
Received: 18 May 2021 Accepted: 20 August 2021

DOI: 10.1112/plms.12427

Proceedings of the London
Mathematical SocietyRESEARCH ARTICLE

Shift-invariance for vertex models and polymers

Alexei Borodin1,2 Vadim Gorin2,3 Michael Wheeler4

1 Department of Mathematics,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
2 Institute for Information Transmission
Problems, Russian Academy of Sciences,
Moscow 127051, Russia
3 Department of Mathematics, University
of Wisconsin – Madison, Madison,
Wisconsin 53706, USA
4 School of Mathematics and Statistics,
University of Melbourne, Parkville,
Melbourne, Victoria 3010, Australia

Correspondence
VadimGorin,University ofWisconsin –
Madison,Madison,WI,USA.
Email: vadicgor@gmail.com

Funding information
NSF,Grant/AwardNumbers:DMS-
1664619,DMS-1853981,DMS-1949820;
NECCorporationFund forResearch in
Computers andCommunications;Wis-
consinAlumniResearchFoundation;
ARC,Grant/AwardNumber:DP190102897

Abstract
We establish a symmetry in a variety of integrable
stochastic systems: certain multi-point distributions of
natural observables are unchanged under a shift of a
subset of observation points. The property holds for
stochastic vertex models, (1+1)d directed polymers in
random media, last passage percolation, the Kardar–
Parisi–Zhang equation, and the Airy sheet. In each
instance it leads to computations of previously inaccessi-
ble joint distributions. The proofs rely on a combination
of the Yang–Baxter integrability of the inhomogeneous
colored stochastic six-vertex model and Lagrange inter-
polation. We also show that a simplified (Gaussian) ver-
sion of our theorems is related to the invariance in law
of the local time of the Brownian bridge under the shift
of the observation level.
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1 INTRODUCTION

1.1 Preface

This work is about a simple-looking property of a variety of integrable probabilistic systems that
includes stochastic vertex models, (1+1)d directed polymers in random media and last passage
percolation with specific weights, as well as universal objects of the Kardar–Parisi–Zhang (KPZ)
universality class — the KPZ equation and the Airy sheet. The property says that joint distribu-
tions of certain multi-dimensional observables in the system are unchanged under a shift of a
subset of observation points.
It can be thought of as a far-reaching generalization of the following known feature of the

Brownian bridge: Fix 𝑎 < 𝑏 and let 𝐵(𝑡), 0 ⩽ 𝑡 ⩽ 1, be a Brownian bridge such that 𝐵(0) = 𝑎 and
𝐵(1) = 𝑏. Let 𝑐 denote the local time that 𝐵(𝑡) spends at level 𝑐. Then as long as 𝑎 ⩽ 𝑐 ⩽ 𝑏, the
distribution of 𝑐 does not depend on the choice of 𝑐.
While the above property of the invariance of Brownian local times under the shifts of 𝑐 admits

a bijective proof, we have not been able to find anything similar for the more complicated systems
that we deal with. Instead, our proofs rely on themuchmore advancedmachinery of Yang–Baxter
integrable vertex models.
Beyond intrinsic interest, the shift-invariance property yields explicit formulas for certain

multi-dimensional distributions that were not accessible before. The basic idea is that shifts some-
times allow one to reduce complicated configurations of observation points to simpler ones, for
which exact expressions are already known.
Let us present an example that involves Brownian directed last passage percolation.
The Brownian last passage timeℨ(𝑛′,𝑡′)→(𝑛,𝑡) is a random function of four arguments 𝑛, 𝑛′ ∈ ℤ,

𝑡, 𝑡′ ∈ ℝ. Let {𝐵𝑛(𝑡)}𝑛∈ℤ be a collection of independent standard Brownian motions on the real
line. For any 𝑛 ⩾ 𝑛′, 𝑡 ⩾ 𝑡′, we define the passage time as the maximum of the increments of the
Brownian motions over monotone grid paths between (𝑛′, 𝑡′) and (𝑛, 𝑡):

ℨ(𝑛′,𝑡′)→(𝑛,𝑡) = max
𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝑡

⎡⎢⎢⎣
𝑛−𝑛′∑
𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦. (1.1)

The law ofℨ(𝑛′,𝑡′)→(𝑛,𝑡) is a well-studied object. Kuperberg [50] and Baryshnikov [10] showed that
for fixed 𝑛, 𝑡, 𝑛′, 𝑡′ the one-dimensional distribution coincides with that of the largest eigenvalue
of a random Hermitian matrix from the Gaussian unitary ensemble (GUE). In particular, this
implied that the asymptotic behavior of ℨ(𝑛′,𝑡′)→(𝑛,𝑡) as points (𝑛, 𝑡) and (𝑛′, 𝑡′) move away from
each other is governed by the celebrated Tracy–Widom distribution. Numerous subsequent works
yielded a fairly complete description of the joint distribution of ℨ(𝑛′,𝑡′)→(⋅,⋅) and its asymptotic
behavior when the starting point is fixed and the ending one varies, and we refer to Johansson–
Rahman [42] for the most recent results.
Here is the simplest open question: Given a pair of points 𝐴 and 𝐵 in ℤ × ℝ and a similar pair

of points 𝐶 and 𝐷, what is the joint law of the passage times (ℨ𝐴→𝐵,ℨ𝐶→𝐷)? See the left panel in
Figure 1 for an illustration. Note that if the lattice rectangles with opposite vertices 𝐴, 𝐵 and with
opposite vertices 𝐶, 𝐷 are disjoint, then the random variables ℨ𝐴→𝐵 and ℨ𝐶→𝐷 are independent
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F IGURE 1 Brownian LPP: We have (ℨ𝐴→𝐵,ℨ𝐶→𝐷)
𝑑
= (ℨ𝐴→𝐵,ℨ𝐶′→𝐷′ )

and the question is trivial. We are able to provide an answer in an antipodal situation, when any
monotone path between 𝐴 and 𝐵 and any monotone path between 𝐶 and 𝐷 must intersect. The
key is the following property of shift-invariance.

Theorem 1.1. Let 𝐴, 𝐵, 𝐶, 𝐷 be as above, take Δ ∈ ℝ, and set 𝐶′ = 𝐶 + (0, Δ), 𝐷′ = 𝐷 + (0, Δ).
Suppose that the following holds:

∙ The 𝑛-coordinates of points 𝐴, 𝐶, and 𝐶′ are the same, while the 𝑡-coordinate of 𝐴 is not larger
than those of 𝐶 and 𝐶′.

∙ 𝐵 ⪰ 𝐷 and 𝐵 ⪰ 𝐷′, where (𝑛, 𝑡) ⪰ (𝑛′, 𝑡′)means 𝑛 ⩽ 𝑛′, 𝑡 ⩾ 𝑡′.

Then we have a distributional identity (ℨ𝐴→𝐵,ℨ𝐶→𝐷)
𝑑
= (ℨ𝐴→𝐵,ℨ𝐶′→𝐷′); cf. Figure 1.

Theorem 1.1 can be extended to more than two pairs of points and shifts in 𝑛-directions; see
Section 7.4 for details. Note that we can now choose 𝐶′ = 𝐴. Then the joint law of the vector
(ℨ𝐴→𝐵,ℨ𝐴→𝐷′) is explicitly known (as the starting points are the same); it can also be related
to the joint distribution for the largest eigenvalues of a GUE random matrix and its symmetric
submatrices evolving according to the Dyson Brownian Motion.
The shift-invariance of Theorem 1.1 is not restricted to the Brownian last passage percolation.

Far from it, the invariance extends to a whole class of related stochastic systems (all with spe-
cific ‘integrable’ weights, though). The chart in Figure 2 shows most of these systems and rela-
tions between them. Whenever two systems are linked by an arrow, we are able to deduce shift-
invariance for one system from a similar statement for the other one. Exact mechanisms of deduc-
tion vary: We use stochastic fusion, analytic continuation, deterministic limits, and functional
central limit theorems, as discussed in Sections 6 and 7.
Our central result is a master theorem that we prove for colored stochastic vertex models, and

we give its (simplified) formulation below. Not all of the implied statements are discussed in
this paper as it is already quite long. But we do consider the implications for polymer mod-
els, the KPZ equation, and the Airy sheet; we will offer a few details about those in a later
part of the introduction. A conjectural generalization of the proved shift-invariance will also be
mentioned.
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F IGURE 2 A chart of stochastic systems for which we can prove the shift–invariance

1.2 Shift-invariance for colored stochastic vertex models

We start by describing a Markovian recipe to construct random colored up-right paths in the pos-
itive quadrant ℤ⩾1 × ℤ⩾1 with the colors labeled by natural numbers. In this section we assume
that no lattice edge can be occupied by more than one path, although that restriction will be
removed later.
The model depends on a quantization parameter 𝑞 ∈ (0, 1) and real column and row rapidities

denoted by 𝑢1, 𝑢2, … and 𝑣1, 𝑣2, … , respectively. The rapidities are assigned to the corresponding
rows and columns, and we assume that 𝑣𝑦 ⩾ 𝑢𝑥 ⩾ 0 for all 𝑥, 𝑦 ⩾ 1.
Along the boundary of the quadrant, we demand that no paths enter the quadrant from the

bottom. On the other hand, a single path of color 𝑖 enters the quadrant from the left in row 𝑖 for
each 𝑖 ⩾ 1. Once the paths are specified along the boundary, they progress in the up-right direction
within the quadrant using certain interaction probabilities, also known as vertex weights.
For each vertex of the lattice, once we know the colors of the entering paths along the bot-

tom and left adjacent edges, we decide on the colors of the exiting paths along the top and
right edges according to those probabilities. They are given by the table of Figure 4, where
0 ⩽ 𝑖 < 𝑗 denote the colors of paths on the corresponding edges, and color 0 encodes the absence
of paths.
These vertex weights represent a stochastic version of the 𝑅-matrix for the quantum affine

algebra 𝑈𝑞(𝔰𝔩𝑁+1) that goes back to mid-1980s works of Bazhanov [11], Faddeev–Reshtikhin–
Takhtadjan [36], and Jimbo [43, 44]. The stochastic version was introduced quite recently by
Kuniba–Mangazeev–Maruyama–Okado in [49]; see also Bosnjak–Mangazeev [22] andAggarwal–
Borodin–Bufetov [4].†
A less graphical way of describing the same random ensemble of colored paths is by introduc-

ing colored height functions. For each point (𝑋, 𝑌) ∈ (ℤ⩾0 +
1
2
) × (ℤ⩾0 +

1
2
) of the dual lattice and

† In the rank 1 or colorless case, these objects are much older; the six-vertex model was introduced by Pauling in 1935 [54],
and its stochastic version was first considered by Gwa–Spohn in 1992 [39].
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F IGURE 3 A possible configuration of the colored vertex model

F IGURE 4 When two paths of colors 𝑖 and 𝑗 with 0 ⩽ 𝑖 ⩽ 𝑗 (color 0 is identified with the absence of the
path) meet at vertex (𝑥, 𝑦), they continue according to these weights

any 𝑘 ⩾ 1, we define ⩾𝑘(𝑋, 𝑌) as the number of paths of colors ⩾ 𝑘 that pass below (𝑋, 𝑌); see
Figure 3 for an illustration.
Here is what the simplest instance of shift-invariance for colored stochastic vertex models

looks like.
As in Theorem 1.1, for two points = (𝑥 , 𝑦 ), = (𝑥 , 𝑦 ) in the quadrant, wewrite ⪰ 

if 𝑥 ⩽ 𝑥 and 𝑦 ⩾ 𝑦 . In other words,  is in the down-right direction from .

Theorem 1.2. In the above setting of the colored stochastic model in the quadrant, choose an index
𝜄 ⩾ 1, color cutoff levels 𝑘1 … , 𝑘𝑛 ⩾ 1, and a collection of points {𝑖}

𝑛
𝑖=1
. Set

𝑘′𝑗 =

{
𝑘𝑗, 𝑗 ≠ 𝜄,

𝑘𝜄 + 1, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄,

𝜄 + (0, 1), 𝑗 = 𝜄.

Assume that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, … ,𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, … ,𝑛,  ′
1 , … , ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, … , ′
𝑛.
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Then the distribution of the vector of colored height functions(⩾𝑘1(1), ⩾𝑘2(2), … ,⩾𝑘𝑛(𝑛)
)

coincides with the distribution of a similar vector with shifted 𝜄th point and cutoff(⩾𝑘′1( ′
1 ), ⩾𝑘′2( ′

2 ), … ,⩾𝑘′𝑛 ( ′
𝑛)
)
,

under the condition that in the vertexmodel used to define the second vector one swaps the row rapidi-
ties 𝑣𝑘𝜄 and 𝑣𝑦 , where 𝑦 is the row in which ′

𝜄 is located.

A variant of Theorem 1.2 that allows for more general bottom-left boundary conditions that
restore the symmetry between horizontal and vertical axes will be proved in Section 4.10.
Arguably, Theorem 1.2 is not the most intuitive statement of all, and our path to both its for-

mulation and its proof was not straightforward.
It started with a special case, when in the homogeneous model (all rapidities are equal) it was

shown to be possible to shift a collection of points to two extreme positions —when all the cutoff
levels 𝑘𝑗 are equal, andwhen all the points𝑗 coincide. The coincidence of these two extreme dis-
tributionswas proved by Borodin–Wheeler [21, Theorem 1.6.1]; see also Borodin–Bufetov [16, The-
orem 7.3] for a simpler proof and more general boundaries. The shift-invariance of Theorem 1.2,
however, ismuchmore powerful than that; for example, the coincidence of the two extremes turns
into a tautology in the Brownian percolation limit of Theorem 1.1.
Next, in the Gaussian models (additive stochastic heat equation and colored stochastic tele-

graph equation in Figure 2; see Borodin–Gorin [18] for a description of the telegraph limit in the
colorless situation) we noted that shift-invariance reduces, still nontrivially, to that for local times
of Brownian bridges and numbers of intersections of two persistent random walks. This argu-
ment generalizes further to proving equality of second moments of the height function vectors in
Theorem 1.2. Alas, pushing beyond that in a similar fashion seemed prohibitively complicated.
This partial progress, however, turned out to be sufficient for inferring the complete statement

for vertex models. Its proof that we give in the present paper is an intricate verification argument
based on an induction in the size of the domain swept by the participating colored paths. The
induction is powered by two essential tools — the Yang–Baxter equation for the vertex weights
of Figure 4, and Lagrange interpolation for the distributions viewed as polynomials in the rapidi-
ties. Thus, the inhomogeneity of the model was essential for our proof, as it furnishes us with
sufficiently many interpolation points.
Another step for which the inhomogeneity was indispensable was extending Theorem 1.2 to

more general vertex models obtained from the one above by fusion. Fusion is a representation
theoretic procedure that constructsmore complicated solutions of the Yang–Baxter equation from
simpler ones; it goes back to the work of Kulish–Reshetikhin–Sklyanin [48] in early 1980s. We
employ a stochastic version of this procedure whose detailed description can be found in the
Appendix; another expositionwas earlier given byKuan [47] generalizing the colorless statements
by Corwin–Petrov [26].
Fusion allows us to cluster adjacent 𝐿 ⩾ 1 horizontal and 𝑀 ⩾ 1 vertical lines of the lattice

together, generating ‘fat’ lines that can carry up to 𝐿, correspondingly𝑀 paths. Further, resulting
vertex weights in the fused model end up being rational in 𝑞𝐿 and 𝑞𝑀 , allowing for analytic con-
tinuation in those quantities (they are the analogs of the spin parameters in the rank 1 case). We
remark that additional efforts are needed to ‘analytically continue’ the boundary condition; see
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Section 6.2 for details. Previously, such analytic continuations in the boundary parameters were
realized for the (colorless) six-vertexmodel in Aggarwal–Borodin [3], Aggarwal [2], and the ability
to handle inhomogeneous and fused models is also essential for that. In a certain special colored
situation, a similar procedure was performed in Borodin–Wheeler [21, Section 12.3.4].
At the end of this road we obtained a fully fused version of Theorem 1.2 (see Theorem 6.10

below), which finally allowed us to descend into the polymer world.

1.3 Shift-invariance for directed polymers in randommedia

It has been known for some time that directed random polymers in (1+1)d arise as limits of vertex
models. One route to seeing this goes through the papers of Gwa–Spohn [39], Borodin–Corwin–
Gorin [17], and Aggarwal [1] which link the stochastic six-vertex model to the asymmetric simple
exclusion process (ASEP). The latter has a limit to the continuous directed polymer, as shown by
Bertini–Giacomin [12] and Amir–Corwin–Quastel [7].†
We follow another route, which leads to a much richer family of polymers. It is based on

a recently discovered fact (see Borodin [15], Corwin–Petrov [26], Borodin–Petrov [20]) that
𝑞-deformed exclusion processes and Boson systems are special cases of the fully fused colorless
stochastic vertex models. This allows us to exploit numerous existing instances of convergence of
such processes to polymers. The one closest to our context is the appearance of Beta-polymer as
the 𝑞 → 1 limit of the 𝑞-Hahn particle system in the work of Barraquand–Corwin [9].
The role of the colors in the 𝑞 → 1 limit transitions in the fully fused colored stochastic models

(first introduced in [49]) was not investigated before, and we are led to study it in this paper. It
turns out that the presence of colors translates into varying one of the end-points of the polymer.
This is a nontrivial statement, and it boils down to a certain degeneration of noise that takes
place — the multi-dimensional distributions at each vertex in the first approximation behave
as one-dimensional ones, with randomness in the perpendicular directions being of smaller
order.‡
Different observation points {𝑖} of the fused version of Theorem 1.2 provide a variation of the

other end-point, and we thus gain access to information on polymers with both ends moving.
Furthermore, the exponentiated colored height function 𝑞⩾𝑖 tends to the partition function of
the corresponding polymer, paving the way to joint distributions of those.
On this road we obtain in Section 7 shift-invariance for the following models:

∙ directed polymers in Beta-random environment, first studied by Barraquand–Corwin [9], see
Section 7.1;

∙ the Gamma or strict-weak polymer, first studied by Corwin–Seppäläinen–Shen [28] and
O’Connell–Ortmann [52], see Section 7.2;

∙ theO’Connell–Yor semi-discrete Brownian directed polymer [53]; Theorem 1.1 is obtained as the
infinite temperature limit of the shift-invariance for this polymer; see Section 7.3 for details.

In each of these cases we prove a property that is very similar to what we described for the
Brownian directed percolation above — multi-dimensional distributions of partition functions

†Combining these two steps into a single (more general) asymptotic statement is also possible, see Corwin–Tsai [31],
Corwin–Ghosal–Shen–Tsai [25], and also Borodin–Olshanski [19, Section 12].
‡ The authors are very grateful to Pierre Le Doussal, in discussions with whom in May 2018 such an effect showed up for
the first time.
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are invariant under a shift of the two end-points of one of the polymers under certain intersec-
tion conditions.
Taking a further limit to polymers in fully continuous space–time leads to the KPZ equation

discussed in the next section.

1.4 Shift-invariance for universal objects

All the polymer systems from the previous section are very special; we can prove shift-invariance
for random directed polymers with specifically positioned independent Beta or Gamma weights,
but not for any other weight distributions. In fact, at this point we do not even know whether the
shift-invariance extends to (discrete) polymers with any other weights.
What we do know, however, is that the shift-invariance holds for two universal objects in the

world of random polymers and interacting particle systems: the KPZ equation and the Airy sheet.
Let us start from the former one.
Define a random function (𝑦)(𝑡, 𝑥), 𝑥 ∈ ℝ, 𝑡 ⩾ 0, as a solution to the stochastic heat equation

with multiplicative white noise and with 𝛿-initial condition at point 𝑦 at 𝑡 = 0:

(𝑦)
𝑡 = 1

2
(𝑦)
𝑥𝑥 + 𝜂(𝑦), 𝑡 ⩾ 0, 𝑥 ∈ ℝ; (𝑦)(0, 𝑥) = 𝛿(𝑥 − 𝑦). (1.2)

Here 𝜂 is the space–time 2𝑑 white noise (the same for each 𝑦). The Feynman–Kac representation
for the solution to (1.2) leads to its representation as a (regularized) integral of exponentiated noise
over paths of Brownian bridges, thus clarifying the name continuum directed random polymer
for (𝑦)(𝑥, 𝑡); see Alberts–Khanin–Quastel [6] and Quastel [57]. Computing the logarithm of ,
one finds that ∶= − ln((𝑦)) satisfies (formally) the KPZ equation:

𝑡 =
1
2
𝑥𝑥 −

1
2
(𝑥)

2 − 𝜂. (1.3)

The KPZ equation is a universal scaling limit for a large family of stochastic systems such as
directed polymers in intermediate disorder regime, cf. Alberts–Khanin–Quastel [5]; ASEP and its
relatives, cf. Bertini–Giacomin [12], Amir–Corwin–Quastel [7], Dembo–Tsai [35], Corwin–Shen–
Tsai [30], Corwin–Shen [29]; stochastic vertex models, cf. Corwin–Tsai [31], Corwin–Ghosal–
Shen–Tsai [25]; and several SPDEs, cf. Hairer–Shen [41], Hairer–Quastel [40]. We also refer to
Corwin [24], Quastel–Spohn [59] for reviews.
Our shift-invariance leads to the following statement for (𝑦) (or, equivalently, for ); cf. Fig-

ure 5 and see Section 7.5 for more details.

Theorem 1.3. Fix 𝑡 > 0, Δ > 0, 𝑥, 𝑦 ∈ ℝ. In addition, choose a collection of points (𝑥𝑖, 𝑦𝑖),
𝑖 = 1, … , 𝑛, such that for each 𝑖 either 𝑥𝑖 ⩽ 𝑥, 𝑦𝑖 ⩾ 𝑦 + Δ, or 𝑥𝑖 ⩾ 𝑥 + Δ, 𝑦𝑖 ⩽ 𝑦. Then we have the
following distributional identity:

((𝑦)(𝑡, 𝑥); (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛
) 𝑑
=
((𝑦+Δ)(𝑡, 𝑥 + Δ); (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛

)
.

The large time limit of KPZ (as a function of 𝑥 and 𝑦) is described, after proper centering and
rescaling, by another prominent object called Airy sheet (𝑥, 𝑦), see Quastel–Sarkar [58], Virag
[61], and also Corwin–Quastel–Remenik [27]. The same object is believed to serve as a universal
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F IGURE 5 The law of continuum directed random polymer (𝑦)(𝑡, 𝑥) coincides with the law of
(𝑦+Δ)(𝑡, 𝑥 + Δ), even when taken jointly with the laws of other polymers in the same noise, as long as the
intersection condition holds

limit for directed polymers and last passage percolationmodels, with several rigorous result in this
direction established by Dauvergne–Ortmann–Virag [33] and Dauvergne–Virag [34]. If we focus
only on various marginals of(𝑥, 𝑦), rather than on the full law of the function of two variables,
thenmuchmore is known. For instance, convergence to(0, 0)—the Tracy–Widom distribution
— is proved for a very large variety of (integrable) polymers and models of interacting particle
systems. Moreover, for the latter one also typically proves joint convergence to the function of one
variable(0, ⋅) known as the Airy process.
The following statement can be found in Section 7.6.

Theorem 1.4. Fix 𝑡 > 0, Δ > 0, 𝑥, 𝑦 ∈ ℝ. In addition, choose a collection of points (𝑥𝑖, 𝑦𝑖), 𝑖 =
1, … , 𝑛, such that for each 𝑖 either 𝑥𝑖 ⩽ 𝑥, 𝑦𝑖 ⩾ 𝑦 + Δ, or 𝑥𝑖 ⩾ 𝑥 + Δ, 𝑦𝑖 ⩽ 𝑦. Then we have the fol-
lowing distributional identity:

((𝑥, 𝑦); (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛
) 𝑑
=
((𝑥 + Δ, 𝑦 + Δ); (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛

)
.

One corollary of Theorem 1.4 is that it reduces a family of previously unknown joint laws of
(𝑥, 𝑦) to those of the Airy process. For example, take 𝑥1 < 𝑥2 < 𝑥3 and 𝑦1 > 𝑦2 > 𝑦3, as in Fig-
ure 6. Applying Theorem 1.4 twice and using translation-invariance of (𝑥, 𝑦) with respect to
simultaneous shift of all arguments, we obtain

((𝑥1, 𝑦1),(𝑥2, 𝑦2),(𝑥3, 𝑦3))
𝑑
= ((𝑥2, 𝑦1 + 𝑥2 − 𝑥1),(𝑥2, 𝑦2),(𝑥2, 𝑦3 + 𝑥2 − 𝑥3))

𝑑
= ((0, 𝑦1 − 𝑥1),(0, 𝑦2 − 𝑥2),(0, 𝑦3 − 𝑥3)).

The same computation can be done for 𝑛 pairs of points satisfying 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, 𝑦1 > 𝑦2 >
… > 𝑦𝑛.

1.5 Additive stochastic heat equation

While the large time limit of the KPZ equation is given by the Airy sheet, the small time limit is
a much simpler Gaussian object, which is a version of the stochastic heat equation with addi-
tive noise†; see [7, Section 6.2] and Section 7.7. The same object can be also obtained as the

† This should not be confused with the multiplicative noise stochastic heat Equation (1.2).
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F IGURE 6 Airy sheet shifts: ((𝑥1, 𝑦1),(𝑥2, 𝑦2),(𝑥3, 𝑦3))
𝑑
= ((𝑥2, 𝑦1 + 𝑥2 − 𝑥1),(𝑥2, 𝑦2),

(𝑥2, 𝑦3 + 𝑥2 − 𝑥3))

fluctuating profile of the density of particles in the diffusive scaling limit of the colored symmet-
ric simple exclusion process (SSEP), as outlined in Section 3.4. For the Gaussian processes the
shift-invariance of the distributions is equivalent to the shift-invariance of the covariances and,
therefore, it suffices to verify the latter. We show in Section 2 that shift-invariance of the covari-
ances for the stochastic heat equation with additive noise becomes equivalent to the invariance
of the expected intersection local times of two Brownian bridges under shifts of the end-points
for one of them. In turn, the last invariance can be reduced to invariance of the expected local
time at level 𝑐 for the Brownian bridge traveling from 𝑎 at time 0 to 𝑏 at time 1. The law of such
a local time is known, see Ray [60], Williams [62], Borodin [14], Biane–Yor [13], and Pitman [55].
Its density is proportional to

(|𝑐 − 𝑎| + |𝑐 − 𝑏| + 𝑦) exp
(
−1

2
(|𝑐 − 𝑎| + |𝑐 − 𝑏| + 𝑦)2

)
𝑑𝑦, 𝑦 > 0,

which is clearly independent of 𝑐 as long as 𝑎 < 𝑐 < 𝑏, thus, giving the desired shift-invariance.
In Section 3 we show that the interplay between shift-invariance of the covariances and inter-

section local times is preserved up to the level of the homogeneous version of our master state-
ment for the colored stochastic six-vertex model. Our covariance computation is based on the
four-point relation for the model, which generalizes the colorless version in Borodin–Gorin
[18]. The Brownian bridges get replaced by a pair of discrete persistent random walks; it seems
that shift-invariance of the latter has not appeared in the literature before, and we prove it in
Section 3.2.
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F IGURE 7 Two pairs of the end-points for continuum directed random polymer can also be shifted, while
preserving the joint distribution with nonmoving polymers

1.6 An extension

The shift-invariance holds in a greater generality than what we have stated so far. The first ver-
sion of this paper (posted on arXiv in late 2019) contained the following conjecture for the KPZ
equation, extending Theorem 1.3; cf. Figure 7. It is not hard to come up with similar statements
for all the other models mentioned above.

Conjecture 1.5. Fix 𝑡 > 0, Δ > 0, two segments [𝑋, 𝑋′], [𝑌, 𝑌′] ⊂ ℝ, and four collections of real
numbers (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛), (𝑥̃1, … , 𝑥̃𝑘), (𝑦̃1, … , 𝑦̃𝑘). Assume that for each 1 ⩽ 𝑗 ⩽ 𝑘, [𝑥̃𝑗, 𝑥̃𝑗 +
Δ] ⊂ [𝑋,𝑋′] and [𝑦̃𝑗, 𝑦̃𝑗 + Δ] ⊂ [𝑌, 𝑌′]. In addition, assume that for each 1 ⩽ 𝑖 ⩽ 𝑛 either 𝑥𝑖 ⩽ 𝑋,
𝑦𝑖 ⩾ 𝑌′, or 𝑥𝑖 ⩾ 𝑋′, 𝑦𝑖 ⩽ 𝑌. Then we have the following distributional identity:((𝑦̃𝑗)(𝑡, 𝑥̃𝑗), 𝑗 = 1, … , 𝑘; (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛

)
𝑑
=
((𝑦̃𝑗+Δ)(𝑡, 𝑥̃𝑗 + Δ), 𝑗 = 1,… , 𝑘; (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛

)
.

Note that for 𝑥̃1 < 𝑥̃2 < ⋯ < 𝑥̃𝑘 and 𝑦̃1 > 𝑦̃2 > … > 𝑦̃𝑘, this statement is proved by 𝑘 applica-
tions of Theorem 1.3. The conjecture says that such a 𝑘-dimensional shift-invariance also holds
without these inequalities.
In subsequent work Conjecture 1.5 and its generalizations were proven by three different meth-

ods, see Dauvergne [32], Galashin [37], Bufetov–Korotkikh [23], and Korotkikh [46].

2 SHIFT-INVARIANCE FOR THE STOCHASTIC HEAT EQUATION

In this section we provide a proof for the shift-invariance in the simplest Gaussian case — for the
stochastic heat equation with additive noise. Two ways to obtain this equation by degenerating
other systems in the chart of Figure 2 are outlined in Sections 3.4 and 7.7.

2.1 Statement

The central objects of this section are an (𝑁 + 1)-tuple ofGaussian fields 𝜂𝑖(𝑡, 𝑦), 𝑖 = 0, … ,𝑁, 𝑡 ⩾ 0,
𝑦 ∈ ℝ, and an (𝑁 + 1)-tuple of deterministic fields 𝜌𝑖(𝑡, 𝑦). At each (𝑡, 𝑦), the sum of the Gaus-
sian fields is identically zero, while the sum of deterministic fields is identically equal to 1. The
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deterministic fields solve the heat equation with prescribed initial conditions at 𝑡 = 0. The Gaus-
sian fields solve the stochastic heat equation with additive white (in (𝑡, 𝑦)) noises in the right-
hand side. At fixed (𝑡, 𝑦), the covariance of white noises can be identified with that of an (𝑁 + 1)-
dimensional vector of independent Gaussians with variances 𝜌𝑖(𝑡, 𝑦) conditioned on their sum
being zero.
One possible interpretation is that𝜌𝑖(𝑡, 𝑦), 𝑖 = 0, … ,𝑁, representmacroscopic densities of𝑁 + 1

different species at time 𝑡 and position 𝑦. The densities are subject to the conservation law of
total density 1. Simultaneously, 𝜂𝑖(𝑡, 𝑦) represent random Gaussian fluctuations linked to these
densities; as 𝜌𝑖 becomes larger, so does the white noise driving 𝜂𝑖(𝑡, 𝑦).
We now proceed to the formal definition. Take 𝑁 + 1 nonnegative real functions 𝜌𝑖0(𝑦),

𝑖 = 0, 1, … ,𝑁, which sum up to 1: 𝜌00(𝑦) + 𝜌10(𝑦) +⋯ + 𝜌𝑁0 (𝑦) = 1, 𝑦 ∈ ℝ. Define the functions
𝜌𝑖 ∶ ℝ⩾0 × ℝ → ℝ, 𝑖 = 1, … ,𝑁, as the solutions to the heat equation

𝜕
𝜕𝑡

𝜌𝑖(𝑡, 𝑦) −
1
2
𝜕2

𝜕𝑦2
𝜌𝑖(𝑡, 𝑦) = 0, 𝑡 ⩾ 0, 𝑦 ∈ ℝ, 𝜌𝑖(0, 𝑦) = 𝜌𝑖0(𝑦). (2.1)

Since the fundamental solution of the heat equation is given by the Gaussian kernel, the functions
𝜌𝑖 can be expressed as partial integrals of this kernel. We further set

𝜌⩾𝑖(𝑡, 𝑦) =
𝑁∑
𝑎=𝑖

𝜌𝑎(𝑡, 𝑦),

so that

1 = 𝜌⩾0(𝑡, 𝑦) ⩾ 𝜌⩾1(𝑡, 𝑦) ⩾ ⋯ ⩾ 𝜌⩾(𝑁−1)(𝑡, 𝑦) ⩾ 𝜌⩾𝑁(𝑡, 𝑦) ⩾ 0. (2.2)

Since the heat equation is linear, functions 𝜌⩾𝑖(𝑡, 𝑦) are also its solutions.
Further, define 𝑁 + 1 random Gaussian functions 𝜂𝑖(𝑡, 𝑦), 𝑖 = 0, 1, … ,𝑁, which solve the

stochastic heat equation

𝜕
𝜕𝑡

𝜂𝑖(𝑡, 𝑦) −
1
2
𝜕2

𝜕𝑦2
𝜂𝑖(𝑡, 𝑦) =  𝑖 , 𝑡 ⩾ 0, 𝑦 ∈ ℝ, 𝜂𝑖(0, 𝑦) = 0, (2.3)

where  𝑖 are spatially uncorrelated centered generalized Gaussian noises with covariance given
by

𝔼 𝑖(𝑡, 𝑦)𝑗(𝑡′, 𝑦′) = 𝛿𝑦=𝑦′𝛿𝑡=𝑡′ ⋅

{
−𝜌𝑖(𝑡, 𝑦)𝜌𝑗(𝑡, 𝑦), 𝑖 < 𝑗,

𝜌𝑖(𝑡, 𝑦)(1 − 𝜌𝑖(𝑡, 𝑦)), 𝑖 = 𝑗.
(2.4)

Note that the noises  𝑖(𝑡, 𝑦) can be thought of as independent Gaussian white noises of variances
𝜌𝑖(𝑡, 𝑦) and conditioned to have zero sum:

0(𝑡, 𝑦) + 1(𝑡, 𝑦) +⋯ + 𝑁(𝑡, 𝑦) = 0.

We also define

𝜂⩾𝑖 = 𝜂𝑖 + 𝜂𝑖+1 +⋯ + 𝜂𝑁, ⩾𝑖 =  𝑖 +  𝑖+1 +⋯ + 𝑁, 𝑖 = 1, … ,𝑁,

so that
𝜕
𝜕𝑡

𝜂⩾𝑖(𝑡, 𝑦) −
1
2

𝜕2

𝜕𝑦2
𝜂⩾𝑖(𝑡, 𝑦) = ⩾𝑖, 𝑡 ⩾ 0, 𝑦 ∈ ℝ, 𝜂⩾𝑖(0, 𝑦) = 0, (2.5)
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F IGURE 8 Restriction on parameters in Theorem 2.1 and two intersecting Brownian bridges appearing in
its proof

where ⩾𝑖 can be equivalently defined as spatially uncorrelated centered generalized Gaussian
noises with covariances for 𝑖 ⩽ 𝑗 given by

𝔼⩾𝑖(𝑡, 𝑦)⩾𝑗(𝑡′, 𝑦′) = 𝛿𝑦=𝑦′𝛿𝑡=𝑡′ ⋅ (1 − 𝜌⩾𝑖(𝑡, 𝑦))𝜌⩾𝑗(𝑡, 𝑦). (2.6)

The covariance in (2.6) can be also given an interpretation. For that we use inequalities (2.2)
and think about 𝜌⩾𝑁(𝑡, 𝑦), … , 𝜌⩾1(𝑡, 𝑦) as𝑁 times 0 < 𝑠1 < ⋯ < 𝑠𝑁 < 1 for the standard Brownian
bridge, which travels from 0 to 0 in time 1. Then the right-hand side of (2.6) is the covariance of
the values for such a Brownian bridge.
Fix 𝑇 > 0, two indices 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁 and two reals 𝐵𝑖 > 𝐵𝑗 . Consider the two-dimensional ran-

dom vector

𝜉
𝜌⩾𝑖0 ,𝜌

⩾𝑗
0
(𝐵𝑖, 𝐵𝑗) = (𝜂⩾𝑖(𝑇, 𝐵𝑖), 𝜂

⩾𝑗(𝑇, 𝐵𝑗)).

For Δ ∈ ℝ, let 𝑆Δ denote the operator of shifting the argument of a function by Δ:

[𝑆Δ𝑓](𝑥) = 𝑓(𝑥 + Δ).

Theorem 2.1. Fix Δ ⩾ 0. Suppose that for some 𝑖 < 𝑗 and 𝐴 ∈ ℝ, 𝜌⩾𝑗
0 (𝑦) = 0 on [−∞,𝐴) and

𝜌⩾𝑖
0 (𝑦) = 1 on [𝐴 − Δ,+∞); cf. Figure 8. Then the following identity in distribution holds for every

𝐵𝑖 > 𝐵𝑗:

𝜉
𝜌⩾𝑖0 ,𝜌⩾𝑗0

(𝐵𝑖, 𝐵𝑗)
𝑑
= 𝜉

𝜌⩾𝑖0 ,𝑆Δ𝜌
⩾𝑗
0
(𝐵𝑖, 𝐵𝑗 − Δ). (2.7)

In words, the simultaneous shift in the same direction and by the same Δ of the initial condition
𝜌⩾𝑗
0 and the observation point 𝐵𝑗 does not change the joint distribution of the two-dimensional
vector.
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Remark 2.2. Due to translation-invariance of the system in 𝑦-direction, the random variables of
(2.7) will also have the same distribution as 𝜉

𝑆−Δ𝜌
⩾𝑖
0 ,𝜌

⩾𝑗
0
(𝐵𝑖 + Δ, 𝐵𝑗).

We can extend Theorem 2.1 to a statement involving 𝑁-dimensional vectors. Fix 𝑇 > 0, Δ ⩾ 0,
and an index 𝜄 ∈ {1, 2, … ,𝑁}. Take two real vectors 𝐴⃗, 𝐵⃗ ∈ ℝ𝑁 , such that

𝐴1 < 𝐴2 < ⋯ < 𝐴𝜄−1 < 𝐴𝜄 − Δ < 𝐴𝜄 < 𝐴𝜄+1 < ⋯ < 𝐴𝑁, (2.8)

𝐵1, … , 𝐵𝜄−1 > 𝐵𝜄 > 𝐵𝜄 − Δ > 𝐵𝜄+1, … , 𝐵𝑁. (2.9)

(Note that 𝐵1, … , 𝐵𝜄−1 and 𝐵𝜄+1, … , 𝐵𝑁 are not ordered.) Given these data, we construct the initial
conditions 𝜌⩾𝑖(𝑦) = 𝟏(𝑦 ⩾ 𝐴𝑖) and consider an 𝑁-dimensional random vector:

𝜉𝐴⃗(𝐵⃗) = (𝜂⩾1(𝑇, 𝐵1), … , 𝜂⩾𝑁(𝑇, 𝐵𝑁)).

Corollary 2.3. Take 𝑇, Δ > 0, 𝜄 ∈ {1, … ,𝑁}, and two vectors 𝐴⃗, 𝐵⃗ ∈ ℝ𝑁 satisfying (2.8) and (2.9).
With the notation 𝐞𝜄 for the 𝜄th coordinate vector in𝑁-dimensional space, the following distributional
identity holds:

𝜉𝐴⃗(𝐵⃗)
𝑑
= 𝜉𝐴⃗−Δ𝐞𝜄

(𝐵⃗ − Δ𝐞𝜄). (2.10)

Since the vector (2.10) is Gaussian, the distributional identity (2.10) of 𝑁-dimensional vectors
follows from the same identity for its pairs of coordinates, which is Theorem 2.1 when one of the
coordinates is 𝜄, and a tautological statement otherwise. Our choice of 𝜌⩾𝑖(𝑦) as indicator functions
of semi-infinite intervals guarantees that the conditions on the support of Theorem2.1 holds.More
complicated choices for 𝜌⩾𝑖(𝑦) are also possible, but we will not pursue this direction further.

2.2 Proof of Theorem 2.1

Note that the individual distributions of the first components of the vectors in (2.7) coincide by
the definition. Similarly, the individual distributions of the second components coincide. Since
we deal with Gaussian vectors, it remains to check that the covariances coincide as well.
Let 𝐺(𝑥, 𝑦; 𝑡) denote the Gaussian kernel:

𝐺(𝑥, 𝑦; 𝑡) =
1√
2𝜋𝑡

exp

(
−
(𝑥 − 𝑦)2

2𝑡

)
.

The solution to (2.1) is written as

𝜌𝑖(𝑡, 𝑦) = ∫𝑧∈ℝ 𝜌𝑖0(𝑧)𝐺(𝑧, 𝑦; 𝑡) d𝑧, (2.11)

and the solution to (2.5) is

𝜂⩾𝑖(𝑡, 𝑦) = ∫
𝑡

𝑠=0 ∫𝑧∈ℝ ⩾𝑖(𝑠, 𝑧)𝐺(𝑧, 𝑦; 𝑡 − 𝑠) d𝑧d𝑠. (2.12)



SHIFT-INVARIANCE FOR VERTEX MODELS AND POLYMERS 197

Hence, the covariance of 𝜂⩾𝑖(𝑇, 𝐵𝑖) and 𝜂⩾𝑗(𝑇, 𝐵𝑗) for the left-hand side of (2.7) becomes

𝔼𝜂⩾𝑖(𝑇, 𝐵𝑖)𝜂
⩾𝑗(𝑇, 𝐵𝑗)

= ∫
𝑇

𝑡=0 ∫𝑦∈ℝ(1 − 𝜌⩾𝑖(𝑡, 𝑦))𝜌⩾𝑗(𝑡, 𝑦)𝐺(𝑦, 𝐵𝑖; 𝑇 − 𝑡)𝐺(𝑦, 𝐵𝑗; 𝑇 − 𝑡) d𝑦d𝑡

= ∫𝑧𝑖∈ℝ ∫𝑧𝑗∈ℝ(1 − 𝜌⩾𝑖
0 (𝑧𝑖))𝜌

⩾𝑗
0 (𝑧𝑗) d𝑧𝑗d𝑧𝑖

×∫
𝑇

𝑡=0 ∫𝑦∈ℝ 𝐺(𝑧𝑖, 𝑦; 𝑡)𝐺(𝑧𝑗, 𝑦; 𝑡)𝐺(𝑦, 𝐵𝑖; 𝑇 − 𝑡)𝐺(𝑦, 𝐵𝑗; 𝑇 − 𝑡) d𝑦d𝑡. (2.13)

Making the same computation for the right-hand side of (2.7) we get a similar, yet different expres-
sion:

∫𝑧𝑖∈ℝ ∫𝑧𝑗∈ℝ(1 − 𝜌⩾𝑖
0 (𝑧𝑖))𝜌

⩾𝑗
0 (𝑧𝑗 + Δ) d𝑧𝑗d𝑧𝑖

×∫
𝑇

𝑡=0 ∫𝑦∈ℝ 𝐺(𝑧𝑖, 𝑦; 𝑡)𝐺(𝑧𝑗, 𝑦; 𝑡)𝐺(𝑦, 𝐵𝑖; 𝑇 − 𝑡)𝐺(𝑦, 𝐵𝑗 − Δ; 𝑇 − 𝑡) d𝑦d𝑡. (2.14)

We shift 𝑧𝑗 by Δ to get

∫𝑧𝑖∈ℝ ∫𝑧𝑗∈ℝ(1 − 𝜌⩾𝑖
0 (𝑧𝑖))𝜌

⩾𝑗
0 (𝑧𝑗)d𝑧𝑗d𝑧𝑖

×∫
𝑇

𝑡=0 ∫𝑦∈ℝ 𝐺(𝑧𝑖, 𝑦; 𝑡)𝐺(𝑧𝑗 − Δ, 𝑦; 𝑡)𝐺(𝑦, 𝐵𝑖; 𝑇 − 𝑡)𝐺(𝑦, 𝐵𝑗 − Δ; 𝑇 − 𝑡) d𝑦d𝑡. (2.15)

We need to show that (2.13) is the same as (2.15), which would follow from the Δ–invariance of
the double integral of the product of four Gaussian kernels in the last line of both formulas.
For that we note a stochastic interpretation of the double integral over 𝑡 and 𝑦. Recall that

the functions 𝐺 are transition probabilities for the Brownian motion. Imagine for a second that
they were transition probabilities for discrete random walks instead. Then the product of four
probabilities under the double integral over 𝑦 and 𝑡 in (2.13) can be interpreted as the probabil-
ity that random walk from (𝑧𝑗, 0) to (𝐵𝑗, 𝑇) intersects another (independent) random walk from
(𝑧𝑖, 0) to (𝐵𝑖, 𝑇) at point (𝑦, 𝑡). The integral over all (𝑦, 𝑡) (or rather a sum, if we speak about dis-
cretization) then counts the total expected number of intersections. We show in Section 3.2 (see
𝑏1 = 𝑏2 case of Theorem 3.9) that the distribution of the number of intersections is unchanged
upon shifting 𝑧𝑗 and 𝐵𝑗 simultaneously by the same amount. It is crucial for the theorem that
our two random walks necessarily intersect with probability 1, which is implied by 𝑧𝑖 < 𝑧𝑗 − Δ

and 𝐵𝑖 > 𝐵𝑗 (the first inequality follows from our restriction on the supports of 𝜌⩾𝑗
0 and 1 − 𝜌⩾𝑖

0 ).
Taking the expectation of this distributional identity and performing a standard limit transition
between discrete random walks and Brownian motions we arrive at the desired Δ-independence
of (2.15).
If we wanted to avoid discretizations, then we could have argued with Brownian motions

directly. For that take two independent Brownian bridges 𝔅𝔯𝑖 , 𝔅𝔯𝑗 , where the first one is the
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F IGURE 9 Basic weights of the six-vertex model. Same weights are used in the colored version upon the
convention that the dashed (empty) edge corresponds to the lower of the two colors. Local changes of the height
function(𝑥, 𝑦) are shown in gray

standard Brownian motion conditioned to travel from 𝑧𝑖 to 𝐵𝑖 in time 1, and the second one is the
standard Brownian motion conditioned to travel from 𝑧𝑗 − Δ to 𝐵𝑗 − Δ in time 1. Then our dou-
ble integral computes the expected intersection time of 𝔅𝔯𝑖 and 𝔅𝔯𝑗 , or, equivalently the local
time at 0 for the difference𝔅𝔯𝑖 − 𝔅𝔯𝑗 . The key property, which guarantees the Δ-independence,
is that 𝑧𝑖 + Δ < 𝑧𝑗 and 𝐵𝑖 > 𝐵𝑗 . Therefore, the trajectories of the Brownian bridges 𝔅𝔯𝑖 and 𝔅𝔯𝑗
almost surely intersect, cf. Figure 8, while 𝔅𝔯𝑖 − 𝔅𝔯𝑗 starts below zero and ends above zero, so
that its trajectory necessarily intersects the zero level. Now a shift byΔ is a translation of one of the
Brownian bridges (equivalently, of their difference) by Δ. At this point, we can use a well-known
property of the local time of the Brownian bridge: the distribution of the local time at 𝑐 for a Brow-
nian bridge traveling from 𝑎 to 𝑏 is independent of 𝑐 as long as 𝑎 < 𝑐 < 𝑏 (or 𝑏 < 𝑐 < 𝑎); see [55]
and references therein. Since the distribution is unchanged under shifts, so is its expectation, and
therefore, (2.15) does not depend on Δ, as desired.

