see Remark
1.3), || - llo.6 is, indeed, a norm.

Remark 1.3. Let @ > 0 and u € L o(X7) be a function such that V,u € L o(37).
Then,

lullo.p < Nllful + [Voulllr, i (s7)- (1.25)
This follows from the facts that, for any v € R?,
o (v)vw; < N{w)™,  o(v) < N{w) ;.
Furthermore, due to the inequality
() 313 < Co(v)
for some constant C; > 0, we have
[l 557y < Crllulloo-
See the details in Lemma 3 of [9].

Definition 1.9. We say that f is a finite energy strong solution to (1.6) if there
exists 6 > 0 such that

1. fe SQ(ET) N LQ,Q(ET) N HGVQ(ET),
2. the traces (see Remark 3.2) have the following regularity: f(T,-), f(0,-) €
LQ,G(Q X R3)7 fi S LOO<Z£7 |’U . ’I’LIl),
3. for any ¢ € C}(X7),
_ / (Yo)fdz+ / (f(T7 z,0)p(T,x,v) — f(0,z,v)p(0, x, v)) dxdv
=T

QxR3

+/ f+q5|v~n£|dcrdt—/ f-d|v-ng|dodt
=T T

+ / (06 f) - Vb — (g - Vo )6 — (K, )] dz = 0,
ET

4. Eq. (1.6) is satisfied almost everywhere, including the initial and the boundary
conditions. The latter are understood as conditions on traces of f.

Remark 1.4. Note that the condition (4) implies (3) by the Green’s identity (see

Assumption 1.10. Let » € (0,1] and ¢ € Loo((O,T),C;f,{,S’%(ﬁ x R?)) be the
function such that
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© Vg € Loo((0,T), CZL3*(Q x R3)), and

HgHLoo((07T),Ci-‘,£3”‘(ﬁxR3)) + HV”g”Loo((O,T),c;,/ﬁ”‘(ﬁxmn <K (1.26)

for some K > 0.

g_(t,z,v) = g, (t,z,Rv) VzeXT, (1.27)

Theorem 1.11. Let

~ Q be a bounded C® domain,

- %€ (0,1, T > 0, p > 14 be numbers,

— Assumption 1.10 (see (1.26) - (1.27)) hold,

- fo € 020N O (see (1.15)),

~Ngllpmmy <e.
Then, there exists a number 6y = 6o(p, ) > 4 such that for any 6 > 0y, there exist
numbers 0 = 0(p,»x) > 4, ¢ = €(0) € (0,1), and 0’ = 0'(p,»),0” = 0" (p,s) €
(1,0 — 3) such that Eq. (1.5) has a unique finite energy strong solution f (see
Definition 1.9). Furthermore, f € C(XT), and

1flls, o2y + (1 flls, po 27y + L (T )2 pxre)y + 1o o2y + [ f o

+ ”f‘|L°O((0,T),C§,/v3’“(§><R3)) + ”V”'f”Loo((07T)7C§,/,,3’a(§><]R3)) (1.28)
< N([lfollozs + Il follow),

where ov = 1—1—;, the ||-||,0-norm is defined in (1.24), and N = N(p, 0,3, Q, K, T).

2. Method of the proof.

1. Kinetic Fokker-Planck equation,

Ezistence. To construct the finite energy weak solutions to (1.16), we dis-
cretize the diffusion operator V,-(aV, f) and prove uniform bounds in Section
3 by using the results of [3]. The discretized second-order operator A, (see
(3.3)) is inspired by the representation of symmetric matrices in Theorem 3.1
of [17] (see Lemma 3.1). Such representation (see (3.1)) was first stated in the
work [18] without smoothness properties of the weights A\;. The form of A
enables us to prove an analogue of the L,-energy inequality for the heat equa-
tion (see (3.15)). We then use the weak™® compactness argument to conclude
the existence of finite energy weak solutions.

Uniqueness and higher regularity. Thanks to the specular reflection bound-
ary condition, we are able to construct a reflection operator (see (2.6)) to
extend solutions to z € R3. In the present authors’ opinion, such a reflection
operator is useless for the study of the regularity for the Vlasov type equations
in the absence of velocity diffusion. In particular, when the same reflection
operator is applied to such an equation, it preserves the form of an equation
but yields a drift term with discontinuous coefficients. On the other hand,
in the presence of velocity diffusion, one can apply the S regularity theory
in RY. (see Section 4) to the extended equation (2.17) and conclude that a
finite energy weak solution with # > 2 is of class So(X7T). We then use the S,
regularity results of [5] (see Appendix D) to show that f € S,(X7). Unfortu-
nately, the mirror extension argument works only for very particular diffusion
operators in the velocity variable, for example, A, and V, - (6¢V,), where
o¢ is defined in (1.7). See the discussion in Section 2.2.
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2. Linear Landau equation. To prove Theorem 1.11, we use the method of
vanishing viscosity. We first consider a simplified version of Eq. (1.6) given by
Eq. (1.10). By the existence result for the generalized kinetic Fokker-Planck
equation (see Theorem 1.5), we prove the existence of a finite energy weak
solution in the sense of Definition 1.1. To prove the unique solvability in the
class of the finite energy strong solutions, we use the mirror extension method
combined with the Sy estimate of [5] (see Appendix D).

Viscous linear Landau equation. By using a perturbation argument, we ex-
tend the aforementioned unique solvability result to the viscous linear Landau
equation (1.10), which contains the non-local term K, f defined in (1.8). We
then prove uniform in v bounds by combining the standard energy estimate
(see Lemma 5.3) with the S, estimates of [5]. Finally, by using the weak™® com-
pactness argument, we prove the existence of the finite energy strong solution
(see Definition 1.9) to the linear Landau equation (1.6). The uniqueness in
the class of the finite energy strong solutions follows from the aforementioned
energy estimate.

Our argument for proving the existence/uniqueness of the finite energy strong
solution for Egs. (1.16) and (1.10) goes as follows:

existence of finite energy weak solution f — f € Sy — uniqueness.

In the rest of this section, we

e define the mirror extension operator and show that it preserves the form of
Eq (1.16),

o delineate the proofs of the Sy bound, S;, estimate, and the Holder estimate,

e claborate on the importance of the condition (1.26) in Assumption 1.10.

2.1. A boundary-flattening diffeomorphism that preserves the specular
reflection boundary condition. We may assume that there exists a sufficiently
small number r¢ > 0 such that for any zg € 2, there exists a function p = p(z1, x2)
such that

00N By (z0) C {x: x3 = p(z1,22)},

Qo (20) := QN By (z0) C {z: 23 < p(z1,22)}, (2.1)

and p is a bounded function with bounded continuous partial derivatives up to order

3.

Next, denote p; = %,i =1, 2. Following [10] (see Section 7.1.1 of the reference),

we introduce the boundary-flattening diffeomorphism
Ui (v0) xRE = H_ =R> xR3  (2,v) = (y,w)
given by
y=1(), w=Dy(x)v, (2.2)
where 1 is defined as the inverse of the transformation
Y1 A

vl(y) = Yo +ys | —p2 |- (2.3)
p(y1,y2) 1
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It is easy to check that Dy ~! sends the vector (0,0,1) to (—p1, —p2,1)T, which is
an outward normal vector at 9€2. Furthermore, by direct computations (see [10]),

w1 + p1ws O
Rov=v—20v" ng)n, = wo + pPrws3 = 87‘3/3=0(w17 wa, —WS)T7 (2.4)
p1w1 + pawz — wWs y

which shows that ¥ preserves the specular reflection boundary condition.

2.1.1. Mirror extension transformation. Denote

= (tyw), J= aet 2
Z_ 7y7w’ - ay

)

and, for any function u, supported on R x Q,,(z0) x R3, we set

u(z) = u(t, z(y), v(y,w)), u(z) =u(z)J(y). (2.5)

Then, the mirror extension of u is defined as

R = diag(1,1,—1). (2.6)

uf(t t HT
a(t,y, w) == {u( Ly, w), (ty,w) € HY,

i(t, Ry, Rw), (t,y,w) € HT,

Note that, strictly speaking, @ is not an extension of 4, however, since the Jacobian
J =~ 1 near xg, u is close to the function

Z s 4(t, Ry, Rw)

provided that r( is sufficiently small.

2.1.2. The generalized kinetic Fokker-Planck equation under the mirror extension
mapping. We consider Eq. (1.16) and assume that there exists some ¢ € (0, 1) such
that for any z, a € Sym(0d), i.e., (1.19) holds. Let f be a finite energy solution to
Eq. (1.16) (see Definition 1.1) supported on R x €, /5(29) x R®. Here we show that
the mirror extension f (see (2.6)) also solves a generalized kinetic Fokker-Planck
type equation. To this end, we change variables in the weak formulation of Eq.
(1.16) for some fixed ¢ € C}(XT) (see (1.17) in Definition 1.1).

First, we find an equation satisfied by f (defined in (2.5)) on HY. By direct
computations (see Appendix A), f satisfies the identity

= [ oo i [ (Frnw)dT ) = R w)30,,0) dydu

+/HT (V)T AVwo ~ FX -Vud+ (B-Vuf) 6+ A ) dZ
:; fio (2.7)
Jr/o /RQ R® lws| f1 dyrdyadwdt

T
- / / lws| % S dysdyndwdt = | dgdz,
0 ]R2><]Ri HT
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where (;AS is defined by (2.5), and

= (2)a(2) m- () 29
X = (X1, X9, X3)T = (gi) <g:>w = (ay) o(5,v) w. (2.9)

Next, we extend the coefficients to H” . First, we set B(t,-,w), X (-, w) to be 0 if
y € R3 \ 9(Q,(z0)). Second, let k € C§°(R?) be a function such that 0 < x < 1,
and K =1 on |y — ¥ (xg)| < 3rg/4, Kk =0 on |y —P(xg)| > Tre/8 and denote

A(t,y,w) = A(t,y,w)s(y) + 6I3(1 — k(y)). (2.10)

Note that for sufficiently small 7,

~

[ is supported on Bg, /4(1(x0)), (2.11)

and then, so is f. Since x = 1 on the support of f, Eq. (2.7) holds with A and o
replaced with A and any n € C}(HT), respectively.
We now extend A, B, X to R7. by setting

Alt,y,w), (t,y,w) € HT,
Al - 2.12
( vy;w> {RA(t,Ry,Rw) ]‘%7 (t’y,w) c Hz, ( )
X(y,w), (y,w) € H-,
. B 2.13
(y, w) {RX(Ry,RIU), (y,w) € H, (2.13)
B(t,y,w), (t,y,w) € HL,
o N 2.14
( 7y7’LU) {RB(t,Ry,Rw), (t,y7w) c Hz; ( )

Finally, we check that f satisfies an equation on the whole space. We fix an
arbitrary function n € C} (@) such that D2n € C’(ﬁ) and denote by 14 the re-
striction of 1 to HTE Replacing ¢ with N4 (t, Ry, Rw) in (2.7) and changing variables,
we obtain

- / (Vi) Fd2+ / Ty w)ne (T, y,w) — Folysw)ns (0, y,w)] dyduw
HT H

¥ +
+ / (Vw)TAVYy = FX-Vuny + (B -V f)ny + Afny) dz
HY
T ~
+/ / lws| fL (¢, y1, y2, Rw)n dy, dyz dw di (2.15)
0 R2xR3

T
_/ / lws| f* (¢, y1, y2, Rw)n dyydys dw dt
0 Jr2xR?

= / g+ dz.
H

T

+
Note that by (2.4) and the fact that f satisfies the specular reflection boundary
condition, we have

~ ~

f;(tayl7y27Rw) = fi(tay17y27w)' (216)
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Then, adding (2.15) to (2.7) with ¢ = n_ and transferring the derivatives in v to
the test function 7, and using (2.16) give

+ [ (DAY= (8- Vun)] + (B Vi M) a2

T

= / gndz.
R

7
T

(Yn)fdz+ /R . [F5(y, w)n(T, y, w) = foly, w)n(0,y, w)] dydw

Here we used the fact that V,,f € L g(R7.). Thus, in R, f satisfies the equation
Y=V (AVy )+ V- (XF)+B-Vuf+Af =8 (2.17)
in the weak sense (cf. Definition 1.1 (1.17)).

