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Abstract

We derive low-order, inf—sup stable and divergence-free finite element approximations for the Stokes problem using Worsey—
Farin splits in three dimensions and Powell-Sabin splits in two dimensions. The velocity space simply consists of continuous,
piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties
at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure
space, and in particular, show that the pressure constraints can be enforced at an algebraic level.
©2021 Elsevier B.V. All rights reserved.
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1. Introduction

The first inf—sup stable finite element spaces that yield divergence-free approximations for incompressible fluid
models on simplicial triangulations were given in the classical paper by Scott and Vogelius [1]. Their lowest order
pair, defined on a two-dimensional domain, used quartic Lagrange finite elements and piecewise cubic polynomials
for the discrete velocity and pressure spaces, respectively; since then, there have been several efforts to find lower
order inf-sup stable and conforming finite element spaces that produce divergence-free approximations [2—10].

If we confine ourselves to Lagrange elements for the velocity space, then a reduction of polynomial degree, while
preserving stability, can be done on certain splits (i.e., refinements) of a simplicial mesh. For example, Zhang proved
stability of the three-dimensional cubic—quadratic pair on Alfeld splits [5], and stability of the three-dimensional
quadratic—linear pair on Worsey—Farin splits [10]. On the other hand, Zhang suggests that piecewise linear Lagrange
elements for the velocity are unstable on Worsey—Farin splits [10, p. 244]. One of the main objectives of this paper
is to show that indeed the linear case is stable if coupled with the correct pressure space.
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The main goal of this paper is to construct inf—sup stable and divergence-free pairs on simplicial (split) meshes
using a linear-constant velocity—pressure pair on Worsey—Farin splits (3D) and Powell-Sabin splits (2D). As far
as we are aware, this is the first three-dimensional pair with these properties using linear Lagrange elements for
the discrete velocity space. The main driver of our construction is an explicit characterization of the divergence
operator acting on the Lagrange finite element space developed in [11,12]. Such characterizations naturally lead to
the definitions of the discrete pressure space. In particular, the pressure space is a subspace of piecewise constants
with weak continuity constraints on singular edges (Worsey—Farin) and singular vertices (Powell-Sabin).

Our results in two dimensions are similar to those in [6], where Zhang showed stability of a Stokes pair with linear
Lagrange elements for the velocity space on Powell-Sabin splits. However, the pressure space was not characterized
in [6] and as a result, a pressure basis is not explicitly constructed. Due to the implicit definition of the pressure
space, one is forced to solve the resulting algebraic system by the iterated penalty method (IPM). In contrast, the
explicit characterization of the pressure space we provide opens the door to a library of solvers based on the standard
mixed formulation.

An advantage of the proposed schemes is their low computational cost and simple velocity spaces, which
are supported in finite element software libraries. On the other hand, the discrete pressure spaces are subspaces
of piecewise constants with weak continuity properties at singular edges and singular vertices; these spaces are
nonstandard, and in particular are not readily available on computational software packages. Nonetheless, we show
that these weak continuity properties can be enforced entirely at the algebraic level. One can simply form the
algebraic saddle point problem using the full (unstable) linear-constant pair, and then perform elementary row and
column operations to this system to enforce the weak continuity constraint. As a result, the proposed discretizations
can be implemented on standard finite element software packages (e.g., FEniCS).

We note that degrees of freedom and commuting projections were given in [11,12]. In fact, an entire exact
sequence of spaces were presented. However, stability (e.g., inf—sup stability) was not shown, which is something
we carry out here.

Moreover, we provide numerical experiments to validate our theoretical results. In particular, we show that
the computed solution is satisfying the standard error estimates in mixed formulation. Also, we provide a time
comparison between the stiffness matrix modification method described above and the iterated penalty method.

The paper is organized as follows. In the next section we provide the notation used throughout the paper
and introduce the Stokes problem. Section 3 proves the inf-sup stability of a low-order finite element pair on
Powell-Sabin splits. In Section 4 we prove stability of the analogous three-dimensional pair on Worsey—Farin
splits. In Section 5 we discuss implementation aspects on Powell-Sabin splits and in Section 6 we do the same for
Worsey—Farin splits. Finally, in Section 7 we provide numerical experiments.