3 HOMOGENEOUS STOCHASTIC SIX-VERTEXMODEL:
COVARIANCEMATCH

Next, we switch to the homogeneous stochastic (𝑁 + 1)-colored six-vertex model with colors
0, 1, 2, … ,𝑁. Configurations of the model are colorings of all edges in (a part of) the square grid
into𝑁 + 1 colors, subject to the rule ‘number of incoming edges = number of outgoing edges’ for
each color and each vertex of the grid.
When 𝑁 = 1, we have only two colors, and if we treat the color 0 as the absence of the edge

and color 1 as the presence of the edge, then we get the standard (colorless) stochastic six-vertex
model; cf. Figure 9. We deal with the model in the quadrant 𝑥 ⩾ 1, 𝑦 ⩾ 1, and sample the ver-
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F IGURE 10 Weights of 15 types of vertices in the two-colored model

tices sequentially in the up-right direction (that is, the first vertex to sample is in the corner of
the quadrant) according to probabilities of Figure 9. The probabilities depend on two parameters
0 < 𝑏1 < 1, 0 < 𝑏2 < 1, and we also set 𝑞 =

𝑏2
𝑏1
. In the notations of Section 1.2, all the rapidities 𝑢𝑥

and 𝑣𝑦 are taken to be independent of 𝑥 and 𝑦 and, therefore, the weights 𝑏1 and 𝑏2 of Figure 4 do
not change throughout the quadrant.
When we have 𝑁 + 1 colors, we still sample the vertices sequentially. Whenever we need to

sample the vertex at (𝑥, 𝑦), it comes with the colors of two incoming edges: 𝑖 and 𝑗. We assume
that 0 ⩽ 𝑖 < 𝑗 and make the sampling according to probabilities of Figure 4 in Section 1.2. Note
that if we treat the color 𝑖 as the absence of the edge, and the color 𝑗 as the presence of the edge,
then the probabilities are the same as those of Figure 9 for sampling.
For example, if𝑁 = 2, then we can think about absence of edges (color 0), narrow black edges

(color 1), and bold red edges (color 2). All 15 types of vertices and corresponding probabilities
(computed by the rule from the previous paragraph) are shown in Figure 10. We enumerate the
vertices by rows and columns, so that vertices A1, A2, A3 have weight 1, there is no vertex of type
A4, etc. The weights are stochastic in the sense that for each pair of inputs from the left and from
the bottom, the weights of possible vertices (outputs) sum up to 1.
We deal with themodel in the quadrant, whichmeans that the vertices have integer coordinates

(𝑥, 𝑦) satisfying 𝑥 > 0, 𝑦 > 0. Along the borders of the quadrant we allow arbitrary (deterministic)
boundary conditions. This means that for each vertex adjacent to the left boundary, we choose the
color of the incoming edge from the left. Similar choices of color of edges are made for each vertex
adjacent to the bottom boundary. The model is then defined by stochastic sampling, treating the
weights of Figure 9 (or Figure 10) as probabilities: we first sample a single vertex with 𝑥 + 𝑦 = 1,
then two vertices with 𝑥 + 𝑦 = 2, then three vertices with 𝑥 + 𝑦 = 3, tc.
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F IGURE 11 One possible configuration of the three-colored (𝑁 = 2, shown with bold red paths, narrow
black paths, and absence of paths) model in quadrant. The values of the vector of height functions
(⩾1(𝑥, 𝑦),⩾2(𝑥, 𝑦)) are shown

Each color 𝑖 comes with its height function 𝑖(𝑥, 𝑦), which is defined by setting 𝑖( 1
2
, 1
2
) = 0

and

𝑖(𝑥, 𝑦 + 1) −𝑖(𝑥, 𝑦) =

{
1, there is an edge of color 𝑖 at (𝑥, 𝑦 + 1

2
),

0, otherwise,

𝑖(𝑥 + 1, 𝑦) −𝑖(𝑥, 𝑦) =

{
−1, there is an edge of color 𝑖 at (𝑥 + 1

2
, 𝑦),

0, otherwise.

Note that in order to avoid ambiguities, the height function is defined not at vertices (𝑥, 𝑦) ∈
ℤ × ℤ, but at vertices of the dual grid (ℤ + 1

2
) × (ℤ + 1

2
), which are in natural bijection with faces

of the original grid. We also set

⩾𝑖(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) +𝑖+1(𝑥, 𝑦) +⋯ +𝑁(𝑥, 𝑦).

See Figure 11 for an illustration. Our definitions imply that

0 ⩽ ⩾𝑁(𝑥, 𝑦 + 1) −⩾𝑁(𝑥, 𝑦) ⩽ ⩾𝑁−1(𝑥, 𝑦 + 1) −⩾𝑁−1(𝑥, 𝑦)

⩽ ⋯ ⩽ ⩾1(𝑥, 𝑦 + 1) −⩾1(𝑥, 𝑦) ⩽ ⩾0(𝑥, 𝑦 + 1) −⩾0(𝑥, 𝑦) = 1,

and

0 ⩾ ⩾𝑁(𝑥 + 1, 𝑦) −⩾𝑁(𝑥, 𝑦) ⩾ ⩾𝑁−1(𝑥 + 1, 𝑦) −⩾𝑁−1(𝑥, 𝑦)

⩾ ⋯ ⩾ ⩾1(𝑥 + 1, 𝑦) −⩾1(𝑥, 𝑦) ⩾ ⩾0(𝑥 + 1, 𝑦) −⩾0(𝑥, 𝑦) = −1.

Note that specification of the boundary conditions is the same as specification of all the values of
the height functions⩾𝑖(𝑥, 𝑦) for 𝑖 = 1, 2, … ,𝑁, and either 𝑥 = 1

2
or 𝑦 = 1

2
.
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We now produce analogues of Theorem 2.1 and Corollary 2.3. We start by specifying the bound-
ary conditions via the functions 𝜌𝑖

𝑏
(𝑥, 𝑦), 𝑖 = 0, 1, … ,𝑁, which are discrete derivatives of the

height functions 𝑖 along the boundary of the quadrant. Formally, for (𝑥, 𝑦) = (1
2
, 𝑛)𝑛∈ℤ>0

and
(𝑥, 𝑦) = (𝑛, 1

2
)𝑛∈ℤ>0

:

𝜌𝑖𝑏

(
1
2
, 𝑦
)
=

{
1, there is an incoming horizontal edge of color 𝑖 at ( 1

2
, 𝑦),

0, otherwise.

𝜌𝑖𝑏

(
𝑥, 1

2

)
=

{
1, there is an incoming vertical edge of color 𝑖 at (𝑥, 1

2
),

0, otherwise.

We set 𝜌⩾𝑖
𝑏
(𝑥, 𝑦) = 𝜌𝑖

𝑏
(𝑥, 𝑦) +⋯ + 𝜌𝑁

𝑏
(𝑥, 𝑦), so that

0 ⩽ 𝜌⩾𝑁
𝑏

(𝑥, 𝑦) ⩽ 𝜌⩾𝑁−1
𝑏

(𝑥, 𝑦) ⩽ ⋯ ⩽ 𝜌⩾1
𝑏
(𝑥, 𝑦) ⩽ 𝜌⩾0

𝑏
(𝑥, 𝑦) = 1,

(𝑥, 𝑦) ∈
{(

1
2
, 𝑛
)
,
(
𝑛, 1

2

)}
𝑛=1,2,…

.

Fix 𝑋 ∈ ℤ>0 +
1
2
, two indices 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, and two numbers 𝐵𝑖 > 𝐵𝑗 ∈ ℤ + 1

2
. Consider the

two-dimensional random vector

𝜉
𝜌⩾𝑖
𝑏
,𝜌

⩾𝑗
𝑏
(𝐵𝑖, 𝐵𝑗) =

(
𝑞⩾𝑖(𝑋,𝐵𝑖), 𝑞⩾𝑗(𝑋,𝐵𝑗)

)
, 𝑞 =

𝑏2
𝑏1

.

ForΔ ∈ ℤ let 𝑆Δ denote the operator of shifting the second variable (that is, 𝑦) of a function 𝑓(𝑥, 𝑦)
by Δ:

[𝑆Δ𝑓](𝑥, 𝑦) = 𝑓(𝑥, 𝑦 + Δ).

Theorem 3.1. Fix Δ ∈ ℤ⩾0 and𝐴 ∈ ℤ>0. Suppose that for some 𝑖 < 𝑗, 𝜌⩾𝑗
𝑏
(𝑥, 𝑦) = 0 for 𝑦 < 𝐴 and

𝜌⩾𝑖
𝑏
(𝑥, 𝑦) = 1 for 𝑦 ⩾ 𝐴 − Δ; cf. Figure 8. Then for every 𝐵𝑖 > 𝐵𝑗 the following two random vectors

have the same first and second moments:

𝜉
𝜌⩾𝑖
𝑏
,𝜌⩾𝑗
𝑏
(𝐵𝑖, 𝐵𝑗)

1,2moments
= 𝜉

𝜌⩾𝑖
𝑏
,𝑆Δ𝜌

⩾𝑗
𝑏
(𝐵𝑖, 𝐵𝑗 − Δ). (3.1)

In words, the simultaneous shift in the same direction and by the same Δ of the boundary condition
𝜌⩾𝑗
𝑏
and the observation point𝐵𝑗 does not change the first twomoments of the two-dimensional vector.

Remark 3.2. Let us clarify the meaning of the boundary conditions 𝑆Δ𝜌
⩾𝑗
𝑏
. Note that since there

are no edges of colors at least 𝑗 underneath the line 𝑦 = 𝐴 + Δ, we can simply shift down by Δ the
function 𝜌⩾𝑗 , that is, all horizontal incoming edges of colors at least 𝑗. Moreover, we canmake this
shift without affecting 𝜌⩾𝑖(𝑥, 𝑦), since it is equal to 1 everywhere where any changes happen, and,
therefore, no contradiction with inequality 𝜌⩾𝑖 ⩾ 𝜌⩾𝑗 can occur. There is also no need to change
the quadrant 𝑥 > 0, 𝑦 > 0 in this transformation.
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Remark 3.3. Since the definition of the stochastic colored six-vertexmodel is translationally invari-
ant, we can also deal with 𝜉

𝑆−Δ𝜌
⩾𝑖
𝑏
,𝜌

⩾𝑗
𝑏
(𝐵𝑖 + Δ, 𝐵𝑗), which is the same as 𝜉𝜌⩾𝑖

𝑏
,𝑆Δ𝜌

⩾𝑗
𝑏
(𝐵𝑖, 𝐵𝑗 − Δ) by

shifting everything (including the quadrant and the observation points 𝐵𝑖 , 𝐵𝑗) by Δ in the verti-
cal direction.

Remark 3.4. In the current form (3.1) is an empty statement at 𝑞 = 1. However, subtracting 1 from
all coordinates of the vectors in (3.1), dividing by 𝑞 − 1 and sending 𝑞 → 1, we get a nontrivial
(and valid) statement at 𝑞 = 1. We return to this in Section 3.4.

We are going to prove Theorem 3.1 by finding appropriate extensions of the two main ingredi-
ents of the proof of Theorem 2.1:

∙ Expression of the covariance of the height functions of different colors as a 4–fold integral with
themain part of the integrand being the product of four transition probabilities of the Brownian
motion.

∙ Shift-invariance for the intersection local times for Brownian bridges.

Discrete analogues of these two steps are presented in Sections 3.1 and 3.2, respectively. While
for the heat equation, Theorem 2.1 immediately followed, for the discretization given by the col-
ored six-vertex model additional efforts are necessary and we finish the proof of Theorem 3.1 in
Section 3.3.
We can extend Theorem 3.1 to a statement involving 𝑁-dimensional vectors. Fix 𝑋 ∈ ℤ>0 +

1
2
,

Δ = 1, 2, … , and an index 𝜄 ∈ {1, 2, … ,𝑁}. Take two vectors 𝐴⃗ ∈ ℤ𝑁 , 𝐵⃗ ∈ (ℤ + 1
2
)𝑁 , such that

0 < 𝐴1 < 𝐴2 < ⋯ < 𝐴𝜄−1 < 𝐴𝜄 − Δ < 𝐴𝜄 < 𝐴𝜄+1 < ⋯ < 𝐴𝑁, (3.2)

𝐵1, … , 𝐵𝜄−1 > 𝐵𝜄 > 𝐵𝜄 − Δ > 𝐵𝜄+1, … , 𝐵𝑁 > 0. (3.3)

(Note that there are no inequalities between 𝐵1, … , 𝐵𝜄−1 and 𝐵𝜄+1, … , 𝐵𝑁 .) Given these data, we
construct the initial conditions 𝜌⩾𝑖( 1

2
, 𝑦) = 𝟏(𝑦 ⩾ 𝐴𝑖), 𝑖 = 1, … ,𝑁, set 𝜌⩾𝑖(𝑥, 1

2
) = 0, 𝑖 = 1, … ,𝑁,

and consider an 𝑁-dimensional random vector:

𝜉𝐴⃗(𝐵⃗) = (𝑞⩾1(𝑋,𝐵1), … , 𝑞⩾𝑁(𝑋,𝐵𝑁)).

Corollary 3.5. Take 𝑋 ∈ ℤ>0 +
1
2
, Δ = 0, 1, 2, … , an index 𝜄 ∈ {1, 2, … ,𝑁}, and two vectors 𝐴⃗, 𝐵⃗

satisfying (3.2), (3.3). With the notation 𝐞𝜄 for the 𝜄-th coordinate vector in𝑁-dimensional space, the
following identity of the first two moments holds:

𝜉𝐴⃗(𝐵⃗)
1,2moments

= 𝜉𝐴⃗−Δ𝐞𝜄
(𝐵⃗ − Δ𝐞𝜄). (3.4)

Similar to Corollary 2.3 and Theorem 2.1, Corollary 3.5 is a direct consequence of Theorem 3.1,
and also more general choices of the boundary conditions are possible in the statement.
In fact, not only the first two moments, but the full distributions of the vectors in (3.4) coincide

and Theorem 1.2 is an inhomogeneous version of such a statement. However, checking this is
based on a different set of techniques (where the relation to intersection local times of random
walks is no longer visible); it will be discussed in Sections 4 and 5.
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3.1 Four-point relation for the colored stochastic six-vertex model

The computation of the covariance for the vectors in (3.1) is based on the following relation gen-
eralizing [18, Theorem 3.1].

Theorem 3.6. Consider the stochastic (𝑁 + 1)-colored six-vertex model (with weights 𝑏1, 𝑏2, and
𝑞 =

𝑏2
𝑏1
) in the quadrant with arbitrary (possibly, even random) boundary conditions. For each 𝑥,

𝑦 ∈ ℤ⩾0 +
1
2
we have the identities for 𝑗 = 0, 1, … ,𝑁:

𝑞⩾𝑗(𝑥+1,𝑦+1) − 𝑏1 ⋅ 𝑞
⩾𝑗(𝑥,𝑦+1) − 𝑏2 ⋅ 𝑞

⩾𝑗(𝑥+1,𝑦) + (𝑏1 + 𝑏2 − 1) ⋅ 𝑞⩾𝑗(𝑥,𝑦)

= 𝜉⩾𝑗(𝑥 + 1, 𝑦 + 1), (3.5)

where the conditional expectation for fields 𝜉⩾𝑗 , 𝑗 = 0, 1, … ,𝑁, is

𝔼
[
𝜉⩾𝑗(𝑥 + 1, 𝑦 + 1) ∣ ⩾1(𝑢, 𝑣), … ,⩾𝑁(𝑢, 𝑣), 𝑢 ⩽ 𝑥 or 𝑣 ⩽ 𝑦

]
= 0, (3.6)

and the conditional covariance is computed for 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑁 through

𝔼
[
𝜉⩾𝑖(𝑥 + 1, 𝑦 + 1)𝜉⩾𝑗(𝑥 + 1, 𝑦 + 1) ∣ ⩾1(𝑢, 𝑣), … ,⩾𝑁(𝑢, 𝑣), 𝑢 ⩽ 𝑥 or 𝑣 ⩽ 𝑦

]
= 𝑏2(1 − 𝑏1)Δ

⩾𝑖
𝑥 Δ⩾𝑗

𝑦 + 𝑏1(1 − 𝑏2)Δ
⩾𝑖
𝑦 Δ⩾𝑗

𝑥

−𝑏1(1 − 𝑏1)(1 − 𝑞)𝑞⩾𝑖(𝑥,𝑦)Δ⩾𝑗
𝑦 + 𝑏1(1 − 𝑏2)(1 − 𝑞)𝑞⩾𝑖(𝑥,𝑦)Δ⩾𝑗

𝑥 , (3.7)

with

Δ⩾𝑖
𝑥 = 𝑞⩾𝑖(𝑥+1,𝑦) − 𝑞⩾𝑖(𝑥,𝑦), Δ⩾𝑖

𝑦 = 𝑞⩾𝑖(𝑥,𝑦+1) − 𝑞⩾𝑖(𝑥,𝑦), 𝑖 = 1, … ,𝑁.

Proof. The identity is checked by sampling one vertex at (𝑥 + 1
2
, 𝑦 + 1

2
) with all possible configu-

rations of colors of two incoming edges.
First, suppose that 𝑁 = 1. When 𝑖 = 𝑗 = 1, the statement of the theorem coincides with [18,

Theorem 3.1] for the colorless six-vertex model. The proof given there involved only the local
update rule (vertex weights) at (𝑥 + 1

2
, 𝑦 + 1

2
). It remains to deal with the cases when either 𝑖

or 𝑗 is equal to 0. Note that since each edge has some color, 0 is a deterministic function,
which grows linearly with slope 1 in 𝑦 variable and decreases linearly with slope −1 in 𝑥 vari-
able. Hence, for 𝑗 = 0, (3.5) gives identical 0 value for 𝜉⩾0. Therefore, 𝜉⩾0 satisfies (3.6) automati-
cally. As for (3.7), note that whenever 𝑖 = 0, the expression in the right-hand side of (3.7) vanishes
(as follows from 𝑏2Δ

⩾0
𝑥 = 𝑏1(1 − 𝑞)𝑞⩾0 and Δ⩾0

𝑦 = (𝑞 − 1)𝑞⩾0) matching the vanishing of the
left-hand side.
The case of general𝑁 > 1 is reduced to𝑁 = 1, since each vertex has edges of atmost two colors,

which are sampled by the same rule as for 𝑁 = 1. □

Remark 3.7. It is easy to see that there should be some formula for the conditional covari-
ance (3.7) because each vertex is being sampled from finitely many options. However, we do
not have any a priori reason for the formula to have the particularly simple quadratic form
of (3.7).
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We now recall how difference equations of the sort (3.5) can be solved. Consider the following
equation for an unknown function Φ(𝑥, 𝑦), 𝑥, 𝑦 ∈ ℤ⩾0 +

1
2
:

Φ(𝑥 + 1, 𝑦 + 1) − 𝑏1Φ(𝑥, 𝑦 + 1) − 𝑏2Φ(𝑥 + 1, 𝑦) + (𝑏1 + 𝑏2 − 1)Φ(𝑥, 𝑦) = 𝑢(𝑥 + 1, 𝑦 + 1) (3.8)

with a given right-hand side 𝑢 and subject to boundary conditions

Φ
(
𝑥, 1

2

)
= 𝜒(𝑥), Φ

(
1
2
, 𝑦
)
= 𝜓(𝑦), 𝑥, 𝑦 = 1

2
, 3
2
, 5
2
, … , 𝜒

(
1
2

)
= 𝜓

(
1
2

)
. (3.9)

We take 𝑏1 and 𝑏2 to be arbitrary distinct real numbers satisfying 0 < 𝑏1 ≠ 𝑏2 < 1.
Define the discrete Riemann function through

𝑑(𝑋, 𝑌; 𝑥, 𝑦) =
1
2𝜋𝐢 ∮− 1

𝑏2(1−𝑏1)

(
1 + 𝑏1(1 − 𝑏1)𝑧

1 + 𝑏2(1 − 𝑏1)𝑧

)𝑋−𝑥(1 + 𝑏2(1 − 𝑏2)𝑧

1 + 𝑏1(1 − 𝑏2)𝑧

)𝑌−𝑦

×
(𝑏2 − 𝑏1) 𝑑𝑧

(1 + 𝑏2(1 − 𝑏1)𝑧)(1 + 𝑏1(1 − 𝑏2)𝑧)
, 𝑋 ⩾ 𝑥, 𝑌 ⩾ 𝑦, (3.10)

where the integration goes in the positive direction and encircles −[1∕𝑏2(1 − 𝑏1)], but not
−[1∕𝑏1(1 − 𝑏2)]. Note that we can also integrate in the negative direction around − 1

𝑏1(1−𝑏2)
for

the same result. For convenience, we also set 𝑅(𝑋, 𝑌; 𝑥, 𝑦) = 0 whenever 𝑋 < 𝑥 or 𝑌 < 𝑦.

Theorem 3.8 [18, Theorem 4.7]. The unique solution to (3.8) and (3.9) has the form

Φ(𝑋,𝑌) = 𝜒
(
1
2

)𝑑
(
𝑋,𝑌; 1

2
, 1
2

)
+

𝑌∑
𝑦= 3

2

𝑑
(
𝑋,𝑌; 1

2
, 𝑦
)(

𝜓(𝑦) − 𝑏2𝜓(𝑦 − 1)
)

+
𝑋∑

𝑥=
3
2

𝑑
(
𝑋,𝑌; 𝑥, 1

2

)(
𝜒(𝑥) − 𝑏1𝜒(𝑥 − 1)

)
+

𝑋∑
𝑥=

3
2

𝑌∑
𝑦=

3
2

𝑑(𝑋, 𝑌; 𝑥, 𝑦)𝑢(𝑥, 𝑦), (3.11)

where all summations run over the lattices of mesh 1.

3.2 Intersection local times for persistent randomwalks

The second ingredient of the proof of Theorem 3.1 is a result on shift-invariance of the distribu-
tion of intersection local times for persistent random walks. We could not locate the result in the
literature and present it here.
We deal with a pair of independent random walks. The trajectory of each walker consists of

straight segments and turns, its weight is the product of weights of elementary steps. The latter
depend on two parameters 0 < 𝑏1 < 1, 0 < 𝑏2 < 1 and are given in Figure 12.
We would like to count the number of intersections for two random walks. By an intersection

we mean two paths passing through the same vertex. Since for each path there are four types of
passages through a vertex (as in Figure 12), there are 4 ⋅ 4 = 16 types of intersections— at some of
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F IGURE 1 2 Weights for independent random walks

F IGURE 13 Intersections of two paths

them the paths intersect transversally, at others they just touch each other, or they can even share
the same edges of the lattice. We denote one of these 16 types by𝜛.
We consider a rectangle 𝑆(𝐴, 𝐵) drawn on the square grid with lower-left vertex 𝐴 and upper-

right vertex 𝐵. Our fist random path 𝜋1 is a random walk, which starts by entering horizontally
from the left into vertex𝐴 and travels inside the rectangle until exiting horizontally through vertex
𝐵 to the right (this is a discrete version of the Brownian bridge of Section 2.2). The probability of a
trajectory of𝜋1 is proportional to the product of theweights of Figure 12 corresponding to its steps.
In addition, we take a point 𝐶 on the bottom side of 𝑆(𝐴, 𝐵) and a point 𝐷 on the top side of

𝑆(𝐴, 𝐵), such that 𝐷 is to the right (and up) from 𝐶. We consider the rectangle 𝑆(𝐶, 𝐷), and the
second random path𝜋2 starts by entering 𝑆(𝐶, 𝐷) vertically through𝐶 and ends by exiting 𝑆(𝐶, 𝐷)
vertically through 𝐷. We refer to Figure 13 for an illustration of 𝜋1 and 𝜋2.
For 𝜛 being one of the 16 types of intersections, let 𝜛(𝐴, 𝐵; 𝐶, 𝐷) be the random variable,

which counts the total number of intersections of 𝜋1 and 𝜋2 of type𝜛; cf. Figure 13.

Theorem 3.9. Fix a type of intersection 𝜛 and a rectangle 𝑆(𝐴, 𝐵). The distribution of
𝜛(𝐴, 𝐵; 𝐶, 𝐷) does not change when we shift 𝐶,𝐷 simultaneously and by the same amount in
(1,0) direction.

Proof. We argue by induction in the area of 𝑆(𝐴, 𝐵). If 𝐴 = 𝐵, then necessarily also 𝐶 = 𝐷 = 𝐴
and the statement is empty.
For the general case, let 𝑥(𝐴), 𝑦(𝐴) denote the coordinates of 𝐴, and similarly for points 𝐵, 𝐶,

and 𝐷. We want to show that the dependence of 𝜛 on 𝐶 and 𝐷 is only through the difference
𝑥(𝐷) − 𝑥(𝐶). This difference can take the values 0, 1, … , 𝑥(𝐵) − 𝑥(𝐴). If the value ismaximal, then
necessarily𝐴 = 𝐶,𝐵 = 𝐷, and the statement of the theorem is empty.Hence, is suffices to consider
the case when 𝑥(𝐵) − 𝑥(𝐴) > 𝑥(𝐷) − 𝑥(𝐶). This implies that the area of 𝑆(𝐴, 𝐵) is larger than the
area of 𝑆(𝐶, 𝐷), which will allow us to use the induction hypothesis.
Let  denote the random point where the path 𝜋1 enters the rectangle 𝑆(𝐶, 𝐷). Formally, 

is the unique point with 𝑥() = 𝑥(𝐶) such that the edge ( − (1, 0), ) belongs to 𝜋1. Similarly,
let  denote the random point where the path 𝜋1 leaves the rectangle 𝑆(𝐶, 𝐷). Note that all the
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intersections of 𝜋1 and 𝜋2 necessarily happen inside 𝑆( ,). Therefore, we can write
Prob(𝜛(𝐴, 𝐵; 𝐶, 𝐷) = 𝑘)

=
∑
𝐸,𝐹

𝑤(−𝐴 → −𝐸)𝑤(−𝐸 → 𝐹+)𝑤(𝐹+ → 𝐵+)

𝑤(−𝐴 → 𝐵+)
⋅ Prob(̃𝜛(𝐶,𝐷; 𝐸, 𝐹) = 𝑘), (3.12)

where the summation goes over 𝐸 and 𝐹 representing all possible values for  and , respectively,
𝑤(−𝐴 → −𝐸) is the total weight of paths starting by (𝐴 − (1, 0), 𝐴) and ending by (𝐸 − (1, 0), 𝐸)
(that is, product of weights of involved vertices, including the one at 𝐴, but not the one at 𝐸),
𝑤(−𝐸 → 𝐹+) is the total weight of paths starting by (𝐸 − (1, 0), 𝐸) and ending by (𝐹, 𝐹 + (1, 0))
(including vertices at both 𝐸 and 𝐹), 𝑤(𝐹+ → 𝐵+) is the total weight of paths starting by
(𝐹, 𝐹 + (1, 0)) and ending by (𝐵, 𝐵 + (1, 0)) (including 𝐵, but not 𝐹), and𝑤(−𝐴 → 𝐵+) is the total
weight of paths starting by (𝐴 − (1, 0), 𝐴) and ending by (𝐵, 𝐵 + (1, 0)) (including both 𝐴 and 𝐵).
Finally, ̃𝜛(𝐶,𝐷; 𝐸, 𝐹) counts the number of intersection points of a random walk from 𝐶 to 𝐷
with another random walk from 𝐸 to 𝐹.
Note that ̃𝜛 is a random variable of the same type as 𝜛 but for domains and paths reflected

with respect to the 𝑥 = 𝑦 axis (which, in particular, interchanges the probabilities 𝑏1 and 𝑏2).
Hence, we can use the induction hypothesis and conclude that Prob(̃𝜛(𝐶,𝐷; 𝐸, 𝐹) = 𝑘) depends
on 𝐸 and 𝐹 only through the difference 𝑦(𝐹) − 𝑦(𝐸).
We further perform the summation in (3.12) in two steps: first summing over 𝐸 and 𝐹 such that

𝑦(𝐹) − 𝑦(𝐸) = 𝑟 and then summing over all possible choices of 𝑟. Hence, we write

Prob(𝜛(𝐴, 𝐵; 𝐶, 𝐷) = 𝑘) =
𝑦(𝐵)−𝑦(𝐴)∑

𝑟=0

Prob(𝑦(𝐸) − 𝑦(𝐹) = 𝑟)Prob(̃𝜛(𝐶,𝐷; 𝐸, 𝐹) = 𝑘), (3.13)

where as 𝐸 and 𝐹 in the last sum we can choose any two points on the vertical sides of 𝑆(𝐶, 𝐷)
satisfying 𝑦(𝐸) − 𝑦(𝐹) = 𝑟. We are now ready prove the invariance with respect to the simultane-
ous horizontal shifts of 𝐶 and 𝐷. Note that the second factor in the sum (3.13) is invariant by its
definition, and therefore, we only need to prove the invariance of the first factor. Following (3.12),
this factor is ∑

𝐸, 𝐹 ∶
𝑦(𝐹) − 𝑦(𝐸) = 𝑟

𝑤(−𝐴 → −𝐸)𝑤(−𝐸 → 𝐹+)𝑤(𝐹+ → 𝐵+)

𝑤(−𝐴 → 𝐵+)
. (3.14)

By definitions, the factors 𝑤(−𝐸 → 𝐹+) and 𝑤(−𝐴 → 𝐵+) are shift-invariant. Hence, it remains
to prove the shift-invariance of ∑

𝐸, 𝐹 ∶
𝑦(𝐹) − 𝑦(𝐸) = 𝑟

𝑤(−𝐴 → −𝐸)𝑤(𝐹+ → 𝐵+). (3.15)

By translating the path going from 𝐹 to 𝐵 so that the edge (𝐹, 𝐹 + (1, 0)) becomes (𝐸 − (1, 0), 𝐸),
we see that (3.15) is the total weight of paths staring by (𝐴 − (1, 0), 𝐴) and ending by (𝐵̂, 𝐵̂ + (1, 0)),
where 𝐵̂ = 𝐵 − (𝑥(𝐷) − 𝑥(𝐶) − 1, 𝑟). This weight depends on 𝐶 and 𝐷 only through 𝑥(𝐷) − 𝑥(𝐶),
as desired. □
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F IGURE 14 Two sample cases for Theorem 3.10

The following extension of Theorem 3.9 is obtained by following exactly the same argument,
and we omit the proof. See Figure 14 for some of the cases covered by the extension.

Theorem 3.10. In the setting of Theorem 3.9, we can allow the direction of the incoming path at
𝐴 to be vertical and/or the direction of the outgoing path at 𝐵 to be vertical. Moreover, point 𝐶 may
be below the bottom border of 𝑆(𝐴, 𝐵), and in this case, the incoming path at 𝐶 is allowed to have
horizontal direction. Similarly, point 𝐷 may be above the top border of 𝑆(𝐴, 𝐵) and in this case, the
outgoing path at 𝐷 is allowed to have horizontal direction.
In all these cases, the shift-invariance will hold, provided that the paths 𝜋1 and 𝜋2 still almost

surely intersect both before and after the shift.

Let us formulate an analytic corollary of the probabilistic statement of Theorem 3.10. For two
points 𝐴, 𝐵 ∈ ℤ2, a monotone lattice path from 𝐴 to 𝐵 is a sequence of points 𝑥1, 𝑥2, … , 𝑥𝑁 with
𝑥1 = 𝐴, 𝑥𝑁 = 𝐵 and each increment 𝑥𝑖+1 − 𝑥𝑖 being either (1,0) or (0,1). In particular, in order
for such a path to exist, 𝐵 − 𝐴must be a vector with nonnegative coordinates and 𝑁 − 1must be
equal to the sum of these coordinates.

Definition 3.11. We say that two pairs of points𝐴, 𝐵 ∈ ℤ2 and 𝐶,𝐷 ∈ ℤ2 are in intersecting posi-
tion if every monotone lattice path from 𝐴 to 𝐵 intersects (that is, shares a vertex) with every
monotone lattice path from 𝐶 to 𝐷.

Corollary 3.12. Take four points on the integer plane 𝐴 = (𝐴𝑋,𝐴𝑌), 𝐵 = (𝐵𝑋, 𝐵𝑌), 𝐶 = (𝐶𝑋, 𝐶𝑌),
𝐷 = (𝐷𝑋,𝐷𝑌) and let Δ = (Δ𝑋, Δ𝑌) be an integer vector. Suppose that𝐴, 𝐵 is in intersecting position
both with 𝐶,𝐷 and with 𝐶 + Δ, 𝐷 + Δ. Then∑

𝑥,𝑦∈ℤ

𝑑(𝑥, 𝑦; 𝐴𝑋,𝐴𝑌)𝑑(𝐵𝑋, 𝐵𝑌; 𝑥, 𝑦)𝑑(𝑥, 𝑦; 𝐶𝑋, 𝐶𝑌)𝑑(𝐷𝑋, 𝐷𝑌; 𝑥, 𝑦)

=
∑

𝑥,𝑦∈ℤ

𝑑(𝑥, 𝑦; 𝐴𝑋,𝐴𝑌)𝑑(𝐵𝑋, 𝐵𝑌; 𝑥, 𝑦)𝑑(𝑥, 𝑦; 𝐶𝑋 + Δ𝑋, 𝐶𝑌 + Δ𝑌)

×𝑑(𝐷𝑋 + Δ𝑋,𝐷𝑌 + Δ𝑌; 𝑥, 𝑦). (3.16)

Note that since 𝑑 vanishes for nonordered arguments, both sums in (3.16) are finite: the
first runs over (𝑥, 𝑦) ∈ 𝑆(𝐴, 𝐵) ∩ 𝑆(𝐶, 𝐷), while the second one runs over (𝑥, 𝑦) ∈ 𝑆(𝐴, 𝐵) ∩ 𝑆(𝐶 +
Δ,𝐷 + Δ).
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Remark 3.13. Using (3.10), the identity (3.16) becomes an equality of two four-dimensional contour
integrals. We are not aware of a more direct way for checking this equality.

The proof of Corollary 3.12 is based on the following stochastic interpretation of the function
𝑑. As before, we deal with persistent randomwalks, which travel in the up-right direction of the
grid according to the probabilities of Figure 12.

Proposition 3.14. The probability that a path that started horizontally at (𝑥0 +
1
2
, 𝑦0), ends verti-

cally at (𝑋 + 1, 𝑌 + 1
2
) (that is, the path enters(𝑋 + 1, 𝑌 + 1) from below) is

𝑃−,|(𝑥0, 𝑦0; 𝑋, 𝑌) = (1 − 𝑏1)𝑑(𝑋, 𝑌; 𝑥0, 𝑦0). (3.17)

The probability for a path, which started vertically at (𝑥0, 𝑦0 +
1
2
), to end horizontally at

(𝑋 + 1
2
, 𝑌 + 1) (that is, the path enters (𝑋 + 1, 𝑌 + 1) from the left) is

𝑃|,−(𝑥0, 𝑦0; 𝑋, 𝑌) = (1 − 𝑏2)𝑑(𝑋, 𝑌; 𝑥0, 𝑦0). (3.18)

Proof. We consider a particular case of the stochastic six–vertex model in the quadrant (with
colorless weights) when we have only one path. In this case the expectation of the height function
has a simple probabilistic meaning: for (𝑋, 𝑌) ∈ (ℤ⩾0 +

1
2
) × (ℤ⩾0 +

1
2
)

𝔼

[
1 − 𝑞𝐻(𝑋,𝑌)

1 − 𝑞

]
= Prob

(
the path passes to the right from (𝑋, 𝑌)

)
(3.19)

= Prob
(
the path passes below (𝑋, 𝑌)

)
.

Suppose that the path enters the positive quadrant through point (1, 𝑦0) coming from the left.
Then by Theorem 3.6, (3.19) denoted as 𝐹−

𝑦0
(𝑋, 𝑌) (the superscript − indicates that the path enters

horizontally) solves

𝐹−
𝑦0
(𝑋 + 1, 𝑌 + 1) − 𝑏1𝐹

−
𝑦0
(𝑋, 𝑌 + 1) − 𝑏2𝐹

−
𝑦0
(𝑋 + 1, 𝑌) + (𝑏1 + 𝑏2 − 1)𝐹−

𝑦0
(𝑋, 𝑌) = 0, (3.20)

with the boundary conditions

𝐹−
𝑦0
(𝑋, 1

2
) = 0, 𝐹−

𝑦0
( 1
2
, 𝑌) =

⎧⎪⎨⎪⎩
0, 𝑌 < 𝑦0 −

1
2
,

1, 𝑌 ⩾ 𝑦0 +
1
2
.

(3.21)

Theorem 3.8 gives a closed formula:

𝐹−
𝑦0
(𝑋, 𝑌) = 𝑑(𝑋, 𝑌; 1

2
, 𝑦0 +

1
2
) + (1 − 𝑏2)

𝑌∑
𝑦=𝑦0+

3
2

𝑑(𝑋, 𝑌; 0, 𝑦). (3.22)

Consider the difference in the 𝑋–direction:

𝑃−,|(0, 𝑦0; 𝑋, 𝑌) ∶= 𝐹𝑦0
(𝑋 + 1

2
, 𝑌 + 1

2
) − 𝐹𝑦0

(𝑋 + 3
2
, 𝑌 + 1

2
), 𝑋, 𝑌 ∈ ℤ⩾0.
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Equation (3.19) implies that it computes the probability that the path, which started horizontally
at ( 1

2
, 𝑦0), ends vertically at (𝑋 + 1, 𝑌 + 1

2
) (that is, the path enters (𝑋 + 1, 𝑌 + 1) from below).

Using (3.22) and invariance of𝑑 under simultaneous shifts of the first and third or of the second
and fourth arguments, we compute

𝑃−,|(0, 𝑦0; 𝑋, 𝑌) =
𝑌∑

𝑦=𝑦0+1

(𝑑(𝑋, 𝑌; 0, 𝑦) −𝑑(𝑋 + 1, 𝑌; 0, 𝑦))(1 − 𝑏2) (3.23)

+𝑑(𝑋, 𝑌; 0, 𝑦0) −𝑑(𝑋 + 1, 𝑌; 0, 𝑦0). (3.23)

Let us investigate the sum in this formula using the shift-invariance of𝑑:
𝑌∑

𝑦=𝑦0+1

(𝑑(𝑋, 𝑌; 0, 𝑦) −𝑑(𝑋 + 1, 𝑌; 0, 𝑦))

=
𝑌∑

𝑦=𝑦0+1

(𝑑(𝑋, 𝑌 − 𝑦; 0, 0) −𝑑(𝑋 + 1, 𝑌 − 𝑦; 0, 0))

=
𝑌−𝑦0−1∑
𝑦=0

(𝑑(𝑋, 𝑦; 0, 0) −𝑑(𝑋 + 1, 𝑦; 0, 0)). (3.24)

Using the definition (3.10) and omitting the third and fourth arguments being zeros, the𝑑 func-
tion satisfies

𝑑(𝑋 + 1, 𝑌′) − 𝑏1𝑑(𝑋, 𝑌′) − 𝑏2𝑑(𝑋 + 1, 𝑌′ − 1) + (𝑏1 + 𝑏2 − 1)𝑑(𝑋, 𝑌′ − 1) = 0.

Summing this formula for 𝑌′ = 1,… , 𝑌 − 𝑦0, we get

0 = −(1 − 𝑏2)
𝑌−𝑦0−1∑
𝑦=1

(𝑑(𝑋, 𝑦; 0, 0) −𝑑(𝑋 + 1, 𝑦; 0, 0))

− 𝑏2𝑑(𝑋 + 1, 0) + (𝑏1 + 𝑏2 − 1)𝑑(𝑋, 0) +𝑑(𝑋 + 1, 𝑌 − 𝑦0) − 𝑏1𝑑(𝑋, 𝑌 − 𝑦0). (3.25)

Hence, adding (3.25) to (3.23) and using (3.24), we obtain

𝑃−,|(0, 𝑦0; 𝑋, 𝑌) = (1 − 𝑏2)(𝑑(𝑋, 0; 0, 0) −𝑑(𝑋 + 1, 0; 0, 0)) − 𝑏2𝑑(𝑋 + 1, 0; 0, 0)

+(𝑏1 + 𝑏2 − 1)𝑑(𝑋, 0; 0, 0) +𝑑(𝑋 + 1, 𝑌 − 𝑦0; 0, 0) − 𝑏1𝑑(𝑋, 𝑌 − 𝑦0; 0, 0)

+𝑑(𝑋, 𝑌 − 𝑦0; 0, 0) −𝑑(𝑋 + 1, 𝑌 − 𝑦0; 0, 0). (3.26)

Using𝑑(𝑋 + 1, 0; 0, 0) = 𝑏1𝑑(𝑋, 0; 0, 0), we arrive at

𝑃−,|(0, 𝑦0; 𝑋, 𝑌) = (1 − 𝑏1)𝑑(𝑋, 𝑌 − 𝑦0; 0, 0). (3.27)

By translation invariance, the same formula holds for the path which starts not by entering from
the left into (1, 𝑦0), but into an arbitrary point (𝑥0 + 1, 𝑦0), which yields (3.17). By symmetry, we
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F IGURE 15 Two paths sharing (𝑥, 𝑦) − (𝑥, 𝑦 + 1) edge in the proof of Corollary 3.12

can also obtain similar formulas for the case when the path starts by entering from below into a
point (𝑥0, 𝑦0 + 1), arriving at (3.18). □

Proof of Corollary 3.12. The idea of the proof is to use Proposition 3.14 to interpret the sum in the
left-hand side of (3.16) (multiplied by (1 − 𝑏1)

2(1 − 𝑏2)
2) as the expected number of intersections

of two paths, and then to use Theorem 3.10 to match that to the similarly interpreted right-hand
side of (3.16). Since there are two ways to interpret the functions𝑑 in Proposition 3.14, we have
some freedom, and different choices are necessary for different configurations of points 𝐴, 𝐵, 𝐶,
𝐷; similarly, we use Theorem 3.10 for different types of intersections.
Let us give more details for the cases when 𝐴𝑋 = 𝐶𝑋 , 𝐵𝑋 = 𝐷𝑋 , and Δ𝑋 = 0, that is, we

shift in the vertical direction, cf. Figure 15; all other cases are studied in the same way. The
product (1 − 𝑏1)(1 − 𝑏2)𝑑(𝑥, 𝑦; 𝐴𝑋,𝐴𝑌)𝑑(𝐵𝑋, 𝐵𝑌; 𝑥, 𝑦) is the probability that a path which
started by entering vertex 𝐴 from the left, passes through the edge (𝑥, 𝑦) − (𝑥, 𝑦 + 1) and
further enters 𝐵 + (1, 1) from the left. Similarly, (1 − 𝑏1)(1 − 𝑏2)𝑑(𝑥, 𝑦; 𝐶𝑋, 𝐶𝑌)𝑑(𝐷𝑋, 𝐷𝑌; 𝑥, 𝑦)
is the probability that a path which started by entering vertex 𝐶 from the left, passes through
the edge (𝑥, 𝑦) − (𝑥, 𝑦 + 1) and further enters 𝐷 + (1, 1) from the left. Hence, (1 − 𝑏1)

2(1 −
𝑏2)

2𝑑(𝑥, 𝑦; 𝐴𝑋,𝐴𝑌)𝑑(𝐵𝑋, 𝐵𝑌; 𝑥, 𝑦)𝑑(𝑥, 𝑦; 𝐶𝑋, 𝐶𝑌)𝑑(𝐷𝑋, 𝐷𝑌; 𝑥, 𝑦) computes the probability
that two paths share an edge (𝑥, 𝑦) − (𝑥, 𝑦 + 1), which is one of the allowed types of intersec-
tions in Theorem 3.10 (paths enter and exit (𝑥, 𝑦) vertically). Therefore, the sum over all 𝑥 and
𝑦 computes the expected number of such shared edges (equivalently, intersections). Since the
right-hand side of (3.16) admits the same interpretation as the expected number of intersections,
Theorem 3.10 implies (3.16). □

3.3 Proof of Theorem 3.1

The basic idea of the proof is similar to that for Theorem 2.1. The expectations of each coordi-
nate and each squared coordinate of the vectors in (3.1) coincide (by the definition of the system)
between the left-hand side and the right-hand side, and we only need to show that the expecta-
tions of the product of coordinates are the same. For that we will write these expectations as a
large sum, using Theorems 3.6 and 3.8. The invariance of this sum with respect to the shifts even-
tually will be a corollary of Theorem 3.10 (to be more precise, we rely on Corollary 3.12), yet the
reduction to this theorem needs some efforts.
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We fix Δ ⩾ 0 and study the covariance of the coordinates of the vector in the right-hand side of
(3.1). Our aim is to show that this covariance does not depend on the choice ofΔ. By Theorems 3.6
and 3.8, the covariance is

𝑋∑
𝑥=3∕2

𝐵𝑗−Δ∑
𝑦=3∕2

𝔼
[
𝜉⩾𝑖(𝑥, 𝑦)𝜉⩾𝑗(𝑥, 𝑦)

]
⋅𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦). (3.28)

We further use (3.7) to express the expectation in the last formula. Note that the colors at least
𝑗 are distributed according to the boundary conditions 𝑆Δ𝜌

⩾𝑗
𝑏
, which implies that ⩾𝑗(𝑥, 𝑦) is

identically 0 for 𝑦 ⩽ 𝐴 − Δ − 1∕2. Hence, the right-hand side of (3.7) vanishes at such points, and
we conclude that the 𝑦–summation in (3.28) is

∑𝐵𝑗−Δ

𝑦=𝐴−Δ+1∕2
.

The right-hand side of (3.7) is a sum of four quadratic expressions in 𝑞⩾𝑖 , 𝑞⩾𝑗 . We shift the
(𝑥, 𝑦)-coordinates by 1 and rewrite 𝔼

[
𝜉⩾𝑖(𝑥, 𝑦)𝜉⩾𝑗(𝑥, 𝑦)

]
as the expectation of the sum of two prod-

ucts:

(1 − 𝑏1) ⋅ 𝔼
[(

𝑏2𝑞
⩾𝑖(𝑥,𝑦−1) − 𝑏1𝑞

⩾𝑖(𝑥−1,𝑦−1)
)
⋅
(
𝑞⩾𝑗(𝑥−1,𝑦) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

)]
(3.29)

and

(1 − 𝑏2) ⋅ 𝔼
[(

𝑏1𝑞
⩾𝑖(𝑥−1,𝑦) − 𝑏2𝑞

⩾𝑖(𝑥−1,𝑦−1)
)
⋅
(
𝑞⩾𝑗(𝑥,𝑦−1) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

)]
. (3.30)

The first factors (1 − 𝑏1), (1 − 𝑏2) in (3.29) and (3.30) do not depend on Δ, and we will be ignoring
them. We split the expectation of the product in (3.29), (3.30) into two further parts: product of
expectations and covariance of the factors. We will first deal with the product of expectations and
represent them as sums involving the boundary conditions 𝜌⩾𝑖

𝑏
, 𝜌⩾𝑗

𝑏
.

