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Mitigating vulnerabilities in software requires first identifying the vulnerabilities with an organization’s software assets. This seemingly
trivial task involves maintaining vendor product vulnerability notification for a kludge of hardware and software packages from
innumerable software publishers, coding projects, and third-party package managers. On the other hand, software vulnerability
databases are often consistently reported and categorized in clean, standard formats and neatly tied to a common software product
enumerator (i.e., CPE). Currently it is a heavy workload for cybersecurity analysts at organizations to match their hardware and
software package inventory to target CPEs. This hinders organizations from getting notifications for new vulnerabilities, and identifying
applicable vulnerabilities. In this paper, we present a recommender system to automatically identify a minimal candidate set of CPEs
for software names to improve vulnerability identification and alerting accuracy. The recommender system uses a pipeline of natural
language processing, fuzzy matching, and machine learning to significantly reduce the human effort needed for software product

vulnerability matching,.
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1 INTRODUCTION

An organization wishing to mitigate its software vulnerabilities has clear disadvantages against an adversary. No
obvious tie exists between the installed software of the entity and the software publishers that maintain the vulnerability
reporting and mitigation for a given piece of software. The installed software and hardware inventory observed by a
consumer is referred to as software inventory package name. Organizations have tens of thousands of software packages
represented by hundreds to thousands of software publishers. These software publishers vary significantly from some
of the largest companies on earth to mostly abandoned software projects.

Most cybersecurity operation centers have a process to identify vulnerabilities through a combination of scanning,
asset management, and assessments. However, the fastest and surest strategy in preventing vulnerabilities from being
exploited is an immediate notification from the vendor. For some vendors, this may occur through a paid support contract.

Prominent operating system vendors, such as Microsoft, Apple, and Android, regularly push new vulnerability patches,
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which consumers then automatically deploy. However, many more software publishers rely on public notification of
vulnerabilities through services such as the National Vulnerability Database (NVD).

In these cases, consumers can only act on public notifications by matching the vulnerable product to their hardware
on software inventory. Timely analysis and remediation are critical in computing environments such as data centers,
industrial control systems, and Internet of Things (IoT) systems.

The matching process is more complicated than it sounds. Hardware and software inventories often represent an
amalgamation of different software publishers packaged up and deployed together. Then, the public vulnerability
notifications use a standard naming convention which is well-formed but distinct from software package listings in the
system inventory.

To further complicate the problem, software and hardware device inventory is a private data set. Organizations
cannot simply post their software inventory for assistance in matching vulnerability reports. Revealing the deployed
hardware and software names provides reconnaissance information adversaries might use to breach an organization,
and revealing the data often violates regulatory requirements. Instead, cybersecurity analysts must painstakingly match
their deployed software to public vulnerability reports.

Automatically matching enterprise software inventory with vulnerability reports frees up time for cybersecurity
operations, but it also allows the convergence of the vulnerability data features with the asset and operational data
features. Bringing these together paves the way for even more automation in vulnerability management and mitigation
[12, 20].

Our approach solves the matching problem through a pipeline of natural language processing (NLP), fuzzy matching,
and machine learning. A cybersecurity analyst using our technique can immediately obtain a shortlist of candidate
matches to their software inventory or conclude the absence of any matching vulnerability identification source.
While not perfect, the automation mimics the work of a human analyst to obtain a situational understanding of their
environment and dramatically shortens the time to make a match decision. To the best of our knowledge, this is the first
work to solve the aforementioned matching problem.

This paper is organized as follows. We present prior work in section 2 and then describe the vulnerability reporting
process and software name matching problem in section 3 from the perspective of cybersecurity operations. We present
our recommender solution in section 4. Finally, we present our implementation and test results in section 5 and then

conclude this paper.