2. Preliminaries
In this section we develop basic notation that we use throughout the paper. We provide this in the following list:

e T, is a shape-regular, simplicial triangulation of a contractible polytope 2 C R? (d = 2, 3).

o hy =diam(T) for all T € T, and h = maxycg), ht.

e For an n-dimensional simplex S (n < d) and m € {0, ..., n}, denote by A, (S) the set of m-dimensional
simplices of S. Likewise, for a simplicial triangulation Q;, we let A,,(Q;,) denote the set of m-dimensional
simplices in Q.

e P.(S) denotes the space of polynomials of degree < r with domain S. Analogous spaces of vector-valued
functions are given in boldface, e.g., P,(S) = [P-(ST9.

e We define the following function spaces on {2:

LX) ={w: 2 R: wlpg = (/Q lw|»)'? < oo},

H"(2):={w: 2 R: [wlgmw) =) 1D wl},)""* < oo},
|Bl=m
and the spaces with boundary conditions:

LX) = {w e L*(2) : / w = 0},
2
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H"™(2) = {w e H"(2): DPwlyo =0,V : |B] <m —1}.

Analogous vector-valued function spaces are denoted in boldface, e.g., H ) = [HY(DA.
e For a simplicial triangulation Q;,, we define the spaces of piecewise polynomials

Pe@n) = [] PuK), Pe@Qn) = [ Pu(K),  PUQ) = Pu(Q) N H' (D),

KeQy KeQy
o o o C o 1
Pe(Qp) = P@Q) N LXD),  P(Q) = Pu(Q) N H (D),
where D = UKEQhk . Thus ‘j’k(Qh) consists of piecewise polynomials of degree < k with respect to the
triangulation Q;, with mean zero, and fPZ(Qh) is the space of continuous, piecewise polynomials of degree < k

with vanishing trace (i.e., the kth degree vector-valued Lagrange finite element space).
e The constant C denotes a generic positive constant, independent of the mesh parameter A.

2.1. The Stokes problem

The Stokes equations defined on a polygonal domain 2 C R with Lipschitz continuous boundary 32 is given
by the system of equations

—vAu+Vp=f in §2, (2.1a)

divue =0 in {2, (2.1b)

u=20 on d{2, (2.1¢)

where the velocity u = (uy,...,uy)T and pressure p are functions of x = (x1,...,x4)7, and V, A denote the

gradient operator and vector Laplacian operator with respect to x respectively. In (2.1a), v is the viscosity.
o | ° o | o
The weak formulation for (2.1) reads: Find (u, p) € H (£2) x L*(2) such that Y(v, g) € H (£2) x L*(2) we

have
v/ Vu:Vv—f (diV‘l))p:/ f-v, (2.2a)
Q Q Q

/ (diva)g = 0. (2.2b)
2

It is well known that the problem (2.2) has a unique solution [13].

LetV,xY,CH (1)((2) X L%(Q) be a conforming and finite dimensional pair. Then the finite element method for
(2.1), based on the standard velocity—pressure formulation, seeks (u;, py) € V;, x Y}, such that V(v,q) € V), x ¥}
we have

v/ Vu, : Vv —/ (div v) pp, =/ f-v, (2.3a)
Q Q Q
/ (divuy)g = 0. (2.3b)
Q
The discrete problem (2.3) is well-posed if and only if the pair satisfies the inf-sup condition

[o(divv)g .
%—Z,BHQHLZ(Q) Vg € Yy,
O#vef/h “ v”LZ(Q)

for some 8 > 0.

3. Inf-sup stability on Powell-Sabin triangulations

Let T, be a simplicial, shape-regular triangulation of £2 C R?. The Powell-Sabin refinement of T),, denoted by
‘J'ES is obtained by the following procedure [14]. First connect the incenter of each triangle T € T, with its three
vertices. Next, the incenters of each adjacent pair of triangles are connected with an edge. If 7 has a boundary
edge, then the midpoint of the boundary edge is connected to the incenter of T. Thus, this procedure splits each
triangle in 7}, into six subtriangles; cf. Fig. 1. We set

T ={(KeT: KCT).
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Fig. 1. Two triangles in the mesh T}, (left) and their Powell-Sabin refinement (right). The singular vertices in the Powell-Sabin refinement
are depicted in red.

Remark 3.1. The Powell-Sabin refinement is defined via the incenter of each triangle; this choice ensures that the
line connecting these points intersects the common edge of two macro triangles [15]. We will refer to such interior
points of the macro triangulation as split points, as is commonly done in the literature. Other choices of split points
can be made as long as the line intersecting them intersect the common edge [16]. The theoretical arguments will
remained unchanged. However, for the sake of concreteness, we assume that the split points in the Powell-Sabin
refinement are chosen as the incenters.

One feature of the Powell-Sabin triangulation is the presence of singular vertices.

Definition 3.2. We say that a vertex in a simplicial triangulation is singular if the edges meeting at the vertex fall
on exactly two straight lines.