Lemma 3.15. For each (𝑥, 𝑦) ∈ (ℤ>0 +
1
2
) × (ℤ>0 +

1
2
) we have

(1) 𝔼
[
𝑞⩾𝑗(𝑥−1,𝑦) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

]
=
∑𝑦

𝑦′=𝐴−Δ+1∕2
𝜓Δ
1 (𝑦

′)𝑑(𝑥, 𝑦; 3
2
, 𝑦′);

(2) 𝔼
[
𝑞⩾𝑗(𝑥,𝑦−1) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

]
=
∑𝑦

𝑦′=𝐴−Δ+1∕2
𝜓Δ
2 (𝑦

′)𝑑(𝑥, 𝑦; 3
2
, 𝑦′);

(3) 𝔼
[
𝑏2𝑞

⩾𝑖(𝑥,𝑦−1) − 𝑏1𝑞
⩾𝑖(𝑥−1,𝑦−1)

]
=
∑𝐴−Δ−1

2

𝑦′= 1
2

𝜓3(𝑦
′)𝑑(𝑥, 𝑦; 3

2
, 𝑦′)

+
∑𝑥

𝑥′= 1
2

𝜒3(𝑥
′)𝑑(𝑥, 𝑦; 𝑥′, 3

2
);

(4) 𝔼
[
𝑏1𝑞

⩾𝑖(𝑥−1,𝑦) − 𝑏2𝑞
⩾𝑖(𝑥−1,𝑦−1)

]
=
∑𝐴−Δ−1

2

𝑦′= 1
2

𝜓4(𝑦
′)𝑑(𝑥, 𝑦; 3

2
, 𝑦′)

+
∑𝑥

𝑥′= 1
2

𝜒4(𝑥
′)𝑑(𝑥, 𝑦; 𝑥′, 3

2
).

The boundary functions 𝜓Δ
1 , 𝜓

Δ
2 depend in an explicit way on 𝜌

⩾𝑗; in particular, their dependence on
Δ is in the linear shift of the argument: 𝜓Δ

1∕2
= 𝑆Δ(𝜓1∕2). Other functions 𝜓3, 𝜓4, 𝜒3, 𝜒4 depend on

𝜌⩾𝑖 and do not depend on Δ.

Proof. The identity (3.6) implies that each of the expectations in the left-hand sides of (1)–(4)
satisfies the homogeneous four-point relation (3.8) with 𝑢 = 0. Hence, Theorem 3.8 says that it
can be written as a sum over boundaries of the quadrant (ℤ⩾0 +

3
2
) × (ℤ⩾0 +

3
2
). What remains
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to show is that contributions of some parts of the boundaries vanish. For the first two cases
involving 𝜓Δ

1 and 𝜓Δ
2 this is immediate, as the remaining boundary conditions for the colors ⩾ 𝑗

lead to identical ⩾𝑗 ≡ 0, and hence identically zero expectations 𝔼[𝑞⩾𝑗(𝑥−1,𝑦) − 𝑞⩾𝑗(𝑥−1,𝑦−1)]
and 𝔼[𝑞⩾𝑗(𝑥,𝑦−1) − 𝑞⩾𝑗(𝑥−1,𝑦−1)] near the boundaries. For the fourth case we need to show
that 𝔼[𝑏1𝑞

⩾𝑖(𝑥−1,𝑦) − 𝑏2𝑞
⩾𝑖(𝑥−1,𝑦−1)] vanishes at 𝑥 = 3

2
and 𝑦 > 𝐴 − Δ. This immediately fol-

lows from 𝜌⩾𝑖
𝑏
being equal to 1 for such points, as then ⩾𝑖( 3

2
, 𝑦) linearly grows in 𝑦 with slope 1

and two terms under the expectation cancel (recall that 𝑏2
𝑏1

= 𝑞).
The third case needs a bit more care. Looking at the 𝑦-sum in (3.11), we conclude that we need

to show

𝔼
[
𝑏2𝑞

⩾𝑖(𝑥,𝑦−1) − 𝑏1𝑞
⩾𝑖(𝑥−1,𝑦−1) − 𝑏22𝑞

⩾𝑖(𝑥,𝑦−2) + 𝑏1𝑏2𝑞
⩾𝑖(𝑥−1,𝑦−2)

]
?
= 0 (3.31)

at 𝑥 = 3
2
and 𝑦 > 𝐴 − Δ. Recall that the four-point relation (3.6) yields that for the same choice of

𝑥 and 𝑦:

𝔼
[
𝑞⩾𝑖(𝑥,𝑦−1) − 𝑏1𝑞

⩾𝑖(𝑥−1,𝑦−1) − 𝑏2𝑞
⩾𝑖(𝑥,𝑦−2) + (𝑏1 + 𝑏2 − 1)𝑞⩾𝑖(𝑥−1,𝑦−2)

]
= 0. (3.32)

Multiplying (3.32) by 𝑏2 and subtracting from (3.31), it remains to show

𝔼
[
−𝑏1(1 − 𝑏2)𝑞

⩾𝑖(𝑥−1,𝑦−1) + 𝑏2(1 − 𝑏2)𝑞
⩾𝑖(𝑥−1,𝑦−2)

]
?
= 0, (3.33)

and the last identity holds at 𝑥 = 3
2
, 𝑦 > 𝐴 − Δ due to linear, slope 1 growth of ⩾𝑖 in 𝑦 for such

boundary points. □

We continue the proof of Theorem 3.1 and deal with the first part of (3.29) — product of the
expectations of the factors. Combining (3.28) with the result of Lemma 3.15, we get the expression

𝑋∑
𝑥=3∕2

𝐵𝑗−Δ∑
𝑦=3∕2

𝔼
[
𝑏2𝑞

⩾𝑖(𝑥,𝑦−1) − 𝑏1𝑞
⩾𝑖(𝑥−1,𝑦−1)

]
𝔼
[
𝑞⩾𝑗(𝑥−1,𝑦) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

]
×𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦)

=
𝑋∑

𝑥=3∕2

𝐵𝑗−Δ∑
𝑦=3∕2

⎡⎢⎢⎣
𝑦∑

𝑦′=𝐴−Δ+1∕2

𝜓Δ
1 (𝑦

′)𝑑
(
𝑥, 𝑦;

3
2
, 𝑦′
)⎤⎥⎥⎦

×

⎡⎢⎢⎢⎣
𝐴−Δ−1

2∑
𝑦′′= 1

2

𝜓3(𝑦
′′)𝑑

(
𝑥, 𝑦;

3
2
, 𝑦′′

)
+

𝑥∑
𝑥′= 1

2

𝜒3(𝑥
′)𝑑

(
𝑥, 𝑦; 𝑥′,

3
2

)⎤⎥⎥⎥⎦
×𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦). (3.34)

Note that we can extend the summation in 𝑦′ up to+∞, as the added terms do not contribute due
to vanishing of the𝑑 function on unordered arguments. Similarly, we can extend the summation
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in 𝑥′ up to+∞. We can also think about the summation domain in 𝑦′′ to be Δ-independent, as 𝜓3

(and the areas where it vanishes) actually does not depend on Δ.
At this point we can replace 𝑦′ by 𝑦′ − Δ in (3.34), and for any fixed values of 𝑦′, 𝑥′, 𝑦′′ apply

Corollary 3.12 to the remaining sum in 𝑥 and 𝑦 to show its Δ–independence. Note that 𝜓Δ
1 (𝑦

′ −
Δ) = 𝜓1(𝑦

′) is Δ-independent; cf. Lemma 3.15.
In the same way we deal with (3.30) and show that

𝑋∑
𝑥=3∕2

𝐵𝑗−Δ∑
𝑦=3∕2

𝔼
[
𝑥𝑏1𝑞

⩾𝑖(𝑥−1,𝑦) − 𝑏2𝑞
⩾𝑖(𝑥−1,𝑦−1)

]
𝔼
[
𝑞⩾𝑗(𝑥,𝑦−1) − 𝑞⩾𝑗(𝑥−1,𝑦−1)

]
×𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦) (3.35)

also does not depend on Δ.
Hence, it remains to deal with the covariances of the factors in (3.29), (3.30)†. These covariances

are linear combinations of the covariances of 𝑞⩾𝑖 and 𝑞⩾𝑗 at points (𝑥, 𝑦 − 1), (𝑥 − 1, 𝑦), (𝑥 −
1, 𝑦 − 1). At this point we can iterate the previous procedure and use Theorems 3.6 and 3.8 to
write the covariance as a sum similar to (3.28). For instance, the covariance of 𝑞⩾𝑗(𝑥−1,𝑦−1) and
𝑞⩾𝑖(𝑥−1,𝑦−1) is written as

Cov(𝑞⩾𝑗(𝑥−1,𝑦−1), 𝑞⩾𝑖(𝑥−1,𝑦−1))

=
𝑥−1∑

𝑥̃=3∕2

𝑦−1∑
𝑦̃=3∕2

𝔼
[
𝜉⩾𝑖(𝑥̃, 𝑦̃)𝜉⩾𝑗(𝑥̃, 𝑦̃)

]
⋅𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃) ⋅𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃). (3.36)

Proceeding as above, we express 𝔼
[
𝜉⩾𝑖(𝑥̃, 𝑦̃)𝜉⩾𝑗(𝑥̃, 𝑦̃)

]
using (3.7) as the sum of the expressions

(3.29), (3.30) with (𝑥, 𝑦) replaced by (𝑥̃, 𝑦̃), and further split each expectation of the product into
the product of expectations and covariance. Next, we again use Lemma 3.15. As a result, the part
of (3.28) involving the covariance in (3.36) and the product of expectations in the expansion of this
covariance is transformed into

𝑋∑
𝑥=3∕2

𝐵𝑗−Δ∑
𝑦=3∕2

𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦)

×
𝑥−1∑

𝑥̃=3∕2

𝑦−1∑
𝑦̃=3∕2

𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃) ⋅𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃)

×
⎡⎢⎢⎣

𝑦̃∑
𝑦′=𝐴−Δ+1∕2

𝜓Δ
1 (𝑦

′)𝑑
(
𝑥̃, 𝑦̃;

3
2
, 𝑦′
)⎤⎥⎥⎦

×

⎡⎢⎢⎢⎣
𝐴−Δ−1

2∑
𝑦′′= 1

2

𝜓3(𝑦
′′)𝑑

(
𝑥, 𝑦;

3
2
, 𝑦′′

)
+

𝑥∑
𝑥′= 1

2

𝜒3(𝑥
′)𝑑

(
𝑥, 𝑦; 𝑥′,

3
2

)⎤⎥⎥⎥⎦. (3.37)

† This is the new part, compared to Theorem 2.1 dealing with the stochastic heat equation. In the limit transition from the
stochastic six-vertex model to the SHE such covariances vanish.
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F IGURE 16 The relevant points (arguments of𝑑–functions) in summation (3.38). For the subsequent
iterations, the middle part becomes more complicated, but only these four pairs of points are relevant for the
Δ-independence

The Δ-independence of the last expression reduces to the Δ-independence of the sum of prod-
ucts of six𝑑–functions; cf. Figure 16:∑

𝑥,𝑦,𝑥̃,𝑦̃

𝑑
(
𝑥̃, 𝑦̃;

3
2
, 𝑦′ − Δ

)𝑑
(
𝑥̃, 𝑦̃;

3
2
, 𝑦′′

)
×𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃) ⋅𝑑(𝑥 − 1, 𝑦 − 1; 𝑥̃, 𝑦̃)

×𝑑(𝑋, 𝐵𝑖; 𝑥, 𝑦) ⋅𝑑(𝑋, 𝐵𝑗 − Δ; 𝑥, 𝑦) (3.38)

and a similar expression involving 𝑥′. In order to see the Δ–independence of (3.38), we do the
summation in two steps: first, we fix the differences 𝛿𝑥 = 𝑥 − 𝑥̃, 𝛿𝑦 = 𝑦 − 𝑦̃ and sum over all
four-tuples with such differences, then we sum over all possible values for 𝛿𝑥, 𝛿𝑦. Due to the
invariance of the𝑑-function with respect to simultaneous shifts of the first and third arguments
(as well as the second and the fourth arguments), the first summation already leads toΔ-invariant
expression by Corollary 3.12. Hence, (3.38) is Δ-invariant, and so is (3.37).
It remains to deal with the covariance of 𝑞⩾𝑖 and 𝑞⩾𝑗 at points (𝑥̃, 𝑦̃ − 1),

(𝑥̃ − 1, 𝑦̃), (𝑥̃ − 1, 𝑦̃ − 1), and we can again iterate the previous arguments. In general, when we
do 𝑘 iterations by computing 𝑘 times covariance until reaching the product of expectations, we get
a combination of (2𝑘 + 3)-fold summations (as in (3.37) for 𝑘 = 1), and its Δ–invariance reduces
to the Δ-invariance of the sum of products of (2𝑘 + 2) 𝑑-functions (as in (3.38) for 𝑘 = 1).
This is schematically shown in Figure 16. For the Δ-invariance, only four of these 𝑑-functions
matters, as the rest is a translationally invariant factor (as in the second line of (3.38) for 𝑘 = 1).
We conclude that the Δ-invariance follows from Corollary 3.12.
It remains to show thatwe only need finitelymany iterations. For that note thatwhenwe passed

from (𝑥, 𝑦) to (𝑥̃, 𝑦̃), at least one of the coordinates decreased; the same will happen in each next
iteration. Hence, we will reach the boundary of the domain in finite number of steps, and there
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the statement becomes obvious, as the height functions become deterministic and the covari-
ances vanish.
This finishes the proof of Theorem 3.1.

3.4 Degeneration of the six-vertex model into SHE

In this section we outline how the shift-invariance results for the colored stochastic six-vertex
model degenerate into those for the stochastic heat equation in Section 2.
The first step is to degenerate the six-vertex model into the ASEP. For that we set 𝑏1 = 𝜀𝐩,

𝑏2 = 𝜀𝐪, and observe the system in a finite neighborhood of the diagonal (𝜀−1𝑡, 𝜀−1𝑡), where 𝑡
plays the role of time. For the colorless (𝑁 = 1) version in the limit 𝜀 → 0 one encounters the
ASEP which is an interacting particle system on the integer lattice ℤ with each particle jumping
to the right with intensity 𝐩 and to the left with intensity 𝐪; jumps to the sites already occupied by
the particles are prohibited. We refer to [1, 17] for the details on this limit transition.
The next step is to remove asymmetry by setting 𝐩 = 𝐪 = 1. The result is the SSEP. If our initial

model had particles of𝑁 + 1 different colors, then so does the SSEP. The evolution in this particle
system on ℤ is quite simple: at each time each lattice spot𝑚 ∈ ℤ has one of the colors 0, 1, … ,𝑁,
so that the configuration space of the model is {0, 1, … ,𝑁}ℤ. Each lattice edge (𝑚,𝑚 + 1) has an
exponential clock of rate 1 attached to it. Whenever the clock rings, the colors at𝑚 and at𝑚 + 1
are swapped. One can treat color 0 as the absence of particles, and in this interpretation the𝑁 = 1
case gives rise to the usual colorless SSEP. Note that our colored version is different from that of
[56].
Finally, one can consider the large timediffusive scaling limit in the colored SSEP. The functions

𝜌𝑖 of Section 2 then arise as asymptotic (deterministic, but still evolving in time) densities of each
of the colors 𝑖 = 0, 1, … ,𝑁. The fields 𝜂𝑖 are Gaussian fluctuations of these densities. In particular,
the conditions 𝜌0 + 𝜌1 +⋯ + 𝜌𝑁 = 1 and 𝜂0 + 𝜂1 +⋯ + 𝜂𝑁 = 0 are direct consequences of the
fact that in the colored SSEP each lattice spot is necessarily occupied by exactly one of 𝑁 + 1
colors.
The limit transitionsmentioned above are straightforward to prove in themodel with one path,

that is, for the persistent random walks of Section 3.2. For the full system in the quadrant and
with infinitely many paths additional efforts are needed. The full proof of the transition from the
stochastic six-vertex model to the colorless ASEP can be found in [1]. The limit transition from
another colored version of the SSEP to another colored version of SHE was proven in [56]. We
expect that these proofs can be generalized to provide a rigorous justification of the limit transi-
tion from our colored stochastic six-vertex model to our version of the stochastic heat equation
of Section 2. Therefore, we treat Theorem 2.1 and Corollary 2.3 as simplified Gaussian versions of
Theorem 3.1 and Corollary 3.5.

4 INHOMOGENEOUS COLORED STOCHASTIC SIX-VERTEX
MODEL AND SHIFT THEOREM

The aim of this section is to introduce the notations and give the statement of the general shift
theorem for the colored six-vertex model, generalizing Theorems 1.2 and 3.1.
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4.1 Stochastic𝑼𝒒(𝖘𝖑𝑵+𝟏) vertex model

To begin, we recall the form of the 𝑈𝑞(𝔰𝔩𝑁+1) 𝑅-matrix [11, 36, 43, 44]. It acts in a tensor product
𝑊𝑎 ⊗𝑊𝑏 of two (𝑁 + 1)-dimensional vector spaces, and takes the form

𝑅𝑎𝑏(𝑧) =
𝑁∑
𝑖=0

(
𝑅𝑧(𝑖, 𝑖; 𝑖, 𝑖)𝐸

(𝑖𝑖)
𝑎 ⊗ 𝐸(𝑖𝑖)

𝑏

)
+

∑
0⩽𝑖<𝑗⩽𝑁

(
𝑅𝑧(𝑗, 𝑖; 𝑗, 𝑖)𝐸

(𝑖𝑖)
𝑎 ⊗ 𝐸(𝑗𝑗)

𝑏
+ 𝑅𝑧(𝑖, 𝑗; 𝑖, 𝑗)𝐸

(𝑗𝑗)
𝑎 ⊗ 𝐸(𝑖𝑖)

𝑏

)
+

∑
0⩽𝑖<𝑗⩽𝑁

(
𝑅𝑧(𝑗, 𝑖; 𝑖, 𝑗)𝐸

(𝑖𝑗)
𝑎 ⊗ 𝐸(𝑗𝑖)

𝑏
+ 𝑅𝑧(𝑖, 𝑗; 𝑗, 𝑖)𝐸

(𝑗𝑖)
𝑎 ⊗ 𝐸(𝑖𝑗)

𝑏

)
, (4.1)

where 𝐸(𝑖𝑗)
𝑐 ∈ End(𝑊𝑐) denotes the (𝑁 + 1) × (𝑁 + 1) elementary matrix with a 1 at position (𝑖, 𝑗)

and 0 everywhere else, acting in𝑊𝑐 ≅ ℂ𝑁+1. Thematrix entries are rational functions of the spec-
tral parameter 𝑧 and the quantization parameter 𝑞; they are given by

𝑅𝑧(𝑖, 𝑖; 𝑖, 𝑖) = 1, 𝑖 ∈ {0, 1, … ,𝑁}, (4.2)

𝑅𝑧(𝑗, 𝑖; 𝑗, 𝑖) =
𝑞(1 − 𝑧)

1 − 𝑞𝑧
, 𝑅𝑧(𝑖, 𝑗; 𝑖, 𝑗) =

1 − 𝑧
1 − 𝑞𝑧

𝑅𝑧(𝑗, 𝑖; 𝑖, 𝑗) =
1 − 𝑞

1 − 𝑞𝑧
, 𝑅𝑧(𝑖, 𝑗; 𝑗, 𝑖) =

(1 − 𝑞)𝑧

1 − 𝑞𝑧

⎫⎪⎬⎪⎭ 𝑖, 𝑗 ∈ {0, 1, … ,𝑁}, 𝑖 < 𝑗. (4.3)

All othermatrix entries 𝑅𝑧(𝑖, 𝑗; 𝑘,𝓁)which do not fall into a category listed above are by definition
equal to 0. The model described above differs slightly from the one listed in [44], since its entries
𝑅𝑧(𝑗, 𝑖; 𝑗, 𝑖) and𝑅𝑧(𝑖, 𝑗; 𝑖, 𝑗) are not symmetric for 𝑖 ≠ 𝑗. The asymmetric form thatweuse preserves
the integrability of the model, and makes it stochastic†:

Proposition 4.1. The 𝑅-matrix (4.1) satisfies the Yang–Baxter equation and unitarity relations

𝑅𝑎𝑏(𝑦∕𝑥)𝑅𝑎𝑐(𝑧∕𝑥)𝑅𝑏𝑐(𝑧∕𝑦) = 𝑅𝑏𝑐(𝑧∕𝑦)𝑅𝑎𝑐(𝑧∕𝑥)𝑅𝑎𝑏(𝑦∕𝑥), (4.4)

𝑅𝑎𝑏(𝑦∕𝑥)𝑅𝑏𝑎(𝑥∕𝑦) = Id, (4.5)

which hold as identities in End(𝑊𝑎 ⊗𝑊𝑏 ⊗𝑊𝑐) and End(𝑊𝑎 ⊗𝑊𝑏), respectively.

Proposition 4.2. For any fixed 𝑖, 𝑗 ∈ {0, 1, … ,𝑁} there holds

𝑁∑
𝑘=0

𝑁∑
𝓁=0

𝑅𝑧(𝑖, 𝑗; 𝑘,𝓁) = 1. (4.6)

Equivalently, all rows of the matrix (4.1) sum to 1.

† The weights that we use are nonnegative for 0 < 𝑞 < 1, 0 < 𝑧 < 1, but might be negative for other values of parame-
ters. In particular, in (4.5) one of the matrices necessarily has negative matrix elements, as otherwise we would have a
contradiction with (4.6): two nondegenerate stochastic matrices cannot be inverse to each other.
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F IGURE 17 Five types of vertices and corresponding weights. We assume that 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑁. These are the
pictorial representations of the five types of weights in (4.2), (4.3)

The proofs of the above two propositions are by a direct computation. Their equivalent forms
are also contained in [11, 36, 43, 44].
We shall denote the entries of the𝑅-matrix pictorially using vertices. A vertex is the intersection

of an oriented horizontal and vertical line, with a state variable 𝑖 ∈ {0, 1, … ,𝑁} assigned to each
of the connected horizontal and vertical line segments. The 𝑅-matrix entries are identified with
such vertices as shown below:

(4.7)

where the dependence on the spectral parameter† 𝑧 is implicit on the right-hand side. One can
interpret the above figure as the propagation of colored lattice paths through a vertex: each
edge label 𝑖 ⩾ 1 represents a colored path superimposed over that edge, while the case 𝑖 = 0
indicates that no path is present. The incoming paths are those situated at the left and bot-
tom edges of the vertex; those at the right and top are called outgoing. The weight of the ver-
tex, 𝑅𝑧(𝑖, 𝑗; 𝑘,𝓁), vanishes identically unless the total flux of colors through the vertex is pre-
served, that is, unless the ensemble of incoming colors is the same as the ensemble of outgoing
colors:

𝑅𝑧(𝑖, 𝑗; 𝑘,𝓁) = 0, unless 𝑖 = 𝑘, 𝑗 = 𝓁 and/or 𝑖 = 𝓁, 𝑗 = 𝑘. (4.8)

This gives rise to five categories of nonvanishing vertices, as shown in Figure 17.

†We will use both terms spectral parameter and rapidity in this work, but for slightly different purposes. The variable
attached to a lattice line will be termed ‘rapidity’ whereas the argument of an 𝑅-matrix, which is the ratio of the vertical
and horizontal rapidities passing through that vertex, will be termed ‘spectral parameter’.



218 BORODIN et al.

Having set up these vertex notations, the relations of Propositions 4.1 and 4.2 then have simple
graphical interpretations. The Yang–Baxter Equation (4.4) becomes

(4.9)

for all fixed indices 𝑖1, 𝑖2, 𝑖3, 𝑗1, 𝑗2, 𝑗3 ∈ {0, 1, … ,𝑁}; the unitarity relation (4.5) becomes

(4.10)

for all fixed indices 𝑖1, 𝑖2, 𝑗1, 𝑗2 ∈ {0, 1, … ,𝑁}; and the stochasticity relation (4.6) reads

(4.11)

for all fixed indices 𝑖, 𝑗 ∈ {0, 1, … ,𝑁}. We will use these graphical identities frequently throughout
the text.

4.2 Vertex splitting

A basic property of the 𝑅-matrix (4.1) is that when its spectral parameter is set to 1, it reduces
to a permutation matrix. More precisely, analyzing the matrix entries (4.2) and (4.3), we see that
both 𝑅𝑧(𝑗, 𝑖; 𝑗, 𝑖) and 𝑅𝑧(𝑖, 𝑗; 𝑖, 𝑗) vanish at 𝑧 = 1, while all remaining entries assume the value 1 at
𝑧 = 1. From a graphical point of view, this can be understood as a ‘splitting’ of the vertex:

(4.12)

4.3 Reflection symmetry of vertex weights

Another elementary property of the 𝑈𝑞(𝔰𝔩𝑁+1) vertex model is the invariance of its Boltzmann
weights under the combined operation of (i) reflecting the vertex about its SW–NE diagonal, and
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(ii) replacing all colors 𝑖 that appear by their conjugate𝑁 − 𝑖. More precisely, one has the symme-
try

(4.13)

This is immediately verified by consulting the table of Figure 17 of vertices that have nonvanish-
ing weights.

4.4 Color-merging

Let us now discuss an important property of the colored six-vertexmodel withweights of Figure 17
which will be indispensable in our future proofs. We will refer to it as color-merging; it can be
viewed as a refinement of the stochasticity property (4.11).
In what follows, let  = {𝑐, 𝑐 + 1,… } ⊂ {0, 1, … ,𝑁} denote a contiguous subset of colors, where

0 ⩽ 𝑐 ⩽ 𝑁 and the number of elements in  is arbitrary. We denote by ̄ the complementary
set:

̄ = {0, 1, … ,𝑁}∖.
Given such a subset , we define an associated color projection:

[𝑘] =

{
𝑐, 𝑘 ∈ ,
𝑘, 𝑘 ∈ ̄, (4.14)

for all 𝑘 ∈ {0, 1, … ,𝑁}.

Proposition 4.3. We have the following vertex relations, obtained by constraining the value of the
color at one of the outgoing edges to lie in the complement of, while summing the color at the remain-
ing outgoing edge over all values in :

(4.15)

By summing both the outgoing edges over values in the set , one has

(4.16)

For the proof it suffices to note that in each sum in (4.15) there is a single nonzero element in
the left-hand side. Similarly, in (4.16) there are at most two nonzero elements in the left-hand side.
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F IGURE 18 Left panel: a down-right path 𝑃 of length 9, given by the sequence
𝑃 = (−3, 2) → (−2, 2) → (−2, 1) → (−2, 0) → (−1, 0) → (0, 0) → (1, 0) → (1, −1) → (2, −1) → (2, −2). The
anti-diagonals of the lattice are indicated on the picture. Right panel: two down-right paths, 𝑃 (shown in green)
and 𝑄 (shown in red), beginning and ending at the same points, and satisfying 𝑃 ⩾ 𝑄. The region cut out by the
two paths is the down-right domain 𝑃 − 𝑄

In what follows, we use two variants of the notation (4.14). Fix an integer 0 ⩽ 𝑚 ⩽ 𝑁. When
 = {𝑚,𝑚 + 1,… ,𝑁} we define

[𝑘]𝑚 =

{
𝑘, 𝑘 ∈ {0, 1, … ,𝑚 − 1},

𝑚, 𝑘 ∈ {𝑚,𝑚 + 1,… ,𝑁}.
(4.17)

In a similar vein, when  = {0, 1, … ,𝑚} we define

[𝑘]𝑚 =

{
0, 𝑘 ∈ {0, 1, … ,𝑚},

𝑘, 𝑘 ∈ {𝑚 + 1,… ,𝑁}.
(4.18)

4.5 Down-right paths and domains

Definition 4.4 (Down-right paths).A down-right path𝑃 of length𝑀 is a sequence of lattice points
𝑃 = (𝑎1, 𝑏1) → (𝑎2, 𝑏2) → ⋯ → (𝑎𝑀+1, 𝑏𝑀+1), such that for all 1 ⩽ 𝑘 ⩽ 𝑀 one has

(𝑎𝑘+1, 𝑏𝑘+1) = (𝑎𝑘 + 1, 𝑏𝑘), or (𝑎𝑘+1, 𝑏𝑘+1) = (𝑎𝑘, 𝑏𝑘 − 1). (4.19)

In any down-right path, an edge of the form (𝑎𝑘, 𝑏𝑘) → (𝑎𝑘 + 1, 𝑏𝑘) is called horizontal, while
edges of the form (𝑎𝑘, 𝑏𝑘) → (𝑎𝑘, 𝑏𝑘 − 1) are called vertical.
For each coordinate (𝑎𝑘, 𝑏𝑘) of a down-right path, the quantity 𝑎𝑘 + 𝑏𝑘 tells us on which anti-

diagonal of the lattice we are situated; see the left panel of Figure 18. Given two down-right paths

𝑃 = (𝑎1, 𝑏1) → (𝑎2, 𝑏2) → ⋯ → (𝑎𝑀+1, 𝑏𝑀+1),

𝑃̃ = (𝑎̃1, 𝑏̃1) → (𝑎̃2, 𝑏̃2) → ⋯ → (𝑎̃𝑀+1, 𝑏̃𝑀+1)

with the same starting point, (𝑎1, 𝑏1) = (𝑎̃1, 𝑏̃1), we say that 𝑃 ⩾ 𝑃̃ if 𝑎𝑘 + 𝑏𝑘 ⩾ 𝑎̃𝑘 + 𝑏̃𝑘 for all
1 < 𝑘 < 𝑀 + 1; that is, path 𝑃 can never move to an anti-diagonal which is strictly below that
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of path 𝑃̃. Equivalently, 𝑃 and 𝑃̃ are allowed to touch or overlap along edges of the lattice, but
never to cross each other. See the right panel of Figure 18 for an illustration.

Definition 4.5 (Down-right domains).Let𝑀 ⩾ 2 be a positive integer. Fix two points in the lattice
(𝑎, 𝑏) and (𝑐, 𝑑) such that 𝑎 < 𝑐, 𝑏 > 𝑑, and 𝑐 − 𝑎 + 𝑏 − 𝑑 = 𝑀.We denote the set of all down-right
paths beginning at (𝑎, 𝑏) and terminating at (𝑐, 𝑑) by𝔓𝑀{(𝑎, 𝑏) → (𝑐, 𝑑)}; the index ‘𝑀’ is due to
the fact that any such path has length𝑀.
Choose two down-right paths 𝑃,𝑄 ∈ 𝔓𝑀{(𝑎, 𝑏) → (𝑐, 𝑑)} such that 𝑃 ⩾ 𝑄. The corresponding

down-right domain is the region framed by paths 𝑃 and 𝑄, we denote it by 𝑃 − 𝑄; see the right
panel of Figure 18.

Definition 4.6 (Concatenation). Let 𝑃1 ∈ 𝔓𝑀1
{(𝑎, 𝑏) → (𝑐, 𝑑)} and 𝑃2 ∈ 𝔓𝑀2

{(𝑐, 𝑑) → (𝑒, 𝑓)} be
two down-right paths of length𝑀1 and𝑀2, respectively, which share (𝑐, 𝑑) as a common end/start
point.We define a down-right path of length𝑀1 +𝑀2 by concatenating the two paths, and denote
this by 𝑃1 ∪ 𝑃2.

4.6 Partition functions on down-right domains

Given a down-right domain 𝑃 − 𝑄, we now put some decorations on the paths 𝑃 and 𝑄 which
will allow us to view the cut-out region as a partition function in the colored six-vertex model
with weights of Figure 17.

Definition 4.7 (Colored down-right paths). Let 𝑃 be a down-right path of length𝑀. A coloring of
𝑃 is an assignment of a nonnegative integer 𝑖𝑘, 1 ⩽ 𝑘 ⩽ 𝑀, to each of the𝑀 edges traced out by 𝑃.
We denote such a coloring by

[𝑃; (𝑖1, … , 𝑖𝑀)] = (𝑎1, 𝑏1)
𝑖1
�→ (𝑎2, 𝑏2)

𝑖2
�→ ⋯

𝑖𝑀
��→ (𝑎𝑀+1, 𝑏𝑀+1). (4.20)

Definition 4.8 (Rapidity assignments). Let 𝑃 be the down-right path

𝑃 = (𝑎1, 𝑏1) → (𝑎2, 𝑏2) → ⋯ → (𝑎𝑀+1, 𝑏𝑀+1),

and fix another down-right path 𝑄 ∈ 𝔓𝑀{(𝑎1, 𝑏1) → (𝑎𝑀+1, 𝑏𝑀+1)} such that 𝑃 > 𝑄.
For each vertical edge (𝑎𝑖, 𝑏𝑖) → (𝑎𝑖+1, 𝑏𝑖+1) ∈ 𝑄, there is awell-defined row of squares in𝑃 − 𝑄

which lie to the right of this edge (with the same vertical coordinate).We assign that row a complex
rapidity 𝑥𝑖 . Similarly, for each horizontal edge (𝑎𝑗, 𝑏𝑗) → (𝑎𝑗+1, 𝑏𝑗+1) ∈ 𝑄, there is a well-defined
column of squares in 𝑃 − 𝑄 which lie above this edge (with the same horizontal coordinate). We
assign this column a complex rapidity 𝑦𝑗 .
Performing this assignment for all edges in𝑄, every square in 𝑃 − 𝑄 acquires a unique horizon-

tal and vertical rapidity. We call the resulting labelled domain the rapidity assignment of 𝑃 − 𝑄;
see the right panel of Figure 19 for an illustration.

Definition4.9 (Partition functions).Let𝑃 and𝑄 be two down-right paths of length𝑀which form
a down-right domain 𝑃 − 𝑄. We place vertices in the centers of the elementary squares of the lat-
tice on which 𝑃 and 𝑄 are defined, thus forming a subset of the dual square lattice (see the right
panel of Figure 19). Assume that 𝑃 and 𝑄 carry the colorings [𝑃; (𝑖1, … , 𝑖𝑀)] and [𝑄; (𝑗1, … , 𝑗𝑀)].
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F IGURE 19 A down-right domain 𝑃 − 𝑄 (on the left), and its conversion to a collection of vertices (on the
right) with the rapidity assignment described in Definition 4.8. The spectral parameter at any given vertex in
𝑃 − 𝑄 is the ratio 𝑦𝑗∕𝑥𝑖 of the rapidity variables passing through it

The domain 𝑃 − 𝑄 (viewed from the dual lattice perspective) then bears a color 𝑖𝑘 at its 𝑘th outgo-
ing edge and a color 𝑗𝑘 at its 𝑘th incoming edge, for all 1 ⩽ 𝑘 ⩽ 𝑀, and has a well-defined rapidity
assignment for each horizontal and vertical line; it can thus be viewed as a partition function in
the colored six-vertexmodel by choosing in the weights of Figure 17, 𝑧 = 𝑦𝑖∕𝑥𝑗 for the intersection
of the lines with rapidities 𝑥𝑗 and 𝑦𝑖 . We denote this partition function by

𝑍𝑃∕𝑄

[
(𝑥), (𝑦); (𝑖1, … , 𝑖𝑀)|||(𝑗1, … , 𝑗𝑀)

] ≡ 𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
. (4.21)

4.7 Probabilistic interpretation

In view of the stochasticity (4.11) of the weights in Figure 17, in the case when 𝑞 and rapidities are
so that all the weights are positive, we can interpret 𝑍𝑃∕𝑄[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] as the probability of
seeing the color sequence (𝑖1, … , 𝑖𝑀) as onewalks along the down-right path𝑃, given that the color
sequence (𝑗1, … , 𝑗𝑀) was previously observed by performing a similar walk along 𝑄. We have∑

(𝑖1,…,𝑖𝑀)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
= 1, (4.22)

where the sum is taken over all vectors (𝑖1, … , 𝑖𝑀) ∈ (ℤ⩾0)
𝑀 . On the other hand, it follows from the

local conservation property (4.8) that 𝑍𝑃∕𝑄[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] is zero unless the outgoing color
sequence (𝑖1, … , 𝑖𝑀) is a permutation of the incoming sequence (𝑗1, … , 𝑗𝑀). We can therefore sim-
plify (4.22) as follows: ∑

(𝑖1,…,𝑖𝑀)∈𝔖(𝑗1,…,𝑗𝑀)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
= 1,

where the summation is over all elements in the set𝔖(𝑗1, … , 𝑗𝑀), defined as

𝔖(𝑗1, … , 𝑗𝑀) =
{
(𝑖1, … , 𝑖𝑀) ∈ (ℤ⩾0)

𝑀 ∶ ∃ 𝜎 ∈ 𝔖𝑀 such that 𝜎(𝑖1, … , 𝑖𝑀) = (𝑗1, … , 𝑗𝑀)
}
. (4.23)



SHIFT-INVARIANCE FOR VERTEX MODELS AND POLYMERS 223

4.8 Colored height functions

The key random variables in the setting of the colored six-vertex model with weights of Figure 17
are the colored height functions:

Definition 4.10 (Colored height functions). Let [𝑃; (𝑖1, … , 𝑖𝑀)] be a colored down-right path

[𝑃; (𝑖1, … , 𝑖𝑀)] = (𝑎1, 𝑏1)
𝑖1
�→ (𝑎2, 𝑏2)

𝑖2
�→ ⋯

𝑖𝑀
��→ (𝑎𝑀+1, 𝑏𝑀+1).

Fix two integers 1 ⩽ 𝑘 ⩽ 𝑀 and 𝑚 ⩾ 0. We define the height function ⩾𝑚(𝑃; 𝑘) of level 𝑚, situ-
ated at the lattice point (𝑎𝑘, 𝑏𝑘) ∈ 𝑃, as follows:

⩾𝑚(𝑃; 𝑘) = |{𝓁 ⩾ 𝑘 ∶ 𝑖𝓁 ⩾ 𝑚}|. (4.24)

In other words,⩾𝑚(𝑃; 𝑘) counts the number of colors 𝑖𝓁 with value𝑚 or greater assigned to the
edges (𝑎𝓁 , 𝑏𝓁) → (𝑎𝓁+1, 𝑏𝓁+1) ∈ 𝑃, where 𝓁 ranges over all values 𝑘 ⩽ 𝓁 ⩽ 𝑀.

Given an initial, colored down-right path [𝑄; (𝑗1, … , 𝑗𝑀)] and another down-right path 𝑃 > 𝑄,
wewill be interested in the probability that⩾𝑚(𝑃; 𝑘) = ℎ, where ℎ ⩾ 0 is some fixed nonnegative
integer. This is computed as

ℙ
[⩾𝑚(𝑃; 𝑘) = ℎ

]
=

∑
(𝑖1,…,𝑖𝑀)∈𝔖(𝑗1,…,𝑗𝑀)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
𝟏
(⩾𝑚(𝑃; 𝑘) = ℎ

)
. (4.25)

More generally, one can consider multi-point versions of such probabilities:

ℙ
[⩾𝑚1(𝑃; 𝑘1) = ℎ1, … ,⩾𝑚𝑝(𝑃; 𝑘𝑝) = ℎ𝑝

]
=

∑
(𝑖1,…,𝑖𝑀)∈𝔖(𝑗1,…,𝑗𝑀)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

] 𝑝∏
𝓁=1

𝟏
(⩾𝑚𝓁 (𝑃; 𝑘𝓁) = ℎ𝓁

)
. (4.26)

4.9 Color-merging of partition functions

The result of Proposition 4.3 naturally extends to partition functions on down-right domains. Con-
sider the 𝑈𝑞(𝔰𝔩𝑁+1) vertex model on a domain 𝑃 − 𝑄, where 𝑃 and 𝑄 are down-right paths of
length𝑀. Fix a subset ⊂ {1, … ,𝑀}; this subsetwill indicate the positions along the path𝑃where
its associated colors assume some definite value. Write ̄ = {1, … ,𝑀}∖ for the complementary
set. Let  = {𝑐, 𝑐 + 1,… } ⊂ {0, 1, … ,𝑁} be a contiguous subset of the colors, and ̄ = {0, 1, … ,𝑁}∖
its complement, as before.

Proposition 4.11. For all 𝛼 ∈ , let 𝑖𝛼 ∈ ̄. One then has the equality∑
(𝑖𝛼∈̄)∈

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
= 𝑍𝑃∕𝑄

[
𝑎1, … , 𝑎𝑀

|||[𝑗1] , … , [𝑗𝑀]
]
, (4.27)
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where (on the left-hand side) each color 𝑖𝛼 such that 𝛼 ∈ ̄ is summed over all values in , andwhere
(on the right-hand side) we have defined

𝑎𝑝 =

{
𝑖𝑝, 𝑝 ∈ ,
𝑐, 𝑝 ∈ ̄.

(4.28)

Proof. Straightforward induction on the number of vertices in 𝑃 − 𝑄. □

Remark 4.12. When  is chosen to be equal to the empty set, we have ̄ = {1, … ,𝑀} and (4.27)
becomes

∑
(𝑖1,…,𝑖𝑀)∈

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
= 𝑍𝑃∕𝑄

[
𝑐, … , 𝑐|||[𝑗1] , … , [𝑗𝑀]

]
=

𝑀∏
𝛼=1

𝟏𝑗𝛼∈ . (4.29)

If, in addition,  = {0, 1, … ,𝑁}, this reproduces the stochasticity result (4.22). In this way, one
can view (4.27) as a generalization of the sum-to-unity property (4.22), where we restrict which
outgoing indices are summed (via the set ̄) and the colors that the sum is taken over (via the set
).

4.10 Shift theorem

The Shift theorem is about the equality of two different partition functions in the colored six-vertex
model. These partition functions are built from the following data:

∙ a nonnegative integer 𝑚 ⩽ 𝑁, which labels a distinguished color in the vertex model with
weights of Figure 17;

∙ a nonnegative integer ℎ, used to specify the value of certain height functions that appear;
∙ two down-right paths 𝑃 and 𝑄 of length 𝑀 (with the same beginning/ending points)
such that 𝑃 > 𝑄, used to specify the down-right domain on which the partition functions
live;

∙ two integers 1 ⩽ 𝑘,𝓁 ⩽ 𝑀 such that the 𝑘th step of path 𝑃 and the 𝓁th step of𝑄 are both down-
ward†;

∙ two sets ⊂ {1, … , 𝑘 − 1} and ⊂ {𝑘 + 1,… ,𝑀}, used to label positions along the path𝑃where
the outgoing colors assume definite values;

∙ their complements, denoted by ̄ = {1, … , 𝑘 − 1}∖ and ̄ = {𝑘 + 1,… ,𝑀}∖;
∙ two vectors (𝑖1, … , 𝑖𝑀) and (𝑗1, … , 𝑗𝑀) which specify the outgoing and incoming colors of the
down-right domain, respectively.

The outgoing and incoming colors, (𝑖1, … , 𝑖𝑀) and (𝑗1, … , 𝑗𝑀), require further specification. In
both partition functions that we consider, we will assume that the outgoing colors satisfy

𝑖𝛼

⎧⎪⎨⎪⎩
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ ,

s
∈ {𝑚,𝑚 + 1,… ,𝑁}, 𝛼 ∈ ̄,

𝑖𝛽

⎧⎪⎨⎪⎩
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, 𝛽 ∈ ,
s
∈ {0, 1, … ,𝑚}, 𝛽 ∈ ̄,

(4.30)

†We could also consider the scenario where the 𝑘th step of path 𝑃 and the 𝓁th step of 𝑄 are both rightward, as we discuss
in Remark 4.14.
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F IGURE 20 Left panel: the partition function Φ𝑃∕𝑄. A vector of colors (𝑗1, … , 𝑗𝑀), satisfying the constraints
(4.31), enter the lattice along the edges traced out by 𝑄. Colors (𝑖1, … , 𝑖𝑀), satisfying the constraints (4.30), exit the
lattice along the edges traced out by 𝑃; some of these colors, namely (𝑖𝛼∈) and (𝑖𝛽∈), assume fixed values, while
the rest are summed over. The shaded part of the path 𝑃 indicates the extra height function constraint that we
impose; there must be exactly ℎ colors of value𝑚 or greater passing through these edges. Right panel: the
partition function Ψ𝑃∕𝑄. The sole difference is that now the shaded part of 𝑃 is extended by one additional vertical
step, and we require that there are exactly ℎ colors of value𝑚 + 1 or greater passing through these edges

with the remaining color 𝑖𝑘 satisfying 𝑖𝑘
s
∈ {0, 1, … ,𝑁}, where we write ‘f’ or ‘s’ over the ‘∈’ sym-

bol to keep track of which indices will be kept fixed, and which ones will be summed over the
corresponding set, respectively. In a similar vein, in both partition functions to be considered we
assume that the incoming colors are chosen such that

𝑗𝛼

⎧⎪⎪⎨⎪⎪⎩
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, 𝛼 ∈ {1, … ,𝓁 − 1},
= 𝑚, 𝛼 = 𝓁,
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ {𝓁 + 1,… ,𝑀}.

(4.31)

We now introduce our two partition functions.† They are defined formally below; for a pictorial
representation; see Figure 20. The first partition function is denoted Φ𝑃∕𝑄; it depends on a vector
of incoming colors (𝑗1, … , 𝑗𝑀) which satisfy the constraints (4.31), two sets ⊂ {1, … , 𝑘 − 1} and
 ⊂ {𝑘 + 1,… ,𝑀}which label positions along 𝑃 where outgoing colors are fixed, and two vectors
(𝑖𝛼∈) and (𝑖𝛽∈) satisfying (4.30) which specify the colors at those locations. We define

Φ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

=
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
𝟏
(⩾𝑚(𝑃; 𝑘 + 1) = ℎ

)
, (4.32)

where 𝑖𝑘 is summed over all values {0, 1, … ,𝑁}, while (𝑖𝛼∈̄) and (𝑖𝛽∈̄) are summed according
to the constraints (4.30). In the summand, 𝑍𝑃∕𝑄 denotes the partition function of Definition 4.10,
while⩾𝑚(𝑃; 𝑘 + 1) is the level𝑚 height function situated at the (𝑘 + 1)th lattice point of 𝑃.

† To save space when writing these functions, we will not write the explicit dependence on 𝑚, ℎ, 𝑘, or 𝓁, treating these
integers as fixed in all quantities.
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The second partition function, denoted Ψ𝑃∕𝑄, is defined in a very similar manner. In fact, it
differs from Φ𝑃∕𝑄 only in the way that we condition on the value of the height function in the
summand. We define

Ψ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

=
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝑍𝑃∕𝑄

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
𝟏
(⩾𝑚+1(𝑃; 𝑘) = ℎ

)
, (4.33)

where 𝑖𝑘 is summed over all values {0, 1, … ,𝑁}, while (𝑖𝛼∈̄) and (𝑖𝛽∈̄) are once again summed
according to the constraints (4.30). This time, in contrast, ⩾𝑚+1(𝑃; 𝑘) is the level 𝑚 + 1 height
function situated at the 𝑘th lattice point of 𝑃 (both the position and the level were shifted).
Both quantities Φ𝑃∕𝑄 and Ψ𝑃∕𝑄 depend implicitly on a collection of horizontal (𝑥) and vertical

rapidities (𝑦), and we will usually suppress this dependence. Two of these parameters, however,
will play a distinguished role in the sequel. Since (by assumption) the 𝑘th step of path 𝑃 and 𝓁th
step of path 𝑄 are both downward, it follows that Φ𝑃∕𝑄 and Ψ𝑃∕𝑄 both depend on the horizontal
rapidities 𝑥◦ and 𝑥∙, where 𝑥◦ is the rapidity that passes transversally through the 𝑘th step of
𝑃, and 𝑥∙ is the rapidity passing transversally through the 𝓁th step of 𝑄. The rows where these
variables appear are indicated in Figure 20.

Theorem4.13. Let𝑃 and𝑄 be two down-right paths of length𝑀, which frame a down-right domain
𝑃 − 𝑄. Fix two integers 1 ⩽ 𝑘,𝓁 ⩽ 𝑀. Then for all sets  ⊂ {1, … , 𝑘 − 1} and  ⊂ {𝑘 + 1,… ,𝑀},
fixed outgoing colors (𝑖𝛼∈) and (𝑖𝛽∈) satisfying (4.30), and fixed incoming colors (𝑗1, … , 𝑗𝑀) satis-
fying (4.31), we have

Φ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)
= Ψ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)|||𝑥◦↔𝑥∙

(4.34)

where we have permuted the two rapidity variables 𝑥◦ and 𝑥∙ on the right-hand side of the equation.