2.2. Strategy for proving the S; estimate.

e Interior estimate for Egs. (1.16) and (1.10). Away from the boundary
092, by the partition of unity argument, we may reduce these equations to the
ones on the whole space R7.. To show that f € Sy away from the boundary,
we use the unique solvability result of [5] (see Theorem D.4). As discussed
in Appendix D (see Remark D.1), this theorem is applicable if the leading
coefficients are of class Loo((0,T), C2h>*(RS)), 3 € (0,1], where C2> (RS)
is defined in (1.12). For Eq. (1.10), the validity of this condition follows from
Assumption 1.10 ((1.26) - (1.27)). See Lemma C.1.

e Boundary estimate. Near the boundary, we use the boundary flattening
diffeomorphism ¥ (see (2.2)) and the mirror extension transformation (2.6) to
reduce Egs. (1.16), (1.10) to the generalized kinetic Fokker-Planck equation
(2.17). Let us check if the leading coefficients belong to

Loo((0,T), C7[>7 (R%))
. Due to (2.12), for (t,y,w) € HL we have

All A12 —.A13
Alt,y,w) = | A2 A2 — A% (t,y, Rw). (2.18)
_A13 _A23 A33

Note that, unless A satisfies the condition
Aig(ta Y1,Y2, 07 ’lU) = _'Aig(t’ Y1,Y2, Oa R’U}), 1= 1a 2) (219)

the function A(t,-) might be discontinuous on the set {y3 = 0} x R3. For-
tunately, (2.19) holds for both Egs. (1.16) and (1.10). See the details in
Appendix E. By the unique solvability result in the Sy space (see Theorem
D.4) applied to Eq. (2.17), we conclude that f € Sy near the boundary.
Thus, for large A, finite energy weak solutions to Egs. (1.16) and (1.10) must
be finite energy strong solutions in the sense of Definition 1.1.

2.3. Strategy for proving the S, bound and Hélder continuity. We use a
bootstrap argument combined with the localization method described above. In
particular, we estimate the S, norm of a localized solution by using the a priori
estimate in Theorem D.5 (see (D.5)). When p > 14, by the embedding theorem for
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the S, space (see Theorem 2.1 of [19]), our localized solutions and their derivatives
in the velocity direction are of class CZ ,a =1 — 14/p, where
C% = {u € Loo(RY) : [ulce < oo},
and
|u(2) — u(z')|

< 00.
(=077 4 o —a’ = (t =)' + Jo = ']

[Weg, == sup
z,2' ERT.:2#£2!
Unfortunately, the condition [u]ce < oo is not preserved under the local diffeo-
morphism W1, In other words, if u(t,y, w) € C_, then, U(t,z,v) = u(t, ¥(z,v))
is not of class Cg,, since x — U(t,-,v) is not defined globally.
To overcome this issue, we work with a weaker space

Leo((0,7), C* (R)) O Gy
This space has two important properties which we state below.
o If u € S,(RY), then,

u, Vyu € Loo((0,T), C2/32(R%)) N C(RT).

v
This follows from the aforementioned Morrey type embedding theorem for the
S, spaces (see [19]).
e If n = n(y) is a Lipschitz function with compact support, and

u1 (ta y,w) = u(t7 Y, w)n(?J) € LOO((Ov T), 03,437Q(R6))7

then
Ur(2) = ui(t, ¥(z,v)) € Loo((0,T), g (RY).
By the above reasoning, we are able to prove that, under certain assumptions, if f
is a finite energy strong solution to Eq. (1.16) or (1.10), then f € S,(X7), and, in
addition, f,V,f € Loo((0,T), C243*(Q x R3)) N C(ET).

2.4. The reason we consider the linear Landau equation with rough in
time coefficients. To prove the existence of the local in time solution to the non-
linear Landau equation (Eq. (1.3)), one can consider the Picard iteration sequence

7O = fo,
YO =V, (opm Vo f ") +ag - Vo fO) + K poo fOFY = 0 in BT,
FD0,2,0) = folz,v),z€Q, veR3, (2.20)
f£n+1)(t,x7v) = fJ(rnH)(tw,va), zexl,

where e is defined by (1.7) with g replaced with f(®). Let us consider the
equation for f(). Even if fy is very regular, by using our method, we can only
prove that 1), V, 1 € Lo ((0,T), C43*(@ x R®)) N C(XT), a € (0,1]. Then,
for the equation (2.20) with n = 0, Assumption 1.10 (see (1.26) - (1.27)) is satisfied
with g = f().

3. Finite energy weak solutions to the generalized kinetic Fokker-Planck
equation. In this section, we prove the existence of finite energy weak solution
to Eq. (1.16) (see Theorem 1.5). The conclusion of Theorem 1.5 also implies the
existence of finite energy weak solutions to Eq (1.10) which is verified in the proof
of Proposition 5.1.
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3.1. Discretization of the second-order operator. The following lemma, which
is due to N.V. Krylov, provides a way to rewrite a second-order operator as a pure
second-order derivative operator. By using this result, we construct a finite differ-
ence approximation of the operator V, - (aV,), which we denote by Aj. Thanks to
Lemma 3.1, the stencil depends only on the lower eigenvalue bound of the matrix
a, and in addition, the ‘diffusion’ coefficients of A;, are as regular as a.

Lemma 3.1 (Theorem 3.1 of [17]). Denote l; = e;,i = 1,2,3. Then, there exists a
number di > 3 and

— vectors l, e R3, k=4,...,dq,
- real-analytic functions A\, k = 1,...,dy, on Sym(d) (see Section 1.2), and a
number &1 = 61(8) > 0

such that, for any a € Sym(0d),
dy
a? =Y M(a)lill, o <Ml <oyt k=1,...,dy (3.1)
k=1

Let di, A = {ly,...,lq,} and A\, k = 1,...,dy, be the number, stencil, and
functions in Lemma 3.1. We set
ar(z) = Mela(2)), k=1,....dy.

Then, by the above lemma, there exist a constant d; = §1(4) > 0 such that for any
Z’
61 <lan(z)| <678 k=1,....d;. (3.2)
For any h € R and any function u on R3, we define the following operators:

o) = o + ), () = ORI

h )
dy
Ahu = —Zéh,,lk (akéh,lku). (33)
k=1
We now check the consistency with V, - (aV,). Denote
Thé — 2[3 + Th7_§
Ah,f = h2 ) 6({) = giavia 8(5)(5) = gigjavi avj . (34)
Observe that the following product rule holds:
6na(f9) = gonf + (Thif)onag. (3.5)
We fix arbitrary ¢ € CZ(R3). Then, by (3.5), we have
Ah¢ = —ak(éhﬁlkéh,lk(é) + (_5h,—lkak) Th,*lkéh,lkqs- (3'6)

We note that the last term equals

(=0n,~1,ax) (=0n,1,,0)-
Then, using the Cauchy-Schwartz inequality, Assumption 1.4 (see (1.21)), and the
fact that ¢ has bounded support, we get

Lim (=0n,—1,.ak) (=0n,~1,9) = Ouyyardy ¢ in Ly(x7).
By this, (3.6), and (3.1), we conclude
}133}) And = ard,)(1,)® + Oy ar0q,) @
=V, (aV,p) in Ly(XT).
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3.2. Discretized equation. For ¢, h € (0,1), we consider the equation

Yfa,h - Ahfa,h + bi(sh,ei fa,h + /\fa,h =8 in ZT)
(for)-(t,2,0) = (1 =€) (fen)+(t, @, Rov)  on BT, (3.8)
fen(0,2,0) = fo(z,v), (z,v) € Q x R3.
Below we state the definition of the solution space. To do that, we first need to
introduce a set of test functions from [3].
Definition 3.2. We say that ¢ € ¢ if

— ¢ is continuously differentiable along the characteristic lines (¢ + s, x + vs, v),

— ¢, Y are bounded functions on X7,

— ¢ has bounded support, and there is a positive lower bound of the length of the
aforementioned characteristic lines inside 7" which intersect the support of ¢.

Remark 3.1. One can show that
Co(([0,T] x @ x R*)\ ((0,T) x 70 U {0} x 9Q x R* U{T'} x 09 x R?)) C .
A proof can be found in Lemma 2.1 of [7].
Definition 3.3. For p € [1,00), and § > 0, E,(X7) is the Banach space of

functions uw with the following properties:

—u,Yu € L, (37,
— There exist functions uy € L,(X%, v - ngl), u(T, ), u(0,-) € L,(2 x R?) such
that for any ¢ € ® (see Definition 3.2), the following Green’s identity holds:

[ rwot (vouds

= / w(T,z,0)p(T, x,v) dedv — / (0, 2,v)p(0, z,v) dedv (3.9)
QxR3 QxR3

+/ u+¢|v-nx|dadt—/ u_¢ v - n,|dodt.
=T =T

+

Remark 3.2. By Proposition 1 of [3], if u, Yu € L,(X7), then, there exist unique
functions us € Lpioe(XL), u(T,-),u(0,+) € Lpioc(Q x R?) such that (3.9) holds.
See p. 393 of [3] for the definition of L, j0c(X1).

Remark 3.3. For any 7 € (0,7, there exist functions u,, us., defined on Q x R3
and X7, respectively, such that the identity (3.9) holds with 7,u,, ux., in place of
T,u(T,-) and uy, respectively. Furthermore, it follows from the proof of Proposition
1 in [3] that for a.e. 7 € (0,T),

Ur(+) = Ult=r, Ut = (U’ItG(O,‘r))‘“/i'

Proposition 3.1. Under assumptions of Theorem 1.5, for any numbersp > 1,6 >
0,e,h € (0,1], and g € L, o(XT), Eq. (3.8) has a unique (strong) solution f- €
EP,G(ET)-

Proof. By Assumptions 1.2 - Assumptions 1.3 (see (1.19) - (1.20)), Ay is a bounded
operator on L, ¢(X7). Now the assertion follows from Theorem 1 of [3]. O
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3.3. Uniform bounds for the discretized equation. The following energy iden-
tity contained Proposition 1 of [3] is crucial in the proof of the uniform L, bounds

for fe p.

Lemma 3.4. For any numbers p € [1,00),0 > 0 and f € E, 4(X7T), one has

| @)l = £, o)) (1) s
+ /21 |f4 [P (0) |v - ng|do dt — /ZT |f-[P(0)? |v - ny|do dt (3.10)
—p [ (OUP g 0)"

ZT

Lemma 3.5. Under the assumptions of Theorem 1.5, for anye,h € (0,1] and 8 > 0,
there exists Ao = Ao(6,0, K) > 0 such that for any X > Ao, g € L o(XT) N Lo (XT),
one has

dy
/ 2T, 0) () dado + 6,3 / Onip fon (0} dz
QxR3 /=T

SO [ PO et [ ()P0 o noldode (1D

T
3

<x [P de [ 53 dado,
=T QxR3
and

max{[|f (T, )| Lo xrs), [ fenll oo =rys 1(fen) £l L (5T joenan }
<A Mgl =) + 1follra @xre),

where 61 = 01(0) > 0 is defined on page 15.

Proof. For the sake of convenience, we omit the summation with respect to k €
{1,...,d1}.
Weighted Ls-estimate. First, by Lemma 3.4 with p = 2,

/ () o 2(T, 2, 0) dadv + 23 / (0} o2 d2
OxR3

T
+5/ W) (for)+? v - ng|dodt
=1

—2/ET<U>9(Ahfa,h)fa,h d2+2/ (V)0 (On,e, fo,n) feon d2

=T

=1 =I>

S2/ <'U>6gfa,hdz+/ F2(0)? dadv.
=T QxR3
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Furthermore, by using the product rule (see (3.5)) and change of variables, we get
I = 2/ET (©) fen On, -1, (arnp, fen) dz
=2 /ET ar (i fon) Onay (for(v)?) dz  (change of variables)
= 2/ (v)eak|5hylkf57h|2 dz
T

+ 2/2T ak(§h7lkfs,h)(Th,lka,h)&LJk<v>9 dz=:I11+ 12 (product rule).
By (3.2),
I 1> 26, /3<v>9|§h,lkfs,h|2 dz.
By the mean value theorem, for h € 2?), 1] and fixed k, one has
[6h,12 (0)°] < N (I, ) (0) 1.
Next, separating oy, fe,n from T}, 5, fo n by the Cauchy-Schwartz inequality, we get

haz =12 [ 0ol dz
z

2dz.

N6, 1)8? / (0o fon
ET

By a change of variables and the triangle inequality,

L @ D fonl s = [ Ty (0o < N80) [ (071l

Furthermore,

2/ <U>9bi(§h,eifa,h) fe,h dZ
=T
> =(01/2) [ 0 OncfonP bz = NUEE) [ 01

Thus, by the above and the Cauchy-Schwartz inequality, we obtain
/ ) fen*(T, z,v) dzdv + 51/ () |6n,1,, fo.n
QxR3

»T

2dz

+5/ET W (for) s l? v - ny|dodt

+
+ (A= N)/ ()| fon|?dz < )\_1/ (v)?g? dz —|—/ fE ()Y dadv,
T T QxR3
where N = N(dy,61,A, K). Thus, for A\g > 2N and A > Ao, the weighted energy
estimate hold.
L, estimate. Step 1: Higher regularity of f. 5. Here we show that

fen € Ep(ET), Vp € [2, 00),

which allows us to apply Lemma 3.4 in Step 2.
Fix any p € (2,00). By Proposition 3.1 with 6 = 0, Eq. (3.8) has a unique
solution f. 5 € E,(X7T). Denote

—lwl?/n m ra
un(v) —e [v]*/ , f;(,;z) :,Ufnfs,h-
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Note that f(") € Ey(XT), and since p, satisfies the specular reflection boundary
condition,

()t x,0) = (1= )(F3)+ (.2, Rov) on BT
Furthermore, the function F(") = f — fe,n satisfies the equation

YF™ — A, F™ 56y, F™ + AF™) = g(u,, — 1) + Commy,,
F™(t,a,0)) = (1 — ) F"(t, 2, Ryv),
r) (0,-) = fo(pn — 1),

where

Commy, = —Ap[fenttn] + Anlfenltin — 0'l1in (On,e, fon) = One, fsj;l)]

Then, since F(™) € Ey(X7), by the above Lo estimate (3.11), for A > \g, we get

IEET ) | agxzsy + 1L Ny oty + AP ooy

(3.12)
< Nl fo(pn — Dllzy@xrsy + Nlgln — Dl pyory + N||[Commy, ||, 7y,

where N is independent of n and F("). Note that the first two terms on the right-
hand side of (3.12) converge to 0 as n — oo by the dominated convergence theorem.