2 PRIOR WORK

[5] defines software vulnerabilities as specific flaws in a piece of software that allows attackers to do something
malicious. The problem of determining whether the software is vulnerable is undecidable [7], and as [9, 21] observe,
vulnerabilities have become a normal process of cybersecurity operations. Entities with the responsibility of protecting
against software vulnerabilities face the challenge of timely identifying vulnerabilities through public vulnerability
alert repositories.

Researchers have studied the problem of public vulnerability reporting in several contexts. [16] examines the time
delay between the reporting of vulnerabilities and the reporting of Common Vulnerability Scoring Scheme (CVSS)
attributes. Several works enhance publicly reported CVSS data using machine learning and NLP to obtain new features
and improve vulnerability and patch management decisions. [20] uses the CVSS metrics to automatically recommend
vulnerability remediation actions. [22] uses vulnerability features to predict the probability of exploit for vulnerabilities

and optimize patch scheduling. [12] uses natural language processing to automatically localize vulnerability information
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from online resources. In [10], a model is provided for NLP Named Entity Recognition (NER) over vulnerability
descriptions to extract cause, consequence analysis, and impact ratings automatically. [19] demonstrates temporal
difference over time in the vulnerability CVSS when used for machine learning. In [18], machine learning improves the
accuracy of impact scoring, and [11] shows the drift over time of NLP models when applied to vulnerability descriptions.
Similarly, [17] parses the CVE description to obtain vulnerability characteristics automatically, and [8] extracts network
services from vulnerability descriptions using NLP to automatically perform threat analysis.

However, entities cannot realize the benefits of enhanced vulnerability intelligence without mapping the Common
Vulnerabilities and Exposures (CVE) to the software inventory of an entity through a Common Product Enumerator
(CPE). For this task, we look to recommender systems. The term recommender system originated with [15] as an approach
used to filter through large datasets to present the most relevant and desired selection back to the user. [3] defines
recommender systems as those guiding the user to interesting or useful objects in a large space of possible options.
Although most recommender systems [2] focus on user experience, there has been recent work to apply the approach
to cybersecurity [1, 6, 14]. To the best of our knowledge, this is the first approach to address the problem of matching

raw software inventory to standardized software product names.

3 BACKGROUND

Currently, the largest open vulnerability database is maintained as the U.S. National Vulnerability Database (NVD) with
over 1,500 vulnerability being reported monthly. Each of these vulnerabilities contains a section of products to which
the vulnerabilty applies. The NVD relies on CVE Numbering Authorities (CNAs) to report vulnerabilities for products
for which the CNAs have responsibility. As of this writing there are 167 CNAs representing 28 countries. A summary of
the top ten CNAs reporting the most vulnerabilities in 2020 is provided in Table 1.

Table 1. Estimated Number of Vulnerabilities Reported in 2020 by CNA

CVE Numbering Authority Reported
MITRE Corporation 3,669
Microsoft Corporation 1,082
Oracle 807
Cisco Systems, Inc. 436
Android (Google Inc. or Open Handset Alliance) 413
GitHub, Inc. 407
IBM Corporation 353
Adobe Systems Incorporated 308
Apple Inc. 272
ICS-CERT 225
Jenkins Project 209

When reporting vulnerabilities, CNAs identify the new vulnerability by a Common Vulnerability Enumerator (CVE).
The CVE list is an open database sponsored by the United States Department of Homeland Security !. The CVE is
commonly used by vulnerability databases, bug bounty programs, and exploit databases. The NVD uses the Common

Product Enumeration (CPE) software product naming standard when reporting vulnerability product applicability.

!https://cve.mitre.org/cve/
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The CPE is based off the Uniform Resource Identifier (URI) syntax and provides a set theoretic naming convention in
which a source and target software product name may be structured and compared as sets [4]. The naming standard is

most commonly used to define the set of software to which a vulnerability applies using the following keys:

e Part - Type of software. A value a indicates software, h indicates hardware, and o indicates operating system.
e Vendor - Name of the manufacturer or publisher of the software.

e Product - Name of the product.

Version - Version of the product.