Remark 4.14. There is a direct analogue of Theorem 4.13 which applies in the case where the 𝑘th
step of 𝑃 and the 𝓁th step of 𝑄 are both rightward (instead of downward). In that situation, the
rapidity variables that get switched are no longer associated to horizontal lattice lines, but rather
vertical lattice lines. In particular, letting 𝑦◦ be the rapidity that passes transversally through the
𝑘th step of 𝑃 and 𝑦∙ the rapidity that passes transversally through the 𝓁th step of 𝑄, we have

Φ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)
= Ψ𝑃∕𝑄

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)|||𝑦◦↔𝑦∙

, (4.35)

where Φ𝑃∕𝑄 and Ψ𝑃∕𝑄 are still given by (4.32) and (4.33), respectively.
The statement (4.35) about rightward steps is an easy corollary of the statement (4.34) about

downward steps. Indeed, one may easily check that the statement (4.35) transforms under the
reflection symmetry (4.13) to a statement of the form (4.34). Therefore, in what follows, we will
focus on proving the version of Theorem 4.13 that applies for downward steps; we may do so
without any loss of generality.

Remark 4.15. Theorem 4.13 is our ‘Shift theorem’, referring to the shift in the position where we
measure the height function (from the (𝑘 + 1)th to the 𝑘th position along 𝑃) combined with the
shift in its level (from𝑚 to𝑚 + 1), as we compare Φ𝑃∕𝑄 and Ψ𝑃∕𝑄.
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The small difference between (4.32) and (4.33) appears innocuous at first glance, and it seems
as though it could be understood via some local transformation mapping Φ𝑃∕𝑄 to Ψ𝑃∕𝑄. In fact
this turns out not to be the case, and that the match of Theorem 4.13 is a fundamentally nonlocal
phenomenon. One way of seeing this is to note the switch of rapidities 𝑥◦ ↔ 𝑥∙ that accompanies
the statement, since these variables can in practice belong to two rows which are widely separated
in the lattice.

4.11 Shift-invariance of height function joint distributions

Before moving on to the proof of Theorem 4.13, we examine one important corollary of it which
will be essential in Section 6 and the shift-invariance results for polymers in Section 7. Up to a
slight change in notations, this is the same result as Theorem 1.2.

Theorem 4.16. Consider the stochastic six-vertex model with inhomogeneous weights of Figure 17
in the top-right quadrant, choose an index 𝜄 ⩾ 1, color cutoff levels𝑚1 … ,𝑚𝑛 ⩾ 1, and a collection of
points {𝑗}

𝑛
𝑗=1

. Set

𝑚′
𝑗 =

{
𝑚𝑗, 𝑗 ≠ 𝜄,

𝑚𝜄 + 1, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄,

𝜄 + (0, 1), 𝑗 = 𝜄.

Assume that

0 ⩽ 𝑚1 ⩽ 𝑚2 ⩽ ⋯ ⩽ 𝑚𝑛, 0 ⩽ 𝑚′
1 ⩽ 𝑚′

2 ⩽ ⋯ ⩽ 𝑚′
𝑛,

and

1, … ,𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, … ,𝑛,  ′
1 , … , ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, … , ′
𝑛,

where we recall that for two points = (𝑎 , 𝑏 ),  = (𝑎 , 𝑏 ) in the quadrant, we write ⪰  if
𝑎 ⩽ 𝑎 and 𝑏 ⩾ 𝑏 . Then the distribution of the vector of colored height functions(⩾𝑚1(1), ⩾𝑚2(2), … ,⩾𝑚𝑛(𝑛)

)
(4.36)

coincides with the distribution of a similar vector with shifted 𝜄th point and cutoff(⩾𝑚′
1( ′

1 ), ⩾𝑚′
2( ′

2 ), … ,⩾𝑚′
𝑛 ( ′

𝑛)
)
, (4.37)

under the condition that in the vertexmodel used to define the second vector one swaps the row rapidi-
ties 𝑥𝑚𝜄

and 𝑥𝑝, where 𝑝 is the vertical coordinate of ′
𝜄 .

Proof. Throughout the proof, assume that 𝑃 and 𝑄 are down-right paths that both begin at the
lattice point (0, 𝑁) and end at (𝑀 − 𝑁, 0), for some𝑀 ⩾ 𝑁.
We examine the constraints imposed on colored height functions which are measured at each

of the𝑀 edges of the down-right path 𝑃 in Theorem 4.13. In both quantities Φ𝑃∕𝑄 and Ψ𝑃∕𝑄, by
virtue of the conditions (4.30) that we impose on the colors exiting through 𝑃, we see that all of
the height functions

⩾𝑎(𝑃; 1), … ,⩾𝑎(𝑃; 𝑘), 0 ⩽ 𝑎 ⩽ 𝑚,

and

⩾𝑏(𝑃; 𝑘 + 1), … ,⩾𝑏(𝑃;𝑀), 𝑚 + 1 ⩽ 𝑏 ⩽ 𝑁,
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have their values completely specified. Further, they assume identical values in both Φ𝑃∕𝑄 and
Ψ𝑃∕𝑄. InΦ𝑃∕𝑄 we additionally condition on the value of⩾𝑚(𝑃; 𝑘 + 1) (via the indicator function
present in (4.32)), while in Ψ𝑃∕𝑄 we additionally condition on the value of ⩾𝑚+1(𝑃; 𝑘) (via the
indicator function present in (4.33)).
Now choosing the lower (colored) down-right path 𝑄 to be of the form

(0, 𝑁)
𝑁
��→ (0,𝑁 − 1)

𝑁−1
����→ ⋯

1
�→ (0, 0)

0
�→ (1, 0)

0
�→ ⋯

0
�→ (𝑀 −𝑁, 0),

(so that 𝑄 frames a truncated version of the top-right quadrant) the match (4.34) from Theo-
rem 4.13 implies that the distribution of the vector

(⩾𝑎1(𝑃; 1), … ,⩾𝑎𝑘 (𝑃; 𝑘),⩾𝑚(𝑃; 𝑘 + 1),⩾𝑎𝑘+1(𝑃; 𝑘 + 1), … ,⩾𝑎𝑀(𝑃;𝑀)) (4.38)

coincides with the distribution of the vector

(⩾𝑎1(𝑃; 1), … ,⩾𝑎𝑘 (𝑃; 𝑘),⩾𝑚+1(𝑃; 𝑘),⩾𝑎𝑘+1(𝑃; 𝑘 + 1), … ,⩾𝑎𝑀(𝑃;𝑀)), (4.39)

for any 0 ⩽ 𝑎1 ⩽ ⋯ ⩽ 𝑎𝑀 and𝑚 such that 𝑎𝑘 ⩽ 𝑚 < 𝑎𝑘+1, where in the vertex model used to pro-
duce the vector (4.39) we have made the switch of rapidities 𝑥◦ ↔ 𝑥∙.
To conclude the proof, we wish to upgrade the distribution match of (4.38) and (4.39) to a more

general collection of points {𝑗}
𝑛
𝑗=1

, which do not all necessarily lie on a down-right path. By
assumption, we know that for all 𝑗 ⩽ 𝜄 − 1we have𝑗 ⪰ 𝜄 and for all 𝑗 ⩾ 𝜄 + 1we have𝜄 ⪰ 𝑗 .
Furthermore:

∙ all the points1, … ,𝜄−1 must have a vertical coordinate strictly greater than the vertical coor-
dinate of𝜄, for if not, the assumption ′

1 , … , ′
𝜄−1 ⪰  ′

𝜄 would be violated;
∙ since 𝑚′

𝜄 ⩽ 𝑚′
𝜄+1, we know that 𝑚𝜄 < 𝑚𝜄+1 ⩽ 𝑚𝜄+2 ⩽ ⋯ ⩽ 𝑚𝑛. Then without loss of generality,

each of 𝜄+1, … ,𝑛 should have vertical coordinate 𝑚𝜄 + 1 or greater, as any point 𝑗 which
violates this condition leads to the deterministic result⩾𝑚𝑗 (𝑗) = 0.

The collection of points {𝑗}
𝑛
𝑗=1

can then be illustrated by the following picture:
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We draw a down-right path 𝑃 (shown above) which can be realized as the concatenation of three
shorter paths: 𝑃 = 𝑃1 ∪ {↓} ∪ 𝑃2. Here ↓ is the path of length 1 which passes through both points𝜄 and ′

𝜄 ; 𝑃1 is any down-right path which begins on the vertical axis of the quadrant and ends
at  ′

𝜄 while passing under each of the points 1, … ,𝜄−1, and 𝑃2 is any down-right path which
begins at 𝜄 and ends on the horizontal axis of the quadrant, while passing under each of the
points 𝜄+1, … ,𝑛 and not attaining a vertical coordinate less than 𝑚𝜄 until the path has passed
to the right of all of these points. Assume, without loss of generality, that 𝑃1 has length 𝑘 − 1 and
𝑃 itself has length𝑀.
Now (by the color-conservation property of the underlying vertexmodel) it is easy to see that the

distribution of⩾𝑚𝑗 (𝑗), 1 ⩽ 𝑗 ⩽ 𝜄 − 1 is completely determined by the distribution of⩾𝑎𝑗 (𝑃; 𝑗),
𝑎𝑗 ⩽ 𝑚𝜄, 1 ⩽ 𝑗 ⩽ 𝑘 (which lie along 𝑃1), while the distribution of⩾𝑚𝑗 (𝑗), 𝜄 + 1 ⩽ 𝑗 ⩽ 𝑛 is com-
pletely determined by the distribution of⩾𝑎𝑗 (𝑃; 𝑗), 𝑎𝑗 > 𝑚𝜄, 𝑘 + 1 ⩽ 𝑗 ⩽ 𝑀 (which lie along 𝑃2).
Furthermore, once one conditions in this way on the values of the height functions along 𝑃1 and
𝑃2, the distribution of the height functions⩾𝑚𝑗 (𝑗), 1 ⩽ 𝑗 ⩽ 𝜄 − 1 and⩾𝑚𝑗 (𝑗), 𝜄 + 1 ⩽ 𝑗 ⩽ 𝑛
is unaffected by switching the rapidities 𝑥𝑚𝜄

and 𝑥𝑝. It follows immediately that the distribution
match of (4.38) and (4.39) implies the distribution match of (4.36) and (4.37). □

5 PROOF OF THE SHIFT THEOREM 4.13

Our proof of the Shift theorem is long, and so we divide it into three parts.

5.1 Part one: Proof for two-row partition functions

In this subsection we prove Theorem 4.13 in the case of down-right domains that consist of two
rows. The result remains highly nontrivial even at this simplified level; in fact, the proof of the
two-row case is essentially the ‘kernel’ of the proof for generic down-right domains.
As previously, fix an integer𝑀 and two other integers 𝑘, 𝓁 such that 1 ⩽ 𝑘,𝓁 ⩽ 𝑀. Introduce

two subsets ⊂ {1, … , 𝑘 − 1} and  ⊂ {𝑘 + 1,… ,𝑀}. Our two-row partition functions are inher-
ited from the previous definitions. We write

(5.1)

where (𝑗1, … , 𝑗𝑀) is a fixed vector of colors satisfying (4.31), and the outgoing colors (𝑖1, … , 𝑖𝑀) are
either summed or fixed, as specified by (4.30). We also require that the number of colors of value
𝑚 or greater passing through the shaded edges is equal to ℎ.
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Similarly, we write

(5.2)

where (𝑗1, … , 𝑗𝑀) is a fixed vector of colors satisfying (4.31), and the outgoing colors (𝑖1, … , 𝑖𝑀) are
either summed or fixed, as specified by (4.30). This time we require that the number of colors of
value𝑚 + 1 or greater passing through the shaded edges is equal to ℎ.

Theorem 5.1. There holds

Φtwo−row

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

= Ψtwo−row

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)|||𝑥1↔𝑥𝓁

.

Proof. Let us consider the outgoing colors (𝑖𝑘+1, … , 𝑖𝑀) (in both partition functions). Color
conservation stipulates that these colors can only assume values in the set {𝑚} ∪ {𝑗𝓁+1, … , 𝑗𝑀}.
Given the constraints (4.31) on (𝑗𝓁+1, … , 𝑗𝑀), it follows that (𝑖𝑘+1, … , 𝑖𝑀) can only assume values
in {0, 1, … ,𝑚}. Therefore, both Φtwo-row and Ψtwo-row vanish identically unless  = ∅; we will
assume this throughout the rest of the proof.
Now given that  = ∅ we have ̄ = {𝑘 + 1,… ,𝑀}, and consulting (4.30), the outgoing colors

(𝑖𝑘+1, … , 𝑖𝑀) are all summedover values in {0, 1, … ,𝑚}. Of these colors, only color𝑚 can contribute
to the height function ⩾𝑚(𝑃; 𝑘 + 1) in Φtwo−row , while none of these colors contribute to the
height function⩾𝑚+1(𝑃; 𝑘) inΨtwo−row . It follows that both quantities vanish identically unless
ℎ = 1 or ℎ = 0; we now focus on these cases separately.
The caseℎ = 1.We beginwithΦtwo-row , assuming that⩾𝑚(𝑃; 𝑘 + 1) = 1.With the height func-

tion thus fixed, we can more precisely specify the values of the outgoing colors:

𝑖𝛼

⎧⎪⎨⎪⎩
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ ,

s
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, 𝛼 ∈ ̄,

𝑖𝛽
s
∈ {0, 1, … ,𝑚}, 𝛽 ∈ {𝑘 + 1,… ,𝑀}, (5.3)

and 𝑖𝑘
s
∈ {0, 1, … ,𝑚 − 1} ∪ {𝑚 + 1,𝑚 + 2,… ,𝑁}. Several simplifications of Φtwo-row then ensue.

Noting the possible values of the indices (5.3), the color 𝑚 can only exit the partition function
(5.1) via one of its shaded edges. This leads to the freezing of a portion of the partition function
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(5.1), as shown below:

In all the vertices of the frozen (gray) area the edges of color𝑚 are necessarily horizontal. Comput-
ing the weight of the frozen portion (it is simply a product of bottommiddle weights in Figure 17,
since𝑚 > 𝑗𝛼 for all𝛼 ∈ {𝓁 + 1,… , 𝑘 + 1}), (5.1) factorizes into two disjoint one-row partition func-
tions:

(5.4)
where the indices (𝑖1, … , 𝑖𝑀) are specified by (5.3). Let us refer to these one-row partition functions

as the 𝑥1 piece and the 𝑥𝓁 piece. Given that 𝑖𝑘+1, … , 𝑖𝑀
s
∈ {0, 1, … ,𝑚}, we can invoke Equation

(4.29) with  = {0, 1, … ,𝑚} to conclude that the 𝑥𝓁 piece is equal to 1, irrespective of the values

of 𝑗𝑘+2, … , 𝑗𝑀
f
∈ {0, 1, … ,𝑚 − 1}. Considering the outgoing indices 𝑖1, … , 𝑖𝑘 of the 𝑥1 piece we see

that they satisfy the necessary criteria to invoke Proposition 4.11 with  = {𝑚 + 1,𝑚 + 2,… ,𝑁}.
We thus have, after performing everywhere the color relabeling𝑚 + 1 → 𝑚,

(5.5)

where we have replaced each of the incoming indices 𝑗1, … , 𝑗𝓁−1
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} by𝑚 and

have defined

𝑝𝛼 =

{
𝑖𝛼, 𝛼 ∈ ,
𝑚, 𝛼 ∉ ̄,

and 𝑝𝑘
s
∈ {0, 1, … ,𝑚}. (5.6)
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Examining the right-hand side of (5.5), by color-conservation arguments we see that it vanishes
identically unless 𝑝1 = ⋯ = 𝑝𝓁−2 = 𝑚 (equivalently, 1, … ,𝓁 − 2 ∈ ̄). Provided that these crite-
ria are met, we have

(5.7)
Combining all these results in (5.4), we have shown that

(5.8)

Now let us compare this against Ψtwo−row , assuming that ⩾𝑚+1(𝑃; 𝑘) = 1. This leads to the
following specification of the outgoing colors:

𝑖𝛼

⎧⎪⎨⎪⎩
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ ,
s
∈ {𝑚,𝑚 + 1,… ,𝑁}, 𝛼 ∈ ̄,

𝑖𝛽
s
∈ {0, 1, … ,𝑚}, 𝛽 ∈ {𝑘 + 1,… ,𝑀},

and 𝑖𝑘
s
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} (note that, in particular, we cannot allow 𝑖𝑘

s
∈ {0, 1, … ,𝑚}, since for

such values of 𝑖𝑘 the height function constraint ⩾𝑚+1(𝑃; 𝑘) = 1 is violated). We observe that
the outgoing indices 𝑖1, … , 𝑖𝑀 satisfy the necessary criteria to invoke Proposition 4.11 with  =
{𝑚 + 1,𝑚 + 2,… ,𝑁}, and we thus have

(5.9)

where we have replaced each of the incoming indices 𝑗1, … , 𝑗𝓁−1
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} by𝑚 + 1

and have defined

𝑟𝛼

{
= 𝑖𝛼, 𝛼 ∈ ,
s
∈ {𝑚,𝑚 + 1}, 𝛼 ∉ ̄.

(5.10)
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By color-conservation arguments, we see that (5.9) vanishes unless 𝑟1 = ⋯ = 𝑟𝓁−2 = 𝑚 + 1
(which stipulates that 1, … ,𝓁 − 2 ∈ ̄). After performing this replacement, 𝓁 − 1 of the outgoing
edges have already been assigned the value𝑚 + 1; on the other hand, exactly 𝓁 − 1 of the incom-
ing edges assume the value 𝑚 + 1. It follows that none of the indices 𝑟𝓁−1, … , 𝑟𝑘−1 can take the
value 𝑚 + 1 (this would violate color conservation). Taking into account the preceding require-
ments, the 𝑥1-dependent row of (5.9) freezes, as shown below:

(5.11)

where the indices 𝑝𝓁−1, … , 𝑝𝑘−1 have the same definition as in (5.6). The gray area splits into
the left part where both horizontal and vertical edges are of color 𝑚 + 1 and right part where
horizontal edges are of color 𝑚 + 1. The weight of the frozen row can be easily computed (it is
a product of top left and bottom middle weights in Figure 17, since 𝑚 + 1 > 𝑝𝛼 for all 𝛼 ∈ {𝓁 −
1,… , 𝑘 − 1}), and we thus obtain the equation

(5.12)

We conclude by dividing the remaining one-row partition function into two segments:

(5.13)

Now since the indices 𝑖𝑘+1, … , 𝑖𝑀 are summed over all values {0, 1, … ,𝑚}, we can use (4.29) with
 = {0, 1, … ,𝑚} to conclude that the right segment is equal to 1 irrespective of the values of 𝑝𝑘 and
𝑗𝑘+2, … , 𝑗𝑀 . We have thus shown that

(5.14)
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where 𝑝𝓁−1, … , 𝑝𝑘 are given by (5.6). Comparing (5.8) and (5.14), we see that they are indeed equal
up the exchange 𝑥1 ↔ 𝑥𝓁 .
The case ℎ = 0. We move on to studyΦtwo-row of (5.1), assuming that⩾𝑚(𝑃; 𝑘 + 1) = 0. Fixing

the height function to this value leads to the following specification of the outgoing colors:

𝑖𝛼

⎧⎪⎨⎪⎩
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ ,
s
∈ {𝑚,𝑚 + 1,… ,𝑁}, 𝛼 ∈ ̄,

𝑖𝛽
s
∈ {0, 1, … ,𝑚 − 1}, 𝛽 ∈ {𝑘 + 1,… ,𝑀}, (5.15)

and 𝑖𝑘
s
∈ {0, 1, … ,𝑁}. (Note that we have used the fact that ⩾𝑚(𝑃; 𝑘 + 1) = 0 to eliminate the

possibility that 𝑖𝛽 = 𝑚 for 𝛽 ∈ {𝑘 + 1,… ,𝑀}.)We begin by subdividing the bottom rowofΦtwo−row

as follows:

The rightmost segment of this expression has outgoing colors 𝑖𝑘+1, … , 𝑖𝑀
s
∈ {0, 1, … ,𝑚 − 1}; we

can thus employ (4.29) with  = {0, 1, … ,𝑚 − 1} to show that it is equal to 1 regardless of the

values of the incoming colors 𝑟𝑘+1, 𝑗𝑘+2, … , 𝑗𝑀
f
∈ {0, 1, … ,𝑚 − 1}. Deleting this segment, we are

led to the equation

where we note that the outgoing colors 𝑖1, … , 𝑖𝑘 and 𝑟𝑘+1
s
∈ {0, 1, … ,𝑚 − 1} allow us to invoke

Proposition 4.11 with  = {𝑚,𝑚 + 1,… ,𝑁}. We obtain

(5.16)
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where we have replaced each of the incoming indices 𝑗1, … , 𝑗𝓁−1
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} by 𝑚,

and have defined 𝑝1, … , 𝑝𝑘 in the same way as in (5.6). Examining the right-hand side of (5.16),
by color-conservation arguments we see that it vanishes identically unless 𝑝1 = ⋯ = 𝑝𝓁−2 = 𝑚
(equivalently, 1, … ,𝓁 − 2 ∈ ̄). Provided that these criteria are met, we have

At this stage, we observe that 𝑝𝑘
s
∈ {0, 1, … ,𝑚}, while 𝑟𝑘+1

s
∈ {0, 1, … ,𝑚 − 1}. We will replace 𝑟𝑘+1

by a new summation index 𝑝𝑘+1
s
∈ {0, 1, … ,𝑚}, at the expense of subtracting away the 𝑝𝑘+1 = 𝑚

term that was not present before:

(5.17)

where the bottom row of the subtracted term is frozen (it gives rise to a product of bottommiddle

weights in Figure 17, since𝑚 > 𝑗𝛼 for all 𝛼 ∈ {𝓁 + 1,… , 𝑘 + 1}). Since both𝑝𝑘, 𝑝𝑘+1
s
∈ {0, 1, … ,𝑚},

the first term on the right-hand side of (5.17) is symmetric under the interchange 𝑥1 ↔ 𝑥𝓁 ,† and

† The symmetry in 𝑥1, 𝑥𝓁 follows from a standard idea in integrable lattice models, namely, the Yang–Baxter Equation
(4.9) applied to rows of vertices:

(5.18)

where on both sides of the equation we take 𝑝𝑘, 𝑝𝑘+1
s
∈ {0, 1, … ,𝑚}. The diagonally placed vertices in (5.18) can both be

dropped from the equation; on the left-hand side this is possible because this vertex is frozen to the top left type in Figure 17,
while on the right-hand side this is possible by invoking the stochasticity property (4.11). After dropping the diagonally
placed vertices, the claimed symmetry in 𝑥1, 𝑥𝓁 is immediate.
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we thus have

(5.19)

Finally, let us compare this against Ψtwo−row of (5.2), assuming that ⩾𝑚+1(𝑃; 𝑘) = 0. In this
case the outgoing colors are given by

𝑖𝛼

⎧⎪⎨⎪⎩
f
∈ {0, 1, … ,𝑚 − 1}, 𝛼 ∈ ,

s
∈ {𝑚,𝑚 + 1,… ,𝑁}, 𝛼 ∈ ̄,

𝑖𝛽
s
∈ {0, 1, … ,𝑚}, 𝛽 ∈ {𝑘 + 1,… ,𝑀},

and 𝑖𝑘
s
∈ {0, 1, … ,𝑚}, noting that 𝑖𝑘 cannot assume any value greater than 𝑚 (this would violate

the assumption that⩾𝑚+1(𝑃; 𝑘) = 0). Similar to the calculation that we just performed, we begin
by subdividing the bottom row of Ψtwo−row as follows:

The rightmost segment of this expression has outgoing colors 𝑖𝑘+1, … , 𝑖𝑀
s
∈ {0, 1, … ,𝑚}; we can

therefore use (4.29) with  = {0, 1, … ,𝑚} to compute it as 1 regardless of the values of the incoming

colors 𝑝𝑘+1

f
∈ {0, 1, … ,𝑚} and 𝑗𝑘+2, … , 𝑗𝑀

f
∈ {0, 1, … ,𝑚 − 1}. Deleting this segment, we have
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where we note that the outgoing colors 𝑖1, … , 𝑖𝑘 and 𝑝𝑘+1
s
∈ {0, 1, … ,𝑚} allow us to invoke Propo-

sition 4.11 with  = {𝑚 + 1,𝑚 + 2,… ,𝑁}. We thus have

(5.20)

where we have replaced all incoming colors 𝑗1, … , 𝑗𝓁−1
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} by 𝑚 + 1, and

where the outgoing indices 𝑟1, … , 𝑟𝑘−1 are given by (5.10). Examining the right-hand side of (5.20),
by color-conservation argumentswe see that it vanishes identically unless 𝑟1 = ⋯ = 𝑟𝓁−2 = 𝑚 + 1
(equivalently 1, … ,𝓁 − 2 ∈ ̄). If these criteria are met, we have

Now let us replace the index 𝑖𝑘
s
∈ {0, 1, … ,𝑚} by 𝑟𝑘

s
∈ {0, 1, … ,𝑚 + 1}, at the expense of subtracting

away the𝑚 + 1 term:

(5.21)
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Both objects appearing in (5.21) can then be simplified further. The object on the left has outgoing
indices which allow us to invoke Proposition 4.11 with  = {𝑚,𝑚 + 1}. The object on the right
has a lone𝑚 + 1 among its incoming colors, and it follows that none of 𝑟𝓁−1, … , 𝑟𝑘−1 can assume
this value (since 𝑚 + 1 already exits the partition function via the right edge of the top row). We
conclude that the whole top row of the second term is frozen, and its weight is computed as a
product of bottom middle weights in Figure 17:

where the indices 𝑝𝓁−1, … , 𝑝𝑘 are given by (5.6). More explicitly, we now read the identity

(5.22)

and we see that (5.19) and (5.22) are indeed equal up to the exchange 𝑥1 ↔ 𝑥𝓁 (note that both

𝑝𝑘
s
∈ {0, 1, … ,𝑚} and 𝑝𝑘+1

s
∈ {0, 1, … ,𝑚}). This completes the proof of Theorem 5.1. □

5.2 Part two: Proof for Z-shaped domains

We now elevate our proof of Theorem 4.13 to a more general class of domains. We call these
domains ‘Z-shaped’ because of their appearance; one may view them as coming from the par-
tition functions in Section 5.1 by inserting ‘internal’ rows that now drive apart the two rows that
were initially present.
Recall that the two-row partition functions in Section 5.1 depend implicitly on two integers

𝑘,𝓁; knowing these integers, as well as 𝑀 (the number of steps of the two down-right paths
𝑃 and 𝑄), allows one to draw the precise down-right domain that one is dealing with. The
Z-shaped domains in this subsection will be specified in terms of 𝑘,𝓁 and a supplementary inte-
ger 2 ⩽ 𝑐 ⩽ 𝓁. The extra integer allows us to keep track of the number of ‘internal’ rows in our
domain; we assume that there are 𝓁 − 𝑐 such rows. When 𝑐 = 𝓁, we return to the case studied in
Section 5.1.
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The two quantities that we study are phrased in terms of the following class of partition func-
tions (a subclass of the partition functions in Definition 4.9):

(5.23)
where (𝑖1, … , 𝑖𝑀) and (𝑗1, … , 𝑗𝑀) are colorings of the down-right paths 𝑃 and 𝑄, respectively; we
have also introduced the shorthand 𝑑 = 𝑘 + 𝓁 − 𝑐 + 1.
For the proof of the Shift theorem we use induction in 𝓁 − 𝑐. The main idea is to treat the

equality of two partition functions as a polynomial identity in rapidities, which then holds true
as soon as we can prove it in a large enough collection of values for the rapidities. For the values
we are going to choose points 𝑥𝑖 = 𝑦𝑗 , for which the vertex splitting of Section 4.2 occurs. The
partition functions for the split domains can be then modified using the Yang–Baxter relations to
the ones for which the Shift theorem is already known by the induction assumption.
We begin the argument by proving some properties of the partition function (5.23).

Proposition 5.2. Fix an integer 𝑐 such that 2 ⩽ 𝑐 ⩽ 𝓁 − 1. The partition function 𝑍𝑐
𝑘,𝓁 satisfies the

following properties.

(i) The quantity

𝑍̄𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
∶=

𝑑∏
𝛼=𝓁+1

(𝑥𝑐 − 𝑞𝑦𝛼)𝑍
𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
is a polynomial in 𝑥𝑐.

(ii) The indices 𝑗𝑐 and 𝑖𝑘+1 are the left and right edge states of the row of the partition function that
carries the parameter 𝑥𝑐 . If 𝑗𝑐 ⩽ 𝑖𝑘+1, the polynomial 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] has degree 𝑑 − 𝓁
in 𝑥𝑐 . If 𝑗𝑐 > 𝑖𝑘+1, 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] has degree 𝑑 − 𝓁 − 1 in 𝑥𝑐 .
(iii) Setting 𝑥𝑐 = 𝑦𝛾, 𝛾 ∈ {𝓁 + 1,… , 𝑑} produces the following recursion:

𝑍𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]|||𝑥𝑐=𝑦𝛾 = ∑
(𝑖′1,…,𝑖

′
𝑀)

∑
(𝑗′1,…,𝑗

′
𝑀)

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]
× 𝜂𝛾

[
𝑖1, … , 𝑖𝑀

|||𝑖′1, … , 𝑖′𝑀

]
𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]
(5.24)
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F IGURE 2 1 The quantity 𝑍𝑐+1
𝑘,𝓁 [𝑖

′
1, … , 𝑖′𝑀|𝑗′1, … , 𝑗′𝑀], in which the vertical rapidities have a modified labeling

F IGURE 22 The quantity 𝑍𝑐
𝑘,𝓁−1[𝑖1, … , 𝑖𝑘, 𝑖𝑘+2, … , 𝑖𝑀|𝑗1, … , 𝑗𝑐−1, 𝑗𝑐+1, … , 𝑗𝑀]; one may view this as the

partition function obtained by deleting the 𝑥𝑐-bearing row from 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀]

where𝑍𝑐+1
𝑘,𝓁 is a partition function of the type (5.23), whose rapidity assignment needs to bemod-

ified from the canonical conventions; see Figure 21. The coefficients 𝜉𝛾 and 𝜂𝛾 are independent
of 𝑥𝑐 and satisfy certain color-conservation properties, detailed in (5.33)–(5.36).

(iv) If 𝑗𝑐 < 𝑖𝑘+1, then setting 𝑥𝑐 = 0 we have 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀]|𝑥𝑐=0 = 0.

(v) If 𝑗𝑐 = 𝑖𝑘+1, then sending 𝑥𝑐 → ∞ we have

lim
𝑥𝑐→∞

𝑍𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
= 𝑞[#(𝑖1,…,𝑖𝑘)>𝑗𝑐]−[#(𝑗1,…,𝑗𝑐−1)>𝑗𝑐]

× 𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘, 𝑖𝑘+2, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐−1, 𝑗𝑐+1, … , 𝑗𝑀

]
, (5.25)

where the right-hand side of (5.25) denotes the partition function obtained by deleting the 𝑥𝑐
row from 𝑍𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀]; see Figure 22.
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F IGURE 2 3 The partition function 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀], expressed in terms of vertices. The vertices

marked by ⋆ are the ones which depend on the parameter 𝑥𝑐

Proof. We establish the five properties using the vertex description of the Z-shaped domain; see
Figure 23.

(i) We note that the only vertices in 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] which depend on 𝑥𝑐 are the 𝑑 − 𝓁

vertices marked by⋆ in Figure 23. From Figure 17 (recalling that 𝑧 = 𝑦∕𝑥, where 𝑥 and 𝑦 are
the horizontal and vertical rapidities passing through a vertex, respectively) we see that the
Boltzmann weights of these vertices are given by the table

(5.26)

for all 0 ⩽ 𝑖 < 𝑗, and where 𝛼 ∈ {𝓁 + 1,… , 𝑑}. After multiplying 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] by∏𝑑

𝛼=𝓁+1(𝑥𝑐 − 𝑞𝑦𝛼) and distributing the 𝑑 − 𝓁 terms in this product over the 𝑑 − 𝓁 vertices
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F IGURE 24 The partition function 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] after setting 𝑥𝑐 = 𝑦𝛾 . The vertex at the

intersection of the 𝑥𝑐 and 𝑦𝛾 lines gets split, in the same sense as in Section 4.2

marked by⋆ in Figure 23, we effectively clear the denominators present in theweights (5.26),
and it is then clear that 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] is a polynomial in 𝑥𝑐.
(ii) To compute the degree of 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] in 𝑥𝑐, we simply count the number
of starred vertices in Figure 23, since each of these vertices has a weight which (after
the above change of normalization) is a polynomial in 𝑥𝑐 of degree at most 1. We con-
clude that 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] has degree at most 𝑑 − 𝓁 in 𝑥𝑐, which is the best bound
we can obtain for 𝑗𝑐 ⩽ 𝑖𝑘+1. We can obtain a slightly sharper bound for 𝑗𝑐 > 𝑖𝑘+1, since

in that situation at least one of the starred vertices must take the form j i

i

j

with

𝑗 > 𝑖, and these vertices (after the change in normalization) are constant with respect to
𝑥𝑐. Hence for 𝑗𝑐 > 𝑖𝑘+1 we see that 𝑍̄𝑐

𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] has degree at most 𝑑 − 𝓁 − 1
in 𝑥𝑐.

(iii) We begin from Figure 23 and observe that after setting 𝑥𝑐 = 𝑦𝛾, 𝛾 ∈ {𝓁 + 1,… , 𝑑}, we produce
a vertex splitting of the form (4.12) at the position where the 𝑥𝑐 and 𝑦𝛾 parameters cross; see
Figure 24.
After creating this splittingwe reposition the affected lattice lines; by the Yang–Baxter (4.9)

and unitarity (4.10) relations of the model, these lines may be repositioned in any way that
preserves their starting and ending points. One such repositioning is illustrated in Figure 25;
this repositioning is obtained by dragging one of the split lines as far upwards as possible,
and the other line as far downwards as possible.
Examining the partition function in Figure 25, it is clear that an expansion of the form

(5.24) must exist; it remains only to compute the coefficients 𝜉𝛾 and 𝜂𝛾. These coefficients
come from expanding over all possible configurations of the vertices marked by ⋆, ♠ and
♣ in Figure 25; we may compute them explicitly in terms of single-row or single-column
partition functions. For our purposes, it will be useful to note the following factorized form
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F IGURE 2 5 The partition function 𝑍𝑐
𝑘,𝓁[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀] after setting 𝑥𝑐 = 𝑦𝛾 , followed by repositioning

the lines affected by the splitting. If we neglect all vertices marked by ⋆, ♠ and ♣, we see that this effectively leads
to a Z-shaped domain with 𝓁 − 𝑐 − 1 internal rows; one less than we started with

of the coefficients:

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]
= 𝜉𝛾

[
𝑗′1, … , 𝑗′𝓁−1

|||𝑗1, … , 𝑗𝓁−1

]
⋅
(
𝟏𝑗𝓁=𝑗′𝓁=𝑚

)
⋅ 𝜉𝛾

[
𝑗′𝓁+1, … , 𝑗′𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
, (5.27)

where

𝜉𝛾

[
𝑗′1, … , 𝑗′𝓁−1

|||𝑗1, … , 𝑗𝓁−1

]
=

𝓁−1∏
𝛼=1

𝟏𝑗𝛼=𝑗′𝛼 , (5.28)

and

(5.29)
In a similar vein, we have

𝜂𝛾

[
𝑖1, … , 𝑖𝑀

|||𝑖′1, … , 𝑖′𝑀

]
= 𝜂𝛾

[
𝑖1, … , 𝑖𝑘−1

|||𝑖′1, … , 𝑖′𝑘−1

]
⋅
(
𝟏𝑖𝑘=𝑖′𝑘

)
⋅ 𝜂𝛾

[
𝑖𝑘+1, … , 𝑖𝑀

|||𝑖′𝑘+1, … , 𝑖′𝑀

]
, (5.30)
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where

(5.31)
and

(5.32)

From the explicit form of the coefficients (5.28), (5.29), (5.31), and (5.32), we immediately see
that they satisfy the basic conservation properties

𝜉𝛾

[
𝑗′1, … , 𝑗′𝓁−1

|||𝑗1, … , 𝑗𝓁−1

]
= 0, unless (𝑗′1, … , 𝑗′𝓁−1) ∈ 𝔖(𝑗1, … , 𝑗𝓁−1), (5.33)

𝜉𝛾

[
𝑗′𝓁+1, … , 𝑗′𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
= 0, unless (𝑗′𝓁+1, … , 𝑗′𝑀) ∈ 𝔖(𝑗𝓁+1, … , 𝑗𝑀), (5.34)

𝜂𝛾

[
𝑖1, … , 𝑖𝑘−1

|||𝑖′1, … , 𝑖′𝑘−1

]
= 0, unless (𝑖′1, … , 𝑖′𝑘−1) ∈ 𝔖(𝑖1, … , 𝑖𝑘−1), (5.35)

𝜂𝛾

[
𝑖𝑘+1, … , 𝑖𝑀

|||𝑖′𝑘+1, … , 𝑖′𝑀

]
= 0, unless (𝑖′𝑘+1, … , 𝑖′𝑀) ∈ 𝔖(𝑖𝑘+1, … , 𝑖𝑀). (5.36)

Note that all coefficients 𝜉𝛾 and 𝜂𝛾 are also manifestly independent of 𝑥𝑐.

(iv) When 𝑗𝑐 < 𝑖𝑘+1, at least one of the starred vertices in Figure 23 must take the form i j

j

i

with 𝑖 < 𝑗. As can be seen from (5.26), theweight of this vertex vanisheswhen𝑥𝑐 = 0; since no
other weight is singular under the limit 𝑥𝑐 → 0, we immediately conclude that 𝑍𝑐

𝑘,𝓁|𝑥𝑐=0 = 0.
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(v) When 𝑗𝑐 = 𝑖𝑘+1, there are two possibilities for the ensemble of starred vertices in Figure 23.

The first is that a vertex of the form j i

i

j

appears among them, for some 𝑗 > 𝑖. The

weight of this vertex vanishes after taking the limit 𝑥𝑐 → ∞; since all other weights in the
table (5.26) have a well-defined and nonvanishing limit as 𝑥𝑐 → ∞, we can neglect all lat-
tice configurations which feature this vertex among the ensemble of starred vertices. We

are left with the second possibility, that the vertex j i

i

j

and (consequently) the vertex

i j

j

i

do not appear among the starred vertices, for any 𝑖 < 𝑗. The absence of these vertices

causes the row of starred vertices to have a frozen configuration; if we label the colors of the
𝑑 − 𝓁 bottom and top edges of this row by (𝑗′𝓁+1, … , 𝑗′

𝑑
) and (𝑖′𝓁+1, … , 𝑖′

𝑑
) respectively, we find

that

(5.37)

We see that every vertex that appears on the right-hand side of (5.37) is of the form j j

j

j

,

j j

i

i

or i i

j

j

, with 𝑖 < 𝑗. As 𝑥𝑐 → ∞, the weights of these vertices have the limits 1, 1,

and 𝑞, respectively, and we thus have

(5.38)

The net effect of taking the limit 𝑥𝑐 → ∞ is thus the deletion of the starred vertices from
the lattice in Figure 23, at the expense of an overall power of 𝑞. To match with the power
of 𝑞 appearing in (5.25), we note that because of color conservation through the top row of
vertices in Figure 23, we must have

#[(𝑖′𝓁+1, … , 𝑖′𝑑) > 𝑗𝑐] = [#(𝑖1, … , 𝑖𝑘) > 𝑗𝑐] − [#(𝑗1, … , 𝑗𝑐−1) > 𝑗𝑐];

substituting this into (5.38), we then immediately recover (5.25). □
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Next, we state a simple auxiliary result that we need at various stages in the rest of the
argument.

Lemma 5.3. Consider a quantityΔ𝑘[𝑖1, … , 𝑖𝑀]which depends on a set of colors (𝑖1, … , 𝑖𝑀). Suppose
that, for any partitioning ⊔ ̄ = {1, … , 𝑘 − 1} and  ⊔ ̄ = {𝑘 + 1,… ,𝑀} there holds∑

𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

Δ𝑘[𝑖1, … , 𝑖𝑀] = 0, (5.39)

where the summation being performed satisfies

𝑖𝛼
s
∈ {𝑚,𝑚 + 1,… ,𝑁}, for 𝛼 ∈ ̄, 𝑖𝛽

s
∈ {0, 1, … ,𝑚}, for 𝛽 ∈ ̄, 𝑖𝑘

s
∈ {0, 1, … ,𝑁};

all other colors are fixed, with

𝑖𝛼
f
∈ {0, 1, … ,𝑚 − 1}, for 𝛼 ∈ , 𝑖𝛽

f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, for 𝛽 ∈ .

Also suppose that the coefficients 𝐶(𝑖1, … , 𝑖𝑀) satisfy

𝐶(𝑖1, … , 𝑖𝑀) = 𝐶([𝑖1]𝑚, … , [𝑖𝑘−1]𝑚, 0, [𝑖𝑘+1]
𝑚, … , [𝑖𝑀]𝑚) (5.40)

for all 𝑖1, … , 𝑖𝑀 ⩾ 0, where we use the notations (4.17) and (4.18). Then∑
𝑖1,…,𝑖𝑀

𝐶(𝑖1, … , 𝑖𝑀)Δ𝑘[𝑖1, … , 𝑖𝑀] = 0, (5.41)

with unrestricted summation over (𝑖1, … , 𝑖𝑀).

Proof. The summation over (𝑖1, … , 𝑖𝑀) in (5.41) can be broken up in the following way.
Focusing on the indices (𝑖1, … , 𝑖𝑘−1), we choose a subset of these (with labels in  ⊂
{1, … , 𝑘 − 1}) to be summed over {0, 1, … ,𝑚 − 1}, while the remainder are summed over
{𝑚,𝑚 + 1,… ,𝑁}; we also sum over all ways to choose such subsets . Likewise, focusing
on the indices (𝑖𝑘+1, … , 𝑖𝑀), we choose a subset of these (with labels in  ⊂ {𝑘 + 1,… ,𝑀})
to be summed over {𝑚 + 1,𝑚 + 2,… ,𝑁}, while the remainder get summed over {0, 1, … ,𝑚};
again, we sum over all ways to choose such subsets . This leads us to the following
equation: ∑

𝑖1,…,𝑖𝑀

𝐶(𝑖1, … , 𝑖𝑀)Δ𝑘[𝑖1, … , 𝑖𝑀]

=
∑

⊂{1,…,𝑘−1}

∑
⊂{𝑘+1,…,𝑀}

𝑚−1∑
0

(𝑖𝛼∈)

𝑁∑
𝑚

(𝑖𝛼∈̄)

𝑁∑
𝑚+1
(𝑖𝛽∈)

𝑚∑
0

(𝑖𝛽∈̄)

∑
𝑖𝑘

𝐶(𝑖1, … , 𝑖𝑀)Δ𝑘[𝑖1, … , 𝑖𝑀],

where we do not refine the sum over 𝑖𝑘 in any way. Using property (5.40), we find that it is effec-
tively possible to interchange the order of the coefficient 𝐶 and the sums over 𝑖𝑘, (𝑖𝛼∈̄), (𝑖𝛽∈̄).
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More precisely, we have∑
𝑖1,…,𝑖𝑀

𝐶(𝑖1, … , 𝑖𝑀)Δ𝑘[𝑖1, … , 𝑖𝑀]

=
∑

⊂{1,…,𝑘−1}

∑
⊂{𝑘+1,…,𝑀}

𝑚−1∑
0

(𝑖𝛼∈)

𝑁∑
𝑚+1
(𝑖𝛽∈)

𝐶(𝑎1, … , 𝑎𝑀)
𝑁∑
𝑚

(𝑖𝛼∈̄)

𝑚∑
0

(𝑖𝛽∈̄)

∑
𝑖𝑘

Δ𝑘[𝑖1, … , 𝑖𝑀], (5.42)

where we have defined

𝑎𝑝 =

⎧⎪⎨⎪⎩
𝑖𝑝, 𝑝 ∈  ∪ ,
𝑚, 𝑝 ∈ ̄,
0, 𝑝 ∈ {𝑘} ∪ ̄.

By assumption (5.39), the final three sums in (5.42) satisfy

𝑁∑
𝑚

(𝑖𝛼∈̄)

𝑚∑
0

(𝑖𝛽∈̄)

∑
𝑖𝑘

Δ𝑘[𝑖1, … , 𝑖𝑀] = 0,

for all subsets ̄ and ̄. Hence the right-hand side of (5.42) vanishes term-by-term, and the proof
of (5.41) is complete. □

We are now ready to prove Theorem 4.13 in the case of Z-shaped domains. Let us first restate
it in terms of the notation being used in this section. Fixing two sets  ⊂ {1, … , 𝑘 − 1} and  ⊂
{𝑘 + 1,… ,𝑀}, and a vector of incoming colors (𝑗1, … , 𝑗𝑀) satisfying (4.31), we quote fromEquation
(4.32) to define

Φ𝑐
𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

=
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝑍𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
𝟏
(⩾𝑚(𝑃; 𝑘 + 1) = ℎ

)
, (5.43)

where 𝑖𝑘 is summed over all values {0, 1, … ,𝑁}, while (𝑖𝛼∈̄) and (𝑖𝛽∈̄) are summed according to
the constraints (4.30). Similarly, quoting from (4.33), we define

Ψ𝑐
𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

=
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝑍𝑐
𝑘,𝓁

[
𝑖1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑀

]
𝟏
(⩾𝑚+1(𝑃; 𝑘) = ℎ

)
, (5.44)

where 𝑖𝑘 is summed over all values {0, 1, … ,𝑁}, while (𝑖𝛼∈̄) and (𝑖𝛽∈̄) are summed according to
the constraints (4.30).
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Theorem 5.4. Let Φ𝑐
𝑘,𝓁 and Ψ

𝑐
𝑘,𝓁 be defined as in (5.43) and (5.44). For all 2 ⩽ 𝑐 ⩽ 𝓁, we have

Φ𝑐
𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)
= Ψ𝑐

𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)|||𝑥1↔𝑥𝓁

. (5.45)

Proof. We proceed by induction on the number of internal rows in the Z-shaped domain.
In Section 5.1, we proved that (5.45) is true when 𝑐 = 𝓁; that is, when there are no internal
rows.
Now assume that the claim is true for all Z-shaped domains with 𝓁 − 𝑐 − 1 internal rows. We

shall consider the quantity

Υ𝑐
𝑘,𝓁 ∶= Φ𝑐

𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)
− Ψ𝑐

𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)|||𝑥1↔𝑥𝓁

with the goal of showing that it vanishes. Using the definitions (5.43), (5.44), and property (i) of
Proposition 5.2, we see that

Ῡ𝑐
𝑘,𝓁 ∶=

𝑑∏
𝛼=𝓁+1

(𝑥𝑐 − 𝑞𝑦𝛼)Υ
𝑐
𝑘,𝓁

(,; (𝑖𝛼∈), (𝑖𝛽∈); (𝑗1, … , 𝑗𝑀)
)

is a polynomial in 𝑥𝑐. We will show that this quantity vanishes at sufficiently many interpolating
points, and is therefore identically zero. To determine howmany points we require, there are two
separate cases to consider:

(1) 𝑘 + 1 ∉ , which implies that 𝑖𝑘+1 s
∈ {0, 1, … ,𝑚} is summed;

(2) 𝑘 + 1 ∈ , which implies that 𝑖𝑘+1 f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} is fixed.