Thus, to prove that f. and f.p coincide a.e. in X7 along with their initial values
and traces, it suffices to show that Comm,, — 0 in La(X7) as n — oco.
First, by (3.5), (3.6) and (3.4), for a function u on R3, we have
On.e. (Whn) = pinOh,e;w = (On,e,bin) Tt
Anlupn] = ar(An i [upin]) + (On, 1,0k ) On, 1, [upin]. (3.13)

Next, by using (3.6), the product rule for the second-order differences

Apy [Upin] = pn D0+ wAp g i + (On,0, 1) (On, 1, fon)
+ (On,—1,4) (On,~1,. n),

and the product rule for the first-order differences (see (3.5)), we conclude from
(3.13) that

Aplupin] = pnApu

+ ag (i, i+ (n,1,0) (On 1y fin) + (On,—1,1) (On, 1, 1tn))

+ (On, 1 k) (On,— 1y bn ) Th,—1,, -
Then, by the above identity and the mean value theorem, for n > 1,

dy
[Commy | Ly sry < N7t (| fenll o) + D 10nn fenlllLasm))s
k=1
where N = N(h,d, K,A). Hence Comm, — 0 as n — oo in Ly(XT). Thus, the
assertion of this step is proved.

Step 2: L, bound. Fix arbitrary p € [2,00). Let us start with the term containing
Ajp. By a change of variables and the inequality

(a = b)(lala— [b7) > No(q)(a —b)*(lal + [b]7), ¢ >0, a,b R, a #D,
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we have

p/ Syt (@O ay fep)| fen P2 fep dv
RS

P26, fen]? do.

Zp/ ar(On iy fer) Ont ([ fonP 72 feon) dv 2N0p51/ | fe,n
R3 R3

Furthermore, by the Young’s inequality,

p/ bi((sh@ifah)|fs7h|p_2fa,hdv (314)
R3

> —Nop(61/2) / eP 210 fonl? dv — 2N3 157 K / fonl? do.
R3 R3

Since the stencil A contains the standard basis e;,i = 1,...,d, we may replace
|6n,e; fo,n|? with the sum 221:1 |6h,1,, f=,n|? in the first integral on the right-hand
side of (3.14).
Thus, by the above and the Young’s inequality, we obtain
| Venl @ o) oo+ pNo@1/2) [ Ifen
QxR3 baky

P=2|6p0,, fen|* dz

+€/E$ |(fen)+|P v - ng| dodt + p(A/2 — Nl(K,(h))/ET | fen|P dz (3.15)

g2p—1A1—p/ |g\sz+/ | folP dz.
=T QxR3

Finally, we set Ag = 2/N7, and take the p-th root in the above inequality and pass
to the limit as p — oco. This gives the desired L., bound. O

3.4. Verification of the weak formulation. The goal of this section is to prove
the following Green’s type identity for the solution f. ; (see (3.16)). This result is
used in the proof of Theorem 1.5 when we show that a solution constructed by the
weak™ compactness method satisfies the weak formulation (see (1.17) in Definition
1.1).

By Cé ’1’2(ET) we denote the space of all functions ¢ with compact support such
that 0;6,V.¢, V.o, D2¢ € C(XT).

Lemma 3.6. Under the assumptions of Proposition 3.1, for any ¢ € C& (ﬁ),

_ /ET(Y@fEﬁ dz—l—/ (fen(Tyz,v)(T, x,v) — fe,n(0,2,v)9(0,x,v)) drdv

QxR3

+ /E e )0l naodt /E (Fer)-6lv-nldordt (3.16)

_ /ZT fenAnpdz + /ET fenOn—e, (V'0) dz + /\/ZT fenddz = /ET o dz.

It follows from (3.9) that (3.16) holds for any ¢ € ® (see Definition 3.2). To
prove Lemma 3.6, it suffices to extend the identity (3.9) for ¢ € C3(XT), which is
done in the next lemma.

Lemma 3.7. For any u € Ey(X7T), the Green’s formula (3.9) holds for any ¢ €
C$ (7).
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Proof. Let n;,7 =1,...,m be a partition of unity in {2. Since

Dom(Ye) =3 V(o) =Y ov-Vany =DV (om),

we may assume that supp ¢ C [0,7] x B.(x¢) X B(vg), where 2o € 9Q, and r > 0
is sufficiently small. Furthermore, we may also assume that (2.1) holds. We will
reduce the problem to the case when Q = R3 by using the boundary flattening
diffeomorphism II defined below, which is somewhat simpler than ¥ defined in
(2.2) - (2.3). The same argument also works if we use ¥ instead of II but require
to be a C® domain.

Let IT : QN By, (20) x R? — R? x R3 (z,v) — (y,w) be the diffeomorphism
defined as ¥ in Subsection 2.1 but with ¢! replaced with

7 (y) = (Y1, Y2, 43 + p(y1, 2))- (3.17)
In particular,
w = (D).
We fix any smooth function £ on R such that

) =0, t<l,

£@t) €(0,1), t€(1,2),
=1, t>2

Furthermore, for € > 0, denote

&(y,w) = §(y§ :—ng), Xe(z,v) = & ((z,v)),
¢€(Z) = ¢(Z)Xs(x,v)€<z>f(T€_ t> .

Note that ¢. vanishes near t = 0, ¢t = T and the grazing set (0,7") x yo (see (1.11)).
By Remark 3.1, ¢ € ¢ (see Definition 3.2). Therefore, by (3.9),

/ [(Yu)ge + (Yoo )u] dz — / UsGe |V - ng| dodt + / U_¢e |v - ng|dodt = 0.
»T EI =T

We will pass to the limit as € — 0 in this identity. Note that by the dominated
convergence theorem we only need to show that

lim (Yoe)udz

e—0 »T
= / Yod)udz — / [u(T, z,v)¢(T, x,v) — u(0,z,v)¢(0,z,v)] drdv.
T nT

Invoke the notation of Subsection 2.1 and replace the diffeomorphism ¥ with II.
Then, by (A.3) and the fact that J = | det g—;|2 =1, we get

/(Yqﬁg)udz:/ (Orgpe)u dydwdt
= = (3.18)

+/ (w~Vy$5)ﬁdydwdt—/ (X - Voo )idydwdt =: I + I, + I,
HT HT

where @ is defined in (2.5).
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Convergence of I;. We split I into 5 integrals given by

t T-1
)Uat¢X6 dZ,

na= [ €O
T-—t
3

)5 g) (T, z,v)pxedz,

t

o= [ e

- Ju(0, 2, )9 dz,

1-173 = —871/ (
»T

11,4:8-1/ 5('5)£(T Y [ult, 2, v) — u(0, z,v)|éxe dz,

»r g

Lis=—¢"! /ET £(£)§’(T — t) [u(t, z,v) — uw(T, z,v)]px. dz.

3 9

The first integral converges to sz w0 dydwdt due to the dominated convergence
theorem. By a change of variables and the dominated convergence theorem com-
bined with the fact that [&'(t)dt = 1, we conclude that

Lo — u(0,z,v)¢(0, z,v) dvdv, I3 — — u(T,z,v)o(T, x,v) dedv.
=T »T

Changing variables and using the Cauchy-Schwartz inequality give

2e
\uusm*/ lult,) — w0, )y, dt.

The expression on the right-hand side of the above inequality converges to 0 as
e — 0 because u € C([0,T], L2( x R?)) (see Lemma B.4). Similarly, the same
convergence holds for I; 5. Hence, by the above, we conclude

I — [u(0, z,v)(0,2,v) — u(T, z,v)d(T, z,v)] dedv. (3.19)
=T
Convergence of Iy and I3. Note that

~ T_
b=t o= [ (09,0600

o~ T—
+ 2/ ugs(-)¢(
HT :e2<y2+w3<2e? € €

t ) u dydwdt

t

W3Y3 . Y3 +w
) = 5(36 )ddwdt

-~ t T—t, .
Is =131+ 139 := —/ (X - Vw¢>)§a(y,w)f(g)§( )udydwdt
HT
- 25*2/ aoe(De(m=h) Xguws (y3 +w3)d dwdt.
HYT :e2<y2+w2<2e? € €

By the dominated convergence theorem,

lim (Io + Is,1) = / (w - V)i dydwdt — / (X - Vo)t dydwdt.
e—0 HT HT
Then, by the above equality, (3.18) - (3.19), it suffices to show that
1272,13,2 — 0. (320)

By the dominated convergence theorem,

|I22] < / \@(}5\ dydwdt — 0 as e — 0.
HT :e2 < |y2+w3|<2e?
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Furthermore, since  is a C? bounded domain, it follows from (3.17) and (2.9) that
X is bounded on the support of ¢. By this, the Cauchy-Schwartz inequality, and a
change of variables, we get

|I372| < Ne™* ||aIy§+w§<262 HLQ(HT)

2 2
" Y3 + ws
X ||X3¢||L;,y1,y2,w1,w2 (R3,)LY3™3 ((—o0,0) XR) ||§/< 22 )”Lz(R2) —0

as € — 0. Thus, (3.20) holds, and the lemma is proved. O

3.5. Proof of Theorem 1.5. By Proposition 3.1, for any ¢, h € (0,1), there exists
a unique (strong) solution f.; € FEa4(XT) to Eq. (3.8). Furthermore, by the
uniform bounds in Lemma 3.5, the Banach-Alaoglu theorem, and the Eberlein-
Smulian theorem, there exists functions f, f7, and f} that satisfy the condition (i
of Definition 1.1 and

fern — [ weakly in Ly o(XT),  fon(T,-) — f3 weakly in Ly (92 x R?),

3.21
(fen)+ — fX in the weak™ topology of Loo (3L, |v - nyl). (3.21)

It remains to show that f, f7, and fI satisfy conditions (ii and (zii of Definition
1.1.

Fix any ¢ € Cy'"*(XT). Then, by Lemma 3.6, the weak formulation (3.16) holds.
By (3.21), we pass to the limit as ,h — 0 in (3.8) and conclude that the specular
reflection boundary condition is satisfied. Next, note that by (1.21) in Assumption
1.4, Vb € Loo(E7T), and, therefore,

Sh—e; (D'@) = —0,, (b)) as h — 0 in Lo (X7T).
Combining this with (3.7) and (3.21), we pass to the limit in (3.16) (with respect to
a subsequeL%). This proves the validity of the condition (iii of Definition 1.1 with
o€ Cé’l’z(ET). By using a limiting argument, we prove that the weak formulation

(1.17) holds with ¢ € C}(XT). Finally, passing to the limit in the bounds in Lemma
3.5, we obtain the estimates (1.22).

4. Regularity of the finite energy weak solutions to the kinetic Fokker-
Planck equation. Here we prove Theorem 1.6, Corollary 1.2, and Theorem 1.7.

Proof of Theorem 1.6. Let ¢ € C§°(R) such that ((0) = 1. Replacing f with f— fo(
and g with

g — f00i¢ — v Vafol + Ay(fol) — b+ Viu(fol) — A(foC) € Lap(S7),

we may assume that fo = 0 in the identity (1.17).
Let ng, k = 1,...,m, be the standard partition of unity in Q (see, for example,
Section 8.4 of [16]) such that supp 71 C Q,0<n, <1, k=1,...,m, and

e =1 in By a(x)

k=2,... 4.1
me=0 in BS ,(x) et (4.1)

Ivlnkl SN/T07 {
where x; € 09, and rg is the number in Subsection 2.1 such that (2.1) and (2.11)
hold.
Note that

= fr(v)’ 2 (4.2)
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satisfies the identity
Y —Aufe+b-Vofe+ Afx
= gni ()’ + ()P0 Vo (4.3)
+ b - Vo (0)072 — A, (0)072n;) — 2V, f - Vo ()2 =: g

in the weak sense, i.e.,

- / (Yo) frdz + / fe (T, 0)o(T, x,v) dedv
»T QxR3 (4.4)

+/2Tvvfk-vv¢dz+/ET<b-vvfk)¢dz+A/ETfk¢dz=/ZTgmdz-

Interior estimate. We extend fi1, b, and g; for x outside Q by 0 and for
negative ¢ by replacing them with f11¢>0, bli>0, and g11;>0, respectively. Taking
a test function ¢ € C§°((—o0,T) x RY) removes the integral over the hyperplane
t = T in (4.4). Furthermore, the identity (4.4) holds with €, X7 replaced with
R3 and (—oo,T) x R®, respectively. Since V,f; € La((—o00,T) x R®), we have
Y fi € Hy'((—o0,T) x RY), and by this, f; € Sa((—o0,T) x R®). Then, f; satisfies
(4.3) in Hy ' ((—o00,T) x RY).