Update - A major update of the product such as a service pack for Windows. Currently, this key is only specified
in 10% of the products reported to the NVD.

Edition - Used to specify different types of the same product. However, in practice, the edition is commonly

specified in the product name.

The CPE URI reads from general to specific in the format
cpe:2.3: <part> : <vendor> : <product> : <version> : <update> : <edition> using the key value indicated in the URL A
> character is used as a wildcard for the source CPE. When matching sources to target URIs, the wildcard defines a
superset based on other key value pairs in the URL For example CPE:2.3:a:microsoft:*:*:*:* defines the superset of all
Microsoft software.

Vulnerabilities in the NVD define software applicability using CPEs in a boolean expression. In most cases, this
means a simple OR operation to define applicability to multiple products. However, certain CNAs use the AND operation
when the vulnerability only applies to a certain platform of the product. For example, a vulnerability for Adobe Acrobat
on Android as opposed to the Windows operating system, would use the boolean AND operation to distinguish the
applicability. An example with AND and OR operations is the Wordpress vulnerability CVE-2020-10257 ? that has 62
vulnerable configurations.

The intention of the NVD is for organizations to match their hardware and software inventory to CVEs and receive
the applicable vulnerability notifications. However, in most cases, there is no clean way to do so. Table 2 provides a
summary of CNAs who provide an online mapping between CVEs and software products and packages.

As shown, most Linux operating systems can automatically match to CVEs using package listings available through
the operating system. Cisco, Intel, and Microsoft provide up to date mappings from update packages to the CVE.
Microsoft is unique in providing a tool for automatically extracting applicable packages (i.e., KBs) for an operating
system.

As far as we can tell, no other CNAs provide an automated software inventory to CVE listing. Therefore, organizations
wanting to receive notifications of new vulnerabilities are left to manually map their remaining inventory to CPE source
URIs. Alternatively, they may review all new vulnerabilities for applicability, but the mapping still must regularly occur

to perform vulnerability patching and mitigation.

4 FUZZY MATCHING TECHNIQUE

This section presents a solution for automatically matching target CPEs against an enterprise hardware and software
inventory. Doing so not only allows for automated vulnerability notifications but also enables organizations to combine
data features between vulnerabilities and vulnerable assets to improve cybersecurity risk understanding and mitigation

decisions.

https://nvd.nist.gov/vuln/detail/ CVE-2020-10257
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Table 2. CVE Notifications in Practice

Hyperlinked CNA | Matching Approach
Each Cisco advisory is mapped to multiple CVEs, but product matching is not

Cisco, Inc. known to be automated
Debian CVEs are listed by package name, which can be matched to Debian APT listing
Intel Corp. Each Intel advisory is mapped to multiple CVEs, but product matching is not

known to be automated

A spreadsheet can be downloaded from the source URI with Microsoft Knowl-
edge Base (KB) mapping to CVEs. Product matching comes through their Win-
dows Security Update Service (WSUS) tool which can be configured to output
a KB listing.

CVEs are mapped to packages, and product listing can be matched from the

Microsoft Corp.

RedHat, Inc. output of RedHat Package Manager.

Suse Package to CVE mappings can be scraped from the given URI, and packages
are listed on the operating system through RedHat Package Manager.

Ubuntu Package to CVE mappings can be scraped from the given URI, and packages

can be matched through an APT listing on the operating system.

The approach to fuzzy matching approximates the process a security analyst would take in finding matching CPEs for
their hardware and software inventory. A security analyst seeking to map their unknown software package inventory
to a vulnerability source begins first by finding a suitable vendor name and filtering down further to find the product,
but the search becomes messier when they cannot easily find a suitable source CPE for a specific product. If a vendor
match is found, then the target CPE set might contain only the vendor, which is too coarse-grained. For large vendors,
this might produce several hundred false positive CVE notifications each year.