Case 1: 𝑘 + 1 ∉ .
In this situation, 𝑖𝑘+1 is summed over the values {0, 1, … ,𝑚}. Using property (ii) of Proposi-

tion 5.2, we see that in this case (since 𝑗𝑐 > 𝑚 ⩾ 𝑖𝑘+1, irrespective of the value of 𝑖𝑘+1) Ῡ𝑐
𝑘,𝓁 has

degree 𝑑 − 𝓁 − 1 in 𝑥𝑐. We therefore need 𝑑 − 𝓁 interpolating values for 𝑥𝑐, and these are pro-
vided by property (iii) of Proposition 5.2, which allows us to compute Ῡ𝑐

𝑘,𝓁 at each of the points
𝑥𝑐 = 𝑦𝓁+1, … , 𝑦𝑑:

Υ𝑐
𝑘,𝓁
|||𝑥𝑐=𝑦𝛾 =

∑
(𝑖′1,…,𝑖

′
𝑀)

∑
(𝑗′1,…,𝑗

′
𝑀)

∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]
𝜂𝛾

[
𝑖1, … , 𝑖𝑀

|||𝑖′1, … , 𝑖′𝑀

]

×
{
𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]
𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
−𝑍𝑐+1

𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]|||𝑥1↔𝑥𝓁
𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ)

}
. (5.46)

Now we use several of the properties of the coefficients 𝜉𝛾, 𝜂𝛾. First, in view of the factorization
(5.30) of 𝜂𝛾 and the conservation property (5.36), we are able to replace the two indicator functions
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appearing in (5.46) by

𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
= 𝟏

(
[#(𝑖′𝑘+1, … , 𝑖′𝑀) ⩾ 𝑚] = ℎ

)
,

𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ) = 𝟏
(
[#(𝑖′𝑘, … , 𝑖′𝑀) ⩾ 𝑚 + 1] = ℎ

)
.

(5.47)

Hence the sums over 𝑖𝑘, (𝑖𝛼∈̄), (𝑖𝛽∈̄) that appear on the right-hand side of (5.46) localize over
the coefficients 𝜂𝛾[𝑖1, … , 𝑖𝑀|𝑖′1, … , 𝑖′𝑀]. Second, using again the factorized form (5.30) of these coef-
ficients, we have∑

𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝜂𝛾

[
𝑖1, … , 𝑖𝑀

|||𝑖′1, … , 𝑖′𝑀

]

=
∑

(𝑖𝛼∈̄)

𝜂𝛾

[
𝑖1, … , 𝑖𝑘−1

|||𝑖′1, … , 𝑖′𝑘−1

] ∑
(𝑖𝛽∈̄)

𝜂𝛾

[
𝑖𝑘+1, … , 𝑖𝑀

|||𝑖′𝑘+1, … , 𝑖′𝑀

]∑
𝑖𝑘

𝟏𝑖𝑘=𝑖′𝑘
.

These sums can be computed using the color-merging result of Proposition 4.11. We find that∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝜂𝛾

[
𝑖1, … , 𝑖𝑀

|||𝑖′1, … , 𝑖′𝑀

]

= 𝜂𝛾

[
𝑎1, … , 𝑎𝑘−1

|||[𝑖′1]𝑚, … , [𝑖′𝑘−1]𝑚

]
𝜂𝛾

[
𝑎𝑘+1, … , 𝑎𝑀

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝑀]𝑚
]
, (5.48)

where

𝑎𝑝 =

⎧⎪⎨⎪⎩
𝑖𝑝, 𝑝 ∈  ∪ ,
𝑚, 𝑝 ∈ ̄,
0, 𝑝 ∈ ̄.

Substituting (5.47) and (5.48) into (5.46), we obtain

Υ𝑐
𝑘,𝓁
|||𝑥𝑐=𝑦𝛾 = ∑

(𝑖′1,…,𝑖
′
𝑀)

𝜂𝛾

[
𝑎1, … , 𝑎𝑘−1

|||[𝑖′1]𝑚, … , [𝑖′𝑘−1]𝑚

]
𝜂𝛾

[
𝑎𝑘+1, … , 𝑎𝑀

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝑀]𝑚
]

×
∑

(𝑗′1,…,𝑗
′
𝑀)

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]{
𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]
𝟏
(
[#(𝑖′𝑘+1, … , 𝑖′𝑀) ⩾ 𝑚] = ℎ

)

−𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]|||𝑥1↔𝑥𝓁
𝟏
(
[#(𝑖′𝑘, … , 𝑖′𝑀) ⩾ 𝑚 + 1] = ℎ

)}
. (5.49)

We may now apply Lemma 5.3 (with all indices appearing in that result replaced by primed ones)
to the right-hand side of (5.49). In order to do this, we need to make some identification with the
quantities appearing in the statement of Lemma 5.3.
We identify the terms in the second and third lines of (5.49) with the quantity Δ𝑘[𝑖

′
1, … , 𝑖′𝑀]

from Lemma 5.3; this is justified by noting that for any partitioning  ∪ ̄ = {1, … , 𝑘 − 1} and
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 ∪ ̄ = {𝑘 + 1,… ,𝑀}, one has∑
𝑖′
𝑘

∑
(𝑖′
𝛼∈̄)

(𝑖′
𝛽∈̄)

Δ𝑘[𝑖
′
1, … , 𝑖′𝑀] =

∑
(𝑗′1,…,𝑗

′
𝑀)

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]

×
∑
𝑖′
𝑘

∑
(𝑖′
𝛼∈̄)

(𝑖′
𝛽∈̄)

{
𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]
𝟏
(
[#(𝑖′𝑘+1, … , 𝑖′𝑀) ⩾ 𝑚] = ℎ

)

−𝑍𝑐+1
𝑘,𝓁

[
𝑖′1, … , 𝑖′𝑀

|||𝑗′1, … , 𝑗′𝑀

]|||𝑥1↔𝑥𝓁
𝟏
(
[#(𝑖′𝑘, … , 𝑖′𝑀) ⩾ 𝑚 + 1] = ℎ

)}
. (5.50)

Factorization (5.27) and conservation properties (5.33) and (5.34) of the 𝜉𝛾 coefficients then ensure
that the nonzero terms in the sum over (𝑗′1, … , 𝑗′𝑀) satisfy 𝑗′1, … , 𝑗′𝓁−1 ∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, 𝑗′𝓁 =
𝑚, and 𝑗′𝓁+1, … , 𝑗′𝑀 ∈ {0, 1, … ,𝑚 − 1}; the (𝑗′1, … , 𝑗′𝑀) values are therefore constrained to the form
(4.30). We can thus write (5.50) as∑

𝑖′
𝑘

∑
(𝑖′
𝛼∈̄)

(𝑖′
𝛽∈̄)

Δ𝑘[𝑖
′
1, … , 𝑖′𝑀] =

∑
(𝑗′1,…,𝑗

′
𝑀)

𝜉𝛾

[
𝑗′1, … , 𝑗′𝑀

|||𝑗1, … , 𝑗𝑀

]

×

{
Φ𝑐+1
𝑘,𝓁

(,; (𝑖′𝛼∈), (𝑖′𝛽∈); (𝑗′1, … , 𝑗′𝑀)
)

−Ψ𝑐+1
𝑘,𝓁

(,; (𝑖′𝛼∈), (𝑖′𝛽∈); (𝑗′1, … , 𝑗′𝑀)
)|||𝑥1↔𝑥𝓁

}
= 0,

where the vanishing of the sum is ensured by the inductive assumption (for Z-shaped domains
with 𝓁 − 𝑐 − 1 internal rows). Hence the quantity Δ𝑘[𝑖

′
1, … , 𝑖′𝑀] satisfies the required sum-to-zero

property (5.39).
Similarly, we identify the terms in the first line of (5.49) with the coefficients 𝐶(𝑖′1, … , 𝑖′𝑀) from

Lemma 5.3; that is, we define

𝐶(𝑖′1, … , 𝑖′𝑀) = 𝜂𝛾

[
𝑎1, … , 𝑎𝑘−1

|||[𝑖′1]𝑚, … , [𝑖′𝑘−1]𝑚

]
𝜂𝛾

[
𝑎𝑘+1, … , 𝑎𝑀

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝑀]𝑚
]
.

These coefficients clearly obey the requirement (5.40). With these identifications, we may thus
apply Lemma 5.3 to the right-hand side of (5.49), yielding

Υ𝑐
𝑘,𝓁
|||𝑥𝑐=𝑦𝛾 = 0, ∀ 𝛾 ∈ {𝓁 + 1,… , 𝑑}.

Hence Υ𝑐
𝑘,𝓁 = 0 at 𝑑 − 𝓁 independent values of 𝑥𝑐, and we conclude that Υ𝑐

𝑘,𝓁 = 0 identically.

Case 2: 𝑘 + 1 ∈ .
In this situation, 𝑖𝑘+1 assumes a fixed value in the set {𝑚 + 1,𝑚 + 2,… ,𝑁}. Depending on

which value it takes, all three outcomes 𝑗𝑐 > 𝑖𝑘+1, 𝑗𝑐 = 𝑖𝑘+1 or 𝑗𝑐 < 𝑖𝑘+1 are possible. As we
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saw in the analysis of Case 1, 𝑗𝑐 > 𝑖𝑘+1 means that Ῡ𝑐
𝑘,𝓁 has degree 𝑑 − 𝓁 − 1 in 𝑥𝑐, and

we may proceed in exactly the same way to show that Ῡ𝑐
𝑘,𝓁 vanishes at the 𝑑 − 𝓁 values

𝑥𝑐 ∈ {𝑦𝓁+1, … , 𝑦𝑑}.
On the other hand, recalling property (ii) of Proposition 5.2, for 𝑗𝑐 ⩽ 𝑖𝑘+1 we conclude that Ῡ𝑐

𝑘,𝓁
has degree 𝑑 − 𝓁 in 𝑥𝑐; we therefore need one additional interpolating point. This extra point is
either 𝑥𝑐 = 0 or 𝑥𝑐 → ∞, supplied to us by the properties (iv) and (v) of Proposition 5.2. When
𝑗𝑐 < 𝑖𝑘+1, from property (iv) we see directly that Υ𝑐

𝑘,𝓁|𝑥𝑐=0 = 0. When 𝑗𝑐 = 𝑖𝑘+1, from property (v)
we see that

lim
𝑥𝑐→∞

Υ𝑐
𝑘,𝓁 =

∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

𝑞[#(𝑖1,…,𝑖𝑘)>𝑗𝑐]−[#(𝑗1,…,𝑗𝑐−1)>𝑗𝑐]

×
{
𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]
𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
−𝑍𝑐

𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]|||𝑥1↔𝑥𝓁−1
𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ)

}
.

(5.51)

It turns out that the 𝑞-dependent factor which stands in the summand of (5.51) is actually a con-
stant with respect to the summation. To demonstrate this, we note that

[#(𝑖1, … , 𝑖𝑘) > 𝑗𝑐] = [#(𝑗1, … , 𝑗𝑀) > 𝑗𝑐] − [#(𝑖𝑘+1, … , 𝑖𝑀) > 𝑗𝑐], (5.52)

by color conservation through the original Z-shaped domain. Furthermore, since 𝑖𝛽
s
∈ {0, 1, … ,𝑚}

for all 𝛽 ∈ ̄ and 𝑗𝓁+1, … , 𝑗𝑀
f
∈ {0, 1, … ,𝑚 − 1}, none of these colors can exceed the value 𝑗𝑐

(because 𝑗𝑐 ⩾ 𝑚 + 1); we may therefore exclude them from the count in (5.52), yielding

[#(𝑖1, … , 𝑖𝑘) > 𝑗𝑐] = [#(𝑗1, … , 𝑗𝓁−1) > 𝑗𝑐] − [#(𝑖𝛽∈) > 𝑗𝑐], (5.53)

which is now clearly independent of the summation being taken in (5.51). We conclude that

lim
𝑥𝑐→∞

Υ𝑐
𝑘,𝓁 = 𝑞[#(𝑗𝑐+1,…,𝑗𝓁−1)>𝑗𝑐]−[#(𝑖𝛽∈)>𝑗𝑐]

×
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

{
𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]
𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)

−𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]|||𝑥1↔𝑥𝓁−1
𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ)

}
.

(5.54)

Color 𝑖𝑘+1 only appears in the indicator functions in (5.54), and since 𝑖𝑘+1
f
∈ {𝑚 + 1,𝑚 +

2,… ,𝑁}, it contributes equally to the two height parameters appearing in that expression.
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We deduce that

lim
𝑥𝑐→∞

Υ𝑐
𝑘,𝓁 = 𝑞[#(𝑗𝑐+1,…,𝑗𝓁−1)>𝑗𝑐]−[#(𝑖𝛽∈)>𝑗𝑐]

×
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

{
𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]
𝟏
(
[#(𝑖𝑘+2, … , 𝑖𝑀) ⩾ 𝑚] = ℎ − 1

)

−𝑍𝑐
𝑘,𝓁−1

[
𝑖1, … , 𝑖𝑘+1, … , 𝑖𝑀

|||𝑗1, … , 𝑗𝑐, … , 𝑗𝑀

]|||𝑥1↔𝑥𝓁−1
𝟏
(
[#(𝑖𝑘, 𝑖𝑘+2, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ − 1

)}
,

or equivalently,

lim
𝑥𝑐→∞

Υ𝑐
𝑘,𝓁 = 𝑞[#(𝑗𝑐+1,…,𝑗𝓁−1)>𝑗𝑐]−[#(𝑖𝛽∈)>𝑗𝑐] ×

{
Φ𝑐
𝑘,𝓁−1

(,′; (𝑖𝛼∈), (𝑖𝛽∈′ ); (𝑗1, … , 𝑗𝑐, … , 𝑗𝑀)
)

− Ψ𝑐
𝑘,𝓁−1

(,′; (𝑖𝛼∈), (𝑖𝛽∈′ ); (𝑗1, … , 𝑗𝑐, … , 𝑗𝑀)
)|||𝑥1↔𝑥𝓁−1

}
,

where ′ = ∖{𝑘 + 1} and with ℎ replaced by ℎ − 1. The final quantity vanishes by the
inductive assumption (about Z-shaped domains with 𝓁 − 𝑐 − 1 internal rows), and therefore
lim𝑥𝑐→∞ Υ𝑐

𝑘,𝓁 = 0. Hence Υ𝑐
𝑘,𝓁 = 0 at 𝑑 − 𝓁 + 1 independent values of 𝑥𝑐, and we conclude that

Υ𝑐
𝑘,𝓁 = 0 identically.
This concludes the proof that (5.45) holds in the case of𝓁 − 𝑐 internal rows, and therefore gener-

ically, by induction on the number of internal rows. □

5.3 Part three: Proof for generic down-right domains

We conclude the proof of Theorem 4.13 by upgrading from Z-shaped to generic down-right
domains. Generalizing the statement turns out to be relatively straightforward; the key is to rec-
ognize an underlying Z-shaped domain embedded within a generic down-right domain, as illus-
trated in Figure 26. We are going to show that the distinction between Φ𝑃∕𝑄 and Ψ𝑃∕𝑄 can be
attributed to the changes inside this Z-shaped domain.
Consider the partition function 𝑍𝑃∕𝑄 ≡ 𝑍𝑃∕𝑄[𝑖1, … , 𝑖𝑀|𝑗1, … , 𝑗𝑀], inherited from the down-

right domain 𝑃 − 𝑄, where 𝑃,𝑄 are down-right paths of length 𝑀. Label the outgoing edges of
the domain by colors 𝑖1, … , 𝑖𝑀 as usual, where the 𝑘th of these, 𝑖𝑘, is assigned to a down step of 𝑃.
Assume that the opposing edge on𝑄 carries the label 𝑗𝐾 . Label the incoming edges of the domain
by colors 𝑗1, … , 𝑗𝑀 , where the 𝓁th of these, 𝑗𝓁 , is assigned to a down step of 𝑄. Assume that the
opposing edge on 𝑃 carries the label 𝑖𝐿. The two distinguished horizontal rapidities of our domain
are thus 𝑥◦ = 𝑥𝐾 and 𝑥∙ = 𝑥𝓁 . As usual, the incoming colors (𝑗1, … , 𝑗𝑀) are chosen according
to the conditions (4.31), while the outgoing colors (𝑖1, … , 𝑖𝑀) are fixed/summed according to the
rules (4.30).
Proceeding as in Figure 26, we then subdivide into five smaller partition functions. We do

this by extracting the largest possible Z-shaped subdomain which takes the 𝑥◦ and 𝑥∙ carry-
ing rows as its ‘outer’ rows; this then naturally isolates four disjoint down-right subdomains
(labeled 𝜆, 𝜇, 𝜈, 𝜅). We end up with the following, brute-force expansion of 𝑍𝑃∕𝑄 over these five
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F IGURE 26 A generic down-right domain can always be deconstructed in terms of a Z-shaped domain and
four other down-right domains 𝜆, 𝜇, 𝜈, 𝜅 (shown in grey). Starting from a generic down-right domain, one begins
by identifying the subset of boxes that form the unique Z-shaped domain that (i) takes the 𝑥◦ and 𝑥∙-bearing rows
as its ‘outer’ rows, and (ii) completely saturates those rows. After identifying this underlying Z-shaped domain,
the remaining boxes are then split into four disjoint down-right domains. Importantly, none of the subdomains
𝜆, 𝜇, 𝜈, 𝜅 depend on 𝑥◦ or 𝑥∙

subpartition functions:

𝑍𝑃∕𝑄 =
∑

primed
indices

𝑋𝜆

[
𝑖1, … , 𝑖𝑘−1

|||𝑗1, … , 𝑗𝐾−1, 𝑖
′
𝐾, … , 𝑖′𝑘−1

]

×𝑋𝜇

[
𝑗′𝐾+1, … , 𝑗′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
𝑋𝜈

[
𝑖𝑘+1, … , 𝑖𝐿−1

|||𝑖′𝑘+1, … , 𝑖′𝐿−1

]
×𝑋𝜅

[
𝑗′𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
×𝑍

[
𝑖′𝐾, … , 𝑖′𝑘−1, 𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿

|||𝑗𝐾, 𝑗′𝐾+1, … , 𝑗′𝓁−1, 𝑗𝓁 , 𝑗
′
𝓁+1, … , 𝑗′𝐿

]
, (5.55)

where the summation is performed over all primed indices that parametrize the colors along the
boundaries of the cut-out subdomains and the Z-shaped one.
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5.3.1 Analysis of Φ𝑃∕𝑄

We begin by considering Φ𝑃∕𝑄, which is given by

Φ𝑃∕𝑄 =
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

∑
primed
indices

𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
𝑋𝜆

[
𝑖1, … , 𝑖𝑘−1

|||𝑗1, … , 𝑗𝐾−1, 𝑖
′
𝐾, … , 𝑖′𝑘−1

]

×𝑋𝜇

[
𝑗′𝐾+1, … , 𝑗′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
𝑋𝜈

[
𝑖𝑘+1, … , 𝑖𝐿−1

|||𝑖′𝑘+1, … , 𝑖′𝐿−1

]
×𝑋𝜅

[
𝑗′𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
×𝑍

[
𝑖′𝐾, … , 𝑖′𝑘−1, 𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿

|||𝑗𝐾, 𝑗′𝐾+1, … , 𝑗′𝓁−1, 𝑗𝓁 , 𝑗
′
𝓁+1, … , 𝑗′𝐿

]
, (5.56)

where we have introduced summation over 𝑖𝑘 and (𝑖𝛼∈̄), (𝑖𝛽∈̄), subject to the constraints (4.30).
As we will now see, it is possible to apply the color-merging result of Proposition 4.11 to two of the
pieces in (5.56); namely, 𝑋𝜆 and 𝑋𝜈.

Starting with the indices 𝑖𝛼, 𝛼 ∈ {1, … , 𝑘 − 1}, recall that they either satisfy 𝑖𝛼
f
∈ {0, 1, … ,𝑚 − 1}

if 𝛼 ∈ , or 𝑖𝛼 s
∈ {𝑚,𝑚 + 1,… ,𝑁} if 𝛼 ∈ ̄. This leads to a color-merged version of 𝑋𝜆:∑

(𝑖𝛼∈̄)

𝑋𝜆

[
𝑖1, … , 𝑖𝑘−1

|||𝑗1, … , 𝑗𝐾−1, 𝑖
′
𝐾, … , 𝑖′𝑘−1

]
= 𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||[𝑗1]𝑚, … , [𝑗𝐾−1]𝑚, [𝑖
′
𝐾]𝑚, … , [𝑖′𝑘−1]𝑚

]
= 𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||𝑚,… ,𝑚, [𝑖′𝐾]𝑚, … , [𝑖′𝑘−1]𝑚

]
, (5.57)

where we have defined

𝑎𝛼 =

{
𝑖𝛼, 𝛼 ∈ ,
𝑚, 𝛼 ∈ ̄,

(5.58)

andnoted that since 𝑗1, … , 𝑗𝐾−1
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁}, wemust have [𝑗1]𝑚 = ⋯ = [𝑗𝐾−1]𝑚 = 𝑚.

Next, given that 𝑗𝓁+1, … , 𝑗𝑀
f
∈ {0, 1, … ,𝑚 − 1} and using the color conservation of

𝑋𝜅[𝑗
′
𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀|𝑗𝓁+1, … , 𝑗𝑀],

we see that necessarily 𝑖𝐿+1, … , 𝑖𝑀
s
∈ {0, 1, … ,𝑚 − 1} (which means that 𝐿 + 1,… ,𝑀 ∈ ̄). This

means that none of the colors 𝑖𝐿+1, … , 𝑖𝑀 can contribute to the value of the height function
⩾𝑚(𝑃; 𝑘 + 1). Combining this with the color conservation of 𝑋𝜈[𝑖𝑘+1, … , 𝑖𝐿−1|𝑖′𝑘+1, … , 𝑖′𝐿−1], we
deduce that

𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
= 𝟏

(
[#(𝑖𝑘+1, … , 𝑖𝐿) ⩾ 𝑚] = ℎ

)
= 𝟏

(
[#(𝑖′𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚] = ℎ

)
.

(5.59)
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Equation (5.59) turns out to be important in obtaining the color-merged version of 𝑋𝜈, as we will
now show. Turning to the indices 𝑖𝛽 , 𝛽 ∈ {𝑘 + 1,… , 𝐿 − 1}, let us recall that they can either satisfy

𝑖𝛽
f
∈ {𝑚 + 1,𝑚 + 2,… ,𝑁} if 𝛽 ∈ , or 𝑖𝛽 s

∈ {0, 1, … ,𝑚} if 𝛽 ∈ ̄.Writing ̆ = ̄ ∩ {𝑘 + 1,… , 𝐿 − 1},
we use (5.59) and Proposition 4.11 to deduce that∑

(𝑖𝛽∈̆)
𝟏
(
[#(𝑖𝑘+1, … , 𝑖𝑀) ⩾ 𝑚] = ℎ

)
𝑋𝜈

[
𝑖𝑘+1, … , 𝑖𝐿−1

|||𝑖′𝑘+1, … , 𝑖′𝐿−1

]
= 𝟏

(
[#(𝑖′𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚] = ℎ

)
𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝐿−1]
𝑚
]

(5.60)

where we have defined

𝑏𝛽 =

{
𝑖𝛽, 𝛽 ∈ ,
0, 𝛽 ∈ ̄. (5.61)

We now combine our two color-merged results (5.57) and (5.60) in Equation (5.56):

Φ𝑃∕𝑄 =
∑
𝑖𝑘

∑
(𝑖𝛽∈̄)

∑
primed
indices

𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||𝑚,… ,𝑚, [𝑖′𝐾]𝑚, … , [𝑖′𝑘−1]𝑚

]

×𝑋𝜇

[
𝑗′𝐾+1, … , 𝑗′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝐿−1]
𝑚
]

×𝑋𝜅

[
𝑗′𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
𝟏
(
[#(𝑖′𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚] = ℎ

)
×𝑍

[
𝑖′𝐾, … , 𝑖′𝑘−1, 𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿

|||𝑗𝐾, 𝑗′𝐾+1, … , 𝑗′𝓁−1, 𝑗𝓁 , 𝑗
′
𝓁+1, … , 𝑗′𝐿

]
, (5.62)

where we have defined ̄ = {𝐿 + 1,… ,𝑀} in the case 𝐿 ∈ , and ̄ = {𝐿, 𝐿 + 1,… ,𝑀} in the case
𝐿 ∈ ̄. Crucially, we note that in this final equation, the only dependence on 𝑥∙ and 𝑥◦ is via the
Z-shaped domain.

5.3.2 Analysis of Ψ𝑃∕𝑄

Now we perform a similar analysis on Ψ𝑃∕𝑄, which is given by

Ψ𝑃∕𝑄 =
∑
𝑖𝑘

∑
(𝑖𝛼∈̄)
(𝑖𝛽∈̄)

∑
primed
indices

𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ)𝑋𝜆

[
𝑖1, … , 𝑖𝑘−1

|||𝑗1, … , 𝑗𝐾−1, 𝑖
′
𝐾, … , 𝑖′𝑘−1

]

×𝑋𝜇

[
𝑗′𝐾+1, … , 𝑗′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
𝑋𝜈

[
𝑖𝑘+1, … , 𝑖𝐿−1

|||𝑖′𝑘+1, … , 𝑖′𝐿−1

]
×𝑋𝜅

[
𝑗′𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
×𝑍

[
𝑖′𝐾, … , 𝑖′𝑘−1, 𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿

|||𝑗𝐾, 𝑗′𝐾+1, … , 𝑗′𝓁−1, 𝑗𝓁 , 𝑗
′
𝓁+1, … , 𝑗′𝐿

]
(5.63)
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where we have introduced summation over 𝑖𝑘 and (𝑖𝛼∈̄), (𝑖𝛽∈̄), subject to the constraints (4.30).
Not much changes in the analysis, except that the height function whose value we condition is
now ⩾𝑚+1(𝑃; 𝑘). This means that (5.57) and (5.58) still hold as stated; on the other hand, the
height function relation (5.59) gets replaced with

𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ) = 𝟏([#(𝑖𝑘, … , 𝑖𝐿) ⩾ 𝑚 + 1] = ℎ)

= 𝟏
(
[#(𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚 + 1] = ℎ

)
, (5.64)

meaning that in place of the color-merged relation (5.60), we now have

∑
(𝑖𝛽∈̆)

𝟏([#(𝑖𝑘, … , 𝑖𝑀) ⩾ 𝑚 + 1] = ℎ)𝑋𝜈

[
𝑖𝑘+1, … , 𝑖𝐿−1

|||𝑖′𝑘+1, … , 𝑖′𝐿−1

]
= 𝟏

(
[#(𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚 + 1] = ℎ

)
𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝐿−1]
𝑚
]

(5.65)

with ̆ = ̄ ∩ {𝑘 + 1,… , 𝐿 − 1} as previously, and 𝑏𝑘+1, … , 𝑏𝐿−1 as defined in (5.61). We then com-
bine the color-merged results (5.57) and (5.65) in Equation (5.63):

Ψ𝑃∕𝑄 =
∑
𝑖𝑘

∑
(𝑖𝛽∈̄)

∑
primed
indices

𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||𝑚,… ,𝑚, [𝑖′𝐾]𝑚, … , [𝑖′𝑘−1]𝑚

]

×𝑋𝜇

[
𝑗′𝐾+1, … , 𝑗′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′𝑘+1]𝑚, … , [𝑖′𝐿−1]
𝑚
]

×𝑋𝜅

[
𝑗′𝓁+1, … , 𝑗′𝐿, 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
𝟏
(
[#(𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿) ⩾ 𝑚 + 1] = ℎ

)
×𝑍

[
𝑖′𝐾, … , 𝑖′𝑘−1, 𝑖𝑘, 𝑖

′
𝑘+1, … , 𝑖′𝐿−1, 𝑖𝐿

|||𝑗𝐾, 𝑗′𝐾+1, … , 𝑗′𝓁−1, 𝑗𝓁 , 𝑗
′
𝓁+1, … , 𝑗′𝐿

]
, (5.66)

with the same definition of ̄ as in Equation (5.62). Once again, 𝑥∙ and 𝑥◦ appear only via the
final Z-shaped domain.

5.3.3 Equality of Φ𝑃∕𝑄 and Ψ𝑃∕𝑄

To conclude, we compute

Φ𝑃∕𝑄 − Ψ𝑃∕𝑄
|||𝑥◦↔𝑥∙

using formulae (5.62) and (5.66).We find that (after a change of summation indices) we canwrite

Φ𝑃∕𝑄 − Ψ𝑃∕𝑄
|||𝑥◦↔𝑥∙

=
∑

𝑖′′𝐾 ,…,𝑖
′′
𝐿

∑
𝑗′′𝐾 ,…,𝑗

′′
𝐿

𝐶(𝑖′′𝐾, … , 𝑖′′𝐿 )𝐷(𝑗
′′
𝐾, … , 𝑗′′𝐿 )

×

{
𝟏
(
[#(𝑖′′𝑘+1, … , 𝑖′′𝐿 ) ⩾ 𝑚] = ℎ

)
× 𝑍

[
𝑖′′𝐾, … , 𝑖′′𝑘−1, 𝑖

′′
𝑘 , 𝑖

′′
𝑘+1, … , 𝑖′′𝐿

|||𝑗′′𝐾, … , 𝑗′′𝓁−1, 𝑗
′′
𝓁 , 𝑗

′′
𝓁+1, … , 𝑗′′𝐿

]
− 𝟏

(
[#(𝑖′′𝑘 , … , 𝑖′′𝐿 ) ⩾ 𝑚 + 1] = ℎ

)
× 𝑍

[
𝑖′′𝐾, … , 𝑖′′𝑘−1, 𝑖

′′
𝑘 , 𝑖

′′
𝑘+1, … , 𝑖′′𝐿

|||𝑗′′𝐾, … , 𝑗′′𝓁−1, 𝑗
′′
𝓁 , 𝑗

′′
𝓁+1, … , 𝑗′′𝐿

]
𝑥◦↔𝑥∙

}
,

(5.67)



SHIFT-INVARIANCE FOR VERTEX MODELS AND POLYMERS 257

where the coefficients 𝐶(𝑖′′𝐾, … , 𝑖′′𝐿 ) are given by

𝐶(𝑖′′𝐾, … , 𝑖′′𝐿 ) = 𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||𝑚,… ,𝑚, [𝑖′′𝐾]𝑚, … , [𝑖′′𝑘−1]𝑚

]
×𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′′𝑘+1]𝑚, … , [𝑖′′𝐿−1]
𝑚
](

𝟏𝑖′′𝐿 ⩽𝑚

)
if 𝐿 ∈ ̄, and by

𝐶(𝑖′′𝐾, … , 𝑖′′𝐿 ) = 𝑋𝜆

[
𝑎1, … , 𝑎𝑘−1

|||𝑚,… ,𝑚, [𝑖′′𝐾]𝑚, … , [𝑖′′𝑘−1]𝑚

]
×𝑋𝜈

[
𝑏𝑘+1, … , 𝑏𝐿−1

|||[𝑖′′𝑘+1]𝑚, … , [𝑖′′𝐿−1]
𝑚
](

𝟏𝑖′′𝐿 =𝑖𝐿

)
if 𝐿 ∈ . The coefficients 𝐷(𝑗′′𝐾, … , 𝑗′′𝐿 ) are given by

𝐷(𝑗′′𝐾, … , 𝑗′′𝐿 ) =
(
𝟏𝑗′′𝐾=𝑗𝐾

)
𝑋𝜇

[
𝑗′′𝐾+1, … , 𝑗′′𝓁−1

|||𝑗𝐾+1, … , 𝑗𝓁−1

]
×
(
𝟏𝑗′′

𝓁
=𝑚

) 𝑚−1∑
𝑖𝐿+1,…,𝑖𝑀=0

𝑋𝜅

[
𝑗′′𝓁+1, … , 𝑗′′𝐿 , 𝑖𝐿+1, … , 𝑖𝑀

|||𝑗𝓁+1, … , 𝑗𝑀

]
.

The precise form of these coefficients is not of essential importance. What chiefly concerns us is
that they satisfy

𝐶(𝑖′′𝐾, … , 𝑖′′𝑘−1, 𝑖
′′
𝑘 , 𝑖

′′
𝑘+1, … , 𝑖′′𝐿 ) = 𝐶([𝑖′′𝐾]𝑚, … , [𝑖′′𝑘−1]𝑚, 0, [𝑖

′′
𝑘+1]

𝑚, … , [𝑖′′𝐿 ]
𝑚)

for all 𝑖′′𝐾, … , 𝑖′′𝐿 ⩾ 0, and

𝐷(𝑗′′𝐾, … , 𝑗′′𝓁−1, 𝑗
′′
𝓁 , 𝑗

′′
𝓁+1, … , 𝑗′′𝐿 ) = 0, if either

⎧⎪⎨⎪⎩
𝑗′′𝐾, … , 𝑗′′𝓁−1 ⩽ 𝑚,

𝑗′′𝓁 ≠ 𝑚,

𝑗′′𝓁+1, … , 𝑗′′𝐿 ⩾ 𝑚.
(5.68)

We may therefore invoke Lemma 5.3 with

Δ𝑘[𝑖
′′
𝐾, … , 𝑖′′𝐿 ] =

∑
𝑗′′𝐾,…,𝑗

′′
𝐿

𝐷(𝑗′′𝐾, … , 𝑗′′𝐿 )
{
𝟏
(
[#(𝑖′′𝑘+1, … , 𝑖′′𝐿 ) ⩾ 𝑚] = ℎ

)
× 𝑍

[
𝑖′′𝐾, … , 𝑖′′𝑘−1, 𝑖

′′
𝑘 , 𝑖

′′
𝑘+1, … , 𝑖′′𝐿

|||𝑗′′𝐾, … , 𝑗′′𝓁−1, 𝑗
′′
𝓁 , 𝑗

′′
𝓁+1, … , 𝑗′′𝐿

]
− 𝟏

(
[#(𝑖′′𝑘 , … , 𝑖′′𝐿 ) ⩾ 𝑚 + 1] = ℎ

)
× 𝑍

[
𝑖′′𝐾, … , 𝑖′′𝑘−1, 𝑖

′′
𝑘 , 𝑖

′′
𝑘+1, … , 𝑖′′𝐿

|||𝑗′′𝐾, … , 𝑗′′𝓁−1, 𝑗
′′
𝓁 , 𝑗

′′
𝓁+1, … , 𝑗′′𝐿

]
𝑥◦↔𝑥∙

}
.

The fact that this choice obeys the sum-to-zero requirements (5.39) is immediate from (5.68)
(which ensures that the incoming colors of the Z-shaped domain fall into the category (4.31),
for which we proved all our statements) and Theorem 5.4. We may thus employ Lemma 5.3 to
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F IGURE 27 A possible vertex for the higher spin colored model with 𝑁 = 2. Here 𝐀 = (2, 1), 𝐁 = (1, 2),
𝐂 = (3, 0), 𝐃 = (0, 3)

conclude that the quantity (5.67) is identically zero. This completes the proof of Theorem 4.13 for
arbitrary down-right domains.

6 HIGHER SPIN COLORED SIX-VERTEXMODEL

6.1 Finite spin model

The inhomogeneous six-vertex model can be turned into its higher spin version by a procedure
known as (stochastic) fusion. The basic idea is to take an array of vertices lying at the intersections
of adjacent 𝐿 rows and adjacent 𝑀 columns, and to replace it by a single vertex with the same
collections of incoming and outgoing colors. Before explaining the procedure in more detail, let
us write down the resulting weight of the fused vertex (cf. Figure 27).
There are two groups of colored paths on the incoming edges. A collection 𝐀 = (𝐴1, … ,𝐴𝑁)

enters from below, which means that there are 𝐴1 paths of color 1, 𝐴2 paths of color 2,. . . , 𝐴𝑁

paths of color 𝑁. We are not keeping track of paths of color 0 explicitly, but we assume |𝐀| =
𝐴1 +⋯ + 𝐴𝑁 ⩽ 𝑀, which corresponds to the fact that the model arose from fusing 𝑀 columns
with paths of colors from {0, 1, … ,𝑁}. A second collection of colored paths 𝐁 = (𝐵1, … , 𝐵𝑁) enters
from the left, and this time |𝐁| ⩽ 𝐿.
Similarly, there are two groups of colored paths on the outgoing edges: 𝐂 exists vertically and

𝐃 exits horizontally. We use the following mnemonic rule in the notations: the colors on four
edges adjacent to a vertex are always listed in the clockwise order, starting from the bottom edge.
Projecting on the alphabet, we get precisely the 𝐀, 𝐁, 𝐂, 𝐃 notation.
With coordinate-wise addition operation, the conservation law says

𝐀 + 𝐁 = 𝐂 + 𝐃. (6.1)

In addition, there are exactly𝑀 outgoing paths in the vertical direction (including paths of color
0) and 𝐿 outgoing paths in the horizontal direction (including paths of color 0). Since we do not
keep track of paths of color 0, this implies |𝐂| = 𝐶1 +⋯ + 𝐶𝑁 ⩽ 𝑀 and |𝐃| ⩽ 𝐿.
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The weight of a vertex of type (𝐀, 𝐁; 𝐂,𝐃) satisfying (6.1) depends on two (generally speaking,
complex) parameters 𝑧 and 𝑞. Following [22, 49], it is given by

𝑊𝐿,𝑀(𝑧, 𝑞; 𝐀, 𝐁; 𝐂,𝐃) = 𝑧|𝐃|−|𝐁|𝑞|𝐀|𝐿−|𝐃|𝑀
×
∑
𝑃

Φ(𝐂 − 𝑃, 𝐂 + 𝐃 − 𝑃; 𝑞𝐿−𝑀𝑧, 𝑞−𝑀𝑧)Φ(𝑃, 𝐁; 𝑞−𝐿∕𝑧, 𝑞−𝐿), (6.2)

where the summation goes over 𝑃 = (𝑃1, … , 𝑃𝑁) with 0 ⩽ 𝑃𝑖 ⩽ min(𝐵𝑖, 𝐶𝑖), and

Φ(𝜆, 𝜇; 𝑢, 𝑣) =
(𝑢; 𝑞)|𝜆|(𝑣∕𝑢; 𝑞)|𝜇|−|𝜆|

(𝑣; 𝑞)|𝜇|
(𝑣
𝑢

)|𝜆|
𝑞
∑

𝑖<𝑗(𝜇𝑖−𝜆𝑖)𝜆𝑗
∏
𝑖⩾1

(
𝜇𝑖
𝜆𝑖

)
𝑞

. (6.3)

We use the 𝑞-binomial coefficient defined for 𝑎 ⩾ 𝑏 ⩾ 0 through(
𝑎
𝑏

)
𝑞

=
(1 − 𝑞𝑎)(1 − 𝑞𝑎−1)⋯ (1 − 𝑞𝑎−𝑏+1)

(1 − 𝑞)(1 − 𝑞2)⋯ (1 − 𝑞𝑏)
=

(𝑞; 𝑞)𝑎
(𝑞; 𝑞)𝑏(𝑞; 𝑞)𝑎−𝑏

.

Note that the number of colors𝑁 does not enter directly into the formula (6.2), and as long as |𝐀|,|𝐁|, |𝐂|, |𝐃| are finite, we can assume without loss of generality that 𝑁 = ∞.
It is also important to note that if we plug 𝑀 = 𝑁 = 1 into (6.2), then we get the weight of

the stochastic colored six-vertex model of Figure 17, but with 𝑧 replaced with 1∕𝑧. Our notations
include this inversion of 𝑧 in order to better match the conventions of the previous articles, espe-
cially [21]. Later in the text the same inversion appears in Definition A3, where 1∕𝑧 is explicitly
present in the right-hand side of (A8).

Remark 6.1. An important feature of (6.2) is that if we make paths of two neighboring colors 𝑖 and
𝑖 + 1 indistinguishable (combine them into a single color), then the formula remains the same.
More precisely, ∑

𝐶𝑖 = 0, 1, … , 𝐶̃𝑖,
𝐶𝑖+1 = 𝐶̃𝑖 − 𝐶𝑖,
𝐃 = 𝐀 + 𝐁 − 𝐂,

𝑊𝐿,𝑀(𝑧, 𝑞; 𝐀, 𝐁; 𝐂,𝐃) = 𝑊𝐿,𝑀(𝑧, 𝑞; 𝐀̃, 𝐁̃; 𝐂̃, 𝐃̃), (6.4)

where

𝐀̃ = (𝐴1, 𝐴2, … ,𝐴𝑖−1, 𝐴𝑖 + 𝐴𝑖+1, 𝐴𝑖+2, … ,𝐴𝑁),

and similarly for 𝐁̃, 𝐂̃, 𝐃̃. A direct proof of this fact can be obtained by applying summation iden-
tities for the 𝑞-binomial coefficients; cf. Lemma 6.15. Another way to deduce (6.4) is by combining
the following two observations.

∙ For the colored six-vertex model this is immediate, cf. Section 4.4. Indeed, by the definition,
whenever paths of colors 𝑖 and 𝑗 enter a vertex, the stochastic rule of their evolution depends
only on the order of 𝑖 and 𝑗, but not on the exact values of 𝑖 and 𝑗.

∙ Equation (6.2) is obtained from the colored six-vertex model by fusion, which commutes with
combination of two colors into one.
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F IGURE 28 Boundary conditions for the fused vertex model in the quadrant and with 𝐿 = 2,𝑀0 = 3,
𝑀1 = 1,𝑀2 = 2

Wewould like to consider themodel in the quadrantwith rows 1, 2, 3, … , and columns 0, 1, 2, … .
Later on, column 0will become special, while the rest of the systemwill be set to be homogeneous.
The boundary conditions are as follows: along the bottom of the quadrant there are no entering
paths of positive colors, that is, all incoming paths are of color 0. Along the left boundary of the
quadrant, all 𝐿 left paths entering row 𝑖 are of color 𝑖; see Figure 28. The integral parameter 𝐿, as
well as 0 < 𝑞 < 1, are assumed to be fixed throughout the system. On the other hand, we allow
the number of paths on vertical edges,𝑀, to vary across columns. We thus choose a sequence of
positive integers 𝑀0,𝑀1,𝑀2, … and set 𝑀 = 𝑀𝑥 for the vertices in column 𝑥. Similarly, we fix
spectral parameters 𝑧0, 𝑧1, 𝑧2, … , corresponding to the columns of the quadrant.
Themodel is sampled sequentially, starting from the vertex at (0,1), then proceeding to (0,2) and

(1,1), then to (0,3), (1,2), (2,1), etc. At each step we use (6.2) to sample the colors of the outgoing
paths given the colors of the incoming paths. For any choice of spectral parameters the probabil-
ities sum up to 1, see [21, (C.1.5); 22], and we tacitly assume that 𝑧0, 𝑧1, … are chosen so that all
probabilities are nonnegative.
As for the colored six-vertex model, we use height functions to describe the configurations.

For each color 𝑖 ⩾ 1, the height function ⩾𝑖(𝑥, 𝑦) describes colors ⩾ 𝑖. It is defined by setting
⩾𝑖(−1

2
, 1
2
) = 0 and

⩾𝑖(𝑥, 𝑦 + 1) −⩾𝑖(𝑥, 𝑦) = number of paths of colors ⩾ 𝑖 at (𝑥, 𝑦 + 1
2
),

⩾𝑖(𝑥 + 1, 𝑦) −⩾𝑖(𝑥, 𝑦) = number of paths of colors ⩾ 𝑖 at (𝑥 + 1
2
, 𝑦).

In other words,⩾𝑖(𝑥, 𝑦) counts the total number of paths of colors ⩾ 𝑖 below point (𝑥, 𝑦).
The following theorem explains how the higher spin version can be obtained from the ordinary

six-vertex model.

Theorem 6.2. Consider the inhomogeneous colored six-vertex model in the quadrant ℤ>0 × ℤ>0

with the following specialization of the parameters.

∙ The row rapidites 𝑣1, 𝑣2, 𝑣3, … are periodic with period 𝐿 and are given by

1, 𝑞, 𝑞2, … , 𝑞𝐿−1, 1, 𝑞, 𝑞2, … 𝑞𝐿−1, … .
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∙ The incoming paths along the left boundary are split into adjacent groups of 𝐿 paths of the same
color. From bottom to top it reads:

1, … , 1
⏟⏟⏟

𝐿

, 2, … , 2
⏟⏟⏟

𝐿

,… .

∙ The column rapidities𝑢1, 𝑢2, 𝑢3, … form subsequent geometric sequences of lengths𝑀0,𝑀1, . . .and
are given by

𝑞𝑀0−1𝑧−10 , … , 𝑞𝑧−10 , 𝑧−10 , 𝑞𝑀1−1𝑧−11 , … , 𝑞𝑧−11 , 𝑧−11 , 𝑞𝑀2−1𝑧−12 , … , 𝑞𝑧−12 , 𝑧−12 , …

∙ Incoming paths along the bottom boundary all have color 0.

Let⩾𝑖
6𝑣(𝑥, 𝑦), 𝑖 = 1, 2, … denote the height functions of the resulting vertexmodel and let⩾𝑖

fused(𝑥, 𝑦),
𝑖 = 1, 2, … denote the height functions of the higher spin model defined above the theorem. Then we
have an identity of finite-dimensional distributions for the height functions:

⩾𝑖
fused

(
−1

2
+ 𝑥, 1

2
+ 𝑦

)
= ⩾𝑖

6𝑣

(
1
2
+ (𝑀0 +𝑀1 +⋯ +𝑀𝑥−1),

1
2
+ 𝐿𝑦

)
, 𝑖 ∈ ℤ>0; 𝑥, 𝑦 ∈ ℤ⩾0.

Proof. We shall present the proof in the case of one-dimensional distributions, as the proof for
joint distributions is the same.
The proof for one-dimensional distributions boils down to equating two partition functions;

the first one in the unfused six-vertex model with weights of Figure 17, and the second one in the
doubly fused model with weighs (6.2). By its very definition, we note that the distribution of⩾𝑖

6𝑣
can be computed as follows:

(6.5)

where we have defined 𝑀̃ = 𝑀0 +𝑀1 +⋯ +𝑀𝑥−1, and where the outgoing indices (𝑘1, … , 𝑘𝑀̃)
and (𝓁1, … ,𝓁𝑦𝐿) are summed over all colors, subject to the constraint [#(𝓁1, … ,𝓁𝑦𝐿) ⩾ 𝑖] = ℎ. We
recall that the row rapidities are periodicwith period 𝐿 and set to a geometric progression in 𝑞with
base 1; the column rapidities in the 𝑗th cluster of vertical lines are given by 𝑞𝑀𝑗−1𝑧−1

𝑗
, … , 𝑞𝑧−1

𝑗
, 𝑧−1

𝑗
,

where 0 ⩽ 𝑗 ⩽ 𝑥 − 1.
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On the other hand,⩾𝑖
fused can be computed as follows:

(6.6)

where 𝒆𝑗 denotes the 𝑗th Euclidean unit vector, while each 𝑳(𝑗) is a composition whose total
weight is at most 𝐿 and each 𝑲(𝑗) is a composition whose total weight is at most 𝑀𝑗 . Here the
outgoing compositions 𝑲(𝑗), 𝑳(𝑗) are assumed to be summed over all possible choices, such that
the total number of colors of value 𝑖 or greater present in the compositions 𝑳(1), … , 𝑳(𝑦) is equal
to ℎ. The spectral parameter associated to each vertex in the 𝑗th column of the lattice is 𝑧𝑗 ,
0 ⩽ 𝑗 ⩽ 𝑥 − 1.
We can now fuse each𝑀𝑥 × 𝐿 block of vertices in (6.5) into a single vertex in (6.6). This is done

sequentially in the order of growing 𝑥 and 𝑦 coordinates. So we take𝑀𝑥 × 𝐿 block of vertices, fix
some distribution of𝑀𝑥 + 𝐿 of colors of the incoming (from below and from the left) edges, and
sample all the vertices in the block. As a result we get a new distribution on𝑀𝑥 + 𝐿 colors of the
outgoing (to the right and up) edges. The procedure is now based on two ingredients:

∙ Suppose that the distribution of colors of incoming 𝑀𝑥 + 𝐿 edges is 𝑞-exchangeable, which
means that if we interchange colors of two incoming from below edges, then the probability of
such configuration of colors is multiplied by 𝑞 if we increase the number of inversions (from
positions to color numbers) and is multiplied by 𝑞−1 if we decrease the number of inversions;
and similarly for the incoming from the left colors of edges. Then the distribution of colors
of outgoing 𝑀𝑥 + 𝐿 edges is also 𝑞-exchangeable. This is proven by applying the result of [21,
Proposition B.2.2] in both horizontal and vertical directions.