Let Ag > 0 be the constant in Theorem D.4 (i) with p = 2. Then, due to Theorem
D.4 (i), for any A > A, the equation

Yu, — Ayur +b-Vyur + dup =g

has a unique solution u; € Sa((—o00,T) x R®) | and, furthermore, u; = 0 a.e. on
(—00,0) x RS. Then, Uy = f1 — u1 € Sa((—00,T) x R®) satisfies the equation

YU, — AU +b-V, Uy +AU; =0 in Hy '((—00, T) x RY).

Therefore, by the energy identity of Lemma B.3, integration by parts, and the
Cauchy-Schwartz inequality, for a.e. s € (—o0,T'), we obtain

/ Ui(s,z,v) dxdv+/ |V, UL|? dz
RS (—o00,s) xRS
+(>\—N1(K))/ Utdz <0.
(—o00,s)xR6

It follows that for A > Ni(K), we have U; = 0 a.e. in (—00,T) x R®. Then, by
Theorem D.4 (i), for A > A\¢ with, possibly, larger Ag, one has

11l 55 (=00, 1) xRS) = U1l 55 ((—00, ) xRE) < N |81 Ly ((—00,1)xRE)
S N(HgHLz,e—2(ZT) + Hf”LQ,sfl(ET) + ||V’Uf||L2,973(ET))7

where N = N(K,Q,0). In addition, by the embedding theorem for S, spaces (see
Theorem 2.1 of [19]),

(4.5)

11+ 1V o f1lll Lz ja((—o0, ) xRS)

is bounded by the right-hand side of (4.5).

Boundary estimate. We fix some k € {2,...,m}. We redo the construction of
the mirror extension mapping in Section 2.1.1 with x( replaced with xx. As above,
we extend f and g by 0 for t < 0. Then, by the argument of Section 2.1.2, for
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any ¢ € C§°((—00,T) x RY), f satisfies the equation
/ (= Y0+ (VuTo) AV — (X~ Vud) i
(= 00,T) xRS

+ (B Viufr)d+ Afud —8d) dz = 0.
Here
— A = A(y) is defined by (2.8), (2.10), (2.12) with a = I5,
— B is defined by formulas (2.8), (2.14) for ¢t > 0,
— X is given by (2.9), (2.13) for t > 0,
and for ¢t <0, B, X are equal to 0. As above, due to Vfr € Ly((—00,T) x RY) and
(4.6), we have fi, € So((—00,T) x RY). Below, we will show that f € Sa((—o0,T) x
RS).
First, observe that since 1 is a local C? diffeomorphism,
X| < NQwl?, VX < N(Q)[wl, (4.7)
and, therefore by (4.7) and (4.3),
& — Vu - (Xfi) € Hy '((—00,T) x RY).
Next, note that A satisfies the nondegeneracy condition (see (1.19) in Assumption
1.2) with 6 = 6(€2) > 0 because ¢ defined by (2.3) is a local diffeomorphism.
Furthermore, by the conclusion of Appendix E, A is a Lipschitz function on R3,

and, thus, by Remark D.1, Theorem D.4 () is applicable. By this theorem, there
exist A\g = \o(K, Q) > 0 such that for any A > Ao, the equation

Owug, +w - Vyup — Vi - (AVyug) + B - Vyuy
+Aup =8t — V- (Xﬁ)
has a unique solution ug € Sa((—o0,T) x RY) (see (1.14)). Then, repeating the ar-

gument used for the interior estimate, we conclude that fi, = uy, for A > \o(Q2, K, 6)
with, perhaps, different \g. Hence, by Theorem D.4 (i),

(4.8)

17|l 85 (=00, xRE) < N<|gk||L2((—oo,T)><R6)

(4.9)
+ IV fill Lo ((— 00, T) xRS) + Ifk||L2,1((oo,T)><1R6)>a
where N = N(K,Q,0). Again, by the embedding theorem for S, spaces,
I Fl + 1V fel [l 25— 00,7 xRS)
is controlled by the right-hand side of (4.9). Then, by Lemma B.1, we have
I fellso sy + 1kl + Vo felllz, 52
< N (s oo + 190 D) + 1) )
Finally, combining the above estimate with (4.5), we prove the theorem. O

Proof of Corollary 1.2. Let fi, fo be finite energy weak solutions to Eq. (1.16).
Then, by Theorem 1.6, f1, f2 € S2(X7T).

Next, let A’ > 0 be a number, which we will choose later, and denote F =
(f1 — f)e M. Note that F € Sy(27T) satisfies Eq. (1.16) with g = 0, fo = 0, and
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A+ X in place of A. Then, by a variant of the energy identity (see Lemma B.2), we
get

/ |F(T, z,v)|? da:dv+2()\+)\')/ |F|? dz
QxR3 =T

_ 2/ (AL F)Fdz + 2/ (b-V,F)Fdz = 0.
T nT
Integrating by parts and using the Cauchy-Schwartz inequality, we obtain

/ |F(T,;v,v)|2d:cdv+/ |VyF\2dz+2()\+X—N(K))/ |F|?dz < 0.
QxR3 »T b

T

Thus, taking \' > N, we conclude F' = 0. The corollary is proved. O

To prove Theorem 1.7, we need the following result.

Lemma 4.1. Let

-p>2,T>0,A>0,0>2 be numbers, andr > 1 be determined by the relation
1 1 1
—=- = (4.10)
r p 14

— Assumptions 1.2 - 1.3 be satisfied,

— f €Sy (ET) with0 >0 —2, and f,V,f € L.o(XT),

- fi € LOO(E£7 ‘U ! ’I’Lx‘), f(Tv ) € L2(Q X R3)) f(aO) = O:

- g S Lr,9—2(ZT);

— [ satisfy the specular boundary condition and the identity (1.18) a.e. and, in

addition, f(0,-) =0.

Then, the following assertions hold.
(i) One has f € Sr9—o(XT), and

1flls,6 27y < N(IIE;IILT,H(ET) T IVofllr, or) + |f||LT,91(ZT)>a (4.11)
where N = N(p, K,0,9Q).
(ii) If p < 14, then, f,V,f € L.g_o(XT), and, furthermore,

A+ VAL, s

is less than the right-hand side of (4.11).
(i1d) If p > 14, then, f,V,f € LOO((O,T),C;)"{}’O‘(Q x R3)) N C(XT), where
a=1-14/p, and C;j‘,{f"”‘(ﬁ x R3) is defined in (1.12). In addition, the norms

Il ooy, 022 @xrsyy IVFIL 0.1y, 0200 @nasy)
are bounded above by the right-hand side of (4.11).
Proof of Lemma /.1. Denote

) {LT(R;), if p € [2,14), where r is determined by (4.10), (4.12)

Lo ((0,T), Cavg’a(RG)), if p> 14, where a =1 — 14/p.

We follow the argument of Theorem 1.6 closely.
Interior estimate. Recall that

fi=Ffm@)’% € S,(RY)
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solves Eq. (4.3) with the zero initial-value condition and note that due to the
assumptions of this lemma, for any k£ = 1,...,m, we have

gr = g (0)’ 7% + f((0)° 20 - Vo,
+ b - Vo (0)072 — A, (0)°72m1) — 2V, fir - Vo (0) 2, € L. (RT).
Then, due to Lemma D.6, f; € S,.(R%.). Using Theorem D.5 (see Remark D.2), we
get
il 7)< N 5,0, (el oo
(4.13)
+ ||f||L719,1(ET) + ”vaHLr,es(ET))'
Boundary estimate. Recall that f; is given by (4.2), and f, is its “mirror

extension” defined as in (2.6). The function f; € S,(R%) satisfies Eq. (4.8). In
addition, due to (4.7),

8k — vw : (Xﬁ) € LT(R;)
Then, again, by Lemma D.6, we conclude that f; € S,.(RT).
Next, by the a priori estimate of Theorem D.5 applied to Eq. (4.8) and using
(4.7), we get
||EHST(R7T) < N(”ﬁ”u(u&;) + vaﬁHLﬂ(R;) + ||E||LT,1(R7T )s
where N = N(p, K,6,Q) > 0. Then, by this and Lemma B.1,

I fells. =y < N(lgllr,.oosm) + Vo flln, oty + 1L, o0 sm))- (4.14)

Thus, the desired estimate (4.11) follows from (4.13) combined with (4.14). As
in the proof of Theorem 1.6, by using the embedding theorem for the S, space
(Theorem 2.1 of [19]), we prove the assertions (i7) and (4i7). O

Proof of Theorem 1.7. We will proof the theorem by using a bootstrap argument.
As in the proof of Theorem 1.6, we may assume that fo = 0.
Let r¢, k > 1 be the numbers defined as follows:

1 1 1
’)”1:27 —_— = fﬂ’kZQ,...,G,
Tk Tk—1
1 1+1 (4.15)
—=—-—+—, 18 =7p.
P VR

Note that r¢ = 7, r7 € (7, 14) since p > 14. First, by Theorem 1.6, the inequality
(1.23) holds. By this estimate, Lemma 4.1, and an induction argument for k =
1,...,6, we conclude

||fHS7,9,12(2T) + |||f| + |v71f‘||L14y9,12(ET)

6
(4.16)
<N el oosesm) + NIV llLao@r) + NI fllLee @)

k=1

Then, by (4.16) and the interpolation inequality, f, V,f € L., g—12(X7). Again, by
Lemma 4.1, (4.16), and the fact that rs = p, we get

1flls,. o_rasmy + 1T+ VO flllL, o ram7)
< N(Hg”Lz,efz(ET) + ||g||Lp,9,4(zT)
HIVufllL, oy + ||fHL2,g,1(2T))-
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Finally, applying Lemma 4.1 once more, we prove the theorem. O

5. Proof of the main result for the linear Landau equation.

5.1. Unique solvability result for the simplified viscous linear Landau
equation. Here, we prove the existence/uniqueness of the finite energy strong so-
lutions to Eq. (1.10) in the sense of Definition 1.1. We follow the scheme that we
used to show the existence and uniqueness for the kinetic Fokker-Planck equation
(1.16).

Proposition 5.1 (Existence of finite energy weak solution). Let

~ Q be a bounded C? domain,

- T>0,ve(0,1], > €(0,1], 8 > 0 be numbers,

— Assumption 1.10 (see (1.26) - (1.27)) be satisfied,

~ fo € Lapg(Q X R3) N Lo (2 x R3), h € Ly p(ET) N Lo (T7).
Then, there exists a number € € (0,1) (independent of Q, T, v, »,0, K ) such that, if,
additionally,

l9llo..=ry <e,

then, there exists Ag = \o(v, K,0) > 0, such that for any X > Xy, Eq. (1.10) has a
finite energy weak solution f in the sense of Definition 1.1, and, furthermore,

3112 0 (0x22) + Vo fll s omry + A2 fll o (o7)
SN2, sy + L foll Lo s xre))s
maX{”fz*“HLm(QxW)a Hf||Lw(zT)7 ||f;||Loo(E£,\v<nm|)}
< A MRl Lo sy + [ foll L xRy
where N = N (0, K,v) > 0.
Proof. We use Theorem 1.5. We need to check that og + vI3 and a, satisfy As-
sumptions 1.2 - 1.4 (see (1.19) - (1.21)).

Assumption 1.2. By Lemma Lemma 2.4 of [15], for sufficiently small &, there
exist constants C, Cy > 0 such that

C1{v) 313 < og(2) < Co(v) '3, Vz € RY. (5.1)
Then, (1.19) in Assumption 1.2 holds with 6 = v.

Assumption 1.3 and 1.4. By using the argument of Lemma 2 in [9] (see the
details in the proof of Corollary 3.2.1 in [4]) combined with Assumption 1.10 ((1.26)
- (1.27)), one can show that

llag +1Voag| + Voog|| Lo @) < N(K), (5:2)

and, hence, (1.20) and (1.21) hold.
Now all the assertions of this proposition follow directly from Theorem 1.5. [

The following proposition is analogous to Theorems 1.6 and 1.7.