We account for the complexity in decision making by determining candidate target CPEs through a three phase
automation process. First, we extract the word vectors using the core english vocabulary from spaCy>. Then, based on
the word vectors, we fuzzy match the software inventory package names to a set of CPEs using multiple metrics. Since
many results might be returned in this step, finally, we use machine learning to order these CPEs and produce a small

set (e.g., 5 to 10) of candidate target CPEs for a human to select.

4.1 Natural Language Processing

The inherent variation in natural language means that computers struggle to extract meaning in language. Irregular
verb conjugations, for example, are difficult to detect using word stems. In our work, we find that software names, in
particular, are often not dictionary words, and so many pre-trained or ready-to-use models have no context with which
to recognize them.

Because of this, there is great value in representing words in some standardized, machine-readable format; Word2Vec
is a recent but well-established method for this task [13]. Word2Vec is an algorithm which processes a text corpus and
projects the corpus vocabulary as vectors in a multi-dimensional space. Word2Vec can be trained on any corpus and
will create word vectors for all tokens within it. Using word vectors, many NLP tasks become programmatic in nature.
Measures of vector similarity can predict synonyms or antonyms. Similarly, word vectors can be used to infer analogies.
For example, if a direction is calculated between the vector for "man" and the vector for "king", that direction can be

applied to the vector for "woman" to obtain "queen".

3hitps://spacy.io/
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Word vectors are simply an array of the same size as the number of dimensions, often normalized in the range
[-1, 1] before storage or comparison. Once a Word2Vec model has been trained, only the word vectors must be stored,

minimizing the storage space needed.

4.2 Fuzzy Matching

String similarity tests occur through multiple calculations. First, the similarity between the software package inventory

and the CPE is measured using the cosine between two-word vectors A and B as shown in the following equation where

equal vectors have a cosine angle of one, and maximally dissimilar vectors have a cosine of 0.
A-B

lAl1IBI]

Software names commonly have multiple words and symbols. The comparison is normalized by first splitting the

cos® =

(1)

string by common stop words and then removing unnecessary symbols. Subsequently, calculating the cosine similarity
occurs through the average of all distinct word vectors in the string. This approach allows for similar words to appear
in a different order between two strings without impacting the similarity score.

However, the concatenation of vendor and product strings can have misleading cosine similarity scores. For instance,
software products commonly get bought out by other companies, but the CPE name may remain the same, or product
names can span several words and adversely impact the matching vendor. Consequently, the cosine similarity between
the software package inventory name A, and the vendor By, g0, and the cosine similarity between the software
package inventory name A and the product Bp,oqyc; are calculated separately.

Finally, software package inventory names may not have a word vector representation due to misspellings or other
variance in the software naming. Likewise, the cosine similarity calculation returns 0 even when the words closely
align. In these cases, the similarity gets measured as the cosine similarity of the strings using the letter count where c

represents the letter, and C(x) represents the count of the letter x.

2ZveeanB C(A.c) X C(B.c)

()
VC(A.c)?2 x y/C(B.c)?

cos® =

4.3 Machine Learning

Our matching solution uses machine learning as the final step in the pipeline to better distinguish the results of fuzzy
matching. The machine learning model assists in ordering the results from fuzzy matching and presenting a smaller
focused set to human operators. This approach improves the accuracy of the identified vulnerabilities by considering
both fuzzy matching and historical vulnerability reporting for the software product.

The number of vulnerabilities between different vendors and different products varies greatly. For example, ac-
cidentally matching the vendor Goomeo instead of Google for a software package drastically affects the number of
accurately identified vulnerabilities because Google has several vulnerabilities identified each month. Thus, using the
string similarity in the previous fuzzy matching step does not produce effective enough results. That is why machine

learning is further used. The data features for the machine learning model include:

(1) Actual Type (categorical feature) - The type can be either software or hardware.

(2) Part (categorical feature) - CPE part as either "a" for application, "o" for operating system, or "h" for hardware.