∙ If the distribution of the incoming colors is 𝑞-exchangeable andwe ignore the positions of edges
of different colors, but only keep track of the number of incoming/outgoing edges for each color
and vertical/horizontal directions, then the transition from incoming colors to outgoing colors
is given by the higher spin weight (6.2). This is a certain summation identity, which we prove
in the Appendix.

Note that for our boundary conditions in the quadrant there is noway to exchange the positions of
incoming colors on the border of𝑀𝑥 × 𝐿 block in a nontrivial way. Hence, the deterministic dis-
tribution of incoming colors is 𝑞-exchangeable and we can proceed with sampling𝑀𝑥 × 𝐿 blocks
one by one, establishing 𝑞-exchangeability along the boundaries of the blocks and identifyingwith
higher spin model on each step. □

We can now state the shift-invariance theorem for the higher spin model. For two points
 = (𝑥 , 𝑦 ),  = (𝑥 , 𝑦 ) in the quadrant, we write ⪰  if 𝑥 ⩽ 𝑥 and 𝑦 ⩾ 𝑦 . In other
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words, is in the down-right direction from . Fix a collection of numbers 0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛
and a collection of points in the quadrant {𝑖}.

Theorem 6.3. In the above setting of the fused colored stochastic model in quadrant with vertex
weights (6.2), with 𝑧 and𝑀 parameters depending on the column in {0, 1, 2, … } (but not on the row)
and with fixed 𝑞, choose an index 1 ⩽ 𝜄 ⩽ 𝑛 and an integer Δ > 0. Set

𝑘′𝑗 =

{
𝑘𝑗, 𝑗 ≠ 𝜄,

𝑘𝜄 + Δ, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄

𝜄 + (0, Δ), 𝑗 = 𝜄.

Suppose that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, … ,𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, … ,𝑛,  ′
1 , … , ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, … , ′
𝑛.

Then the distribution of the vector of the height functions(⩾𝑘1(1), ⩾𝑘2(2), … ,⩾𝑘𝑛(𝑛)
)

coincides with the distribution of the vector with shifted 𝜄th coordinate(⩾𝑘′1( ′
1 ), ⩾𝑘′2( ′

2 ), … ,⩾𝑘′𝑛 ( ′
𝑛)
)
.

Remark 6.4. The chosen ordering of points guarantees that the segments (0, 𝑘𝑗) −𝑗 intersect
with (0, 𝑘𝜄) −𝜄 for each 𝑗 ≠ 𝜄.

Remark 6.5. It is natural to ask whether one can make the statement of Theorem 6.3 inhomoge-
neous in the vertical direction in the sense that the parameter 𝐿 will not be fixed, but will vary
with the row number. We do not know, as our proofs do not extend to such generality. However,
computer simulations indicate that this should be the case.

Remark 6.6. If we restrict our attention to a rectangle, then the state space of the fused col-
ored stochastic model is finite, and, therefore, Theorem 6.3 is an identity between two finite
sums.
Let us draw a vague analogy here. If we think about the colored six-vertex model as being an

analogue of a Bernoulli random variable, then the fused version is an analogue of a binomial
random variable, as we obtain the fused model by taking several instances of the vertices of the
six-vertexmodel and then ignoring a part of the data (cf. taking several Bernoulli randomvariables
and looking only at their sum to get the binomial distribution). The binomial distribution has an
analytic continuation in which the state space is no longer finite — this is the negative binomial
distribution. Similarly, in the following sections we are going to study analytic continuations of
Theorem 6.3 leading to an infinite state space and culminating in Theorem 6.10.

Proof of Theorem 6.3. It suffices to prove the theorem for Δ = 1, which we do. Consider the col-
ored six-vertexmodel appearing in Theorem 6.2. It can be obtained from the six-vertexmodel with
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rainbow boundary condition 1, 2, 3, 4, … along the left boundary of the quadrant (as in Theo-
rems 1.2 and 4.16) by merging the colors:

𝑖 ↦
⌊ 𝑖 − 1

𝐿

⌋
+ 1.

Recall that merging the adjacent colors leads to the model of the same kind and with the same
rapidities, cf. Section 4.4 and Remark 6.1. Hence, the distributional identity of Theorem 6.3 is
obtained through the following five steps:

(1) The vector
(⩾𝑘1(1), ⩾𝑘2(2), … ,⩾𝑘𝑛(𝑛)

)
is replaced by a vector of height functions

in the six-vertex model of Theorem 6.2.
(2) The six-vertex model of Theorem 6.2 is identified with color merging of the six-vertex model

with rainbow boundary condition.
(3) We apply Theorem 1.2 (or Theorem 4.16) 𝐿 times to the latter. As a result, the observation

point is shifted by 𝐿 in the vertical direction. Note that since 𝐿 was the length of the period
for the row rapidities, after 𝐿 swaps of rapidities, we get the same periodic sequence of length
𝐿 geometric series.

(4) For the vector of height functions with shifted observation points, we again do color merging,
arriving back at the six-vertex model of Theorem 6.2.

(5) Applying Theorem 6.2 second time, we get
(⩾𝑘′1( ′

1 ), ⩾𝑘′2( ′
2 ), … ,⩾𝑘′𝑛 ( ′

𝑛)
)
. □

6.2 Analytic continuation

In the setting of Theorem 6.3 the total number of colored paths on a horizontal/vertical lattice
edge is bounded by 𝐿/𝑀. It turns out that we can get rid of this restriction through an analytic
continuation of the weight (6.2) in 𝑞𝐿 and 𝑞𝑀 . This procedure, however, requires some care due
to the boundary condition we use: densely packed collection of paths enters the quadrant from
the left, which would not make sense if we naively put 𝐿 = ∞.
We start from the analytic continuation in𝑀. Note that the expression (6.2) is a rational func-

tion in 𝑞−𝑀 . The restrictions |𝐀|, |𝐂| ⩽ 𝑀 become irrelevant as long as𝑀 is large enough, since
our boundary conditions imply that a vertex at (𝑥, 𝑦) can have at most 𝑦𝐿 paths of positive
colors.
Hence, we can simply replace 𝑞−𝑀 by a complex number𝔪 and get a formula for the weight:

𝑊𝐿,∞,𝔪(𝑧, 𝑞; 𝐀, 𝐁; 𝐂,𝐃) = 𝑧|𝐃|−|𝐁|𝑞|𝐀|𝐿𝔪|𝐃|
×
∑
𝑃

Φ(𝐂 − 𝑃, 𝐂 + 𝐃 − 𝑃;𝔪𝑞𝐿𝑧,𝔪𝑧)Φ(𝑃, 𝐁; 𝑞−𝐿∕𝑧, 𝑞−𝐿), (6.7)

where∞ in the subscript indicates that there are no restrictions on the number of vertical edges
(of positive colors, with multiplicities, and we are only keeping track of those). The following
statement is a direct analytic continuation of the identity of Theorem 6.3; cf. Remark 6.6.

Corollary 6.7. With weights (6.7) and with parameter 𝔪 depending on the column through an
arbitrary sequence𝔪0,𝔪1,… , the statement of Theorem 6.3 remains valid.
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The next step is to analytically continue in 𝑞𝐿. Let us start from the analysis of the 0th column,
which is based on the following observation.

Lemma 6.8. Take the weight of (6.7), assume that 𝐀 has only colors no larger than 𝑁 and that 𝐁
has 𝐿 paths of color𝑁, that is, 𝐁 = (0, 0, … , 𝐿). Then for each 0 < 𝑞 < 1 and 𝑧 ∈ ℂ we have

lim
𝔪→0

𝑊𝐿,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂,𝐃)

=

⎧⎪⎨⎪⎩
(𝑧𝑞𝐿; 𝑞)∞(𝑞−𝐿; 𝑞)𝑑

(𝑧; 𝑞)∞(𝑞; 𝑞)𝑑
(𝑧𝑞𝐿)𝑑, 𝐃 = (0, … , 0, 𝑑), 𝑑 ⩾ 0, and 𝐀 + 𝐁 = 𝐂 + 𝐃,

0, otherwise.
(6.8)

Remark 6.9. The sum (over 𝑑 = 0,… , 𝐿) of the probabilities in the right-hand side of (6.8) is 1,
as follows from the 𝑞-binomial theorem. For 0 < 𝑞 < 1, 𝐿 = 1, 2, … , and 𝑧 < 0 the expressions in
(6.8) are nonnegative, and hence they give a bona fide probability distribution.

Proof of Lemma 6.8. We have

𝑊𝐿,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂,𝐃) = 𝑧|𝐃|−|𝐁|𝑞|𝐀|𝐿𝔪|𝐁|
×
∑
𝑃

Φ(𝐂 − 𝑃, 𝐂 + 𝐃 − 𝑃; 𝑞𝐿𝑧, 𝑧)Φ(𝑃, 𝐁;𝔪𝑞−𝐿∕𝑧, 𝑞−𝐿).

Since 0 ⩽ 𝑃 ⩽ 𝐁, the summation goes over 𝑃 = (0, … , 0, 𝑝) with 0 ⩽ 𝑝 ⩽ 𝐿. As𝔪 → 0, we have

Φ(𝑃, 𝐁;𝔪𝑞−𝐿∕𝑧, 𝑞−𝐿) ∼ (−1)|𝐁|−|𝑃| ⋅ 𝑞0+1+⋯+(|𝐁|−|𝑃|−1)
(𝑞−𝐿; 𝑞)|𝐁| (𝑧∕𝔪)|𝐁|𝑞∑𝑖<𝑗(𝐵𝑖−𝑃𝑖)𝑃𝑗

𝑁∏
𝑖=1

(
𝐵𝑖

𝑃𝑖

)
𝑞

= (−1)𝐿−𝑝
𝑞0+1+⋯+(𝐿−𝑝−1)

(𝑞−𝐿; 𝑞)𝐿
(𝑧∕𝔪)𝐿

(
𝐿
𝑝

)
𝑞

. (6.9)

Also

Φ(𝐂 − 𝑃,𝐂 + 𝐃 − 𝑃; 𝑞𝐿𝑧, 𝑧)

=
(𝑞𝐿𝑧; 𝑞)|𝐂|−𝑝(𝑞−𝐿; 𝑞)|𝐃|

(𝑧; 𝑞)|𝐂|+|𝐃|−𝑝
(
𝑞−𝐿

)|𝐂|−𝑝
𝑞
∑

𝑖<𝑗(𝐷𝑖)(𝐂−𝑃)𝑗
𝑁∏
𝑖=1

(
(𝐂 + 𝐃 − 𝑃)𝑖
(𝐂 − 𝑃)𝑖

)
𝑞

. (6.10)

We now assume that 𝐿 = 1. In this case we get

lim
𝔪→0

𝑊1,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂,𝐃) = 𝑧|𝐃|−1𝑞|𝐀|

×

[
−
(𝑞𝑧; 𝑞)|𝐂|(𝑞−1; 𝑞)|𝐃|

(𝑧; 𝑞)|𝐂|+|𝐃|
(
𝑞−1

)|𝐂|
𝑞
∑

𝑖<𝑗 𝐷𝑖𝐶𝑗

𝑁∏
𝑖=1

(
𝐶𝑖 + 𝐷𝑖

𝐶𝑖

)
𝑞

1
(1 − 𝑞−1)

𝑧

(
1
0

)
𝑞
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+
(𝑞𝑧; 𝑞)|𝐂|−1(𝑞−1; 𝑞)|𝐃|

(𝑧; 𝑞)|𝐂|+|𝐃|−1
(
𝑞−1

)|𝐂|−1
𝑞
∑

𝑖<𝑗 𝐷𝑖(𝐂−(0,…,0,1))𝑗

×
𝑁∏
𝑖=1

(
(𝐂 + 𝐃 − (0, … , 0, 1))𝑖
(𝐂 − (0, … , 0, 1))𝑖

)
𝑞

1
(1 − 𝑞−1)

𝑧

(
1
1

)
𝑞

]
.

The factor (𝑞−1; 𝑞)|𝐃| in both terms within brackets leads to vanishing of the expression unless|𝐃| = 0 or |𝐃| = 1. In the former case, we get

lim
𝔪→0

𝑊1,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂, 0) = 𝑧−1𝑞|𝐀|[−(𝑞𝑧; 𝑞)|𝐂|
(𝑧; 𝑞)|𝐂|

(
𝑞−1

)|𝐂| 1
(1 − 𝑞−1)

𝑧

+
(𝑞𝑧; 𝑞)|𝐂|−1
(𝑧; 𝑞)|𝐂|−1

(
𝑞−1

)|𝐂|−1 1
(1 − 𝑞−1)

𝑧

]
= 𝑞|𝐀|+1−|𝐂| 1

1 − 𝑧
.

Due to the condition 𝐀 + 𝐁 = 𝐂 + 𝐃, the power of 𝑞 vanishes, and the result matches (6.8).
For the case |𝐃| = 1 we have two subcases. Either 𝐃 = (0,… , 0, 1), that is, the outgoing path

has color 𝑁, or it has smaller color. In the former case,

lim
𝔪→0

𝑊1,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂, (0, … , 0, 1)) =
𝑧𝑞|𝐀|−|𝐂|
1 − 𝑧

[
−

(
𝐶𝑁 + 1

𝐶𝑁

)
𝑞

+ 𝑞

(
𝐶𝑁

𝐶𝑁 − 1

)
𝑞

]

=
𝑧𝑞|𝐀|−|𝐂|
1 − 𝑧

[
−
1 − 𝑞𝐶𝑁+1

1 − 𝑞
+ 𝑞

1 − 𝑞𝐶𝑁

1 − 𝑞

]
= −

𝑧
1 − 𝑧

,

which matches (6.8). In remains to study the case when the outgoing path in 𝐃 has color 𝑢 < 𝑁.
In principle, since the contributions of the first two cases sum up to 1, if we know the positivity
and stochasticity of the weights, then the third case must give zero contribution. Nevertheless, let
us make the computation:

lim
𝔪→0

𝑊1,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂, (0, … , 1, 0, … , 0))

=
𝑧

1 − 𝑧
𝑞|𝐀|−|𝐂|

[
−𝑞

∑
𝑗>𝑢 𝐶𝑗 ⋅

(
𝐶𝑢 + 1

𝐶𝑢

)
𝑞

+ 𝑞 ⋅ 𝑞
∑

𝑗>𝑢 𝐶𝑗−1 ⋅
(
𝐶𝑢 + 1

𝐶𝑢

)
𝑞

]
= 0.

We proceed to the 𝐿 > 1 case,† We start by taking 𝐃 = (0,… , 0, 𝑑). In this case we have

lim
𝔪→0

𝑊𝐿,∞,𝔪(𝑧∕𝔪, 𝑞;𝐀, 𝐁; 𝐂, (0, … , 0, 𝑑))

=
𝑧𝑑𝑞(𝑑−𝐿)𝐿(𝑞−𝐿; 𝑞)𝑑
(𝑞−𝐿; 𝑞)𝐿(𝑞; 𝑞)𝑑

𝐿∑
𝑝=0

(−1)𝐿−𝑝𝑞
(𝐿−𝑝)(𝐿−𝑝−1)

2 𝑞𝑝𝐿
(𝑞𝐿𝑧; 𝑞)|𝐂|−𝑝(𝑞𝐶𝑁−𝑝+1; 𝑞)𝑑(𝑞

𝐿−𝑝+1; 𝑞)𝑝

(𝑧; 𝑞)|𝐂|+𝑑−𝑝(𝑞; 𝑞)𝑝 . (6.11)

†An alternative way to perform the following computation is by using the symmetry of the weight𝑊 under interchange
𝐀 ↔ 𝐁, 𝐂 ↔ 𝐃 with simultaneous adjustment of the parameters of the distribution; see [21, Proposition C.1.3]. This way
avoids the hypergeometric identities that we need to use in the present approach.
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We would like to use hypergeometric identities and for that we transform the sum into more
standard form:

𝐿∑
𝑝=0

(−1)𝐿−𝑝𝑞
(𝐿−𝑝)(𝐿−𝑝−1)

2 𝑞𝑝𝐿
(𝑞𝐿𝑧; 𝑞)|𝐂|−𝑝(𝑞𝐶𝑁−𝑝+1; 𝑞)𝑑(𝑞

𝐿−𝑝+1; 𝑞)𝑝

(𝑧; 𝑞)|𝐂|+𝑑−𝑝(𝑞; 𝑞)𝑝
=

(𝑞𝐿𝑧; 𝑞)|𝐂|(𝑞𝐶𝑁+1; 𝑞)𝑑

(𝑧; 𝑞)|𝐂|+𝑑
𝐿∑

𝑝=0

(−1)𝐿−𝑝𝑞
𝐿(𝐿−1)

2
+ 𝑝(𝑝+1)

2
(𝑞𝐶𝑁−𝑝+1; 𝑞)𝑝(𝑞

𝐿−𝑝+1; 𝑞)𝑝(𝑧𝑞
|𝐂|+𝑑−𝑝; 𝑞)𝑝

(𝑞𝐶𝑁−𝑝+1+𝑑; 𝑞)𝑝(𝑞𝐿+|𝐂|−𝑝𝑧; 𝑞)𝑝(𝑞; 𝑞)𝑝
=

(𝑞𝐿𝑧; 𝑞)|𝐂|(𝑞𝐶𝑁+1; 𝑞)𝑑

(𝑧; 𝑞)|𝐂|+𝑑 (−1)𝐿𝑞
𝐿(𝐿−1)

2

𝐿∑
𝑝=0

𝑞𝑝
(𝑞−𝐶𝑁 ; 𝑞)𝑝(𝑞

−𝐿; 𝑞)𝑝(𝑧
−1𝑞1−|𝐂|−𝑑; 𝑞)𝑝

(𝑞−𝐶𝑁−𝑑; 𝑞)𝑝(𝑧−1𝑞1−𝐿−|𝐂|; 𝑞)𝑝(𝑞; 𝑞)𝑝 , (6.12)

where in the last identity we used

(𝑥𝑞−𝑝; 𝑞)𝑝 = (1 − 𝑥𝑞−𝑝)(1 − 𝑥𝑞1−𝑝)⋯ (1 − 𝑥𝑞−1)

= (−1)𝑝𝑥𝑝𝑞−1−2−⋯−𝑝(1 − 𝑞∕𝑥)(1 − 𝑞2∕𝑥)⋯ (1 − 𝑞𝑝∕𝑥) = (−1)𝑝𝑥𝑝𝑞−𝑝(𝑝+1)∕2(𝑞∕𝑥; 𝑞)𝑝.

For the last sum in (6.12), we use the transformation of 3𝜙2 given in [38, (III.11)]:

3𝜙2(𝑞
−𝑛, 𝑏, 𝑐; 𝑑, 𝑒; 𝑞, 𝑞) =

(𝑑𝑒∕𝑏𝑐; 𝑞)𝑛
(𝑒; 𝑞)𝑛

(
𝑏𝑐
𝑑

)𝑛

3𝜙2

(
𝑞−𝑛,

𝑑
𝑏
,
𝑑
𝑐
; 𝑑,

𝑑𝑒
𝑏𝑐

; 𝑞, 𝑞

)
with 𝑛 ∶= 𝐿, 𝑏 ∶= 𝑞−𝐶𝑁 , 𝑐 ∶= 𝑧−1𝑞1−|𝐂|−𝑑, 𝑑 ∶= 𝑞−𝐶𝑁−𝑑, 𝑒 ∶= 𝑧−1𝑞1−𝐿−|𝐂|. Hence, (6.12)
becomes

(−1)𝐿𝑞
𝐿(𝐿−1)

2
(
𝑧−1𝑞1−|𝐂|)𝐿 (𝑞𝐿𝑧; 𝑞)|𝐂|(𝑞𝐂𝑁+1; 𝑞)𝑑(𝑞

−𝐿; 𝑞)𝐿

(𝑧; 𝑞)|𝐂|+𝑑(𝑧−1𝑞1−𝐿−|𝐂|; 𝑞)𝐿
× 3𝜙2

(
𝑞−𝐿, 𝑞−𝑑, 𝑧𝑞−𝐶𝑁−1+|𝐂|; 𝑞−𝐶𝑁−𝑑, 𝑞−𝐿; 𝑞, 𝑞

)
.

Since 𝑞−𝐿 appears twice in the parameters of the last 3𝜙2, we can remove it and replace 3𝜙2 with
2𝜙1, at which point we can use the 𝑞-Chu-Vandermonde identity [38, (1.5.3)]

2𝜙1(𝑎, 𝑞
−𝑑; 𝑐; 𝑞; 𝑞) =

(𝑐∕𝑎; 𝑞)𝑑
(𝑐; 𝑞)𝑑

𝑎𝑑.

Therefore, (6.12) transforms into

(−1)𝐿𝑞
𝐿(𝐿−1)

2
(
𝑧−1𝑞1−|𝐂|)𝐿

×
(𝑞𝐿𝑧; 𝑞)|𝐂|(𝑞𝐶𝑁+1; 𝑞)𝑑(𝑞

−𝐿; 𝑞)𝐿

(𝑧; 𝑞)|𝐂|+𝑑(𝑧−1𝑞1−𝐿−|𝐂|; 𝑞)𝐿
(𝑧−1𝑞−𝑑+1−|𝐂|; 𝑞)𝑑

(𝑞−𝐶𝑁−𝑑; 𝑞)𝑑

(
𝑧𝑞−𝐶𝑁−1+|𝐂|)𝑑, (6.13)
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and the limit in (6.11) is the last expression multiplied by

𝑧𝑑𝑞(𝑑−𝐿)𝐿(𝑞−𝐿; 𝑞)𝑑
(𝑞−𝐿; 𝑞)𝐿(𝑞; 𝑞)𝑑

. (6.14)

Simplifying the product of (6.13) and (6.14) we arrive at

(𝑞−𝐿; 𝑞)𝑑
(𝑧; 𝑞)𝐿(𝑞; 𝑞)𝑑

(𝑧𝑞𝐿)𝑑,

which matches (6.8).
It now remains to show that only 𝐃 of the form (0, … , 0, 𝑑) give nonzero limit in (6.8). There

should be a direct formulaic way to prove it, but instead we use a shortcut. We note that for the
𝐿 = 1 case we proved that only𝐃 = (0,… , 0) and𝐃 = (0,… , 0, 1) lead to nonvanishing limits. The
vertexweights for general 𝐿 are obtained from the 𝐿 = 1weights by collapsing 𝐿 rows in the fusion
procedure (cf. Theorem 6.2 and Appendix). Clearly, if no paths of colors less than 𝑁 exit to the
right before fusion, then this is still true for the fused rows, and this completes the proof. □

For the vertices in columns 1, 2, … we do not need any limit transition. Instead we will simply
set 𝑧 = 1 in (6.7). Then the two last arguments in the second Φ(⋅) coincide, which leads to 𝜇 = 𝜆
in (6.3) and then Φ(⋅) = 1.† Hence, the weight simplifies. After noting that 𝐂 − 𝐁 = 𝐀 −𝐃 and
𝐂 + 𝐃 − 𝐁 = 𝐀, we can write

𝑊𝐿,∞,𝔪(1, 𝑞; 𝐀, 𝐁; 𝐂,𝐃) = 𝑞|𝐀|𝐿𝔪|𝐃|Φ(𝐀 − 𝐃,𝐀;𝔪𝑞𝐿,𝔪)

= 𝔪|𝐃|𝑞𝐿⋅|𝐃| (𝔪𝑞𝐿; 𝑞)|𝐀−𝐃|(𝑞−𝐿; 𝑞)|𝐃|
(𝔪; 𝑞)|𝐀| 𝑞

∑
𝑖<𝑗 𝐷𝑖(𝐴𝑗−𝐷𝑗)

𝑁∏
𝑖=1

(
𝐴𝑖

𝐴𝑖 − 𝐷𝑖

)
𝑞

.

(6.15)

The next step is to note that both formulas (6.8) and (6.15) are analytic (meromorphic) functions
of the argument 𝑞−𝐿. Hence, we can replace 𝑞−𝐿 with a new complex number 𝔩. We are also going
to ignore completely the paths on the vertical edges in column 0, and only keep track of what is
happening in the quadrant ℤ>0 × ℤ>0. The final description is as follows.

∙ We deal with configurations of colored paths on the edges joining vertices in the integral quad-
rant {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ ℤ>0}. Each lattice edge has finite (but allowed to be arbitrarily large) number
of paths of different colors. There might be more than one path of each color and the colors are
from {1, 2, … }.

∙ The local configurations at the vertices are sampled sequentially in the direction of growing
𝑥 and 𝑦. The distribution depends on the parameters 0 < 𝑞 < 1, 𝔩, 𝑧, and a sequence 𝔪𝑥,
𝑥 = 1, 2, … .

∙ At the bottom boundary, no paths of positive colors enter the quadrant (that is, into the vertices
(𝑥, 1), 𝑥 ∈ ℤ>0).

† In this argument it is important to restrict the values for𝔪 so that the firstΦ(⋅) factor in (6.7) would not explode because
of the denominator (𝑦; 𝑞)|𝜇| in its definition. Since 𝑦 in the last 𝑞-Pochhammer symbol needs to be set to 𝔪, the choice
0 < 𝔪 < 1 works well.
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∙ Along the left boundary, the only paths entering (𝑦, 1), 𝑦 ∈ ℤ>0, have color 𝑦. The number of
such paths 𝔡 = 0, 1, 2… , is distributed according to the law

Prob(𝔡 = 𝑑) =
(𝑧∕𝔩; 𝑞)∞
(𝑧; 𝑞)∞

⋅
(𝔩; 𝑞)𝑑
(𝑞; 𝑞)𝑑

(𝑧
𝔩

)𝑑
. (6.16)

∙ At each vertex (𝑥, 𝑦), the configuration of incoming from below paths 𝐀 and from the left 𝐁 is
transformed into the outgoing paths going up 𝐂 and going to the right 𝐃. We use the notation
𝐀 = (𝐴1, 𝐴2, … ), where 𝐴𝑖 stands for the number of paths of color 𝑖. We also set |𝐀| = 𝐴1 +
𝐴2 + … , and similarly for the other three groups. The transformation is done by the stochastic
rule with probability of outgoing configuration 𝐂,𝐃 given by

𝔩,𝔪𝑥,𝑞
(𝐀, 𝐁; 𝐂,𝐃)

=
(𝔪𝑥

𝔩

)|𝐃| (𝔪𝑥∕𝔩; 𝑞
)|𝐀−𝐃|(𝔩; 𝑞)|𝐃|

(𝔪𝑥; 𝑞)|𝐀| 𝑞
∑

𝑖<𝑗 𝐷𝑖(𝐴𝑗−𝐷𝑗)
∞∏
𝑖=1

(
𝐴𝑖

𝐴𝑖 − 𝐷𝑖

)
𝑞

, (6.17)

subject to the conservation of colors condition 𝐀 + 𝐁 = 𝐂 + 𝐃.
∙ The parameters 𝔩, 𝑧, 𝔪𝑥, 𝑥 = 1, 2, … , are assumed to be chosen so that (6.16) and (6.17) are
nonnegative and (6.16) is summable over 𝑑 = 0, 1, … . For instance, this is the case when
0 < 𝑧, 𝔩,𝔪𝑥, 𝑧∕𝔩,𝔪𝑥∕𝔩 < 1 for all 𝑥 = 1, 2, … , but other choices are also possible.

One way to think about (6.17) is that all paths entering a vertex from the left deterministically
turn up.On the other hand, the paths entering frombelowmight either turn to the right or proceed
straight up. In particular, (6.17) implies that if 𝐀 is empty, then so is 𝐃. Hence, for our boundary
conditions, no paths of positive colors lie below the diagonal 𝑥 = 𝑦, so that the only nontrivial
vertices in the system are (𝑥, 𝑦) with 𝑥 ⩽ 𝑦.

Theorem 6.10. In the above setting of the analytically continued fused colored model in quadrant
with vertex weights (6.17) and incoming probabilities (6.16), choose a set of positive integers 𝑘𝑗 and a
set of points in the quadrant𝑗 , 𝑗 = 1,… , 𝑛. Fix an index 1 ⩽ 𝜄 ⩽ 𝑛 and an integer Δ > 0. Define

𝑘′𝑗 =

{
𝑘𝑗, 𝑗 ≠ 𝜄,

𝑘𝜄 + Δ, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄,

𝜄 + (0, Δ), 𝑗 = 𝜄.

Suppose that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, … ,𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, … ,𝑛,  ′
1 , … , ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, … , ′
𝑛.

Then the distribution of the vector of the height functions(⩾𝑘1(1), ⩾𝑘2(2), … ,⩾𝑘𝑛(𝑛)
)

(6.18)



270 BORODIN et al.

coincides with the distribution of the vector with shifted 𝜄th coordinate(⩾𝑘′1( ′
1 ), ⩾𝑘′2( ′

2 ), … ,⩾𝑘′𝑛 ( ′
𝑛)
)
. (6.19)

Remark 6.11. It is natural to expect that an addition of vertical inhomogeneities, that is, replace-
ment of 𝔩 by 𝔩𝑦 , should preserve the statement of Theorem 6.10 with proper interchange of param-
eters as in Theorem 1.2. However, our proofs do not allow to claim this generalization.

Proof of Theorem 6.10. Introduce a complex variable 𝑢 ∶= 𝔩−1. The distributions of both vectors
(6.18) and (6.19) (that is, the probabilities that they attain certain values) are functions of 𝑢, which
are holomorphic in a complex neighborhood of 𝑢 = 0. Indeed, while the positivity conditions fail
for complex 𝑢, yet the formulas for the distribution of the number of incoming paths (6.16) are
still converging uniformly in 𝑢, while the formulas for the vertex weights (6.17) only involve finite
sums. Hence, the distributions of the vectors (6.18), (6.19) are represented as converging sums
involving products of the expressions (6.18) and (6.19). For small 𝑢 ≠ 0 the holomorphicity is clear
from the definitions. On the other hand, as 𝑢 → 0 (equivalently, as 𝔩 → ∞) the formulas (6.18),
(6.19) remain bounded and, in fact, converge to a finite limit. Hence, the singularity at 𝑢 = 0 is
removable, and the functions of interest are holomorphic there.
For 𝑢 = 𝑞𝐿, 𝐿 = 1, 2, … , the coincidence of the two holomorphic functions describing the prob-

ability of attaining some value by (6.18) and (6.19) is the content of Corollary 6.7. Since {𝑞𝐿}𝐿=1,2,…
has a limiting point 0 and is, therefore, a uniqueness set for holomorphic (in 𝑢) functions, we con-
clude that the coincidence of the distributions of vectors (6.18) and (6.19) extends to all complex
values of 𝑢, such that the sum (over 𝑑) in (6.16) remains uniformly convergent. □

6.3 Auxiliary 𝒒-identities and limit transitions

This section collects some results on 𝑞-Pochhammer symbols and 𝑞-binomial coefficients, which
will be useful in our asymptotic analysis later on.

Lemma 6.12. For any 𝑎, 𝑏 ∈ ℝ and complex-valued function 𝑢(⋅) defined in a neighborhood of 1
and such that

lim
𝑞→1

𝑢(𝑞) = 𝑢

with 0 < 𝑢 < 1, we have

lim
𝑞→1

(𝑞𝑎𝑢(𝑞); 𝑞)∞
(𝑞𝑏𝑢(𝑞); 𝑞)∞

= (1 − 𝑢)𝑏−𝑎.

Proof. See [8, Theorem 10.2.4]. □

We define the 𝑞-Gamma function through

Γ𝑞(𝑥) =
(𝑞; 𝑞)∞
(𝑞𝑥; 𝑞)∞

(1 − 𝑞)1−𝑥, 𝑥 ≠ 0, −1, −2,… .
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Lemma 6.13. For any 𝑥 ∈ ℂ ⧵ {0, −1, −2,… } we have

lim
𝑞→1

Γ𝑞(𝑥) = Γ(𝑥).

Proof. See [8, Corollary 10.3.4]. □

Recall the definition of dilogarithm:

𝐿𝑖2(𝑥) =
∞∑
𝑛=1

𝑥𝑛

𝑛2
.

We have
𝜕
𝜕𝑥

𝐿𝑖2(𝑥) = −
ln(1 − 𝑥)

𝑥
.

Lemma 6.14. For any 0 < 𝑎 < 1 as 𝑞 → 1 we have the following asymptotic expansion valid for
each 𝐾 = 1, 2, … :

ln(𝑎; 𝑞)∞ =
1

ln 𝑞
𝐿𝑖2(𝑎) +

1
2
ln(1 − 𝑎) +

𝐾∑
𝑘=1

𝐶𝑘(𝑎)(ln 𝑞)
2𝑘−1 + 𝑜

(
ln(𝑞)2𝐾−1

)
, (6.20)

where 𝐶𝑘(𝑎) is a polynomial in 𝑎 multiplied by (𝑎 − 1)1−2𝑘 , and the remainder 𝑜(⋅) is uniform as
long as 𝑎 is bounded away from 1.

Proof. See [45, Corollary 10]. □

Lemma 6.15. For nonnegative integers𝑀,𝑁, 𝐾, we have

𝐾∑
𝑘=0

𝑞𝑘(𝑀−𝐾+𝑘)

(
𝑁
𝑘

)
𝑞

(
𝑀

𝐾 − 𝑘

)
𝑞

=
𝐾∑

𝑘=0

𝑞(𝑁−𝑘)(𝐾−𝑘)

(
𝑁
𝑘

)
𝑞

(
𝑀

𝐾 − 𝑘

)
𝑞

=

(
𝑁 +𝑀

𝐾

)
𝑞

. (6.21)

Proof. The 𝑞-binomial theorem reads

𝑁∏
𝑖=1

(1 + 𝑞𝑖−1𝑡) =
𝑁∑
𝑘=0

𝑞𝑘(𝑘−1)∕2
(
𝑁
𝑘

)
𝑞

𝑡𝑘. (6.22)

Changing the variables and replacing 𝑁 by𝑀, we also have

𝑁+𝑀∏
𝑖=𝑁+1

(1 + 𝑞𝑖−1𝑡) =
𝑀∑

𝑘′=0

𝑞𝑘
′(𝑘′−1)∕2+𝑁𝑘′

(
𝑀
𝑘′

)
𝑞

𝑡𝑘
′
. (6.23)

Multiplying (6.22) and (6.23) and comparing the coefficient of 𝑡𝐾 with the one arising from

𝑁+𝑀∏
𝑖=1

(1 + 𝑞𝑖−1𝑡) =
𝑁+𝑀∑
𝐾=0

𝑞𝐾(𝐾−1)∕2
(
𝑁 +𝑀

𝐾

)
𝑞

𝑡𝐾, (6.24)

we obtain the result. □
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6.4 A continuous limit

Our next aim is to send 𝑞 → 1 in the vertex model of Theorem 6.10, rescaling the system so that
in the limit we obtain a vertex model with continuous (rather than integral) number of paths on
each lattice edge. For the colorless (𝑁 = 1) model, such an asymptotic transition was previously
performed in [9].
The phenomenon that we will observe is that asymptotically the 𝑁-dimensional distribution

(6.17) (where𝑁 is the number of colors) in the leading order is concentrated on a one-dimensional
subspace, and its law is related to the classical Beta distribution. On the other hand, the second
order (𝑁 − 1)-dimensional fluctuations are Gaussian. There is a certain ambiguity in formulating
a precise mathematical statement, because there is no canonical choice of the aforementioned
one-dimensional subspace. But as soon as we fix one, we can no longer observe the smaller order
Gaussian component in the direction parallel to the subspace (the weak convergence of the ran-
dom variables does not distinguish between a random variable and a sum of the same random
variable and an asymptotically vanishing Gaussian correction) — we can only track the orthogo-
nal directions.
The choice that we make is to look at the total number of paths of all colors (equivalently, on

the evolution of the underlying colorlessmodel), for which the Beta distribution appears asymp-
totically. We further observe the lower order Gaussian fluctuations as asymptotic corrections to
the (deterministic in the first order) splitting of the paths between the colors.
Inmore detail, we take a small parameter 𝜀 > 0 and concentrate on the following limit regime:

𝜀 → 0, 𝑞 = exp(−𝜀), 𝔩 = 𝑞𝜌, 𝑧 = 𝑞𝜎0 , 𝔪𝑥 = 𝑞𝜎𝑥 , (6.25)

where 0 < 𝜌 < 𝜎𝑥, 𝑥 = 0, 1, 2, … , are arbitrary.
The first result of this section describes the limit of the boundary condition. Recall that the

Beta distribution 𝐵(𝑎, 𝑏) with parameters 𝑎 > 0, 𝑏 > 0 is absolutely continuous with respect to
the Lebesgue measure on (0,1) with density

Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1, 0 < 𝑥 < 1.

Proposition 6.16. Under (6.25), the random variable exp(−𝜀𝔡), with (6.16)–distributed 𝔡, weakly
converges as 𝜀 → 0 to the Beta random variable with parameters (𝜎0 − 𝜌, 𝜌).

Proof. For 𝑑 = 𝑥∕𝜀, the right-hand side of (6.16) transforms into

(𝑞𝜎0−𝜌; 𝑞)∞
(𝑞𝜎0 ; 𝑞)∞

⋅
(𝑞𝜌; 𝑞)𝑥∕𝜀

(𝑞; 𝑞)𝑥∕𝜀
exp(𝑥(𝜌 − 𝜎0))

=
(𝑞𝜎0−𝜌; 𝑞)∞(𝑞𝜌; 𝑞)∞
(𝑞𝜎0 ; 𝑞)∞(𝑞; 𝑞)∞

⋅
(𝑞1+𝑥∕𝜀; 𝑞)∞
(𝑞𝜌+𝑥∕𝜀; 𝑞)∞

exp(𝑥(𝜌 − 𝜎0)). (6.26)

Using Lemma 6.13 for the first fraction (three times) and Lemma 6.12 for the second fraction, we
see that the asymptotic behavior of the last expression is

𝜀 ⋅
Γ(𝜎0)

Γ(𝜌)Γ(𝜎0 − 𝜌)
(1 − exp(−𝑥))𝜌−1 exp(−𝑥)𝜎0−𝜌. (6.27)
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Hence, this expression (with 𝜀–factor removed) gives the asymptotic density of 𝜀𝔡. Therefore, the
asymptotic density of exp(−𝜀𝔡) at a point 0 < 𝑦 < 1 is

Γ(𝜎0)

Γ(𝜌)Γ(𝜎0 − 𝜌)
(1 − 𝑦)𝜌−1𝑦𝜎0−𝜌−1.

□

We proceed to analysis of the distribution at a general vertex (6.17). We start by transforming it
into a more convenient form.

Lemma6.17. If we fix𝐀, then the distribution of𝐃 given by (6.17) can be sampled through a two-step
procedure. We first sample an integer |𝐃|, 0 ⩽ |𝐃| ⩽ |𝐀|, from the distribution

(𝔪𝑥

𝔩

)|𝐃| (𝔪𝑥∕𝔩; 𝑞)|𝐀|−|𝐃|(𝔩; 𝑞)|𝐃|
(𝔪𝑥; 𝑞)|𝐀|

(|𝐀||𝐃|
)
𝑞

. (6.28)

Given the vector 𝐀 and the number |𝐃| we further sample the vector 𝐃 with prescribed sum of the
coordinates |𝐃| from the distribution(|𝐀||𝐃|

)−1

𝑞

𝑞
∑

𝑖<𝑗 𝐷𝑖(𝐴𝑗−𝐷𝑗)
∞∏
𝑖=1

(
𝐴𝑖

𝐷𝑖

)
𝑞

. (6.29)

Proof. We start from (6.17) and sum over all nonnegative integral vectors 𝐃 with prescribed
sum of the coordinates |𝐃| using Lemma 6.15 to get (6.28). Dividing (6.17) by (6.28), we arrive
at (6.29). □

The limit of the distribution of |𝐃| can now be computed; cf. [9, Lemma 2.4].

Proposition 6.18. Suppose that as 𝜀 → 0, the number |𝐀| scales so that |𝐀| = 𝛼𝜀−1 for some real
𝛼 staying in a compact subset of (0,∞). Then for |𝐃| distributed according to (6.28), in the regime
(6.25), the random variable 𝜀|𝐃|weakly converges as 𝜀 → 0 to a continuous random variable 𝛿, such
that

exp(−𝛿) = exp(−𝛼) + 𝐵(𝜎𝑥 − 𝜌, 𝜌)(1 − exp(−𝛼)),

where 𝐵(𝜎𝑥 − 𝜌, 𝜌) is a Beta random variable.

Proof. For 0 < 𝛿 < 𝛼, setting |𝐃| = 𝜀−1𝛿 and bringing all the 𝑞-Pochhammers in (6.28) to the form
involving only (𝑢; 𝑞)∞, we get

exp ((𝜌 − 𝜎𝑥)𝛿)
(𝑞𝜎𝑥−𝜌; 𝑞)∞(𝑞𝜌; 𝑞)∞
(𝑞; 𝑞)∞(𝑞𝜎𝑥 ; 𝑞)∞

×
(𝑞𝜎𝑥 exp(−𝛼); 𝑞)∞
(𝑞 exp(−𝛼); 𝑞)∞

⋅
(𝑞 exp(𝛿 − 𝛼); 𝑞)∞

(𝑞𝜎𝑥−𝜌 exp(𝛿 − 𝛼); 𝑞)∞
⋅
(𝑞 exp(−𝛿); 𝑞)∞
(𝑞𝜌 exp(−𝛿); 𝑞)∞

.
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We use Lemma 6.13 for the first fraction (three times) and Lemma 6.12 for the next three fractions.
The resulting asymptotic behavior is

𝜀 ⋅
Γ(𝜎𝑥)

Γ(𝜌)Γ(𝜎𝑥 − 𝜌)
exp ((𝜌 − 𝜎𝑥)𝛿) (6.30)

× (1 − exp(−𝛼))1−𝜎𝑥 ⋅ (1 − exp(𝛿 − 𝛼))𝜎𝑥−𝜌−1 ⋅ (1 − exp(−𝛿))𝜌−1. (6.30)

Dividing by 𝜀 we obtain the asymptotic density of |𝛿|. Making the change of variables, we find
that the density of exp(−𝛿)−exp(−𝛼)

1−exp(−𝛼)
at a point 0 < 𝑦 < 1 is

Γ(𝜎𝑥)

Γ(𝜌)Γ(𝜎𝑥 − 𝜌)
⋅ 𝑦𝜎𝑥−𝜌−1(1 − 𝑦)𝜌−1. (6.31)

□

The next step is to study asymptotics of the conditional distribution (6.29).
Suppose that we are given𝑁 positive real numbers 𝛼1, … , 𝛼𝑁 and an additional number 𝛿 such

that 0 < 𝛿 < |𝛼| = 𝛼1 +⋯ + 𝛼𝑁 . Then we define 𝑁-dimensional vector (𝛿1, … , 𝛿𝑁) through 𝛿1 +
𝛿2 +⋯ + 𝛿𝑁 = |𝛿| = 𝛿 and

exp

(
−

𝑁∑
𝑗=𝑖

𝛿𝑗

)
= exp

(
−

𝑁∑
𝑗=𝑖

𝛼𝑗

)
+

(
1 − exp

(
−

𝑁∑
𝑗=𝑖

𝛼𝑗

))
𝜂, 𝑖 = 1, 2, … ,𝑁, (6.32)

where 𝜂 is the constant found from the 𝑖 = 1 condition. In addition, we define real numbers 𝑣𝑖
by

1
𝑣𝑖

= 1 +
𝜕2

𝜕𝑥2

[
𝐿𝑖2(exp(−𝑥)) + 𝐿𝑖2(exp(𝑥 − 𝛼𝑖))

]
𝑥=𝛿𝑖

, 𝑖 = 1, … ,𝑁. (6.33)

All 𝑣𝑖 , 𝑖 = 1, … ,𝑁, are positive, as follows from the inequality

𝜕2

𝜕𝑥2

[
𝐿𝑖2(exp(−𝑥)) + 𝐿𝑖2(exp(𝑥 − 𝛼𝑖))

]
> −1, 0 < 𝑥 < 𝛼𝑖. (6.34)

Proposition 6.19. Suppose that as 𝜀 → 0, the numbers 𝐴𝑖 , 𝑖 = 1, … ,𝑁, and |𝐃| scale so that 𝐴𝑖 =
𝛼𝑖𝜀

−1, |𝐃| = 𝛿𝜀−1 for some 𝛼𝑖 staying in a compact subset of (0, +∞) and 𝛿 staying in a compact
subset of (0,

∑
𝑖 𝛼𝑖). Then the law of𝐷𝑖 , 𝑖 = 1, … ,𝑁, given by (6.29) satisfies the law of large numbers

and central limit theorem as 𝜀 → 0: For 𝛿𝑖 , 𝑣𝑖 given by (6.32) and (6.33), the vector(
𝜉𝑖 =

𝐷𝑖 − 𝜀−1𝛿𝑖
𝜀−1∕2

)𝑁

𝑖=1

(6.35)

weakly converges to the (degenerate)𝑁-dimensional centered Gaussian vector, which is supported on
the hyperplane 𝜉1 +⋯ + 𝜉𝑁 = 0 and whose density is proportional to the restriction to this hyper-
plane of the density of the vector with independent Gaussian components of mean 0 and variances
𝑣𝑖 , 𝑖 = 1, … ,𝑁.
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Remark 6.20. The computation below leading to (6.32) is quite involved. Another way to see the
result (which is howwe originally arrived at this formula) is tomake the computation recurrently,
reducing it to the 𝑁 = 2 case. At each step 𝑘 = 1, 2, … ,𝑁 − 1, one looks at the distribution of
the pair (𝐷𝑘, 𝐷𝑘+1 + 𝐷𝑘+2 +⋯ + 𝐷𝑁) conditional on𝐷𝑘 + 𝐷𝑘+1 +⋯ + 𝐷𝑁 , in order to determine
𝛿𝑘+1 +⋯ + 𝛿𝑁 . (For instance, at the first step, 𝑘 = 1, we study the asymptotic of (𝐷1, 𝐷2 +⋯ +
𝐷𝑁) given the fixed sum of all coordinates, |𝐃| = 𝐷1 +⋯ + 𝐷𝑁 .) Using Lemma 6.15, one notes
that this conditional distribution has the form of (6.35) with 𝑁 = 2 and two coordinates given by
𝐷𝑘 and 𝐷𝑘+1 + 𝐷𝑘+2 +⋯ + 𝐷𝑁 (the sum of these coordinates is fixed by to the conditioning).