Proposition 5.2 (5, regularity of the simplified linear viscous Landau equation).
Let

~ Q be a bounded C® domain,

-T>0,ve(0,1], € (0,1], § > 16, p > 14 be numbers,

~ f0 €029 2NOpg_a, h € Log_o(EXT)N Ly g_s(E7T),

— Assumption 1.10 ((1.26) - (1.27)) be satisfied,

~gllzezmy <e,
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— [ be a finite energy weak solution to Eq. (1.10) with parameter 0 in the sense
of Definition 1.1, which exists due to Proposition 5.1.
Then, there exists a number € € (0,1) (independent of Q,T, v, %,&Km) and \g =
Mo, K, 0,5¢,) > 1 such that f € S2.9—2(3T)NS,0-16(ET)NC(ET), and, further-
more,
11850227y + 11150 1657) S NIV fllLs ety + 1220 (57)
+ Hh‘HLz,efz(ET) + ”h”L,,,g,AL(ET) (53)
+ |f0|02,972 + |f0‘op,9—4)’

where N = N(v, K,0,3,p,Q) > 0. Finally, f is a finite energy strong solution to
Eq. (1.10).

Proof. We fix € > 0 sufficiently small such that (5.1) holds.

Step 1: Ss-regularity. We inspect the argument of Theorem 1.6. As in
the aforementioned theorem, since the right-hand side of (5.3) contains the terms
\f0|(9279_27 \f0|op)9_4, we may assume that fo = 0. We use a partition of unity argu-
ment combined with the mirror extension method and the .S, estimate of Theorem
D.4. Let ni, k= 1,...,m be the partition of unity defined in the proof of Theorem
1.6 (see (4.1)). Note that fp = fnx(v)?~2 satisfies the equation

Yfk -V, ((JG + VI3)vvfk) — Qg vvfk + )‘fk = hka (54)
where
hiy =hig(0)° 7% + f((0)° 20 - Vo)
— (08 +1615)(Dv0; (0)°72) frr
+ (=0u,0¢ — a})(9u, (0)"2)
= 2(0¢ + 10i) (D0, (0)°72) (Du, f)18-

Interior estimate. We conclude that f; € S2(RT.) by using the same argument
as in the proof of Theorem 1.6. One minor difference is that one needs to apply
Theorem D.4 of Appendix D with a = og + vI3, b’ = —a; — &,jaﬁ,i =1,2,3,
and ¢ = 0. Let us check the conditions of this theorem. Note that Assumptions
1.2 (see (1.19)) and D.3 (see (D.3)) hold due to (5.1) and (5.2). Furthermore,
by Lemma C.1, o € Loo((0,T),C>*(Q x R3)). We extend o¢ to R7. so that
Loo(0,T), CZL>7(RS)) norm is bounded by N (K, 3,). Then, due to Remark D.1,
Assumption D.1 () (see (D.1)) is satisfied for any v € (0,1). Then, by the afore-

mentioned theorem, for sufficiently large A\g = Ag(v, K, 5¢,0,§2) > 1 and any A > Ao,
one has f; € S2(R%.), and

[ fillsyezy < Nl|Pallp,we)
S NPl g2y + 1 flLs s 57) + IVl 2a 6527,

where N = N(v, K, »,0,9Q) > 0.
Boundary estimate. As in the proof of Theorem 1.6, for k € {2,...,m}, the
function fi1i>0 € S2((—00,T) x RY) satisfies the identity

/( : (= Yo+ (V)" AVwo + (B - Vo i) + Afx0) dydwdt
—o00,T)xR6

(5.5)

(5.6)
_ / (7ird — (X - Vo) Tr) dyduwdt
(—o0,T) xRS



30 HONGJIE DONG, YAN GUO, AND TIMUR YASTRZHEMBSKIY

for any ¢ € C5°((—00,T) x R®), where

— A is defined by (2.8) (2.10), and (2.12) with a replaced with og + v13,
— B is defined by (2.8) and (2.14) with b replaced with —a,,
— X is given by (2.9) and (2.13)

for ¢t > 0, and A = vI3 and B,X are both zero for ¢ < 0. Recall the argument
used in the proof of Theorem 1.6. This time, one needs to apply Theorem D.4 to
Eq. (5.6). Let us check their assumptions. Note that by (5.1) - (5.2), A and B are
bounded functions, and by the discussion in Appendix E, and by Lemma C.1,

HA”Loo((O,T),C:és’%(RG)) S N(K, , Q)

Then, by Theorem D.4 and the estimates (4.7), we get

1fellsaery < Nkl zy@z) + 1V - (XF)llz,@z)

(5.7)
SN([Mlpg o=y TN llLso iz + IVofllLyomm))s

where N = N(v, K,60,,Q) > 0. Finally combining (5.5) with (5.7) and using
Lemma B.1, we conclude that f € Sy 9_2(37) and that the estimate (5.3) holds. As
in the proof of Theorem 1.6, the L7/379_2(ET) norm estimate of f,V, f is obtained
by combining the above estimates with the embedding theorem for S, spaces in
[19].

Step 2: S, regularity. To finish the proof, we repeat word-for-word the argu-
ment of Theorem 1.7 and Lemma 4.1. O

Corollary 5.1. Any two finite energy solutions to Eq. (1.10) coincide.

Proof. Since due to Proposition 5.2, any finite energy weak solution to Eq. (1.10)
must be of class So(X7), we may use the energy identity of Lemma B.2. The rest
of the argument is similar to that of Corollary 1.2 (see page 25). O

5.2. Unique solvability result for the viscous linear Landau equation. We
now prove the unique solvability for large A > 0 for the equation

Yf—Vy (06Vof) —vAf —ag-Vof + Cf + Af =hin X7,

) 3 T (5.8)
f(oa):f()() in xR ) f_(t,l',v):f+(t,x,RmU), ZEE—?
where C' is some linear operator, for example —K; defined in (1.8).
To implement a perturbation argument, we will work with the following weighted
kinetic Sobolev spaces.

Definition 5.1. Let 7" > 0, 8 > 16, p > 14, A > 0 be numbers. We say that
[ € Ko p(ET) if the following hold:

1. € Sa9-a(5T) N Sypo16(ET) A Lo (ST) N Loo(ET),

2. va S L279(2T),

3. £(0,-) € Lag (X BR3) N Loo (X R3) NOs.9_5N Oy 616, F(T,-) € Lo g(Qx R3),
f:l: S LOO(Eiv "U : nm‘)v

4. f_(t,x,v) = fi(t,z, Ryv) a.e. on L.
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The Ing,\yp(ZT)—norm is defined as

1 fllcor, =) = A fllsemr) + Al fllLw s
HIVoflls oy + 1 fllsso_omy + 1flls, o 1657y
F L7 jong ) + I (T )L 0 (2R3 (5.9)
HFO0, ) o o@xrsy + 10, )L (2xrs)
HI1 O, ) ose—> + 110, )06 16-

Assumption 5.2. There exists a linear operator C' on Ky 5 ,(X7) and a constant
k> 0 such for any u € Ky ,(E7),

||Cu||L2,9(zT) +|1Cullp (=) < /{(Hu”LQﬂ(ZT) + lull £ (mmy)- (5.10)

Remark 5.1. An example of an operator C that satisfies (5.10) is the operator
—K, given by (1.8). If Assumption 1.10 (see (1.26) - (1.27)) holds and ||g||;__(sm)
is sufficiently small, then, by Lemmas 2.9 and formula (7.5) of [15], for any u €
Lo g(X7) N Lo (BT) such that V,u € Ly(XT), one has

K gt o5y < NO)(lull 2y em) + lulloomry),
[Kgullz.ery < NO)|ullp (zm)-

Proposition 5.3. Let

~ Q be a bounded C® domain,

-T>0,ve(0,1], € (0,1], 8 > 16, p > 14 be numbers,

- fo € L279(Q X Rg) N LOO(Q X Rg) N 0279_2 n Op,9_4, h e L279(2T) n LOO(ZT),
— Assumption 1.10 (see (1.26) - (1.27)) be satisfied,

~Ngllror) <e.

Then, for sufficiently small € > 0 (independent of 0, T, v, ,0, K,p), there exists
some Ao = Ao(0, K, 5,p,Q,v) > 0 such that Eq. (5.8) has a unique finite energy
strong solution in the sense of Definition 1.1, and

1 fllcor )y SN Ly oy + IPlL(mm)
+ ||f0||L2,e(Qx1R3) + Hf0||Loo(Q><R3) (5.11)
+ ‘f0|o2,9—2 + |f0|op,9—4)’

where N = N(0, K,Q,p, »,v) > 0.

Proof. Let € > 0 be a number such that (5.1) holds. For an arbitrary function
€ € Ko p(ET), let us consider the equation

Yu—-V, - (6gVyu) —vAu—ay-Vou+Au=h—-C¢in »T, (5.12)
u(0,-) = fo(-) in Q xR3,  w_(t,2,v) = uy(t,z, Ryv), zecXT.
Note that by Assumption 5.2 (see (5.10)), the right-hand side of Eq. (5.12) is of

class Ly g(X7) N Lo (XT). Then, by this, Propositions 5.1 - 5.2 and Corollary 5.1,
there exists A\g = A\g(0, K, , 5¢,v) > 1, such that for any A > A\, Eq. (5.12), has a
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unique finite energy strong solution w in the sense of Definition 1.1, and, in addition,

[w(T, )|y o (2xR3) + >\1/2HU||L2,9(2T) + IVoul L, =7y

< N([lfoll s, pxms) + A2 (Bl L, 4 (or)
A A2 e L pmr) + AT L my)

max{||w(T, )| L..oxrs), [ullor), lutllo 27 o, t

< N(Ilfollpw @xrzy + ARl m1) (5.13)
FA e o5y + AT €L mmy),

ullsy ooy + 1ulls, o 16zm)

< N(f[lul + IVoulll Ly o=y + [folos s + [folo, o4
+ 1l Lg ooy +IRlL, o_omry + 1€l Lo oz + EllLo=7)),

where N = N(0,p, K,Q, K, »,v) > 0. Furthermore, for any ¢ € Kg,(X7), we
denote R){ = u, where u is the finite energy strong solution to (5.12). Thus, by
(5.13), Ry is a bounded linear operator on Ky » ,(X7).

Next, note that, since a solution to (5.8) is a fixed point of Ry, it suffices to
show that R, is a contraction on Ky » ,(X7). For any &,& € Ky ,(27), by (5.9),
(5.13), and the fact that Ag > 1, we get

[Rxé1 — Ralallx, , ,zmy S N(lI6r — &l sy + 16 — &2ll, 02m)),

where N is independent of A. Furthermore, by the definition of the Kg  ,(X7)
norm, for A > Ag,

161 = &allny o2r) + 161 — LMl =) < AF & = &l , (57)-
Thus, for A\g > N + 1, Ry is a contraction mapping. Thus, Eq. (5.8) has a unique
solution f of class Ky, ,(X7). To prove that f satisfies the weak formulation (1.17)
for any ¢ € C§(XT), we define a Picard iteration sequence f(0) = fo, f(*+1) =
Ry ™, which converges to f in Ky x,(37). We pass to the limit in the weak
formulation for f() and use (5.10) in Assumption 5.2. O

5.3. Proof of Theorem 1.11. To prove the existence part, we work with the
viscous linear Landau equation

Yi+Lf —vAf+Tg. fl+Af =h,

T (5.14)
f(07'7'>:f07 ff(t,xvv):er(tavaxv)’ zeX.
An equivalent form of this equation is
Y=V (06Vof) —VvAf —ay-Vof —Kgf + A\f =hin £, (515)

f0,)=fo()in QxR f_(t,x,v) = fi(t,x, Rywv), ze XL,

Thanks to Proposition 5.3, Eq. (5.15) has a unique strong solution (in the sense
of Definition 1.9) of class Ky ,(37). However, the a priori bound in (5.11) has a
constant depending on v, and, hence, such estimate cannot be used in the method of
vanishing viscosity. To establish a priori estimates that are uniform in v, we use the
following ingredients: the weighted Lo bound (see Lemma 5.3) and the .S, estimate
in Proposition 5.4. Once we prove the former, we bootstrap by using the latter. We
point out that in contrast to the kinetic Fokker-Planck equation, we do not derive
a priori bounds of ||fi||Loc(E£,\v<nm|) by applying the L, energy identity for the
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operator Y (c.f. Lemma 3.5). The present authors are not aware of such estimates
for Eq. (5.14). Instead, we use the S, estimates to bound ||f1 . _ (57 jv-n.|)-

Lemma 5.3. Let v € [0,1],A,0 >0, T > 0 be numbers, f be a finite energy strong
solution to Eq. (5.14) in the sense of Definition 1.9. Assume that h € Lg(%7T)
and fo € Ly g(2 x R?). Then, there exists a constant € = () > 0 such that if

lglle.=my <&,
then, one has
(T, ) L g@xrs) + I Flloo + A2+ D fll g 027y
< N([hll Ly o2y + 1 follLs o xrs)),
where || - |50 is defined in (1.24) and N = N(0,T) > 0.