(3) CNA Source (categorical feature) - The CVE Naming Authority is most closely associated with the vendor and
product. Although the CNA does not currently factor much in the prediction, there is a clear distinction in

6
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product naming among CNAs. We leave this to future research to determine if this should have more weight in
the model’s output.
(4) Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between word vectors in the software
inventory package name and the concatenated vendor and product from the CPE.
(5) Vendor Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between word vectors in the
software inventory package name and only the CPE vendor.
(6) Product Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between word vectors in the
software inventory package name and only the CPE product.
(7) Vendor Word Character Cosine Similarity (between [0, 1]) - The cosine similarity between the word characters
in the software inventory package name and the vendor.
(8) Product Word Character Cosine Similarity (between [0, 1]) - The cosine similarity between the word charac-
ters in the software inventory package name and the product.
(9) Vendor Product Count - The number of software products per vendor reported in the CPE. A vendor with a
large product count has the risk of producing a false positive in the product matching.
(10) Vendor Vulnerability Count - The historical number of vulnerabilities reported through the NVD for the
given vendor. A high number of vulnerabilities increases the likelihood of a CPE match producing false positives.
A low number of vulnerabilities indicates that products for this vulnerability can match at the less granular
VENDOR level without much risk of false positives.
(11) Product Vulnerability Count - Similar to the vendor vulnerability count, this is the count of vulnerabilities

specific to the software product.

For each candidate CPE generated in the fuzzy matching step, the machine learning prediction outputs three

classifications:

(1) Order - An ordered set (HIGHEST, HIGH, MEDIUM, LOW, LOWEST, REJECT) on the confidence this target
CPE is a good recommendation. The ordering classifier allows for a sorted presentation of recommendations
back to the security operator. A REJECT output indicates the recommender should not present the option to the
security operator.

(2) Level - Either VENDOR or PRODUCT. If the target CPE went only to VENDOR for a software publisher with
numerous products and vulnerabilities (e.g., Google, Microsoft, etc.), it would have many false positive vulnera-
bility notifications. In contrast, a target CPE for a vendor with relatively few vulnerability notifications could

safely match only to the vendor level.

Then the candidate CPEs are ordered based on Order classification first and then the Level classification. CPEs with
a higher Order classification go before CPEs with a lower Order classification. When the Order classification is the
same, CPEs with the Level classification of PRODUCT go before CPEs with the Level classification of VENDOR. Using
the outputs of Order and Level, the recommender can present to human operators the most likely target CPEs first.

We generated training data samples using over 7,000 software product strings (i.e., software inventory package
names) found on Wikipedia using the MediaWiki API * and Wikipedia categories related to software products. These
names match against the CPE word vectors to produce 23,048 samples of training and test data for machine learning.

For each CPE in the NVD, the vendor and product strings receive pre-processing to remove non-alphanumeric

characters. Words split based on the convention of using underscores and dashes to separate words in the CPE strings.

4https://www.mediawiki.org/wiki/API
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Fig. 1. Feature Importance for ’Order’ Output Fig. 2. Example Recommendation Output

Then, the word vectors are calculated for each vendor and product and stored in a hashed reference to the CPE. Training
samples are pre-processed and formed into word vectors in the same way. The top 100 of the most similar CPE word
vectors are extracted as initial candidates using word vector cosine similarity tests on the product and vendor. Training
data labels are generated based on manual inspection and general guidelines to avoid false positives. For instance,
decisions to classify a match as a VENDOR typically only apply to vendors having less than 100 vulnerabilities per year.
Otherwise, the match will likely produce far too many false positives.

The machine learning model uses a random forest classifier using a Gini impurity measure for the decision split, 100
decision trees in the forest, and an 80/20 training/testing split. Using a random forest classifier reduces the variance
between the models and allows for more feature analysis. Table 3 shows the result for the Order classification. The
highest and lowest order recommendations have very high F-scores because HIGHEST, LOWEST, and REJECT have
more determinism and samples. The ordering in between (i.e., HIGH, MEDIUM, and LOW) requires more subjective
judgment and more variance. Model classification performance for Level is almost 100% accurate. These classifications
indicate high determinism in the output. The dataset used for training and testing is available on GitHub °.