Let 8} and 87 denote the sets of interior and boundary singular vertices in TPS| respectively, and set S, = STuss.
Note that the cardinalities of the sets 8! and 87 correspond to the number of interior and boundary edges in T,
respectively. For z € 8!, we denote by T, C ‘J'hPS the set of four triangles that have z as a vertex. We write
T, ={KD, K@ K& K¥} with kY e TPS, labeled such that K and KY*" have a common edge. Likewise,
for z € 8f, we set T, = {K{V, K?} C T7° to denote the two triangles that have z as a vertex. We set n, = |T;],
ie,n,=4ifz€ 8 andn, =2if z € 8F.

3.1. Finite element spaces on Powell-Sabin triangulations

It is well known that, on singular vertices, the divergence operator acting on the Lagrange finite element space
has “weak continuity properties”; the precise meaning of this statement is provided in the following lemma. Its
proof can be found in, e.g., [1,17].

Lemma 3.3. For z € 8, and piecewise smooth function q, define

4l e0(@) = gl @) +ql0@) = qliw@)  z€8),
gl () = gl (2) z€8P.

0.(q) = {

Then there holds 6,(divv) = 0 for all v € fi’,i(?’,fs).

Based on Lemma 3.3, and on a discrete de Rham complex, divergence-free finite element pairs for the Stokes
problem have been constructed and analyzed in [6,1 1] on Powell-Sabin triangulations. Here, we focus on the lowest-
order case, where the velocity space is the linear Lagrange space, and the pressure space is a subspace of piecewise
constants with a weak continuity property at singular vertices. We first define the spaces without boundary conditions
and then the ones with boundary conditions.

VS =PUT),
YIS ={q € Po(TH%): 6.(q) =0Vz e 8.
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We now define an intermediate pressure space
Y= {q € Po(TFS) : 6.(q) =0 Vz €8}
The spaces with boundary conditions are
v, = VIS,
Y=Y n k0.

3.2. Stability of V> x VIS
The stability of the pair ‘Q/ZS x Y} is implicitly shown in [18, Lemma 3.3]. Here we give more details.

Theorem 3.4. There holds div ‘O/ZS cv, }f’ S. In addition, the pair ffzs x Y, ,f S is an inf-sup stable pair for the Stokes
problem, i.e.,

[o(divv)g

0¥’ IVl 20

= Bllgll 2 Vg € vrs,
for some B > 0 independent of the mesh parameter h.

Proof. The inclusion div V> C ¥FS follows from Lemma 3.3 and the definition of ¥/S.

For T € Ty, let z € 8, with z C T and let {K;, K»} C T"S be the two triangles in the Powell-Sabin refinement
of T that have z as a vertex. Let v; be the outward normal of K; perpendicular to the common edge 0K N 0K>;
see Fig. 2. We define the jump operator of a function p defined on T at z as

[p1(z) = plk,(@)vi + plk,(2)v2.

Note that if 77,7, € Tj, are two macro triangles with a common point z € §; then 6,(p) = 0 if and only if
[[[7|T1]] ()= [[[7|T2]] (z). In particular, a piecewise constant function p with zero mean belongs to the space Y ,f) Sif
and only if [p]] (z) is single-valued for all z € §,.

For each T € Ty, let T* denote the local triangulation of 7 consisting of three triangles, obtained by connecting
the vertices of 7" with its incenter, which is known as the Clough—Tocher or Alfeld split of 7. Let g € Y 5 S_ and let

w e FOII(LQ) satisfy divw = g and [|Vw|| 2y < Cllq |l 2(s)- Set w, € 5’1(Th) to be the Scott—Zhang interpolant [19]
of w with respect to Jj,. By [11, Lemma 10], there exists a unique v € f’:s such that

v(a) = wy(a) Ya € Ay(Ty),
/(v ‘ne) = /(w ‘n.)  Vee A(Ty),
[divv] (z) = [q] (2) Vz € 8,

/(div v)p = / qp Vp e Po(T™) N LYT), VT € Ty,
T T

where n, is a unit vector normal to e. Integration-by-parts shows fT dive = fT divw = fT q, and therefore, by [11,
Lemma 11], there holds divv = ¢. A standard scaling argument, and using the H'-stability of the Scott—-Zhang
interpolant, then shows [|Vv| ;2 < Cligll 20 U

4. Inf-sup stability on Worsey—Farin splits

Let ), be a simplicial triangulation of a polyhedral domain 2 C R3. The Worsey—Farin triangulation T)'" is
obtained by splitting each tetrahedron into twelve sub-tetrahedra by the following procedure [20] (cf. Fig. 3).
Similar to the Powell-Sabin case, for each T € 7, we connect the incenter (which we refer to as an interior split
point) of T to its vertices. Next, the incenters of neighboring pairs of tetrahedra are connected with a line. This
creates a face split point (a vertex) on each face of F' of T which we denote by mg. If T has a boundary face, then

5
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Ky Ko

Fig. 2. The Powell-Sabin split of a single triangle.