Proof. We follow the argument of Lemma 8.2 in [15].
Let A > 0 be a number which we will determine later. Multiplying Eq. (5.14)

by e~2)* and using the energy identity in Lemma B.2 with (v)? give

LTy +2 [ (LDl
2 [T e d 20 V) ey (510)

<2 [ R e ds 4 ol axm

By Lemmas 2.7 and 2.8 of [15] and (1.25), there exist Ny, N1 > 0, depending only
on 6, such that

L Dre ™ s = (125 2 = Nollfe o

< Nillgllpo eyl fe M50 < Nl fe™ 12 .

[ ot s
»T
Combining this with (5.16) and the Cauchy-Schwartz inequality, we obtain
(T, e T||2Lz,9(QxR3) +(1=2Nge)| fe 12
+ 22+ N~ No(e))\|f€_Xt||2L2,9(zT)

S ||f0|‘%2‘e(QXR3) + (AI)_IHhe_)\ t||%2,9(ZT)'

Taking ¢ < (4N7)~! and N > 2Ny, we prove the desired estimate. O

Remark 5.2. Note that by Remark 1.3, one can extract the estimate of | f|[z, ,_, =)
from the above result.

We will use the next proposition with 8 replaced with 6 — 3.

Proposition 5.4 (S, bound). Let
~ Q be a bounded C® domain,
-T>0,ve(0,1], A >0, s € (0,1], p > 14 be numbers,
— Assumption 1.10 (see (1.26) - (1.27)) hold,
Mgl <6,

[ llLz0csry IV fllLaper) < M
for some M > 0,
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— [ is a finite energy strong solution to Eq. (5.15) (see Definition 1.9) with
fo=0andh € Lyg(ET)NL,e(ET),
~ [ €Koxp(ET) (see Definition 5.1).
Then, there exist numbers ¢ € (0,1), 8 = 0(s¢,p) > 1, and 0" = 0'(5,p),0" =
0" (5¢,p) € (1,0) such that

1flls, 0 27y + 1f1ls, 40 (1)

+ Hf:I:HLOC(ETJv-nz\) + Hf”Loo((O,T),C’a,/US’a(ﬁxR?’))

x

(5.17)
+ Hv”fHLoo((O,T),C",US'“(ﬁxW)) + Hf”Lm(Zi,h;‘an

@

SNM + [[hll1, o) + 1RlL, 0 (27)),
where N = N(0,p, s, K,Q) >0, and a« = 1 — 14/p. Furthermore, f € C(ﬁ)

To prove this estimate, we need a technical result, which is similar to Lemma
4.1. We will state the lemma after we introduce some notation.

Let (o € C5°(By), ¢ € ({27! < |v| < 2%/2}) be radially symmetric functions
such that
~ o =1o0n Bgi/z2, and 0 < (y < 1 on the complement of this set,
~ ¢ =1if {272 < |u| €2}, and 0 < ¢ < 1 otherwise.

For n € {1,2,...} and a bounded measurable function b = (b', 4%, b*)T, we set

Cn(v) = C(v277), (5.18)
oG = (oG +vI3)¢ + (1 —(n)ls. (5.19)
Lemma 5.4. Let

~ Q be a bounded C® domain,
-T>0,vel0,1],80>2,x€(0,1], p>2, A\ >0 be numbers,
— Assumption 1.10 (see (1.26) - (1.27)) be satisfied,
- bllp.(=m) < K,
= gllLo(zr) < € for some e > 0,
- fe Spyg(ET)ﬂLp,g(ET) for some @ > 0—2,V,f € L, o(XT), f+ € Loo(ZL, -
n$|)7
— f satisfies the equation
Y=V, (0enVof) —b-Vof =M +h ae inST (5.20)

with h € Lyg—2(3T) and f(0,-) = 0, and the specular reflection boundary
condition

fo(t,z,v) = fi(t,x, Rev) a.e in XL,
Then, there exists a number ¢ € (0,1) (independent of Q,T,v, 3,0, K,p) and 8 =
B(p, ») > 0 such that
Hf”Sp,s—Q(ZT)
< N2°*(||hll L, o mry + £l Ly oms ) + IV Ny o2m)s
where N = N(K, »,p,Q,0).
Furthermore,

e if p <14, the norm ||| f| + |VufllL, ,_,(sr) is bounded by the right-hand side
of (5.21), where r is given by (4.10).

(5.21)
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o if p > 14, then, for « =1 — 14/p, the norms

Iz oy oz @xmony Vol o.my.cooe @umony Il sz mo-2)
are bounded by the right-hand side of (5.21).
Proof. We follow the argument of Lemma 4.1. Let € > 0 be a number such that
(5.1) is true and fy, k = 1,...,m be the functions defined by (4.2).
Interior estimate. We prove the lemma by applying the a priori estimate in
Theorem D.5 to Eq. (5.4). Let us check its assumptions.
Assumption 1.2 (see (1.19)). Due to (5.1) and (5.19), for sufficiently small € > 0,
N2 ™" < oan < Ny'Is
for some constant Ny > 0 independent of n.
Assumption D.3 (see (D.3)). By (5.1) - (5.2) and (5.19), one has
Voo nllp. sy < N(K),

and hence, (D.3) holds with with b’ replaced with b* —9,, agm,i =1,2,3,and ¢ = 0.
Assumption D.1 (see (D.1)). By Assumption 1.10 (see (1.26) - (1.27)) and
Lemma C.1, we have

||UG’”HLOO((O,T),C:Q&%(EXR3)) S N(K, %)

Then we extend og,y, to Rzp so that the above inequality holds with €2 replaced with
R3 and with N = N(K, »,Q). Then, by Remark D.1, for any r € (0,1) and Q,(20),
08Cs,0(0G 0, Qr(20)) < N(K, 3¢, Q)r”,
where 08¢, (0G0, Qr(20)) is defined by (D.2). Hence, for any v € (0,1), (D.1) in

Assumption D.1 (v) holds with
Ro = N(K, 3, Q)y'/*. (5.22)
Furthermore, let
B=06{p) >0, r=k(p)>0, 7 =05(p)>0
be the numbers in Theorem D.5 with § = 273", Then, by the above, (D.1) in
Assumption D.1 (v,) holds with
Ro = N1 (K, ,Q, p)2—3n/*,
Next, by Theorem D.5 (see Remark D.2) and Eq. (5.20),
1fills,®zy < N235m | by Iz, @) + NQGW/%HleLp(R;)
< N23ﬂn+6m/%(||h||Lp,3,2(R;)
Wy o @z) + IV fllL, o@ay)s

where N = N(p, K, ,60,Q) > 0. Next, recall the notation B? (see (4.12)). By the
embedding theorem for the S, space (see [19]), || fi|lg» is bounded above by the
right-hand side of (5.23).

Boundary estimate. Recall that fi,k = 2,...,n, defined as the mirror exten-
sion of fi, satisfies Eq. (5.6) where

— A is defined by (2.8), (2.10), and (2.12) with a replaced with o¢ ,, where the

latter is given by (5.19),
— B is defined by (2.8) and (2.14) with b,
— X is given by (2.9) and (2.13).

(5.23)
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By the conclusion in Appendix E (see Lemma E.1), since ¢, is a radially symmetric
cutoff function, we have

A € Loo((0,T), CZ>*(R)),
and, furthermore, by Lemma C.1,

HA”LW((O’T),C;‘,{f"‘(RG)) < N(K, Q)

because [¢,| + |[Vu(n| < N with N independent of n. Hence, as above, for any
v+ > 0, the function A satisfies (D.1) in Assumption D.1 (v,) with Rg given by
(5.22). Next, by Theorem D.5 and Eq. (5.20) combined with the estimates of
X, VX in (4.7), we obtain

1 Fxlls, r7.)
< N2 (||[he] + |V - (KT 1, mz)) + N2 Fill 1, e

< N¥mrosnl=(n) ey I, oz + Vo flL, o =7)),

where N = N(p, K, ,0,)). Combining the above inequality with (5.23), we prove
the desired estimate of | f||s, ,_,(z7). Again, by using the embedding theorem for
the S, spaces, we bound the norms of || fi||g#, k > 2, where BP is defined by (4.12).
This and the bound of || f1||s» yield the estimates of

ka”Lw((o,T),c;*/f'a(ﬁxRS))’ ”v”fk”Loo((O,T),Ci*/us’a(ﬁxRS))

with o = 1 — 14/p, when p > 14. Since f = fn;(v)?~2, we also obtain the bound
of Hf:I:HLOC(Ei,@)"*?)' The lemma is proved. O

Proof of Proposition 5./. We follow the argument of Theorem 1.7 and Lemma 4.1
with minor modifications. The central part of the argument is the following asser-
tion.

Claim. Let € > 0 be a sufficiently small number such that (5.1) is satisfied. Let
r € [2,00) \ {14} and 8 = B(r, ») be the number in the statement of Lemma 5.4,
and 0 > 2+ 3. Assume that f € Ky, ,(37) is a function that satisfies Eq. (5.15)
with fo = 0 weakly and in the almost everywhere sense (see conditions (3) and (4)
of Definition 1.9), and, in addition, one has

I+ 1Vuflllz, ., =) < M,
for some 2+ 8 < 0, < 0 and M, > 0. Then, the following assertions hold:
1.
1£ 115,05y < N(Ill2, 4, mm) + M), (5.24)
where N = N(r, K, 0,4, 5) > 0.
2. If r € [2,14),
NA+IVoflllz,, o s
is bounded by the right-hand side of (5.24) where r’ is determined by the

relation
1 1 1

ror 14
3. If r > 14, then for & = 1 — 14/, the norms
”fHLoo((O,T),C“/S’“(ﬁx]W))’ va'fHLw((O,T),Ca/3’a(§xR3))’ ||fiHLoo(E£7<v>9T*2*5)

x,v x,v

are bounded by the right-hand side of (5.24).
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If this claim is valid, then, repeating the argument of Step 2 in the proof of Theorem
1.7 (see p. 27), we prove the desired estimate (5.17). In particular, we use the same
powers 1,k =1,...,8 defined in (4.15), and similar weight parameters

0r=0, Opr=0,—2—8, k=1,...,7.

Proof of the claim. Let ¢,,n € {0,1,2,...} be the functions defined above
Lemma 5.4 (see p. 34), and & € C§(Bgis2), £ € CP({271/2 < |v| < 2}) be
functions such that

~ & =1o0nB;,0<& <1on {|jv| >1},

— ¢€=1on {1 < |v| <2Y2}, otherwise 0 < £ < 1.

For n € {1,2,...}, we set &,(v) = £(v2™") and observe that
Cn =1 on supp gn

In this proof, we assume that N is a constant depending only on K, r, 6,2, 5.
By direct calculations, the function f(™ := f¢&, satisfies

Lo f™ 4 N =iy 2T fM(,.) =0,
and the specular reflection boundary condition, where
Ln=Y =V, -(0gn V) —ag-Vy+ A
oa.n = (0G +vI3)Cn + (1 = Cu)ls,
N = Eah+ 6K f —ag - (Voga)f = (00,04 ) (D0, 0) f
= 08 Do, &n) f = 208 1, (D0, 60) (Do f)-
By Lemma 5.4 with 6, — 5 in place of 0, we get
15 s, 0, 5-ammy < N2P (£ + [V £
o /Al PP &
By Lemma C.2 with 6, in place of 8, we get
1) =026, K o fllL, wr) < N2 1] 4+ 1V flll, o, (s,
and, therefore,
1™, 0 sy < NS+ 1901+ B Gal 1., (579
+ N2+ VoSl s7)-

Raising (5.25) to the power p and summing up, we prove the validity of the claim
(1). Finally, the assertions (2) and (3) of the claim follow from Lemma 5.4 and the
estimate (5.25). The proposition is proved. O

Lro.-5(ET)

(5.25)

Proof of Theorem 1.11. Uniqueness. Let ¢ = £() be a number in Lemma 5.3.
Let f1 and fo be any two finite energy strong solutions to Eq. (1.5). Note that
u = f; — fy satisfies Eq. (5.14) with v = 0,A = 0, h = 0 and fy = 0. The uniqueness
now follows from Lemma 5.3.

Existence. We assume, additionally, that € > 0 is small enough so that (5.1)
holds. Replacing f with f — fo¢ where ¢ = ¢(t) is a cutoff function such that

#(0) = 1, we reduce (1.6) to the forced Landau equation
Y=V, (06Vyf) - ag-Vyf _Fgf =h in ZT;

f(O,‘T,U) - O’ (SC,’U) € Q x Rs’ f_(t7I,’U) = f+(t75177R3:'U), z € E,Z_-" (526)



38 HONGJIE DONG, YAN GUO, AND TIMUR YASTRZHEMBSKIY

where

h=—-0pfo—v- V:c(fo)¢ + V- (UG‘VUJCO)QZS +ag- (V1)f0)¢ + ¢?gf0-

Note that due to the Lo, estimates of 0@, V,oa, a4 (see (5.1) - (5.2)) and Remark
5.1, one has

”hHLz,e(ET) + ”h”Loo(ET) < N(K,evﬂ)ﬂfO'Oz,e + |f0|O:>o)' (527)

Step 1: well-posedness of a viscous approximation scheme. We consider
the equation

YA = Vo (06 ) = vAu
—ay Vo f =K+ AfY = hin 2T, (5.28)
A0, =0m QxR (f{7)_(t,2,0) = (£7)4(t, 2, Rpv), z € %7

By Proposition 5.3, for any v € (0, 1] and 6 > 16, there exists A = \(0, K, v, 5¢,Q0) >

0 such that Eq. (5.28) has a unique finite energy strong solution fi”) € Ko p(ET)
in the sense of Definition 1.9. Then, the function

f(l/) = e)\tf)(\l/) c K:e,)\,p(ET)

is a finite energy strong solution to Eq. (5.26) in the sense of Definition 1.9.