The primary output of the machine learning model is the order of presenting the results back to the security operator.
Likewise, of the three outputs, order has the most number of options and highest variance. Figure 1 shows the feature
importance for the order prediction using permutations as a measure. Each feature is arbitrarily modified ten times
over the training and test data. The importance calculation, i, for feature j, is calculated as the difference in the overall

model accuracy score, s and the mean permuted accuracy score:

1 K
ij=s—?23jk (3)

J=1
The permuted feature measurement shows that the Vendor Character Similarity and Product Character Similarity
have the highest importance in the model performance. Vulnerability count also has a significant impact on the model

performance because our order labeling factored in the impact of choosing the wrong CPE. If a vendor or product has a

higher vulnerability count, then the label is often ordered higher to minimize the potential for an operator missing

Shttps://github.com/pdhuff/cpe_recommender
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applicable vulnerabilities. The lower feature importance for word vector similarity tests does not discount their use in
the model. Indeed, word vector similarity is used to identify the input candidate CPEs for machine learning, but the

variance in word vector similarity does not appear helpful in ordering.

Table 3. Machine Learning ’Order’ Classification Results for CPE Matching

Recommended Order | Precision | Recall | F-Score | Support
HIGHEST 100% 98% 99% 937
HIGH 80% 66% 72% 232
MEDIUM 72% 46% 56% 211
LOW 89% 87% 88% 1,076
LOWEST 98% 99% 98% 5,854
REJECT 99% 100% 100% 14,738
Weighted Average 98% 98% 98% 23,048

5 IMPLEMENTATION AND EVALUATION

We tested the recommender system and compared it to a human analyst using i) 50 software inventory package
names of commonly used software on the Microsoft Window (MS) platform, and ii) 50 hardware inventory names of
commonly used network and computing hardware in an enterprise. The search involved inspecting these products on
the NVD to find vulnerabilities associated with them, and validating the search result. Overall, the manual process
took approximately 6.5 hours to identify target CPEs for the hardware and 70 minutes to identify target CPEs for the
software.

Figure 2 provides examples for each prediction. Users have presented a reduced set of options priortized first by
Order and then by Level. For example, if the machine learning finds a product match, the user first sees the product
match before a less granular vendor match.

For software, the average number of manual search results was 119, and only 8% of those searches returned a
conclusive result. In contrast, our recommender returned an average of 2 results with 40% conclusively identified, since
it can accurately map software names to CPEs which in turn can accurately map to vulnerabilities. A sample of the
results generated by the recommender is shown in figure 2.

For hardware, the average number of manual search results by the analyst was approximately 34 with only 28%
returning a conclusive result, and the average number returned by the recommender was 2 with 48% returning a
conclusive result. We consider no results returned as inconclusive. Since hardware is not as commonly represented in
the NVD, no search results is not surprising with hardware assets.

For this small dataset of 100 hardware and software inventory package names, the recommender already saved over 7
hours and provided more accurate results. For larger systems with more hardware and software assets, the time saving
will be even more. Furthermore, with the recommender automatically finding results, the cybersecurity operation has

less risk of missing vulnerability notifications.

6 CONCLUSION

We have presented a new approach for organizations to automatically match their hardware and software inventory to
CPEs used by standard vulnerability sources. The recommendation system outputs a small set of target CPE names for

identifying applicable vulnerabilities based on the input of software package inventory. Using a pipeline of NLP, fuzzy
9



NG-SOC ’21, August 17-20, 2021, All digital Huff, et al.

matching and machine learning, the system produces a much more accurate and useful result based on the ecosystem

of software vendors and CVE Naming Authorities.

Our initial testing showed significant time savings, but more importantly, the results showed an improvement in

accuracy. In future work, we plan to validate these results with a larger, more realistic dataset.
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