Fig. 3. Representation of a Alfeld split T* (left) and Worsey—Farin split TWF (right) with two faces shown. Solid lines denote external
edges of the split, whereas dashed lines denote internal edges. The internal split point is m7, whereas mp, and mp, are face split points.

we connect the incenter of T to the barycenter of the face by a line. Finally, the face split points are connected to
the vertices of the face. For each T € T),, we denote by TWF the triangulation resulting from local Worsey—Farin
refinement of 7, i.e.,

™ =(KeTM: KCT).

Remark 4.1. Similar to the Powell-Sabin refinement (cf. Remark 3.1), taking the interior split point as the incenter
in the Worsey—Farin refinement guarantees that the line intersecting adjacent interior split points intersects a common
face. Provided that the refinement is shape-regular and the local triangulations are quasi-uniform, the arguments and
analysis given below hold for arbitrary split points provided that the line intersecting them intersect the common
face.

Definition 4.2. An edge in a 3D simplicial triangulation is called singular if the faces meeting at the edge fall on
exactly two planes.

By construction, the Worsey—Farin triangulation contains many singular edges; for each face in the unrefined
triangulation T, there are three associated singular edges in ‘J',YVF.

Let €7 denote the set of singular edges in T)'F, and let 8,81’1 and Ef’B denote the sets of interior and boundary
singular edges, respectively. For each e € 8,‘?, let T, = {Ke(l), ceey Ké”f)} denote the set of tetrahedra that have e as
an edge. Here, n, = 4 if e is an interior edge, and n, = 2 if e is a boundary edge. We assume the tetrahedra are
labeled such that Kﬁj ) and Ke(j *D share a common face.

4.1. Finite element spaces on Worsey—Farin triangulations

Similar to the two-dimensional case, the divergence operator acting on the Lagrange finite element space has
weak continuity properties on singular edges (cf. [12], [21, Lemma 5.7.4]).

6
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Lemma 4.3. Fore € 8,‘?, and a piecewise smooth function q, define

8,1

Oelq) = { 40'le = 47le + a7 =gl ec &y
el B
ale —qPle eeed?,

where ¢ = q| (). Then there holds 8,(divv) = 0 for all v € PL(TVT).

Analogous to the Powell-Sabin case, we define the finite element spaces to discretize the Stokes problem on
Worsey—Farin splits. We first define the spaces without boundary conditions

Vit =@,

YW= (g € Po(TVF) : .(q) =0 Ve e &)
Then, we define an intermediate pressure space

Y2V = (g € Po(TVF): 6.(q) =0 Ve e &)
We now define the spaces with boundary conditions

v, = vV i),

IALIES ALV A7)

4.2. Stability of V© x VVF

In this section, we show the pair VhWF X Y:V Fis inf-sup stable. First we introduce some notation. Let T € T,
and let T denote the local triangulation of 7' consisting of four tetrahedra, obtained by connecting the vertices of
T with its incenter, i.e., T* denotes the Alfeld split of T [15,22]. For a face F C T, denote by F CT the set of three
triangles formed from F by the Worsey—Farin refinement, i.e., F¢T is the Clough-Tocher refinement of F [15]. We
denote by A!I(FCT) the set of three interior edges in FT, and let ey € Al(FCT) denote an arbitrary, fixed interior
edge of FCT.

To prove inf—sup stability we will need the degrees of freedom of these space. In order to define degrees of
freedom of the above spaces we need to define a jump on singular edges.

Definition 4.4. Let T € T, let F be one of its faces, and let e € 85 be a singular edge with e C F. Let
K\, K> € TVF be the two micro-tetrahedra that have e as an edge. Let v; be outward unit normal to K; that is
perpendicular to the common face d K} N9 K,. Then the jump of a piecewise smooth function p defined on T across
e is defined as

[Pl = pVlevi + pPlevs,  where p© = pl,.

Remark 4.5. Let 71,7, € T, and let ¢ € 85 be common to both 77 and 75 then it is clear that 6,(p) = 0 if and
only if [[P|T|]]g = [[pITz]]e, that is, a piecewise constant function p belongs to the space ¥," if and only if [p]].
is single-valued for all 85.

We now state the degrees of freedom (DOFs) for the spaces f/hWF and )°’hW F. We first define the local DOFs. The
proofs of the following two lemmas are particular cases of [12, Lemmas 5.10-5.11]. For completeness, we provide
the proofs of the results.