Proof of Proposition 6.19. Using Lemma 6.14, as a function of all 𝐷𝑖 , subject to the condition of the
fixed |𝐃|, (6.29) is proportional to

𝑞
∑

𝑖<𝑗 𝐷𝑖(𝐴𝑗−𝐷𝑗)
∞∏
𝑖=1

(𝑞𝐷𝑖 ; 𝑞)∞(𝑞𝐴𝑖−𝐷𝑖 ; 𝑞)∞ = exp

(
−𝜀−1

∑
𝑖<𝑗

(𝜀𝐷𝑖)(𝜀𝐴𝑗 − 𝜀𝐷𝑗)

− 𝜀−1
∑
𝑖

[
𝐿𝑖2(exp(−𝜀𝐷𝑖)) + 𝐿𝑖2(exp(𝜀𝐷𝑖 − 𝜀𝐴𝑖))

]

+
1
2
ln(1 − exp(−𝜀𝐷𝑖)) +

1
2
ln(1 − exp(−𝜀(𝐴𝑖 − 𝐷𝑖))) + 𝑂(𝜀)

)
. (6.36)

We are interested in 𝜀−1–part of this expression as a function of 𝜀𝐷1, … , 𝜀𝐷𝑁 subject to the condi-
tion of the fixed sum of the coordinates. We are going to show that this function is strictly concave
and has a critical point inside the domain 0 < 𝜀𝐷𝑖 < 𝜀𝐴𝑖 , 𝑖 = 1, … ,𝑁,

∑𝑁
𝑖=1(𝜀𝐷𝑖) = 𝜀|𝐃|. Hence,

this critical point is a (unique) maximum of the function inside the domain and, due to 𝜀−1 pref-
actor, the measure is concentrated near this point, which leads to the law of large numbers. For
the central limit theorem, we Taylor expand the density near the critical point up to second order
and the quadratic approximation gives the desired Gaussian limit.
We remark that in order for the asymptotic expansion (6.36) to be valid, we need 𝑞𝐷𝑖 and 𝑞𝐴𝑖−𝐷𝑖

to be bounded away from 1, whichmeans that 𝜀𝐷𝑖 and 𝜀(𝐴𝑖 − 𝐷𝑖) should be bounded away from 0.
For boundary values, that is, for small 𝜀𝐷𝑖 or 𝜀(𝐴𝑖 − 𝐷𝑖), the 𝜀−1 part in the exponential of (6.36)

exp

(
−𝜀−1

∑
𝑖<𝑗

(𝜀𝐷𝑖)(𝜀𝐴𝑗 − 𝜀𝐷𝑗) − 𝜀−1
∑
𝑖

[
𝐿𝑖2(exp(−𝜀𝐷𝑖)) + 𝐿𝑖2(exp(𝜀𝐷𝑖 − 𝜀𝐴𝑖))

]
+ 𝑂(1)

)

becomes an upper bound for the probability (6.29), as follows from the unimodality of 𝑞-binomial
coefficients

(𝑛
𝑘

)
𝑞
as a function of 𝑘. This upper bound implies that the boundary values of 𝐷𝑖 give

negligible contribution in the asymptotics and we can (and will) ignore them.
We proceed with more details of the argument. For the law of large numbers, that is, the con-

vergence of 𝜀−1∕2𝜉𝑖 from (6.35) to zero, we assume that𝐀 and𝐃 are large by setting𝐴𝑖 = 𝜀−1𝛼𝑖 and
𝐷𝑖 = 𝜀−1𝛿𝑖 . We further seek the maximum of the 𝜀−1(… ) part of the exponent in (6.36), subject to
the condition

∑
𝑖 𝛿𝑖 = |𝛿| = 𝛿. Introducing a Lagrange multiplier 𝜆, we need to maximize

−
∑
𝑖<𝑗

𝛿𝑖(𝛼𝑗 − 𝛿𝑗) −
∑
𝑖

[
𝐿𝑖2(𝑒

−𝛿𝑖 ) + 𝐿𝑖2(𝑒
𝛿𝑖−𝛼𝑖 )

]
+ 𝜆

(
−𝛿 +

∑
𝑖

𝛿𝑖

)
.
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Differentiating in 𝛿𝑖 , we conclude that the following expression needs to be equal to 0:

𝜆 −
∑
𝑗>𝑖

(𝛼𝑗 − 𝛿𝑗) +
∑
𝑗<𝑖

𝛿𝑗 − exp(−𝛿𝑖)
ln(1 − exp(−𝛿𝑖))

exp(−𝛿𝑖)
+ exp(𝛿𝑖 − 𝛼𝑖)

ln(1 − exp(𝛿𝑖 − 𝛼𝑖))

exp(𝛿𝑖 − 𝛼𝑖)

= 𝜆 + 𝛿 −

(∑
𝑗>𝑖

𝛼𝑗

)
− 𝛿𝑖 − ln(1 − exp(−𝛿𝑖)) + ln(1 − exp(𝛿𝑖 − 𝛼𝑖))

= 𝜆 + 𝛿 −

(∑
𝑗>𝑖

𝛼𝑗

)
+ ln

(
exp(−𝛿𝑖) − exp(−𝛼𝑖)

1 − exp(−𝛿𝑖)

)
. (6.37)

Thus, the extremum is found by solving the equations

1 − exp(−𝛿𝑖)

exp(−𝛿𝑖) − exp(−𝛼𝑖)
= exp

(
𝜆 + 𝛿 −

∑
𝑗>𝑖

𝛼𝑗

)
, 𝑖 = 1, 2, … . (6.38)

Dividing 𝑖th and (𝑖 − 1)st equations by each other, we get rid of 𝜆 and get a system of𝑁 − 1 equa-
tions on exp(−𝛿1), . . . , exp(−𝛿𝑁), which is supplemented by 𝛿1 +⋯ + 𝛿𝑁 = 𝛿. We claim that the
solution (its uniqueness follows from the strict concavity that we prove below) is given by the
following equivalent form of (6.32):

exp(−𝛿⩾𝑖) = exp(−𝛼⩾𝑖) + (1 − exp(−𝛼⩾𝑖))𝜂, 𝑖 = 1, 2, … (6.39)

where 𝛿⩾𝑖 = 𝛿𝑖 + 𝛿𝑖+1 … ; 𝛼⩾𝑖 = 𝛼𝑖 + 𝛼𝑖+1 + … ; and 𝜂 does not depend on 𝑖, that is, it is found from
the 𝑖 = 1 case of (6.39). Indeed, (6.39) gives

exp(−𝛿𝑖) =
exp(−𝛼⩾𝑖) + (1 − exp(−𝛼⩾𝑖))𝜂

exp(−𝛼⩾𝑖+1) + (1 − exp(−𝛼⩾𝑖+1))𝜂
. (6.40)

This implies

1 − exp(−𝛿𝑖)

exp(−𝛿𝑖) − exp(−𝛼𝑖)
=

1 −
exp(−𝛼⩾𝑖)+(1−exp(−𝛼⩾𝑖))𝜂

exp(−𝛼⩾𝑖+1)+(1−exp(−𝛼⩾𝑖+1))𝜂

exp(−𝛼⩾𝑖)+(1−exp(−𝛼⩾𝑖))𝜂

exp(−𝛼⩾𝑖+1)+(1−exp(−𝛼⩾𝑖+1))𝜂
− exp(−𝛼𝑖)

=
(1 − 𝜂) exp(−𝛼⩾𝑖+1)(1 − exp(−𝛼𝑖))

𝜂(1 − exp(−𝛼𝑖))
=

1 − 𝜂

𝜂
exp(−𝛼⩾𝑖+1), (6.41)

which matches (6.38) with 𝜆 = −𝛿 + ln(1−𝜂
𝜂
).

For the strict concavity, as well as for the central limit theorem,we need to compute theHessian
matrix of the 𝜀−1(⋅) part of (6.36). We rewrite this part in the coordinates 𝛿𝑖 = 𝜀𝐷𝑖 as

−
∑
𝑖<𝑗

𝛿𝑖𝛼𝑗 −
1
2

(
𝑁∑
𝑖=1

𝛿𝑖

)2

+
𝑁∑
𝑖=1

𝛿2
𝑖

2
−

𝑁∑
𝑖=1

[
𝐿𝑖2(exp(−𝛿𝑖)) + 𝐿𝑖2(exp(𝛿𝑖 − 𝛼𝑖))

]
. (6.42)

The first term in (6.42) is linear and does not contribute to the Hessian. The second term is con-
stant due to the constraint. We conclude that the Hessian matrix is the diagonal matrix of second
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derivatives of the last two terms restricted to the hyperplane
∑𝑁

𝑖=1 𝛿𝑖 = 𝛿. This diagonal matrix
is negative-definite, as follows from the inequality (6.34). We conclude that its restriction on the
hyperplane is also negative-definite. This implies the desired strict concavity.
For the central limit theorem, we need to Taylor expand (6.36) up to second order in a neigh-

borhood of 𝜀𝐃𝑖 ≈ 𝛿𝑖 . The zeroth order cancels with the normalization constant of the probability
measure, the first-order term vanishes, as we are expanding near the maximizer. The quadratic
form appearing in the second order terms gives the desired Gaussian approximation. Our Hessian
computation implies that in the 𝜉𝑖-variables the quadratic form is given by

exp

(
1
2
(𝜉1 +⋯ + 𝜉𝑁)

2 −
∑
𝑖

𝜉2
𝑖

2

(
𝜕2

𝜕𝑥2

[
𝐿𝑖2(exp(−𝑥)) + 𝐿𝑖2(exp(𝑥 − 𝛼𝑖))

]
𝑥=𝛿𝑖

+ 1

))
.

Since 𝜉1 +⋯ + 𝜉𝑁 = 0 deterministically, the last formula matches the description in the state-
ment of the theorem. □

Let us summarize the continuous model which we obtained as 𝜀 → 0 limit of the vertex model.
At this point we ignore the smaller order Gaussian component — it can be readily reconstructed
by utilizing Proposition 6.19.
We first combine the results of Propositions 6.18 and 6.19:

Corollary 6.21. The vertex weight𝔩,𝔪,𝑞(𝐀, 𝐁; 𝐂,𝐃) of (6.17) treated as a stochastic sampling rule
for (𝐂,𝐃) given (𝐀, 𝐁), weakly converges in the limit regime

𝜀 → 0, 𝑞 = exp(−𝜀), 𝔩 = 𝑞𝜌, 𝔪 = 𝑞𝜎,

𝜀𝐀 → 𝛼, 𝜀𝐁 → 𝛽, 𝜀𝐂 → 𝛾, 𝜀𝐃 → 𝛿, |𝛼| > 0,

to the following sampling procedure for the outgoing masses of colors 𝛾𝑖 , 𝛿𝑖 , 𝑖 = 1, 2, … , given the
incoming masses 𝛼𝑖 , 𝛽𝑖 , 𝑖 = 1, 2, … entering the vertex from the left and from the bottom. We take a
Beta random variable 𝜂 ∼ 𝐵(𝜎 − 𝜌, 𝜌) and define 𝛿𝑖 , 0 < 𝛿𝑖 < 𝛼𝑖 for all 1 ⩽ 𝑖 ⩽ max(𝑖∗ ∶ 𝛼𝑖∗ > 0)
through

exp
(
−𝛿⩾𝑖

)
= exp

(
−𝛼⩾𝑖

)
+
(
1 − exp

(
−𝛼⩾𝑖

))
𝜂, 𝑖 = 1, 2, … ,

where 𝛿⩾𝑖 =
∑∞

𝑗=𝑖 𝛿𝑗 , 𝛼⩾𝑖 =
∑∞

𝑗=𝑖 𝛼𝑗 . We also set

𝛾𝑖 = 𝛼𝑖 + 𝛽𝑖 − 𝛿𝑖, 𝑖 = 1, 2, … .

Hence, the resulting continuous model has the following self-contained description.

∙ Each lattice edge of the positive quadrant has a random real-valued vector (𝑢1, 𝑢2, … ) attached
to it. Coordinate 𝑢𝑖 ⩾ 0 is interpreted as the (real)mass of color 𝑖.

∙ For edges entering the quadrant from below all masses are zero.
∙ For the edge entering the quadrant from the left at ordinate 𝑦 only the color 𝑦 is present. To find
its mass, we sample (independently for each 𝑦) a Beta random variable 𝜂 ∼ 𝐵(𝜎0 − 𝜌, 𝜌) and set
the mass to be − ln(𝜂).
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∙ Given the incomingmasses of colors 𝛼𝑖 , 𝛽𝑖 , 𝑖 = 1, 2, … entering the vertex (𝑥, 𝑦) from the bottom
and from the left, we define the outgoing masses 𝛾𝑖 , 𝛿𝑖 using (independently over 𝑥 and 𝑦) a
Beta random variable 𝜂 ∼ 𝐵(𝜎𝑥 − 𝜌, 𝜌) and set 0 ⩽ 𝛿𝑖 ⩽ 𝛼𝑖 through

exp
(
−𝛿⩾𝑖

)
= exp

(
−𝛼⩾𝑖

)
+
(
1 − exp

(
−𝛼⩾𝑖

))
𝜂, 𝑖 = 1, 2, … ,

where 𝛿⩾𝑖 =
∑∞

𝑗=𝑖 𝛿𝑗, 𝛼⩾𝑖 =
∑∞

𝑗=𝑖 𝛼𝑗 . We also set

𝛾𝑖 = 𝛼𝑖 + 𝛽𝑖 − 𝛿𝑖, 𝑖 = 1, 2, … .

∙ The definition implies that only colors at most’𝑦 pass through a general vertex (𝑥, 𝑦), and no
colors at all pass through (𝑥, 𝑦) with 𝑥 > 𝑦.

We can also define the height functions ⩾𝑖(𝑥, 𝑦), 𝑖 = 1, 2, … of the continuous model. As
before, we assume that 𝑥, 𝑦 ∈ 1

2
+ ℤ⩾0 in this definition. In words,⩾𝑖(𝑥, 𝑦) counts the total mass

of paths of colors at least 𝑖 belowpoint (𝑥, 𝑦). Equivalently, the height function is defined by setting
⩾𝑖( 1

2
, 1
2
) = 0 and

⩾𝑖(𝑥, 𝑦 + 1) −⩾𝑖(𝑥, 𝑦) = total mass of colors ⩾ 𝑖 at (𝑥, 𝑦 + 1
2
),

⩾𝑖(𝑥 + 1, 𝑦) −⩾𝑖(𝑥, 𝑦) = total mass of colors ⩾ 𝑖 at (𝑥 + 1
2
, 𝑦).

Corollary 6.21 immediately implies the following statement.

Corollary 6.22. Consider the analytically continued fused colored model in the quadrant, as in
Theorem 6.10, in the limit regime

𝜀 → 0, 𝑞 = exp(−𝜀), 𝔩 = 𝑞𝜌, 𝔪𝑥 = 𝑞𝜎𝑥 , 𝑥 = 0, 1, 2, … .

Let⩾𝑖
𝜀 (𝑥, 𝑦) denote the height function of this discrete model. Then in finite-dimensional distribu-

tions

lim
𝜀→0

𝜀⩾𝑖
𝜀 (𝑥, 𝑦) = ⩾𝑖(𝑥, 𝑦), 𝑥, 𝑦 ∈ 1

2
+ ℤ⩾0,

where⩾𝑖(𝑥, 𝑦) is the just defined height function of the continuous vertex model.

7 DIRECTED POLYMERS

7.1 Beta polymer

Following [9] (who considered the colorless case) we identify the model of Section 6.4 with ran-
dom directed polymers. Another possible interpretation (which we do not pursue in this text) is
that of a random walk in random environment.
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Let us present an alternative definition of the height function⩾𝑖(𝑥, 𝑦) of the continuous vertex
model. For that, we start with a sequence 𝜂(𝑥, 𝑦), 𝑥 ∈ ℤ⩾0, 𝑦 ∈ ℤ>0, of independent Beta random
variables with distributions 𝐵(𝜎𝑥 − 𝜌, 𝜌).†

Proposition 7.1. ⩾𝑖(𝑥, 𝑦) vanishes for 𝑥 ⩾ 𝑦, while for 𝑥 < 𝑦 it can be found by solving the follow-
ing recurrence:

exp
(
−⩾𝑖(𝑥, 𝑦)

)
= 𝜂

(
𝑥 − 1

2
, 𝑦 − 1

2

)
exp

(
−⩾𝑖(𝑥, 𝑦 − 1)

)
+
(
1 − 𝜂

(
𝑥 − 1

2
, 𝑦 − 1

2

))
exp

(
−⩾𝑖(𝑥 − 1, 𝑦 − 1)

)
(7.1)

with boundary conditions

⩾𝑖(𝑥, 𝑥) = 0, ⩾𝑖
(
1
2
, 𝑦
)
=

𝑦−1∕2∑
𝑢=𝑖

ln(−𝜂(0, 𝑢)), 𝑥, 𝑦 = 1
2
, 3
2
, 5
2
, … .

Proof. The boundary conditions are checked in a straightforward way. For the recurrence we note
that, by definition of the system:

⩾𝑖(𝑥, 𝑦) = ⩾𝑖(𝑥, 𝑦 − 1) + 𝛿⩾𝑖(𝛼1, 𝛼2, … ), (7.2)

where 𝛿⩾𝑖(𝛼1, 𝛼2, … ) stands for the mass of the colors ⩾ 𝑖 leaving the vertex (𝑥 − 1
2
, 𝑦 − 1

2
) to the

right (this is a (random) function of masses (𝛼1, 𝛼2, … ) entering from below). Corollary 6.21 reads

exp(−𝛿⩾𝑖) = exp(−𝛼⩾𝑖) +
(
1 − exp(−𝛼⩾𝑖)

)
𝜂
(
𝑥 − 1

2
, 𝑦 − 1

2

)
.

Exponentiating (7.2) and using 𝛼⩾𝑖 = ⩾𝑖(𝑥 − 1, 𝑦 − 1) −⩾𝑖(𝑥, 𝑦 − 1), we get

exp
(
−⩾𝑖(𝑥, 𝑦)

)
= exp

(
−⩾𝑖(𝑥, 𝑦 − 1)

)(
exp(⩾𝑖(𝑥, 𝑦 − 1) −⩾𝑖(𝑥 − 1, 𝑦 − 1))

+

(
1 − exp(⩾𝑖(𝑥, 𝑦 − 1) −⩾𝑖(𝑥 − 1, 𝑦 − 1))

)
𝜂
(
𝑥 − 1

2
, 𝑦 − 1

2

))

= exp
(
−⩾𝑖(𝑥, 𝑦 − 1)

)
𝜂
(
𝑥 − 1

2
, 𝑦 − 1

2

)
+exp

(
−⩾𝑖(𝑥 − 1, 𝑦 − 1)

)(
1 − 𝜂

(
𝑥 − 1

2
, 𝑦 − 1

2

))
. (7.3)

□

The recurrence (7.1) can be solved in the language of directed polymers:

† In this construction one can also allow vertical inhomogeneities 𝜌𝑦 , so that the Beta random variables have distributions
𝐵(𝜎𝑥 − 𝜌𝑦, 𝜌𝑦). One would expect, as in Remark 6.11, that the shift-invariance still holds in such an extended setting, but
we do not have a proof at this time.
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F IGURE 29 Continuous vertex model treated as a directed polymer in the quadrant. The first few diagonal
edges (until the first up step) do not collect any weights

∙ We consider the grid ℤ⩾0 × ℤ⩾0 with diagonal and vertical edges, that is, the edges link (𝑥, 𝑦)
with (𝑥 + 1, 𝑦 + 1) and with (𝑥, 𝑦 + 1).

∙ Each edge has a weight 𝑤(edge) assigned to it. For vertical edges (𝑥, 𝑦 − 1) → (𝑥, 𝑦) the weight
is an independent Beta random variable 𝐵𝑥𝑦 whose parameters are allowed to depend on 𝑥 via
𝐵(𝜎𝑥−1 − 𝜌, 𝜌) for a sequence of real numbers𝜎0, 𝜎1, … , and 𝜌 < min𝑥⩾1 𝜎𝑥−1, as in the previous
section. For diagonal edges (𝑥 − 1, 𝑦 − 1) → (𝑥, 𝑦) we set 𝑤(edge) = 1 − 𝐵𝑥𝑦; cf. Figure 29.

∙ For two points (𝑥′, 𝑦′), (𝑥, 𝑦) inℤ⩾0 × ℤ⩾0 with 𝑥 ⩾ 𝑥′ and 𝑦 ⩾ 𝑦′ + (𝑥 − 𝑥′), we define the par-
tition function ℨ𝐵

(𝑥′,𝑦′)→(𝑥,𝑦)
of the delayed Beta–polymer as a sum over all lattice paths joining

(𝑥′, 𝑦′) with (𝑥, 𝑦)

ℨ𝐵
(𝑥′,𝑦′)→(𝑥,𝑦)

=
∑

(𝑥′,𝑦′)=𝜋0→𝜋1→⋯→𝜋𝑦−𝑦′=(𝑥,𝑦)

𝑦−𝑦′∏
𝑘=𝑓(𝜋)

𝑤(𝜋𝑘−1 → 𝜋𝑘), (7.4)

where each edge 𝜋𝑘 − 𝜋𝑘−1 is either (1,1) or (0,1), and 𝑓(𝜋) = min{𝑖 ∶ 𝜋𝑖 − 𝜋𝑖−1 = (0, 1)}.

The empty product in (7.4) is taken to be 1, so thatℨ(𝑥,𝑦)→(𝑥+𝑘,𝑦+𝑘) = 1, 𝑘 = 0, 1, 2, … . The appear-
ance of 𝑓(𝜋) in (7.4) means that in the computation of the weight we ignore the initial segment of
diagonal edges starting from (𝑥′, 𝑦′) and only multiply the weights starting from the first vertical
edge on the path. One can also interpret such a partition function as a point-to-half-line, rather
than point-to-point polymer; see [9].

Proposition 7.2. The joint law of the Beta polymer delayed partition functions[
ℨ𝐵
(0,𝑦′)→(𝑥,𝑦)

]
𝑥⩾0, 𝑦⩾𝑦′⩾0

is the same as that of the exponentiated height functions of the continuous vertex model from Sec-
tion 6.4 [

exp
(
−⩾(𝑦′+1)

(
𝑥 + 1

2
, 𝑦 + 1

2

))]
𝑥⩾0, 𝑦⩾𝑦′⩾0

.
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F IGURE 30 Another way to interpret the continuous vertex model as a directed polymer, following [9]. For
the computation of 𝑍(0,1)→(𝑡,𝑛) the weights along the 𝑦 = 𝑥 + 1 line are all treated as 1

Proof. Let us identify the random variables 𝜂(𝑥, 𝑦) of Proposition 7.1 with 𝐵𝑥𝑦 in the definition
of the polymer. Then the partition functionsℨ(0,𝑦′)→(𝑥,𝑦) satisfy the same recurrence in (𝑥, 𝑦) and
boundary conditions as the corresponding exponentials in Proposition 7.1. □

We remark that [9] was using slightly different notations for the Beta polymer. Their polymers
live on transposed and shifted by (0,1) grid, as in Figure 30.
We now restate the shift-invariance in the language of polymers. Recall that for two points

 = (𝑢1, 𝑢2),  = (𝑣1, 𝑣2), we write ⪰  if 𝑢1 ⩽ 𝑣1 and 𝑢2 ⩾ 𝑣2.

Theorem 7.3. For the Beta polymer of Proposition 7.2, choose a set of positive integers 𝑘𝑗 and a set
of points in the quadrant𝑗 , 𝑗 = 1,… , 𝑛. Fix an index 1 ⩽ 𝜄 ⩽ 𝑛 and an integer Δ > 0. Set

𝑘′𝑗 =

{
𝑘𝑗, 𝑖 ≠ 𝜄,

𝑘𝜄 + Δ, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄

𝜄 + (0, Δ), 𝑗 = 𝜄.

Suppose that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, … ,𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, … ,𝑛,  ′
1 , … , ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, … , ′
𝑛.

Then the distribution of the vector of the polymer partition functions(
ℨ𝐵
(0,𝑘1)→1

, ℨ𝐵
(0,𝑘2)→2

, … ,ℨ𝐵
(0,𝑘𝑛)→𝑛

)
coincides with the distribution of the vector with shifted 𝜄th coordinate(

ℨ𝐵
(0,𝑘′1)→ ′

1
, ℨ𝐵

(0,𝑘′2)→ ′
2
, … ,ℨ𝐵

(0,𝑘′𝑛)→ ′
𝑛

)
.
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Remark 7.4. As in Theorems 6.3 and 6.10, one can expect the possibility of the extension of the
theorem to the case of different 𝜌𝑦 (which need to be interchanged together with shifts). Also, it
should be possible to move end-points of the polymer in the horizontal direction as well, as long
as the intersection of the polymer trajectories is not impacted.

Proof of Theorem 7.3. We start from Theorem 6.10 and send 𝑞 → 1 in the regime (6.25). As a result,
we get a similar theorem for the continuous vertex model of Section 6.4. Proposition 7.2 recasts
the vertexmodel as a directed polymer. Theorem 7.3 is then a direct restatement of the 𝑞 → 1 limit
of Theorem 6.10. □

7.2 Gamma polymer

In this and five subsequent sections we degenerate the Beta polymer to several other proba-
bilistic systems. From now on we only consider homogeneous case when all 𝜎𝑥 are the same.
Inhomogeneous versions are certainly possible to consider, but we leave them out of the present
text.
Recall that a random variable 𝜉 has Gamma distribution with parameter 𝜅 > 0 if its density

with respect to the Lebesgue measure on the positive semi-axis is

1
Γ(𝜅)

𝑥𝜅−1 exp(−𝑥), 𝑥 > 0.

TheGamma distributionwith parameter 𝜅 can be obtained from the Beta distribution as the limit

lim
𝜀→0

𝜀−1𝐵(𝜅, 𝜀−1).

Hence, setting 𝜌 = 𝜀−1, 𝜎 = 𝜌 + 𝜅 and sending 𝜀 → 0, the polymer of the previous section con-
verges to the following one.

∙ We deal with square grid ℤ⩾0 × ℤ⩾0 with vertical and diagonal edges.
∙ Each vertical edge (𝑥, 𝑦 − 1) → (𝑥, 𝑦), 𝑥 ⩾ 0, 𝑦 ⩾ 1, is equipped with a weight 𝑤(edge) = Γ𝑥𝑦 ,
which is an independent Gamma random variable with parameter 𝜅.

∙ Each diagonal edge (𝑥 − 1, 𝑦 − 1) → (𝑥, 𝑦), 𝑥, 𝑦 ⩾ 1, has the weight 𝑤(edge) = 1.
∙ For each 𝑥 ⩾ 𝑥′, 𝑦 ⩾ 𝑦′ + (𝑥 − 𝑥′)we define a partition function of the polymer as the sum over
lattice paths linking (𝑥′, 𝑦′) to (𝑥, 𝑦):

ℨΓ
(𝑥′,𝑦′)→(𝑥,𝑦)

=
∑

(𝑥′,𝑦′)=𝜋0→𝜋1→⋯→𝜋𝑥−𝑥′=(𝑥,𝑦)

𝑦−𝑦′∏
𝑘=1

𝑤(𝜋𝑘−1 → 𝜋𝑘), (7.5)

where for each 𝑘 ⩾ 1 the difference 𝜋𝑘 − 𝜋𝑘−1 is either (1,1) or (0,1).

Note that, as opposed to the Beta polymer, we no longer need to deal with delayed partition
functions; this is because diagonal edges already have weight 1 and, therefore, changing weights
of diagonal edges to 1 does not change anything; see Figure 31 for an illustration. This polymer
was studied under the name ‘strict-weak polymer’ in [28] and ‘random polymer with gamma-
distributed weights’ in [52].
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F IGURE 3 1 Directed polymer with independent Gamma weights Γ𝑖𝑗 with parameter 𝜅 on vertical edges

By a straightforward limit transition, Theorem 7.3 leads to the same shift-invariance statement
for the Gamma polymer (7.5).

7.3 O’Connell–Yor polymer

Let us consider the Gamma polymer in a thin vertical rectangle. For that we take a large 𝐿 → ∞,
set the parameter of the Gamma distributions to 𝜅 = 𝐿 and consider the following limit for the
polymer of Section 7.2:

exp
(
𝑦−𝑦′

2

)
lim
𝐿→∞

ℨΓ
(𝑥′,𝐿𝑦′)→(𝑥,𝐿𝑦)

𝐿𝐿(𝑦−𝑦′)
= exp

(
𝑦−𝑦′

2

)
lim
𝐿→∞

ℨΓ
(𝑥′,𝐿𝑦′)→(𝑥,𝐿𝑦)

𝐿𝐿(𝑦−𝑦′)−(𝑥−𝑥′) ⋅ 𝐿𝑥−𝑥′
. (7.6)

The factor 𝐿𝐿(𝑦−𝑦′)−(𝑥−𝑥′) can be absorbed into theGamma random factors which polymer collects
(there are precisely 𝐿(𝑦 − 𝑦′) − (𝑥 − 𝑥′) of those on each path from (𝑥, 𝐿𝑦) to (𝑥′, 𝐿𝑦′)). Gamma
random variables as their parameter 𝜅 = 𝐿 → ∞ have the following asymptotics:

Γ𝑖𝑗

𝐿
= 1 +

𝜂𝑖𝑗√
𝐿
,

where 𝜂𝑖𝑗 are centered i.i.d. random variables, which asymptotically become standard Gaussians
𝑁(0, 1). (For integral 𝐿 this can be seen by identifying Γ𝑖𝑗 with the sum of 𝐿 independent Gaussian
distributions and using the Central Limit Theorem.) Hence, moving the noise into the exponent,
we can write

ln

(Γ𝑖𝑗

𝐿

)
=

𝜂𝑖𝑗√
𝐿
−

𝜂2
𝑖𝑗

2𝐿
+ 𝑜

( 1
𝐿

)
.

At this point, we can use functional central limit theorem for the sums of logarithms of Γ𝑖𝑗 . The
prefactor𝐿𝑥′−𝑥 leads to conversion of the (Riemann) sums into integrals, while the products them-
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selves turn into the exponentials of increments of Brownian motions. For the term − 1
2𝐿

∑
𝜂2
𝑖𝑗
we

can apply the Law of Large Numbers, resulting in the factor that precisely cancels the exponential
prefactor in (7.6).
The 𝐿 → ∞ limit of (7.6) is known as the O’Connell–Yor polymer or semi-discrete Brownian

directed polymer, first introduced in [53]. We rename the variables 𝑥 and 𝑦 into 𝑛 and 𝑡, respec-
tively, to match the standard notations.† Here is the resulting object:

∙ We deal with semi-discrete grid ℤ⩾0 × ℝ⩾0 with coordinates (𝑛, 𝑡).
∙ Each vertical line has independent standard Brownian motion 𝐵𝑛(𝑡), 𝑡 ⩾ 0, attached to it.
∙ For each 𝑛 ⩾ 𝑛′ ⩾ 0, 𝑡 ⩾ 𝑡′ ⩾ 0we define a partition function of the polymer as the integral over
monotone grid paths linking (𝑛′, 𝑡′) to (𝑛, 𝑡):

ℨ𝑂𝑌
(𝑛′,𝑡′)→(𝑛,𝑡)

= ∫𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝑡
exp

⎡⎢⎢⎣
𝑛−𝑛′∑
𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦d𝑡1⋯ d𝑡𝑛−𝑛′ .

Recall that for = (𝑢1, 𝑢2),  = (𝑣1, 𝑣2), we write 𝑈 ⪰ 𝑉 if 𝑢1 ⩽ 𝑣1 and 𝑢2 ⩾ 𝑣2.

Theorem 7.5. In the above setting of the semi-discrete Brownian directed polymer in the quadrant,
choose a set of positive reals 𝑘𝑗 and a set of points in the quadrant 𝑗 , 𝑗 = 1,… , 𝑛. Fix an index
1 ⩽ 𝜄 ⩽ 𝑛 and Δ > 0. Set

𝑘′𝑗 =

{
𝑘𝑗, 𝑖 ≠ 𝜄,

𝑘𝜄 + Δ, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄

𝜄 + (0, Δ), 𝑗 = 𝜄.

Suppose that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, …𝜄−1 ⪰ 𝜄 ⪰ 𝜄+1, …𝑛,  ′
1 , … ′

𝜄−1 ⪰  ′
𝜄 ⪰  ′

𝜄+1, …𝑛,

Then the distribution of the vector of the polymer partition functions(
ℨ𝑂𝑌
(0,𝑘1)→1

, ℨ𝑂𝑌
(0,𝑘2)→2

, … ,ℨ𝑂𝑌
(0,𝑘𝑛)→𝑛

)
coincides with the distribution of the vector with shifted 𝜄th coordinate(

ℨ𝑂𝑌
(0,𝑘′1)→ ′

1
, ℨ𝑂𝑌

(0,𝑘′2)→ ′
2
, … ,ℨ𝑂𝑌

(0,𝑘′𝑛)→ ′
𝑛

)
.

We refer to Figure 1 for an example. The proof of Theorem 7.5 is a direct limit transi-
tion from the similar shift-invariance statement for Gamma polymer mentioned at the end of
Section 7.2.

†Note, however, that usually the continuous coordinate 𝑡 is drawn in the horizontal direction. We direct it vertically, in
order to keep all the shifts vertical, as was the case throughout the paper.
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Theorem 7.5 deals with vertical shifts along the continuous coordinate of the polymer. Can we
also shift in the discrete horizontal direction? The answer is positive, but we then need to deal
with delayed partition functions as we did for Beta polymer.
For each 𝑛 ⩾ 𝑛′ ⩾ 0, 𝑡 ⩾ 𝑡′ ⩾ 0 we define the delayed partition function of the O’Connell–Yor

polymer as the integral over monotone grid paths linking (𝑛′, 𝑡′) to (𝑛, 𝑡):

ℨ𝑂𝑌;delay
(𝑛′,𝑡′)→(𝑛,𝑡)

= ∫𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝑡
exp

⎡⎢⎢⎣
𝑛−𝑛′∑
𝑖=1

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦d𝑡1⋯ d𝑡𝑛−𝑛′ .

where we emphasize that the noise 𝐵𝑛′(𝑡1) − 𝐵𝑛′(𝑡0) is not being collected.

Theorem7.6. In the setting of the delayed semi-discrete Browniandirected polymer in the quadrant,
choose a set of positive reals 𝑘𝑗 and a set of points in the quadrant 𝑗 , 𝑗 = 1,… , 𝑛. Fix an index
1 ⩽ 𝜄 ⩽ 𝑛 and Δ = 1, 2, … . Set

𝑘′𝑗 =

{
𝑘𝑗, 𝑖 ≠ 𝜄,

𝑘𝜄 + Δ, 𝑗 = 𝜄,
 ′

𝑗 =

{𝑗, 𝑗 ≠ 𝜄

𝜄 + (Δ, 0), 𝑗 = 𝜄.

Suppose that

0 ⩽ 𝑘1 ⩽ 𝑘2 ⩽ ⋯ ⩽ 𝑘𝑛, 0 ⩽ 𝑘′1 ⩽ 𝑘′2 ⩽ ⋯ ⩽ 𝑘′𝑛,

1, …𝜄−1 ⪯ 𝜄 ⪯ 𝜄+1, …𝑛,  ′
1 , … ′

𝜄−1 ⪯  ′
𝜄 ⪯  ′

𝜄+1, …𝑛,

Then the distribution of the vector of the polymer partition functions(
ℨ𝑂𝑌;delay
(𝑘1,0)→1

, ℨ𝑂𝑌;delay
(𝑘2,0)→2

, … ,ℨ𝑂𝑌;delay
(𝑘𝑛,0)→𝑛

)
coincides with the distribution of the vector with shifted 𝜄th coordinate(

ℨ𝑂𝑌;delay
(𝑘′1,0)→ ′

1

, ℨ𝑂𝑌;delay
(𝑘′2,0)→ ′

2

, … ,ℨ𝑂𝑌;delay
(𝑘′𝑛,0)→ ′

𝑛

)
.

Note the reverse inequalities for points𝑗 compared to Theorem 7.5.

Proof of Theorem 7.6. We take another limit from the Beta polymer to a version of the Gamma
polymer by taking a limit of 1 − 𝐵𝑖𝑗 (instead of 𝐵𝑖𝑗) to the Gamma random variables. The resulting
polymer is like in Section 7.2, but the Gamma random variables are placed on diagonal rather
than vertical edges of the grid. Note that for this modified Gamma polymer, we prove the shift-
invariance only for the delayed partition functions ℨΓ;delay. We then consider the limit of this
polymer as its end-points move far away, while staying in a finite neighborhood of the diagonal
𝑥 = 𝑦:

ℨ𝑂𝑌;delay
(𝑥′,𝑦′)→(𝑥,𝑦)

= exp
(
𝑦−𝑦′

2

)
lim
𝐿→∞

ℨΓ;delay
(𝐿𝑥′,𝐿𝑥′+𝑦′)→(𝐿𝑥,𝐿𝑥+𝑦)

𝐿𝐿(𝑥−𝑥′)+(𝑦−𝑦′)
. (7.7)
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Note that the coordinate system (𝑥, 𝑦) is transposed to the one we used forℨ𝑂𝑌 above, that is, the
first rather than the second coordinate is now continuous. Taking the limits of Theorem 7.3 first
to the shift-invariance for ℨΓ;delay and then for ℨ𝑂𝑌;delay we arrive at the desired statement. □

Remark 7.7. Is shift-invariance in the discrete (horizontal) direction also true for ℨ𝑂𝑌? In other
words, is it necessary to pass to the delayed partition functions ℨ𝑂𝑌;delay? Our proofs do not give
any answer.

7.4 Brownian last passage percolation

For the next limit transition we consider large 𝑡 − 𝑡′ in the definition of the semi-discrete Brow-
nian directed polymer; more precisely, we multiply 𝑡 and 𝑡′ by 𝐿 and send 𝐿 → ∞. If we use the
scale-invariance of the Brownian motion, we can write

∫𝐿𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝐿𝑡
exp

⎡⎢⎢⎣
𝑛−𝑛′∑
𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦d𝑡1⋯ d𝑡𝑛−𝑛′

= 𝐿𝑛−𝑛
′

∫𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝑡
exp

⎡⎢⎢⎣
√
𝐿 ⋅

𝑛−𝑛′∑
𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦d𝑡1⋯ d𝑡𝑛−𝑛′ . (7.8)

Almost surely, the integrand is a continuous function of 𝑡1, … , 𝑡𝑛−𝑛′ . Hence, as 𝐿 → ∞, the inte-
gral is dominated by the points where the exponent

∑𝑛−𝑛′

𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)
is maximized

(cf. standard proofs of the convergence of 𝐿𝑝 norms to 𝐿∞ norm as 𝑝 → ∞). Rescaled logarithm
of the integral converges (in law, jointly over finitely many (𝑡′, 𝑛′) and (𝑡, 𝑛)) to the Brownian last
passage time, defined as follows.

∙ We deal with semi-discrete grid ℤ⩾0 × ℝ⩾0 with coordinates (𝑛, 𝑡).
∙ Each vertical line has independent standard Brownian motion 𝐵𝑛(𝑡), 𝑡 ⩾ 0, attached to it.
∙ For each 𝑛 ⩾ 𝑛′ ⩾ 0, 𝑡 ⩾ 𝑡′ ⩾ 0 we assign the passage time as the maximum over grid paths
linking (𝑛′, 𝑡′) to (𝑛, 𝑡):

ℨBLPP
(𝑛′,𝑡′)→(𝑛,𝑡)

= max
𝑡′=𝑡0<𝑡1<⋯<𝑡𝑛−𝑛′+1=𝑡

⎡⎢⎢⎣
𝑛−𝑛′∑
𝑖=0

(
𝐵𝑖+𝑛′(𝑡𝑖+1) − 𝐵𝑖+𝑛′(𝑡𝑖)

)⎤⎥⎥⎦. (7.9)

Direct limit of Theorem 7.5 yields the same shift-invariance statement for the passage times
(7.9). If we introduce a delayed version of (7.9), in which we ignore the noise 𝐵𝑛′(𝑡1) − 𝐵𝑛′(𝑡0),
then Theorem 7.6 also yields the same shift-invariance statement for the delayed Brownian last
passage times.

7.5 Continuous directed polymer and KPZ equation

Another limiting object can be obtained from the O’Connell–Yor polymer by considering large
𝑛 − 𝑛′. In this regime the 𝑛–indexed sequence of white noises (derivatives of the Brownian
motions 𝐵𝑛(𝑡)) turns into the two-dimensional white noise. The polymer collecting such noises is
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known as the continuum directed random polymer (see, for example, [6, 57]), and its logarithm
can be identified with a solution to the KPZ stochastic partial differential equation.
In more detail, let us introduce the normalized version of the semi-discrete Brownian polymer

through

ℨ̃𝑂𝑌
(𝑛′,𝑡′)→(𝑛,𝑡)

=
(𝑛 − 𝑛′)!

(𝑡 − 𝑡′)𝑛−𝑛′
⋅ exp

(
−
𝑡 − 𝑡′

2

)
⋅ ℨ𝑂𝑌

(𝑛′,𝑡′)→(𝑛,𝑡)
. (7.10)

The first factor is introduced to compensate for the volume of the simplex {𝑡′ = 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑛−𝑛′ = 𝑡} in the definition of the polymer, while the second one compensates the expecta-
tion of the exponential of the Brownian motions (which can be computed using the identity
𝔼 exp(

√
𝑐 ⋅ 𝜉) = exp(𝑐∕2) for Gaussian 𝜉 ∼ 𝑁(0, 1)). Thus, we have 𝔼ℨ̃𝑂𝑌

(𝑛′,𝑡′)→(𝑛,𝑡)
= 1.

We have the following convergence result for the Brownian directed polymer:

lim
𝐿→∞

[
ℨ̃𝑂𝑌

(0,𝑦)→(𝑡𝐿,𝑡
√
𝐿+𝑥)

]
⋅

1√
2𝜋𝑡

exp
(
−(𝑥−𝑦)2

2𝑡

)
= (𝑦)(𝑡, 𝑥), (7.11)

where(𝑦)(𝑥, 𝑡) is the solution to the stochastic heat equation with multiplicative noise started at
𝑡 = 0 time from 𝛿-function initial condition at 𝑦:

(𝑦)
𝑡 = 1

2
(𝑦)
𝑥𝑥 + 𝜂(𝑦), 𝑡 ⩾ 0, 𝑥 ∈ ℝ; (𝑦)(0, 𝑥) = 𝛿(𝑥 − 𝑦). (7.12)

Here 𝜂 is the space–time 2𝑑white noise (the same for each 𝑦).We remark that the literature (see [5,
51]) typically states the convergence result (7.11) only for fixed 𝑦 (usually 𝑦 = 0), yet the technique
extends to the joint convergence in law for finitely many 𝑦s.†
The Feynman–Kac representation for the solution to (7.12) leads to its representation as an

integral of exponentiated noise over paths of Brownian bridges, thus clarifying the convergence
(7.11) and the name ‘continuum directed random polymer’ for (𝑦)(𝑥, 𝑡).
Computing (formally) the logarithm of , one finds that  ∶= − ln((𝑦)) satisfies the KPZ

stochastic partial differential equation:

𝑡 =
1
2
𝑥𝑥 −

1
2
(𝑥)

2 − 𝜂. (7.13)

Taking the limit of Theorem 7.5 we arrive at the following statement for (𝑦) (or, equivalently,
for); cf. Figure 5:

Theorem 7.8 (modulo making convergence in (7.11) joint in 𝑥s and 𝑦s). Fix 𝑡 > 0, Δ > 0,
𝑥, 𝑦 ∈ ℝ. In addition, choose a collection of points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛, such that for each 𝑖 either

† Let us follow the approach of [51]. In that paper, the author introduces a coupling between the 2d white noise 𝜂 in
the definition of (𝑦)(𝑥, 𝑡) and Brownian motions 𝐵𝑛(𝑡) in the definition of the Brownian directed polymer. Using the
Wiener chaos series expansion, [51, Section 2.5] then shows the convergence (7.11) for fixed values of 𝑥, 𝑦, and 𝑡 in the
𝐿2 space of random variables on the probability space where the white noise 𝜂 is defined. The 𝐿2–convergence implies
the convergence of joint distributions, if we use the following abstract statement. If for random variables 𝑋𝑛 , 𝑌𝑛 , 𝑋, 𝑌
on the same probability space, we have lim𝑛→∞ 𝔼|𝑋𝑛 − 𝑋|2 = lim𝑛→∞ 𝔼|𝑌𝑛 − 𝑌|2 = 0, then the distribution of the vector
(𝑋𝑛, 𝑌𝑛) converges as 𝑛 → ∞ to that of the vector (𝑋, 𝑌), and similarly for 𝑘 > 2-dimensional vectors.
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𝑥𝑖 < 𝑥, 𝑦𝑖 > 𝑦 + Δ or 𝑥𝑖 > 𝑥 + Δ, 𝑦𝑖 < 𝑦. Then we have an identity in distribution:

((𝑦)(𝑡, 𝑥); (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛
) 𝑑
=
((𝑦+Δ)(𝑡, 𝑥 + Δ); (𝑦𝑖)(𝑡, 𝑥𝑖), 𝑖 = 1, … , 𝑛

)
.

Remark 7.9. While Theorem 7.5 allowed for different time coordinates 𝑡𝑖 , there is only a single
𝑡 in Theorem 7.8. This is because of the nature of rescaling in the limit transition (7.11), which
collapses all points𝑖 of Theorem 7.8 onto a single line.

7.6 Airy sheet

We proceed to the universal object in the KPZ-universality class known as the Airy sheet. It was
recently proven in [33, Theorem 1.3] that the Brownian last passage times admit the following
limiting behavior:

ℨ(0,2𝑥𝑛2∕3)→(𝑛,𝑛+2𝑦𝑛2∕3) − 2𝑛 − 2𝑛2∕3(𝑦 − 𝑥) + (𝑥 − 𝑦)2𝑛1∕3

𝑛1∕3
→ (𝑥, 𝑦), 𝑥, 𝑦 ∈ ℝ. (7.14)

The formula (7.14) can be taken as the definition of the Airy sheet (𝑥, 𝑦). Let us mention a
notational subtlety on whether to add (𝑥 − 𝑦)2𝑛1∕3 in the definition, as we did. In keeping with
the traditional usage of the stationary forms of the objects in the Airy2 process and the Airy line
ensemble, and also following [27], we chose the definition such that(𝑥, 𝑦) has the Tracy–Widom
distribution for each 𝑥, 𝑦 ∈ ℝ. The article [33] does not have the (𝑥 − 𝑦)2𝑛1∕3 terms and proves
that the whole two-dimensional field ℨ(𝑡′,𝑛′)→(𝑡,𝑛) converges to a four-dimensional extension of
the Airy sheet that the authors called the Directed Landscape†. Note, however, that our result
deals only with the function of two variables(𝑥, 𝑦).
It is believed that the Airy sheet appears universally in scaling limits of directed percolation

models, polymers, and many interacting particle systems. Quastel–Sarkar [58] and Virag [61] (see
also Corwin–Quastel–Remenik [27]) show that it also governs the large time scaling limit of the
KPZ equation.
Taking the limit of the shift-invariance statement for the Brownian last passage percolation, we

arrive at a similar statement for the Airy sheet.

Theorem 7.10. Fix 𝑡 > 0, Δ > 0, 𝑥, 𝑦 ∈ ℝ. In addition, choose a collection of points (𝑥𝑖, 𝑦𝑖), 𝑖 =
1, … , 𝑛, such that for each 𝑖 either 𝑥𝑖 < 𝑥, 𝑦𝑖 > 𝑦 + Δ or 𝑥𝑖 > 𝑥 + Δ, 𝑦𝑖 < 𝑦. Then we have an identity
in distribution:((𝑥, 𝑦); (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛

) 𝑑
=
((𝑥 + Δ, 𝑦 + Δ); (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛

)
.