Step 2: uniform bounds for f*).

Weighted energy bound. By Lemma 5.3 and Remark 1.3, for sufficiently small
e =¢(f) > 0, we have

1FT, ) L p2xzsy + 17 oo + 1V f N 10 s (e (5.29)
Ly wm) < NO,T)[Al| L 57
Sp bound. By Proposition 5.4 with # — 3 in place of 6, for sufficiently small € > 0

and sufficiently large 8 = 0(s5¢,p) > 4, and ¢ = €' (5¢,p), 0" = 0" (5¢,p) € (1,0 — 3),
one has

1FO s, 2y + 15, ) + 1N o (5.30)

SN([All Ly sy + 10z, 4 sz

g sy IV F s s (m7)):
where N = N (0, p, », K,Q). Combining (5.29) with (5.30) gives

1 s, oy + 17, g ) + 18 N 5T o (5:31)
S Nz, ozm) + 1Al (7))
where N = N(0,p, s, K,Q,T).
Step 3: limiting argument. By (5.30), the Banach-Alaoglu theorem, and
Eberlein-Smulian theorem, there exists a subsequence v’ and functions
fE€ 82021, fieLoo(Sh,|v-ng|), f}€Lap(2xR?)
such that
— ) = f weakly in Sy (27);
- fj(:/) — f% in the weak* topology of Lo (XL, |v - n.|), respectively;
— T = J5(-) weakly in Lo (2 x R3);
— ) = f weakly in Hyo(27).
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Passing to the limit in the Green’s identity (3.9) (see Remark 3.2), we conclude that
fx, f7 are, indeed, traces of the function f so that fi = fx, f7(-) = f(T,). Using
the weak and the weak* convergence, we pass to the limit in (5.29) and (5.31) and
prove

I (T, Mz p@xrs) + 1 floo + 1V fllLs sy
1 flls, oy + 11 ls, po 27y + 1l (57 ol (5.32)
< N(I1Bl g2y + IMlLo(m7))-

Next, we show that f satisfies the weak formulation of Eq. (5.26) (cf. Definition

1.9). Recall that due to Lemma 5.3, ™) satisfies the weak formulation of (5.28)
with any ¢ € C}(3T). Testing Eq. (5.28) with ¢ € C}(X7T) gives

- / (YO) £ dz + / ST, (T, 2, v) dedo
ZT

QxR3

T / ¢ 0 n,| dodt — / 0l - ng| dodt (5.33)
=T =T

+/ (0 + vI3)Vo fP)] - Vb dz :/ [ag - Vof® + K Y + hlo d.
»T T

It follows from the definition of K (see (1.4)) that

[ ksods= [ (ko)1 d.

=T =T

and, hence, by the explicit expression of the term J, f*) (see (1.9)) and the fact
that K, = K+ J,, we obtain

/ Ry )b dz = / (R b)) dz.
ET

»T

Then, by the weak convergence f*) — f in Ly(X7) and Lemma C.2, we conclude

tiy [ (R, ods= [ (Rop)ode
v—=0 [sr T
Finally, by what just said and the aforementioned weak convergence, we pass to
the limit in (5.33) and we conclude that f satisfies the weak formulation of (1.6)
(see Definition 1.9). By using the weak* convergence of f¥ in Lo (X%, v - n.|), we
pass to the limit in the specular boundary condition for f(*) and prove that this
boundary condition holds for the function f as well. Using the Green’s identity
again (see Remark 3.2), we prove that f satisfies Eq. (1.6) a.e. and, thus, f is a
finite energy strong solution in the sense of Definition 1.9.
Step 4: Holder estimate. To bound the

Lool(0,7), €55 (@ x R?))

norm of f and V, f, we repeat the above Ly to S, bootstrap argument. Again, by
Proposition 5.4 with 6 replaced with 6", for sufficiently small € > 0 and sufficiently
large 6 = 0(5¢,p), we get

”f”Lw<<o,T>,cs/fv“<ﬁxR3>> + HV”fHLoo<<o,T>,c;‘,a3’°‘<ﬁxR3))
< NIz, sy + IRz, o5y + 1Ny 57y + IV FllL, g (7))



40 HONGJIE DONG, YAN GUO, AND TIMUR YASTRZHEMBSKIY

In addition, by the same proposition, f € C(X7). Combining this with (5.32), we
obtain
Iz omy.czie @xray + IVeFllom).000= @xm)
< N2l o 57y + 1Pl Lo (27))-
Finally, recall that at the beginning of the proof, we replaced f with f — fo¢. By

this, the definition of the O, ¢ norm (see (1.15)), and (5.32), and (5.34) , we prove
the desired estimate (1.28) O

(5.34)

Appendix A. Verification of the identity (2.7). Invoke the assumptions and
the notation of Section 2.1 and denote
ox
(@)

Let f be a finite energy weak solution to Eq. (1.16) (see Definition 1.1) supported
on RxQ,, /o xR and ¢ € C (XT). The goal of this section is to justify the identity
2.7).

( l;m'ft term. By using a change of variables and the identity

(Vo) (t,z(y),v(y, w)) = ((gg)T>_ Vo f(ty,w) = (M NV, f(t,y,w0), (A1)

we get

L o-Vuneas= [ oy v.in|sd, (A2)
=T HT [N~——
=B
where H” is defined in (1.11).
Transport term. First, changing variables gives

/ (v- Vo) fdz = / (F1) (Mw)T (Vo) (¢, 2(y), v(y, w)) 3.
»T H

Next, by the chain rule and (A.1),
(Vao) (t,2(y), v(y, w))

~ (D7) (9t (G (Ve 0(00)

N 9 N
= (M YV, ot y,w) — (M~ HT (a*Z)T(M_l)Twab(t, Yy, w),
and then,
v (y, ) (Vad) (£, 2(y), v(y, w))
=W, pw) — u (5) )9t 0)
=w- Vy;g(tvya w) -X- vw;i;(tvva)a
where 5 oM
X = (X1, X5, X3)T = M‘l(a—Z)w — M (ayw)w'

Thus, by the above computations,

/E (¥o)fdz = / (Y(3) - X -Vud)(FI)dz. (A3)

HT
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Diffusion term. Applying formula (A.1) gives
/ (aV,0)'V, f dz = / (AVW D) VoW (F ) d2, (Ad)
nT HT

where
A=M1amHT,
Finally, combining (A.1) - (A.4) and recalling f = f.J, we arrive to (2.7).

Appendix B. .

Lemma B.1. Let p > 1 be a number, T € (0,00], and ¥ be the diffeomorphism
defined in Subsection 2.1 (see (2.2) - (2.3)). Then, for any function u on X7 such
that u(z) = 0 for x € (By(x0))¢, one has

[ulls, =y < Nlalls,@mry + NIVotllL, ,mry + Nz, , @r).
where N = N(Q,p), and u is defined in (2.5).
Proof. It follows from the compuations in Appendix A and (4.7) that
l[u] + [Voul + [DiulllL, sy < N[al + [Vl + [D5alll,, @y,
Yullp, sy < N[0 +w- Vy)ullp,mr) + N[V - (XW)||, @)

SN0 +w-Vy)ullp, @ry + [ullz, @y + IVolllp, @)

The desired estimate follows from the above inequalities. O

Lemma B.2. Let 6 > 0 be a number and u be a function on X7 such that u,Yu €
Lo (7)), w(T,-),u(0,-) € Lag(Q x R?), ug € Loo(XL, v+ ny|), and the specular
reflection boundary condition is satisfied. Then, the following variant of the energy
identity holds:

/ (u*(T, 2, v) — u?(0,z,v)) (W)l dzdv = 2/ uw(Yu) (v)0dz.
OxR3 nT
Proof. For € > 0, denote
pe(v) = e7IPP/e,
Note that u. := uu. € Ez9(XT) (see Definition 3.3 and (3.9)) and it satisfies the

specular reflection boundary condition. Then, by the energy identity (see (3.10) in
Lemma 3.4),

/ [w(T,z,v) — u?(0,2,v)] <’U>0d$dv = 2/ ue(Yue) (v)edz.
QxR3 »T

Passing to the limit in the above equality and using the dominated convergence
theorem, we prove the lemma. O

For T € R, let (-,-)7 be the duality pairing between H; ' (RZ.) and H(RY.) given
by

o= [ [ eagte i,
where h
fogl= (=272 1) (- 80 g)do,
The proof of the following variant of the energy identity can be found in [6].
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Lemma B.3. Let T € R be a number and u € Hi((—oo,T) x R, and Yu €
H; ' ((—o00,T) x RS). Then, for a.e. s € (—o0,T],

(Yu,u)s = (1/2)[[ull7, @s)(5).

Lemma B.4. Let T > 0 be a number and u € FEo(XT). Then, u is of class
C([OaT]aLQ(ET))

Proof. We only prove the continuity at ¢ = 0 because the argument for other points
is similar. First, note that by the energy identity (see (3.10)),

Jim [t )l 2oy = (0, ) s e

Hence, we only need to show that u(t,-) is weakly continuous in Ly(£2 x R3) at
t=0.

We fix an arbitrary test function

¢ € Co(([0,T] x Qx R*)\ ((0,T) x v U{0} x 09 x R* U {T} x 9Q x R?)),

which belongs to the set ¢ (see Definition 3.2) by Lemma 2.1 of [7]. Note that by
the Green’s identity (see (3.9)), we have

lim u(t, z,v)o(t, z,v) dedv :/ u(0,z,v)p(0, z,v) dedv.
t—=0+ JoxRr3 QXR3

We claim that the above convergence also holds if we replace ¢(¢, z, v) with ¢(0, x, v).
To prove this, we first note that by Remark 3.3 and the energy identity (3.10) in
Lemma 3.4, we have

u € Loo((0,T), Lo (2 x R?)). (B.1)

By this and the Cauchy-Schwartz inequality,

[t (60.0) ot e

< lullz 0,1), 222 xR3N 1000, -) — D(t, )| Lo (2xRS) -

The right-hand side of the above inequality converges to 0 as ¢ — 0+ due our choice
of ¢, and this proves the above claim. Hence, for any continuously differentiable
function ¢ with compact support in Q x R3,

lim u(t, z,v)¢(x,v) dedv = / u(0, z,v)é(x, v) dedv.

=0+ Joxrs QxR3

By using a standard approximation argument combined with (B.1), we conclude
that u(t,-) — u(0,-) weakly in Lo(Q x R?) as t — 0+. The lemma is proved. O

Appendix C. .

Lemma C.1. Let » € (0,1], g € Loo((0,T), C;%‘S’%(QXR%), and o be a function
defined in (1.7). Then, we have

HUGHLOC(((],T),Cff"‘(ﬁx]R?’)) < N(l + Hg”L(x,((O,T),Cﬁ/f’”‘(ﬁxRS)))’
where N = N (5) > 0.

Proof. Fix almost any t € (0,7) and arbitrary 1, 2o € Q recall that by Lemma 3
of [9], for any v € R?,

|UG(t>3315U)| + |VUUG(t’$1’U)| < N(l + ||g(t’$7 ')HLOO(RS))? (Cl)
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where N is independent of ». Next, observe that
UG(tv T, U) - GG(ta T2, U) = ((I) * [:ul/2(g(ta Ty, ) - g(ta T2, ))]) (U)
Replacing ¢g(t, z1,v) with g(¢,z1,v) — g(t, z2,v) and using (C.1), we get

‘O'G(t7$17 U) - UG(t’x27v)| < N|.’L‘1 - $2|%/3 sup Hg(t’ "U)||C%/3(§)7
t€(0,T),vER3

where C*/ 3(€2) is the usual Hélder space on 2. Combining the above inequalities
and using the interpolation inequality for the Holder norms, we prove the lemma.
O

Lemma C.2. Let p > 3/2 be a number and u € Ly(XT) be a function such that
Vou € Ly(2T). For any m ={0,1,2,...}, we denote

lv] <1, m =0,
{v~m}= |
em < vl < ¢ 'm, m>1,

where ¢ € (0,1) is some number. If the condition (1.26) holds, then for any 6 > 0,
K gullz, 0,1y x 25 (vmmy) < N8 Jul + |Voull|, 57y,
where K, is defined in (1.8) and N = N (5, K,0,p,c) > 0.