7.7 Back to additive SHE

We end the discussion of degenerations by a remark that the small time limit of the KPZ equation
is Gaussian and is given, after proper recentering and rescaling by the stochastic heat equation

† If we follow the notation of [27] and add the parabola, as in (7.14), then the limiting object has been known under the
name of ‘space–time Airy sheet’.
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with additive noise, as

ℌ(𝑦)
𝑡 = 1

2
ℌ(𝑦)

𝑥𝑥 +
1√
2𝜋𝑡

exp
(
−(𝑥−𝑦)2

2𝑡

)
⋅ 𝜂, 𝑡 ⩾ 0, 𝑥 ∈ ℝ, ℌ(𝑦)(0, 𝑥) = 0,

where 𝜂 is the 2𝑑white noise; see [7, Section 6.2] for the discussion on how the small time limit can
be readily obtained from the Wiener chaos expansion. The shift-invariance for the last equation
is essentially equivalent to the shift-invariance for the colored SHE of Section 2 and can be proven
directly in the same way.

APPENDIX: FUSION

In this section we explain the fusion procedure, which produces higher spin/higher rank vertex
model from the colored six-vertex model. Our aim is to obtain the weight (6.2) as a result of the
summation of the products of weights of all vertices in𝑀 × 𝐿 rectangle (over all possible choices
of such vertices) for the colored six-vertex model.

A.1 Row-vertices

We follow the notations of Section 4.1.
The key combinatorial object in the fusion procedure is the row-vertex. It is obtained by hor-

izontally concatenating 𝑀 of the 𝑅-vertices (4.7), and specializing the spectral parameters to a
geometric progression 𝑞𝑀−1𝑧, … , 𝑞𝑧, 𝑧. More specifically, for two fixed integers 𝑏, 𝑑 ∈ {0, 1, … ,𝑁}
and two vectors of integers (𝑎1, … , 𝑎𝑀), (𝑐1, … , 𝑐𝑀) ∈ {0, 1, … ,𝑁}𝑀 , we define

𝑅𝑧((𝑎1, … , 𝑎𝑀), 𝑏; (𝑐1, … , 𝑐𝑀), 𝑑)

=
𝑁∑

𝑖1=0

⋯
𝑁∑

𝑖𝑀−1=0

𝑅𝑞𝑀−1𝑧(𝑎1, 𝑏; 𝑐1, 𝑖1)𝑅𝑞𝑀−2𝑧(𝑎2, 𝑖1; 𝑐2, 𝑖2) …𝑅𝑧(𝑎𝑀, 𝑖𝑀−1; 𝑐𝑀, 𝑑), (A1)

or graphically,

(A2)

where the spectral parameters of the vertices are given by 𝑞𝑀−𝑖𝑧 (with 𝑖 increasing as one reads
from left to right), and each internal horizontal edge is summed over all possible values in the set
{0, 1, … ,𝑁}.

A.2 M-fused vertices

Definition A.1. Let 𝑀 ⩾ 1 and consider a vector of nonnegative integers (𝑎1, … , 𝑎𝑀) ∈
{0, 1, … ,𝑁}𝑀 . From this we define another vector,

(𝑎1, … , 𝑎𝑀) ∶= (𝐴1, … ,𝐴𝑁), 𝐴𝑖 = #{𝑗 ∶ 𝑎𝑗 = 𝑖}, ∀ 1 ⩽ 𝑖 ⩽ 𝑁,

which keeps track of the multiplicity of each color 1 ⩽ 𝑖 ⩽ 𝑁 within (𝑎1, … , 𝑎𝑀).
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Let us fix two vectors𝐀 = (𝐴1, … ,𝐴𝑁) and𝐂 = (𝐶1, … , 𝐶𝑁)whose components are nonnegative
integers, such that |𝐀| ⩽ 𝑀 and |𝐂| ⩽ 𝑀. We define the weight of an𝑀-fused vertex as follows:

(𝑀)
𝑧 (𝐀, 𝑏; 𝐂, 𝑑) =

1
𝑍𝑞(𝑀;𝐀)

∑
(𝑎1,…,𝑎𝑀)=𝐀
(𝑐1,…,𝑐𝑀)=𝐂

𝑞inv(𝑎1,…,𝑎𝑀)𝑅𝑧((𝑎1, … , 𝑎𝑀), 𝑏; (𝑐1, … , 𝑐𝑀), 𝑑), (A3)

where the summation is over all vectors of integers (𝑎1, … , 𝑎𝑀), (𝑐1, … , 𝑐𝑀) ∈ {0, 1, … ,𝑁}𝑀 such
that (𝑎1, … , 𝑎𝑀) = 𝐀 and (𝑐1, … , 𝑐𝑀) = 𝐂. The exponent appearing in the sum is given by

inv(𝑎1, … , 𝑎𝑀) = #{𝑖 < 𝑗 ∶ 𝑎𝑖>𝑎𝑗},

while the normalization takes the form of a 𝑞-multinomial coefficient:

𝑍𝑞(𝑀;𝐀) =
∑

(𝑎1,…,𝑎𝑀)=𝐀

𝑞inv(𝑎1,…,𝑎𝑀) =
(𝑞; 𝑞)𝑀

(𝑞; 𝑞)𝐴0
(𝑞; 𝑞)𝐴1

… (𝑞; 𝑞)𝐴𝑁

, 𝐴0 ∶= 𝑀 −
𝑁∑
𝑖=1

𝐴𝑖.

We shall represent the𝑀-fused vertex (A3) pictorially as

(A4)

where the spectral parameter of the vertex is equal to 𝑧.
Probabilistically, one should think that the distribution of incoming colors satisfies

𝑞-exhangeability†. Then (A3) computes the partition function of 𝑀 vertices under such distri-
bution.

A.3 Evaluation ofM-fused vertices

The following result is taken from [21, Theorem B.4.1].

Theorem A.2. Fix two vectors 𝐀,𝐂 ∈ ℕ𝑁 such that |𝐀| ⩽ 𝑀, |𝐂| ⩽ 𝑀, and two integers 𝑏, 𝑑 ∈
{0, 1, … ,𝑁}. The𝑀-fused vertex (A3) has the following explicit evaluation:

(𝑀)
𝑧 (𝐀, 𝑏; 𝐂, 𝑑) = 𝟏(𝐀+𝒆𝑏=𝐂+𝒆𝑑) ⋅

1
1 − 𝑞𝑀𝑧

⋅

⎧⎪⎨⎪⎩
(1 − 𝑞𝐴𝑑𝑧)𝑞𝐀[𝑑+1,𝑁] , 𝑏 = 𝑑,
(1 − 𝑞𝐴𝑑)𝑞𝐀[𝑑+1,𝑁] , 𝑏 < 𝑑,
𝑧(1 − 𝑞𝐴𝑑)𝑞𝐀[𝑑+1,𝑁] , 𝑏 > 𝑑,

(A5)

where 𝐀[𝑑+1,𝑁] = 𝐴𝑑+1 + 𝐴𝑑+2 +⋯ + 𝐴𝑁 . Or more compactly,

(𝑀)
𝑧 (𝐀, 𝑏; 𝐂, 𝑑) = 𝟏(𝐀+𝒆𝑏=𝐂+𝒆𝑑) ⋅ 𝑧

𝟏𝑏>𝑑 ⋅
1 − 𝑞𝐴𝑑𝑧𝟏𝑏=𝑑

1 − 𝑞𝑀𝑧
⋅ 𝑞𝐀[𝑑+1,𝑁] , (A6)

where by agreement 𝐴0 = 𝑀 −
∑𝑁

𝑖=1 𝐴𝑖 .

† Proposition B.2.2 of [21] then yields 𝑞-exhangeability also for the outgoing colors.
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A.4 Column vertices

We begin by defining column vertices by taking towers of height 𝐿 of the𝑀-fused vertices (A4):

(A7)

where the spectral parameters of the vertices are given by 𝑞𝑖−1𝑧 (with 𝑖 increasing as one reads
from bottom to top).

A.5 (L,M)-fused vertices

Now we fuse the horizontal lines, to produce (𝐿,𝑀)-fused vertices. Fix two more nonnegative
integer vectors 𝐁 = (𝐵1, … , 𝐵𝑁) and 𝐃 = (𝐷1, … , 𝐷𝑁).

Definition A.3. In a similar vein to Section A2, we define

𝑊𝐿,𝑀(𝑧;𝐀, 𝐁; 𝐂,𝐃) =
1

𝑍𝑞(𝐿; 𝐁)

∑
(𝑏1,…,𝑏𝐿)=𝐁(𝑑1,…,𝑑𝐿)=𝐃

𝑞inv(𝑏𝐿,…,𝑏1)(𝑀)
1∕𝑧

(𝐀, (𝑏1, … , 𝑏𝐿); 𝐂, (𝑑1, … , 𝑑𝐿)), (A8)

where the normalization takes the form

𝑍𝑞(𝐿; 𝐁) =
∑

(𝑏1,…,𝑏𝐿)=𝐁
𝑞inv(𝑏𝐿,…,𝑏1) =

(𝑞; 𝑞)𝐿
(𝑞; 𝑞)𝐵0(𝑞; 𝑞)𝐵1 … (𝑞; 𝑞)𝐵𝑁

, 𝐵0 ∶= 𝐿 −
𝑁∑
𝑖=1

𝐵𝑖.

Note that, in this definition, we reverse the order of the entries of the vector (𝑏1, … , 𝑏𝐿) before
applying the inv function.

Note the presence of 1∕𝑧, rather than 𝑧 in the right-hand side of (A8). The same inver-
sion of 𝑧 is responsible for the appearance of 𝑧−10 , 𝑧−11 , . . . in the column rapidities of
Theorem 6.2.
Themain result of this section is TheoremA5, which identifies (A8) with (6.2). For nowwe take

(A8) as the definition.
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A.6 Recursion relation

We write a recursion for the (𝐿,𝑀)-fused vertices (A8), by peeling away the bottom-most vertex
from the column (A7):

𝑊𝐿,𝑀(𝑧;𝐀, 𝐁; 𝐂,𝐃)

=
1

1 − 𝑞𝐿

𝑁∑
𝑖=0

𝑁∑
𝑗=0

(1 − 𝑞𝐵𝑖 )𝑞𝐵𝑖+1 … 𝑞𝐵𝑁𝑊1,𝑀(𝑧; 𝐀, 𝒆𝑖; 𝐀
+−
𝑖𝑗 , 𝒆𝑗)𝑊𝐿−1,𝑀(𝑞𝑧;𝐀+−

𝑖𝑗 , 𝐁−
𝑖 ; 𝐂,𝐃

−
𝑗 ) (A9)

where we defined 𝐁−
𝑖
= 𝐁 − 𝒆𝑖 and 𝐀+−

𝑖𝑗
= 𝐀 + 𝒆𝑖 − 𝒆𝑗 and 𝒆𝑖 is the 𝑖th basis vector. Equivalently,

in terms of the𝑀-fused vertices (A3), we have

𝑊𝐿,𝑀(𝑧;𝐀, 𝐁; 𝐂,𝐃)

=
1

1 − 𝑞𝐿

𝑁∑
𝑖=0

𝑁∑
𝑗=0

(1 − 𝑞𝐵𝑖 )𝑞𝐵𝑖+1 … 𝑞𝐵𝑁(𝑀)
1∕𝑧

(𝐀, 𝑖; 𝐀+−
𝑖𝑗 , 𝑗)𝑊𝐿−1,𝑀(𝑞𝑧;𝐀+−

𝑖𝑗 , 𝐁−
𝑖 ; 𝐂,𝐃

−
𝑗 ). (A10)

A.7 Explicit formula for (L,M)-fused weights

For any two vectors 𝛼 = (𝛼1, … , 𝛼𝑁) and 𝛽 = (𝛽1, … , 𝛽𝑁), define the function

𝜙(𝛼, 𝛽) =
∑

1⩽𝑖<𝑗⩽𝑁

𝛼𝑖𝛽𝑗.

For any two vectors 𝜆 = (𝜆1, … , 𝜆𝑁) and 𝜇 = (𝜇1, … , 𝜇𝑁) such that 𝜆𝑖 ⩽ 𝜇𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑁, define
further

Φ(𝜆, 𝜇; 𝑥, 𝑦) = 𝑞𝜙(𝜇−𝜆,𝜆)(𝑦∕𝑥)|𝜆| (𝑥; 𝑞)|𝜆|(𝑦∕𝑥; 𝑞)|𝜇−𝜆|
(𝑦; 𝑞)|𝜇|

𝑁∏
𝑖=1

(
𝜇𝑖
𝜆𝑖

)
𝑞

. (A11)

Proposition A.4. Note the following recursive properties of the function Φ:

Φ(𝜆, 𝜇; 𝑥, 𝑞𝑦) = 𝑞𝜆
(1 − 𝑦)(𝑥 − 𝑦𝑞𝜇−𝜆)

(𝑥 − 𝑦)(1 − 𝑦𝑞𝜇)
Φ(𝜆, 𝜇; 𝑥, 𝑦),

Φ(𝜆, 𝜇 − 𝒆𝑗; 𝑥, 𝑞𝑦) = 𝑥𝑞
∑

𝑖⩽𝑗 𝜆𝑖
(1 − 𝑦)(1 − 𝑞𝜇𝑗−𝜆𝑗 )

(𝑥 − 𝑦)(1 − 𝑞𝜇𝑗 )
Φ(𝜆, 𝜇; 𝑥, 𝑦),

where 𝑗 ⩾ 1. Both these are immediate from the definition (A11).

Theorem A.5. Fix two integers 𝑀,𝐿 ⩾ 1, and four vectors 𝐀,𝐁, 𝐂,𝐃 such that 0 ⩽ |𝐀|, |𝐂| ⩽ 𝑀
and 0 ⩽ |𝐁|, |𝐃| ⩽ 𝐿. The (𝐿,𝑀)-fused weights are given by the following formula:

𝑊𝐿,𝑀(𝑧;𝐀, 𝐁; 𝐂,𝐃)

= 𝟏(𝐀+𝐁=𝐂+𝐃) × 𝑧𝐃−𝐁𝑞𝐀𝐿−𝐃𝑀 ×
∑
𝐏

Φ(𝐂 − 𝐏,𝐂 + 𝐃 − 𝐏; 𝑞𝐿−𝑀𝑧, 𝑞−𝑀𝑧)Φ(𝐏, 𝐁; 𝑞−𝐿∕𝑧, 𝑞−𝐿),

(A12)

where the sum is taken over vectors 𝐏 = (𝑃1, … , 𝑃𝑁) such that 0 ⩽ 𝑃𝑖 ⩽ min(𝐵𝑖, 𝐶𝑖) for all 1 ⩽ 𝑖 ⩽ 𝑁.
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A.8 Proof of Theorem A5 for L = 1

Because of the constraint 0 ⩽ |𝐁|, |𝐃| ⩽ 𝐿, when 𝐿 = 1 the vectors𝐁,𝐃must be of the form𝐁 = 𝒆𝑖
and 𝐃 = 𝒆𝑗 , for some 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁.
In the case 𝐁 = 𝒆0 the summation in (A12) reduces to a single term, namely 𝐏 = 𝒆0. After some

simplifications, we find that

𝑊1,𝑀(𝑧;𝐀, 𝒆0; 𝐂, 𝒆𝑏) = 𝟏(𝐀=𝐂+𝒆𝑏)Φ(𝐂, 𝐂 + 𝒆𝑏; 𝑞
1−𝑀𝑧, 𝑞−𝑀𝑧)Φ(𝒆0, 𝒆0; 𝑞

−1∕𝑧, 𝑞−1)𝑧𝜃𝑏𝑞𝐀−𝑀𝜃𝑏

= 𝟏(𝐀=𝐂+𝒆𝑏)
(𝑞1−𝑀𝑧; 𝑞)|𝐂|(𝑞−1; 𝑞)𝜃𝑏

(𝑞−𝑀𝑧; 𝑞)|𝐂|+𝜃𝑏
(
𝐶𝑏 + 𝜃𝑏

𝐶𝑏

)
𝑞

𝑧𝜃𝑏𝑞(𝐂[𝑏+1,𝑁]−𝑀+1)𝜃𝑏 ,

where we have introduced the notation

𝜃𝑏 =

{
0, 𝑏 = 0,
1, 𝑏 ⩾ 1.

Analyzing separately the cases 𝑏 = 0 and 𝑏 ⩾ 1 of the above equation, we see that

𝑊1,𝑀(𝑧;𝐀, 𝒆0; 𝐂, 𝒆0) = 𝟏(𝐀=𝐂)

(
1 − 𝑞𝐂−𝑀𝑧

1 − 𝑞−𝑀𝑧

)
= 𝟏(𝐀=𝐂)

(
𝑞𝐀 − 𝑞𝑀∕𝑧

1 − 𝑞𝑀∕𝑧

)
for 𝑏 = 0, and

𝑊1,𝑀(𝑧;𝐀, 𝒆0; 𝐂, 𝒆𝑏) = 𝟏(𝐀=𝐂+𝒆𝑏)

(
𝑞𝐶𝑏+1 − 1

1 − 𝑞−𝑀𝑧

)
𝑧𝑞𝐂[𝑏+1,𝑁]−𝑀 = 𝟏(𝐀=𝐂+𝒆𝑏)

(
1 − 𝑞𝐴𝑏

1 − 𝑞𝑀∕𝑧

)
𝑞𝐀[𝑏+1,𝑁]

for 𝑏 ⩾ 1. The expressions obtained are in agreement with the weights (𝑀)
1∕𝑧

(𝐀, 0; 𝐂, 0) and
(𝑀)
1∕𝑧

(𝐀, 0; 𝐂, 𝑏), respectively, as is easily verified using (A5).
In the case 𝐁 = 𝒆𝑎 for 1 ⩽ 𝑎 ⩽ 𝑁, the summation over 𝐏 is constrained to 𝐏 ∈ {𝒆0, 𝒆𝑎}, and we

obtain

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑏) = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)
(
Φ(𝐂, 𝐂 + 𝒆𝑏; 𝑞

1−𝑀𝑧, 𝑞−𝑀𝑧)Φ(𝒆0, 𝒆𝑎; 𝑞
−1∕𝑧, 𝑞−1) +

Φ(𝐂 − 𝒆𝑎, 𝐂 − 𝒆𝑎 + 𝒆𝑏; 𝑞
1−𝑀𝑧, 𝑞−𝑀𝑧)Φ(𝒆𝑎, 𝒆𝑎; 𝑞

−1∕𝑧, 𝑞−1)
)
𝑧𝜃𝑏−𝜃𝑎𝑞𝐀−𝑀𝜃𝑏 .

This can then be divided into two distinct cases, namely (i) 𝑎 ≠ 𝑏 and (ii) 𝑎 = 𝑏.
Using the definition (A11), in case (i) one finds that

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑏) = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)
(𝑞−1; 𝑞)𝜃𝑏
(1 − 𝑞−1)

(
𝐶𝑏 + 𝜃𝑏

𝐶𝑏

)
𝑞{

(𝑞1−𝑀𝑧; 𝑞)|𝐂|
(𝑞−𝑀𝑧; 𝑞)|𝐂|+𝜃𝑏 (1 − 𝑧) + 𝑞−𝜃𝑏𝟏𝑏<𝑎

(𝑞1−𝑀𝑧; 𝑞)|𝐂|−1
(𝑞−𝑀𝑧; 𝑞)|𝐂|−1+𝜃𝑏 (𝑞𝑧 − 1)

}
𝑧𝜃𝑏−1𝑞(𝐂[𝑏+1,𝑁]−𝑀+1)𝜃𝑏−𝜃𝑎 .
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This can in turn be subdivided into three cases, (i1) 𝑏 = 0, (i2) 0 ≠ 𝑏 < 𝑎 and (i3) 𝑎 < 𝑏. In case
(i1), we calculate

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆0)

= 𝟏(𝐀+𝒆𝑎=𝐂)
1

(1 − 𝑞−1)

{
1 − 𝑞𝐂−𝑀𝑧

1 − 𝑞−𝑀𝑧
(1 − 𝑧) +

1 − 𝑞𝐂−1−𝑀𝑧

1 − 𝑞−𝑀𝑧
(𝑞𝑧 − 1)

}
𝑧−1𝑞−1

= 𝟏(𝐀+𝒆𝑎=𝐂)
1 − 𝑞𝐂−𝑀−1

1 − 𝑞−𝑀𝑧
= 𝟏(𝐀+𝒆𝑎=𝐂)

(
1 − 𝑞𝑀−𝐀

1 − 𝑞𝑀∕𝑧

)
𝑧−1𝑞𝐀.

In case (i2), we calculate

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑏) = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)
1 − 𝑞𝐶𝑏+1

1 − 𝑞

{
1 − 𝑧

1 − 𝑞−𝑀𝑧
+ 𝑞−1

𝑞𝑧 − 1

1 − 𝑞−𝑀𝑧

}
𝑞𝐂[𝑏+1,𝑁]−𝑀

= 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)

(
1 − 𝑞𝐶𝑏+1

1 − 𝑞𝑀∕𝑧

)
𝑧−1𝑞𝐂[𝑏+1,𝑁]−1 = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)

(
1 − 𝑞𝐴𝑏

1 − 𝑞𝑀∕𝑧

)
𝑧−1𝑞𝐀[𝑏+1,𝑁] .

Both (i1) and (i2) agree with (𝑀)
1∕𝑧

(𝐀, 𝑎; 𝐂, 𝑏) for 𝑎 > 𝑏. In case (i3), we calculate

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑏) = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)
1 − 𝑞𝐶𝑏+1

1 − 𝑞

{
1 − 𝑧

1 − 𝑞−𝑀𝑧
+

𝑞𝑧 − 1

1 − 𝑞−𝑀𝑧

}
𝑞𝐂[𝑏+1,𝑁]−𝑀

= 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)

(
1 − 𝑞𝐶𝑏+1

1 − 𝑞𝑀∕𝑧

)
𝑞𝐂[𝑏+1,𝑁] = 𝟏(𝐀+𝒆𝑎=𝐂+𝒆𝑏)

(
1 − 𝑞𝐴𝑏

1 − 𝑞𝑀∕𝑧

)
𝑞𝐀[𝑏+1,𝑁] ,

which agrees with (𝑀)
1∕𝑧

(𝐀, 𝑎; 𝐂, 𝑏) for 𝑎 < 𝑏.
Similarly, in case (ii), we obtain

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑎) = 𝟏(𝐀=𝐂)

{(
𝐶𝑎 + 1

𝐶𝑎

)
𝑞

(𝑞1−𝑀𝑧; 𝑞)|𝐂|
(𝑞−𝑀𝑧; 𝑞)|𝐂|+1 (1 − 𝑧)

+

(
𝐶𝑎

𝐶𝑎 − 1

)
𝑞

(𝑞1−𝑀𝑧; 𝑞)|𝐂|−1
(𝑞−𝑀𝑧; 𝑞)|𝐂| (𝑞𝑧 − 1)

}
𝑞𝐂[𝑎+1,𝑁]−𝑀.

This we can readily simplify as

𝑊1,𝑀(𝑧;𝐀, 𝒆𝑎; 𝐂, 𝒆𝑎) =
𝟏(𝐀=𝐂)

(1 − 𝑞)(1 − 𝑞−𝑀𝑧)

{
(1 − 𝑞𝐶𝑎+1)(1 − 𝑧) − (1 − 𝑞𝐶𝑎)(1 − 𝑞𝑧)

}
𝑞𝐂[𝑎+1,𝑁]−𝑀

= 𝟏(𝐀=𝐂)

(
𝑞𝐶𝑎 − 𝑧

1 − 𝑞−𝑀𝑧

)
𝑞𝐂[𝑎+1,𝑁]−𝑀 = 𝟏(𝐀=𝐂)

(
1 − 𝑞𝐴𝑎∕𝑧

1 − 𝑞𝑀∕𝑧

)
𝑞𝐀[𝑎+1,𝑁] ,

in agreement with the form (A5) of (𝑀)
1∕𝑧

(𝐀, 𝑎; 𝐂, 𝑎).
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A.9 Proof of general case in Theorem A5

So far we have proved that (A12) holds for 𝐿 = 1. We now show that (A12) obeys the recursion
relation (A9), which is sufficient to show that (A12) holds in general by induction on 𝐿. We can
assume that

𝑊𝐿−1,𝑀(𝑞𝑧;𝐀+−
𝑎𝑏

, 𝐁−
𝑎 ; 𝐂,𝐃

−
𝑏 ) = 𝛿𝐀+𝐁=𝐂+𝐃 × 𝑧𝜃𝑎−𝜃𝑏𝑞𝑀𝜃𝑏+𝐿(𝜃𝑎−𝜃𝑏)−𝐂𝑧𝐃−𝐁𝑞𝐀𝐿−𝐃𝑀∑

𝐏

Φ(𝐂 − 𝐏,𝐂 + 𝐃 − 𝒆𝑏 − 𝐏; 𝑞𝐿−𝑀𝑧, 𝑞−𝑀+1𝑧)Φ(𝐏, 𝐁 − 𝒆𝑎; 𝑞
−𝐿∕𝑧, 𝑞−𝐿+1) (A13)

holds for some 𝐿 ⩾ 2, where the summation is over all 𝐏 such that 0 ⩽ 𝑃𝑖 ⩽ min(𝐵𝑖, 𝐶𝑖) for all
𝑖 ≠ 𝑎, and 0 ⩽ 𝑃𝑎 ⩽ min(𝐵𝑎 − 𝜃𝑎, 𝐶𝑎).
Up to prefactors and slight modifications of the arguments of Φ, this very closely resembles

the form of 𝑊𝐿,𝑀(𝑧;𝐀, 𝐁; 𝐂,𝐃). Substituting (A13) into (A10), and requiring this to be equal to
(A12) leads to the identity stated in Lemma A6. The proof of that lemma completes the proof of
Theorem A5.

Lemma A.6. Let 𝜆 = (𝜆1, … , 𝜆𝑁) and 𝜇 = (𝜇1, … , 𝜇𝑁) be two vectors of arbitrary variables, and
write |𝜆| = ∑𝑁

𝑖=1 𝜆𝑖 and |𝜇| = ∑𝑁
𝑖=1 𝜇𝑖 for their sums. Let𝑥 and𝑦 be two further arbitrary parameters,

and let 𝑎 be an integer satisfying 0 ⩽ 𝑎 ⩽ 𝑁. We define the following function:

𝜌𝑎(𝜆, 𝜇; 𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

(
𝑥𝑞|𝜆| − 𝑦𝑞|𝜇|
1 − 𝑦𝑞|𝜇|

)(
1 − 𝑦

𝑥 − 𝑦

)
, 𝑎 = 0

𝑥𝑞
∑𝑎

𝑖=1 𝜆𝑖

(
1 − 𝑞𝜇𝑎−𝜆𝑎

1 − 𝑞𝜇𝑎

)(
1 − 𝑦

𝑥 − 𝑦

)
, 𝑎 ⩾ 1.

Fix four vectors of variables 𝐀,𝐁, 𝐂,𝐃 such that 𝐀 + 𝐁 = 𝐂 + 𝐃. Let 𝐏 be a further vector of arbi-
trary variables. Fix two further parameters 𝑀 and 𝐿, and define 𝐴0 = 𝑀 −

∑𝑁
𝑖=1 𝐴𝑖 and 𝐵0 =

𝐿 −
∑𝑁

𝑖=1 𝐵𝑖 . The following summation identity holds:

𝑁∑
𝑎=0

𝑁∑
𝑏=0

(
𝑞−𝐂

1 − 𝑞𝐿

)
𝑧𝜃𝑎−𝜃𝑏𝑞𝑀𝜃𝑏+𝐿(𝜃𝑎−𝜃𝑏)(1 − 𝑞𝐵𝑎)𝑞𝐵𝑎+1 … 𝑞𝐵𝑁(𝑀)

1∕𝑧
(𝐀, 𝑎;𝐀+−

𝑎𝑏
, 𝑏)

× 𝜌𝑎(𝐏, 𝐁; 𝑞
−𝐿∕𝑧, 𝑞−𝐿)𝜌𝑏(𝐂 − 𝐏,𝐂 + 𝐃 − 𝐏; 𝑞𝐿−𝑀𝑧, 𝑞−𝑀𝑧) = 1. (A14)

Proof. The summation over 𝑎 and 𝑏 can be broken down into six cases. These are 1. 𝑎 = 𝑏 = 0,
2. 𝑁 ⩾ 𝑎 > 𝑏 = 0, 3. 𝑁 ⩾ 𝑎 > 𝑏 ⩾ 1, 4. 𝑁 ⩾ 𝑎 = 𝑏 ⩾ 1, 5. 1 ⩽ 𝑎 < 𝑏 ⩽ 𝑁, 6. 0 = 𝑎 < 𝑏 ⩽ 𝑁. Let
𝑆𝑎,𝑏 denote the summand of (A14), that is, we write the left-hand side as

𝑁∑
𝑎=0

𝑁∑
𝑏=0

𝑆𝑎,𝑏.

One can write down the summand explicitly in each case. In what follows, we use the notations
𝐁𝑎 ∶=

∑𝑎
𝑖=1 and 𝐁𝑏,𝑎 ∶=

∑𝑎
𝑖=𝑏 𝐵𝑖 . The six cases read:
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Case 1:

𝑆0,0 =
(𝑞𝐿 − 𝑞𝐃)(𝑞𝐁𝑧 − 𝑞𝐏)(𝑞𝑀 − 𝑞𝐀𝑧)

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝑀+𝐏 − 𝑞𝐂+𝐃𝑧)
.

Case 2:

𝑆𝑎,0 = 𝑧𝑞𝐏𝑎−𝐁𝑎
(𝑞𝐿 − 𝑞𝐃)(𝑞𝑀+𝐁 − 𝑞𝐀+𝐁)(1 − 𝑞𝐵𝑎−𝑃𝑎 )

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝑀+𝐏 − 𝑞𝐂+𝐃𝑧)
, 𝑎 ⩾ 1.

Case 3:

𝑆𝑎,𝑏 = 𝑞𝐏𝑏,𝑎−𝐁𝑏,𝑎+𝐃𝑏,𝑁
(1 − 𝑞𝐷𝑏)(𝑞𝐵𝑏−𝐷𝑏 − 𝑞𝐶𝑏 )(1 − 𝑞𝐵𝑎−𝑃𝑎 )

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝐶𝑏+𝐷𝑏 − 𝑞𝑃𝑏 )
, 𝑎 > 𝑏 ⩾ 1.

Case 4:

𝑆𝑏,𝑏 = 𝑞𝑃𝑏−𝐵𝑏+𝐃𝑏,𝑁
(1 − 𝑞𝐷𝑏)(1 − 𝑞𝐵𝑏−𝑃𝑏 )(𝑞𝐵𝑏−𝐷𝑏𝑧 − 𝑞𝐶𝑏 )

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝐶𝑏+𝐷𝑏 − 𝑞𝑃𝑏 )
, 𝑏 ⩾ 1.

Case 5:

𝑆𝑎,𝑏 = 𝑧𝑞𝐁𝑎,𝑏−𝐏𝑎,𝑏−1+𝐃𝑏+1,𝑁
(1 − 𝑞𝐷𝑏)(1 − 𝑞𝐶𝑏+𝐷𝑏−𝐵𝑏 )(𝑞𝑃𝑎−𝐵𝑎 − 1)

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝐶𝑏+𝐷𝑏 − 𝑞𝑃𝑏 )
, 1 ⩽ 𝑎 < 𝑏.

Case 6:

𝑆0,𝑏 = 𝑞−𝐏𝑏−1−𝐁𝑏,𝑁+𝐃𝑏,𝑁
(1 − 𝑞𝐷𝑏)(𝑞𝐵𝑏−𝐷𝑏 − 𝑞𝐶𝑏 )(𝑞𝐁𝑧 − 𝑞𝐏)

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝐶𝑏+𝐷𝑏 − 𝑞𝑃𝑏 )
, 𝑏 ⩾ 1.

We can then perform some partial summations over the index 𝑎, keeping 𝑏 fixed. These sums
telescope, and we easily find (summing Case 1 and 2 terms) that

𝑆0,0 +
𝑁∑
𝑎=1

𝑆𝑎,0 =
(𝑞𝐿 − 𝑞𝐃)

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝑀+𝐏 − 𝑞𝐂+𝐃𝑧)

(
(𝑞𝐁𝑧 − 𝑞𝐏)(𝑞𝑀 − 𝑞𝐀𝑧) + 𝑧(𝑞𝑀 − 𝑞𝐀)(𝑞𝐏 − 𝑞𝐁)

)
=

(𝑞𝐿 − 𝑞𝐃)(𝑞𝐀+𝐁𝑧 − 𝑞𝑀+𝐏)

(1 − 𝑞𝐿)(𝑞𝑀+𝐏 − 𝑞𝐂+𝐃𝑧)
=

(𝑞𝐃 − 𝑞𝐿)

(1 − 𝑞𝐿)
,

and on the other hand (summing Case 3–6 terms)

𝑆0,𝑏 +
𝑏−1∑
𝑎=1

𝑆𝑎,𝑏 + 𝑆𝑏,𝑏 +
𝑁∑

𝑎=𝑏+1

𝑆𝑎,𝑏

=
𝑞𝐃𝑏,𝑁 (1 − 𝑞𝐷𝑏)

(1 − 𝑧)(1 − 𝑞𝐿)(𝑞𝐶𝑏+𝐷𝑏 − 𝑞𝑃𝑏 )

(
𝑞−𝐏𝑏−1−𝐁𝑏,𝑁 (𝑞𝐵𝑏−𝐷𝑏 − 𝑞𝐶𝑏 )(𝑞𝐁𝑧 − 𝑞𝐏)

+ 𝑧(𝑞𝐵𝑏−𝐷𝑏 − 𝑞𝐶𝑏 )(1 − 𝑞𝐁𝑏−1−𝐏𝑏−1) + (𝑞𝑃𝑏−𝐵𝑏 − 1)(𝑞𝐵𝑏−𝐷𝑏𝑧 − 𝑞𝐶𝑏 )

+ 𝑞𝑃𝑏−𝐵𝑏 (𝑞𝐵𝑏−𝐷𝑏 − 𝑞𝐶𝑏 )(𝑞𝐏𝑏+1,𝑁−𝐁𝑏+1,𝑁 − 1)
)
=

𝑞𝐃𝑏+1,𝑁 (1 − 𝑞𝐷𝑏)

(1 − 𝑞𝐿)
.

Finally one can sum over all 0 ⩽ 𝑏 ⩽ 𝑁. The remaining terms then telescope to give 1. □



SHIFT-INVARIANCE FOR VERTEX MODELS AND POLYMERS 297

ACKNOWLEDGEMENTS
The authors are grateful to Pierre Le Doussal for discussions on limit transitions from colored
models to polymers. A. Borodin was partially supported by NSF grants DMS-1664619 and DMS-
1853981; V. Gorin was partially supported by NSF grants DMS-1664619 and DMS-1949820, by the
NECCorporation Fund for Research in Computers and Communications, and by the Office of the
Vice Chancellor for Research and Graduate Education at the University of Wisconsin–Madison
with funding from the Wisconsin Alumni Research Foundation. M. Wheeler was partially sup-
ported by ARC grant DP190102897.

JOURNAL INFORMATION
The Proceedings of the LondonMathematical Society is wholly owned andmanaged by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. A. Aggarwal, Convergence of the stochastic six-vertex model to the ASEP, Math. Phys. Anal. Geom. 20 (2017),

no. 3, 20.
2. A. Aggarwal, Current fluctuations of the stationary ASEP and six-vertex model, Duke Math. J. 167 (2018), no. 2,

269–384.
3. A. Aggarwal and A. Borodin, Phase transitions in the ASEP and stochastic six-vertex model, Ann. Probab. 47

(2019), no. 2, 613–689.
4. A.Aggarwal, A. Borodin, andA. Bufetov, Stochasticization of solutions to the Yang–Baxter equation, Ann.Henri

Poincaré 20 (2019), no. 8, 2495–2554.
5. T. Alberts, K. Khanin, and J. Quastel, The intermediate disorder regime for directed polymers in dimension

1 + 1, Ann. Probab. 42 (2014), no. 3, 1212–1256.
6. T. Alberts, K. Khanin, and J. Quastel, The continuum directed random polymer, J. Stat. Phys. 154 (2014), no.

1–2, 305–326.
7. G. Amir, I. Corwin, and J. Quastel, Probability distribution of the free energy of the continuum directed random

polymer in 1 + 1 dimensions, Comm. Pure Appl. Math. 64 (2011), no. 4, 466–537.
8. G. E. Andrews, R. Askey, and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999.
9. G. Barraquand and I. Corwin, Random-walk in beta-distributed random environment, Probab. Theory Related

Fields 167 (2017), no. 3, 1057–1116.
10. Y. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), no. 2, 256–274.
11. V. V. Bazhanov, Trigonometric solutions of triangle equations and classical lie algebras, Phys. Lett. B 159 (1985),

no. 4–6, 321–324.
12. L. Bertini and G. Giacomin, Stochastic burgers and KPZ equations from particle systems, Comm. Math. Phys.

183 (1997), 571–607.
13. Ph. Biane and M. Yor, Sur la loi des temps locaux Browniens pris en un temps exponentiel, Lecture Notes in

Mathematics, vol. 1321, Séminaire de Probabilités, XXII, Springer, Berlin, 1988, pp. 454–466.
14. A. N. Borodin, Brownian local time, Russian Math. Surveys 44 (1989), no. 2, 1–51.
15. A. Borodin, On a family of symmetric rational functions, Adv. Math. 306 (2017), 973–1018.
16. A. Borodin and A. Bufetov, Color-position symmetry in interacting particle systems, Ann. Probab. 49 (2021), no.

4, 1607–1632.
17. A. Borodin, I. Corwin, and V. Gorin, Stochastic six-vertex model, Duke Math. J. 165 (2016), no. 3, 563–624.
18. A. Borodin and V. Gorin, A stochastic telegraph equation from the six-vertex model, Ann. Probab. 47 (2019), no.

6, 4137–4194.
19. A. Borodin and G. Olshanski, The ASEP and determinantal point processes, Comm. Math. Phys. 353 (2017),

853–903.



298 BORODIN et al.

20. A. Borodin andL. Petrov,Higher spin six vertexmodel and symmetric rational functions, SelectaMath. 24 (2018),
no. 2, 751–874.

21. A. Borodin and M. Wheeler, Coloured stochastic vertex models and their spectral theory, arXiv:1808.01866.
22. G. Bosnjak and V. V. Mangazeev, Construction of 𝑅-matrices for symmetric tensor representations related to

𝑈𝑞(𝑠𝑙𝑛), J. Phys. A 49 (2016), 495204.
23. A. Bufetov and S. Korotkikh, Observables of stochastic colored vertex models and local relation, Comm. Math.

Phys. 386 (2021), 1881–1936.
24. I. Corwin, The Kardar–Parisi–Zhang equation and universality class, RandomMatrices Theory Appl. 1 (2012),

no. 1, https://www.worldscientific.com/doi/abs/10.1142/S2010326311300014.
25. I. Corwin, P. Ghosal, H. Shen, and L.-C. Tsai, Stochastic PDE limit of the six vertex model, Comm. Math. Phys.

375 (2020), 1945–2038.
26. I. Corwin and L. Petrov, Stochastic higher spin vertex models on the line, Comm. Math. Phys. 343 (2016), no. 2,

651–700.
27. I. Corwin, J. Quastel, and D. Remenik, Renormalization fixed point of the KPZ universality class, J. Stat. Phys.

160 (2012), no. 4, 815–834.
28. I. Corwin, T. Seppalainen, and H. Shen, The strict-weak lattice polymer, J. Stat. Phys. 160 (2015), no. 4, 1027–

1053.
29. I. Corwin and H. Shen, Open ASEP in the weakly asymmetric regime, Comm. Pure Appl. Math. 71 (2018), no.

10, 2065–2128.
30. I. Corwin, H. Shen, and L.-C. Tsai, ASEP(q, j) converges to the KPZ equation, Ann. Inst. H. Poincaré Probab.

Statist. 54 (2018), no. 2, 995–1012.
31. I. Corwin and L.-C. Tsai, KPZ equation limit of higher-spin exclusion processes, Ann. Probab. 45 (2017), no. 3,

1771–1798.
32. D. Dauvergne, Hidden invariance of last passage percolation and directed polymers, Ann. Probab.

arXiv:2002.09459.
33. D. Dauvergne, J. Ortmann, and B. Virag, The directed landscape, to appear Acta Math.. arXiv:1812.00309.
34. D. Dauvergne and B. Virag, The scaling limit of the longest increasing subsequence, arXiv:2104.08210.
35. A. Dembo and L.-C. Tsai,Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equa-

tion, Comm. Math. Phys. 341 (2016), no. 1, 219–261.
36. L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebraic

analysis, Elsevier, Amsterdam, 1988, pp. 129–139.
37. P. Galashin, Symmetries of stochastic colored vertex models, Ann. Probab., arXiv:2003.06330.
38. G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications,

vol. 96, Cambridge University Press, Cambridge, 2004.
39. L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys.

Rev. Lett. 68 (1992), no. 6, 725–728.
40. M. Hairer and J. Quastel, A class of growth models rescaling to KPZ, Forum Math. Pi 6 (2018), 112.
41. M. Hairer and H. Shen, A central limit theorem for the KPZ equation, Ann. Probab. 45 (2017), no. 6B, 4167–

4221.
42. K. Johansson andM. Rahman,Multi-time distribution in discrete polynuclear growth, Comm. Pure Appl. Math.

74 (2021), 2561–2627.
43. M. Jimbo, A 𝑞-analogue of 𝑈(𝔤𝔩(𝑁 + 1)), Hecke algebra, and the Yang–Baxter equation, Lett. Math. Phys. 11

(1986), no. 3, 247–252.
44. M. Jimbo, Quantum 𝑅 matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), no. 4, 537–547.
45. A. N. Kirillov, Dilogarithm identities, Progr. Theoret. Phys. Suppl. 118 (1995), 61–142.
46. S. Korotkikh,Hidden diagonal integrability of 𝑞-Hahn vertex model and Beta polymer model, arXiv:2105.05058.
47. J. Kuan, An algebraic construction of duality functions for the stochastic𝑈𝑞(𝐴

(1)
𝑛 ) vertex model and its degenera-

tions, Comm. Math. Phys. (2018) 359 (2018), no. 1, 121–187.
48. P. Kulish, N. Reshetikhin, and E. Sklyanin,Yang–Baxter equation and representation theory: I, Lett.Math. Phys.

5 (1981), no. 5, 393–403.
49. A. Kuniba, V. Mangazeev, S. Maruyama, and M. Okado, Stochastic 𝑅matrix for𝑈𝑞(𝐴

(1)
𝑛 ), Nuclear Phys. B 913

(2016), 248–277.

https://www.worldscientific.com/doi/abs/10.1142/S2010326311300014


SHIFT-INVARIANCE FOR VERTEX MODELS AND POLYMERS 299

50. G. Kuperberg, Random words, quantum statistics, central limits, random matrices, Methods Appl. Anal. 9
(2002), no. 1, 101–119.

51. M. Nica, Intermediate disorder limits for multi-layer semi-discrete directed polymers, Electron. J. Probab. 26
(2021), 1–50.

52. N. O’Connell and J. Ortmann, Tracy–Widom asymptotics for a random polymer model with gamma-distributed
weights, Electron. J. Probab. 20 (2015), 1–18.

53. N. O’Connell andM. Yor, Brownian analogues of Burke’s theorem, Stochastic Process. Appl. 96 (2001), 285–304.
54. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement,

J. Amer. Chem. Soc. 57 (1935), no. 12, 2680–2684.
55. J. Pitman, The distribution of local times of a Brownian bridge, Sém. Probab. 33 (1999), 388–394.
56. J. Quastel, Diffusion of color in the simple exclusion process, Comm. Pure Appl. Math. 45 (1992), no. 6, 623–679.
57. J. Quastel, Introduction to KPZ, Curr. Dev. Math. 2011 (2011), no. 1, https://doi.org/10.4310/CDM.2011.v2011.

n1.a3.
58. J. Quastel and S. Sarkar, Convergence of exclusion processes and KPZ equation to the KPZ fixed point,

arXiv:2008.06584.
59. J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality class, J. Stat. Phys. 160 (2015),

no. 4, 965–984.
60. D. B. Ray, Sojourn times of a diffusion process, Illinois J. Math. 7 (1963), 615–630.
61. B. Virag, The heat and the landscape I, arXiv:2008.07241.
62. D.Williams, Path decomposition and continuity of local time for one dimensional diffusions I, Proc. Lond.Math.

Soc. (3) 28 (1974), no. 4, 738–768.

https://doi.org/10.4310/CDM.2011.v2011.n1.a3
https://doi.org/10.4310/CDM.2011.v2011.n1.a3

	Shift-invariance for vertex models and polymers
	Abstract
	1 | INTRODUCTION
	1.1 | Preface
	1.2 | Shift-invariance for colored stochastic vertex models
	1.3 | Shift-invariance for directed polymers in random media
	1.4 | Shift-invariance for universal objects
	1.5 | Additive stochastic heat equation
	1.6 | An extension

	2 | SHIFT-INVARIANCE FOR THE STOCHASTIC HEAT EQUATION
	2.1 | Statement
	2.2 | Proof of Theorem 2.1

	3 | HOMOGENEOUS STOCHASTIC SIX-VERTEX MODEL: COVARIANCE MATCH
	3.1 | Four-point relation for the colored stochastic six-vertex model
	3.2 | Intersection local times for persistent random walks
	3.3 | Proof of Theorem 3.1
	3.4 | Degeneration of the six-vertex model into SHE

	4 | INHOMOGENEOUS COLORED STOCHASTIC SIX-VERTEX MODEL AND SHIFT THEOREM
	4.1 | Stochastic vertex model
	4.2 | Vertex splitting
	4.3 | Reflection symmetry of vertex weights
	4.4 | Color-merging
	4.5 | Down-right paths and domains
	4.6 | Partition functions on down-right domains
	4.7 | Probabilistic interpretation
	4.8 | Colored height functions
	4.9 | Color-merging of partition functions
	4.10 | Shift theorem
	4.11 | Shift-invariance of height function joint distributions

	5 | PROOF OF THE SHIFT THEOREM 4.13
	5.1 | Part one: Proof for two-row partition functions
	5.2 | Part two: Proof for Z-shaped domains
	5.3 | Part three: Proof for generic down-right domains
	5.3.1 | Analysis of 
	5.3.2 | Analysis of 
	5.3.3 | Equality of and 


	6 | HIGHER SPIN COLORED SIX-VERTEX MODEL
	6.1 | Finite spin model
	6.2 | Analytic continuation
	6.3 | Auxiliary -identities and limit transitions
	6.4 | A continuous limit

	7 | DIRECTED POLYMERS
	7.1 | Beta polymer
	7.2 | Gamma polymer
	7.3 | O’Connell-Yor polymer
	7.4 | Brownian last passage percolation
	7.5 | Continuous directed polymer and KPZ equation
	7.6 | Airy sheet
	7.7 | Back to additive SHE

	APPENDIX: FUSION
	A.1 | Row-vertices
	A.2 | M-fused vertices
	A.3 | Evaluation of M-fused vertices
	A.4 | Column vertices
	A.5 | (L,M)-fused vertices
	A.6 | Recursion relation
	A.7 | Explicit formula for (L,M)-fused weights
	A.8 | Proof of Theorem A5 for L 1
	A.9 | Proof of general case in Theorem A5

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