Proof. Recall that K, = K + J,;, where K and J, are defined in (1.4) and (1.9).
Furthermore, by the definition of the collision kernel Q (see (1.2)),

Ku = —pu~%/2%9,, <,u(<I>ij * (ul/z[&}ju + v]u]))>
= 2u;p? ((I)ij * (M1/2[8vju + vju]))

_ M1/2 <®1J « avi('ul/iju)) _ ’u1/2 (81,1(1)1] " (Ml/Qaij)>
=: Kyu + Kou + Kzu.

Estimate of J,. By using Lemmas 2 and 3 of [9] and the condition (1.26), one
can show that there exist a constant N = N(K) > 0 such that

o] + Vool + (80,27 % (1'/28,, 9)] + 187 + (12010, )|l .. 25, < N (K).
See the details in Lemma 3.6 of [4]. Furthermore, by Lemma 3 of [9],
o vvi| < N{v)~t.
By the above inequalities,
||JgUHLp((O,T)xRBX{wm}) < N(K)Hu||Lp((O,T)><R3><{v~m})'
Estimate of K; and Ky. Note that for any 6 > 0,

[Kvul| L, (fommi)

_ _ C.2
< NG, m=la (o] # [ (ful + |V (©2)

DL, oy
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Furthermore, using the Holder’s inequality with p and ¢ = p/(p — 1) € (1,3), for
any (t,z,v) € RY., we have

[ 10—l
1/q
< (/ o — o' |7 2t (') d”/> lu(t, 2, )|z, @)

By using the fact that for ¢ € (1,3) and v € R?,

o= vt a < N
combined with (C.2), we obtain
IKvull, (0,7) xR x oy < N (O, )m?|l[u] + [Voul |, o). (C.3)

By the same argument, we show that Ky is bounded by the right-hand side of (C.3).
Estimate of Ks. By direct calculations,

Dy, @ = —8m6(z),
and since u € L,(X7), we get
O, OV xy = —8mu.
Hence, integrating by parts in Kgu and using the above identity, we prove that
Ksu = 8mpu — /2@ % 9, (vj,ul/2u).
Then, repeating the above argument we used to estimate Kyu, we get
K3l L, ((0.7) x5 x formy) < N (0, )m ™ ||ul + [Voul|| 1, w7)-
The assertion of the lemma follows from the above estimates. O
Appendix D. §, regularity theory for kinetic Fokker-Planck equations

with rough coefficients. In this section, we present the main results of [5].
Throughout the section, T € (—o0, o0]. Denote

QT(ZO) = {Z ) —T2 <t < to, |1‘—l‘0 — (t—to)vo|1/3

<7 v —wo| <r},
which we call a kinetic cylinder.

Assumption D.1. (v,) There exists Ry > 0 such that for any zy such that ¢t < T
and r € (0, Ry,

08¢z (@, Qr(20)) < Yus (D.1)
where
08Cy v (a, Qr(20)) (D.2)
_14/ / | (t .1'17’01) (t,$27’l)2)|d.’131d1)1d$2d’l)2 dt,
to—r2 J Dy (20,t) X Dr(20,t)
and

Dy(z0,t) = {(x,v) : |x — z0 — (t — to)vo|/® < 1, | — vo| < r}.

Remark D.1. Note that the following assumption is stronger than Assumption
D.1, but somewhat easier to verify in practice.
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Assumption D.2. There exists an increasing function w : [0,00) — [0,00) such
that w(0+) = 0 and

sup 7"_24/ / la(t, x1,v1)—a(t, z2, v2)| dxidrs dvrdve < w(T).
t<T,x,v z1,22€B, 3(x) Jv1,v2€ By (v)

Furthermore, note that if a € Lo ((—00,T), Cat>*(RS)),a € (0,1], then, As-
sumption D.2 holds with w(r) = Nr® for some constant N > 0.
Assumption D.3. Let b = (b',5%,0%)7 and c be functions such that
110] + lell| Lo ((—o0.7y xRSy < K. (D.3)
The following theorem is a simplified version of Theorem 2.4 of [5].

Theorem D.4. Letp > 1, K > 0, be numbers. Let Assumptions 1.2 (see (1.19)),
D.3 hold. There exists a constant

Y =7 (0,p) > 0

such that if Assumption D.1 () holds, then, the following assertions are valid.
(i) There exists a constant

Ao = Xo(p, 0, K, Ry) >0
such that for any A > Ao and any u € S,((—00,T) x RY), one has
IAful + A2 Voul + | D3ul + [(—A0) Y ul (D-4)
+ |Dv(_Ax)1/6u| + |YU|HL,,((—oo,T)><]R6)
<N[Yu —a"0y,p;u+b- Vyu+ cu+ ML, ((—o0,T)xRS)>

where Ry € (0,1) is the constant in Assumption D.1 (v«), and N = N(p,d, K). In
addition, for any f € L,((—o00,T) x RY), the equation

Yu-— aij&,wju+ b-Voyu+cu+u=f
has a unique solution u € S,((—o0,T) x RE).
(i) For any numbers —oo < S < T < oo, A >0, and f € L,((S,T) x RY), the
equation N
Yu—a”0yp,u+b-Vyutcutu=f, u0,)=0
has a unique solution u € S,((S,T) x R®). In addition,
lull + | Dol + [ Dull + (= Az)u]
+ [ Do (=22)Oull + [V ull < NJ£]]
where || - | =1 - [|z,(s,m)xrs) and N = N(6,p, K, T - 5).
Theorem D.5 (Corollary 2.6 of [5]). Under Assumptions 1.2 (see (1.19)), D.3 (see
(D.3)), there exist constants

r=k({p) >0, B=P5(p)>0, 7 =07p) >0
such that if (D.1) in Assumption D.1 (v,) holds, then for anyu € S,((—o0,T) xR)
and A > 0,

||u||5p((—oo,T)><R6)
<N P([Yu — a9 0y,0,u+b- Vou+cu+ ||z, (=00, T) xRE) (D.5)
+ Ry 2 |lull 2y (= 00,1 xRS)),
where N = N(p, K), and Ry € (0,1) is the constant in Assumption D.1 (7).
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Remark D.2. The a priori estimates (D.4) and (D.5) hold for u € S,,(R7.) such that
u(0,-) = 0. To prove this, we apply these estimates to ul;>o € Sp((—o0,T) x R®).

Lemma D.6. Let T > 0, A > 0, 1 < g < p be numbers, functions a,b,c satisfy
Assumptions 1.2 (see (1.19)), D.2 and D.3, and u € Sy(RY.) be a function such that
u(0,-) =0, and
h:=Yu—a"8y,,,u+b-Vyu+ (c+ Au € L,(RY).

Then, u € Sp(RY.).
Proof. We follow the proof of Theorem 4.3.12 () of [16]. By Theorem D.4 (i), the
equation N

YU ~a"0,,0,U+b-V,U+ (c+ AU ="h, U@, )=0
has a unique solution U € S,(R%). We will prove that u = U a.e. By using an
induction argument, we may assume that

1 1 1
-— < . (D.6)
q p 12

Let ¢,& € C5°(R) be functions such that ¢(0) = 1, £(0) = 1, and supp ¢ C supp&.
For n > 1, denote

Pnlw,v) = ¢(x/n’,v/n),  Eu(w,v) = E(x/n’,v/n).

Then, U, := U¢,, € S,(RT.) satisfies the equation

YU, — a7 0y,0,Up +b- VU, + (c+ NU,

= hd)n + U(U . vm¢n - aijavivj ¢n +0b- vv¢n)

- 2(avv¢n) : V’UU’ Un(07 ) = O,
and, in addition, by Theorem D.4 (ii),

1Unlls, @) < NlhonllL, @y + No (U] + VUD€l L, @)

where N = N(q,0, K,T). By using the Holder’s inequality with p/q and p/(p — q)
and changing variables, we get

n (Ul + IVoUDIEnlllL, m1)

< N(p, )P~ /D=1 U| + |V, U], g1,
Note that the 12(p — ¢)/(pg) — 1 < 0 due to (D.6), and, hence, passing to the limit

in (D.7) as n — oo, we prove that U € S,(R%.). Then, by the uniqueness part of
Theorem D.4 (ii), we conclude that U = u. The lemma is proved. O

(D.7)

Appendix E. Holder continuity of the extended leading coefficients A on
the whole space. Invoke the notation of Section 2.1.2.

E.1. Kinetic Fokker-Planck equation. Here we show that the coefficients A =
A(y) defined by (2.8) (2.10), (2.12), with a = I3, are of Lipschitz class on R3. Since
A € CY(R4) , we only need to check the continuity on the set {y3 = 0} x R3.

Note that for a = I3, by (2.8)

a_ (o) (o)
S \oxJ\ox )’
By (2.18), (2.19) and the fact that A is independent of w, it suffices to show that
Ai3(t7y17y270) 207 1= 1727 (El)
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By using (2.3), we compute

o 1—y3p11  —y3zpi2 —p1
95— | TUs,rz 1—yspa2 —p2 |,
Y
P1 P2 1

where p;; is the second-order partial derivatives with respect to y;y; variables.
Hence,

ox 0

x
A_l(ylay270) = (Fy|y3:0)T6y|y3:0 (EQ)
1 0 m 1 0 —;m L+pi  pipe 0
=10 L p2 0 1 —pp|=| pmp2 1+p3 0
-p1 —p2 1 pr op2 1 0 0 1+ pf + p3

It follows from the formula for the matrix inverse that the condition (E.1) is satisfied.
Thus, the desired regularity holds.

E.2. Linear Landau equation. Let A, A, A be the functions defined by (2.8),
(2.10), (2.12) with a = og.
In this subsection, will show that, under Assumption 1.10 (see (1.26) - (1.27)),

— A€ Loo((0,T), CZLP(RS)).
— for any radially symmetric £ € C§°(R3), (t,y,w) — 5(2—;w)A(t,y,w) €
Loo((0,T), G747 (RP)).
Due to Lemma C.1, g € Loo((0,T), CZ{]S’”(Q x R3)), and, hence,
A€ Loo((0,T), 7> (Hy)).

Then, we only need to show that, for any ¢t € (0,T), the functions (y, w) — A(¢, y, w)
and (y,w) — §(%w)A(t,y,w) are continuous on the set {y3 = 0} x R3. These
assertions will follow directly from the next lemma and corollary.

Lemma E.1. Let u be a function on £ satisfying the specular reflection boundary
condition and such that the convolution U defined below makes sense. Denote

U'(2) = Y x u(z),

U(t, y,w) = (gi) U(t,y,w) <§i> T,

where U is defined by (2.5) with U in place of u. Then,
ui?)(t’ Y1, Y2, Oa w) - 7ui3(t, Y1, Y2, 0> R’LU), 1= ]-7 2. (ES)

E(y,w) = <g‘;j>§>(y,w) (gi)T,

where @ is the Landau kernel (see (1.2)). Then, by the change of variables v/ =

ox ./
gy W

Proof. Denote

Uty w) = \ det ‘%\ [ =ity -y,
3y R3

and then, by changing variables w’ — Rw’, we obtain

det oz / E(y, Rw")u(t,y, R(w — w')) dw'.
R3

U(t,y, Rw) = a9y
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Since u satisfies the specular reflection boundary condition, we have, for any t €
(OaT)a Y1,Y2 € Ra w e Rgv

a(ta Y1,Y2, Oa w) = a(t7y17y27 07 RU))

Thus, it suffices to show that (E.3) holds with { replaced with =.

By direct computations,
o 7 0x r
—ww | — | ,
y dy

-3
wa.

~ ox |
Dy, w) = a—yw Is —

%,
dy

and, therefore,

dr |Ttay (oy\T |ox
Ox

Observe that (E.3) trivially holds with 4 replaced with ww”, and the matrix

%(%)T satisfies the condition (E.1). Hence, we only need to show that the function
Ox
V , = | —
(y, w) ayw‘

satisfies the specular reflection boundary condition
V(y17y2aoaw) = V(y17y2aOaRw)' (E4)
Note that

T
V(y, Rw)> = C (y)(Rw);(Rw);, C(y) = (gZ) %'

Note that when y3 = 0, the matrix C(y) is given by the right-hand side of (E.2).
Hence, since (E.1) holds with A replaced with C, the condition (E.4) is valid. The
lemma is proved. O

The above lemma holds if we cutoff U by a radially symmetric function depending
only on v.

Corollary E.1. Let & = £(v) € C$°(R?) be a radially symmetric function. Then,
the condition (E.3) holds with 4 is replaced with the matriz-valued function

(t,y.w) s%w)u(t,y, w).

Proof. The assertion follows from Lemma E.1 and the fact that due to the radial
symmetry and (E.4), the function (y,w) — 5(%;11)) satisfies the specular reflection

boundary condition on HZ. 0
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