Lemma 4.6. A function q € Po(TVF) is uniquely determined by

/[[q]]e Ve € AI(FT)\{er), YF € Ay(T), (8 DOFs), (4.1a)

/ qp Vp € Po(TH), (4 DOFs). (4.1b)
T

where the integral of [q]1l, is done component-wise.
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Proof. The dimension of Py(TVF) is 12 (the number of tetrahedra in T"F), so it suffices to show that if
g € Po(TVF) vanishes on the DOFs (4.1), then ¢ = 0. For a face F € Ay(T), let Q,, Q», Q3 be the three
triangles of the Clough—Tocher split FT with respect to the split point m . Without loss of generality, assume
that e = dQ; N dQ5. By (4.1a), noting that g is piecewise constant, we see that g|g,(mr) = glg,(mp) and
qlo,(mr) = qlo;(mp). By transitivity, we have [¢]l, = O for all e € A{(FCT), and therefore, since F € A,(T)
was arbitrary and ¢ is piecewise constant, we conclude g € Po(T4). The DOFs (4.1b) then yield g = 0. O

Lemma 4.7. A function v € P{(TVY) is uniquely determined by the values

v(a) Va € Ay(T), (12 DOFs), (4.2a)

/ (v-np) VF € Ay(T), (4 DOFs), (4.2b)
F

f [divel, Ve e AI(FM\{er}, YF € Ay(T), (8 DOFs), (4.2¢)

/ dive)p  Vp e Vo(T) := Po(T™) N LAT), (3 DOFs). (4.2d)
T

Here, the integral of [div v]l, is performed component-wise, and nr is the outward unit normal of 0T restricted to
F.

Proof. There are 9 vertices in TWF. Therefore dim P{(TWF) = 9.3 = 27, which is the number of DOFs in (4.2).
We show that v € ?i(TWF) vanishes on (4.2) if and only if v = 0. As an intermediate step, and to show that the
DOFs induce continuity in the global space, we show that if v € ?f(TWF) vanishes on (4.2a)—(4.2c¢) restricted to a
single face F C a7, then v|F = 0.

Fix F C 9T, and suppose that v € ‘.'P‘{(TWF ) vanishes on (4.2a)—(4.2c) restricted to F. Using (4.2a), we have
vl = 0 for all e € A{(F), and therefore, due to (4.2b), there holds v - np|r = 0. We now show that the tangential
component vy := Rp X v X np vanishes on the boundary of 7.

Let u e fj’j'(TA) C j’i(TWF) be the piecewise linear hat function with respect to the incenter of 7. Let K € T4
be the tetrahedron in the Alfeld refinement of T such that F C 0K. Then, because v - np|r = 0, there holds
v-np|lx = cu for some ¢ € R. The DOFs (4.2¢) and the arguments in the proof of Lemma 4.6 shows that div v|p
is continuous on each F € A,(T). Write the tangential divergence as divp vy = divv|p — np - grad (v - np)|F.
Since np - grad (v - np) = cnp - grad u|r, and grad pu|F is constant on F, we conclude that divgvp is continuous
on F.

Next, let up € §>1(F CT) be the hat function satisfying pup(mp) = 1 where we recall mp is the face split point of
F induced by the Worsey—Farin refinement. Because vg|3r = 0, we may write vg|r = cpup for some constant cp.
Then divpvrp|r = cp - grad,p is continuous, and therefore ¢y = 0. Thus, vr|r = 0 and we conclude v|r = 0.

Thus, we conclude that if v € P{(TVF) vanishes on (4.2), then v|sr = 0. Due to (4.2¢)—(4.2d), integration-
by-parts, and Lemma 4.6, there holds divv = 0. Because v|;;7 = 0, we write v = cp for some ¢ € R3. Then
divv=c-gradpu =0 in 7. This implies c =0, and so v =0. [

Remark 4.8. Lemmas 4.6 and 4.7 induce the global spaces Y va Frand V)'F, respectively. To see this, first note
the proof of Lemma 4.6 shows that if a piecewise constant function is single-valued for two edges of an interior
face, then it is single-valued on all three edges by transitivity. Therefore a piecewise constant function ¢ is in Y WE
if and only if the DOFs (4.1a) are single-valued (cf. Remark 4.5). Likewise, if a piecewise linear polynomial v is
single-valued at the DOFs (4.2), then the proof of Lemma 4.7 shows that the function is continuous, i.e., v € VhWF.
Conversely, Lemma 4.3 shows that the DOFs (4.2) are single-valued on VhWF.

From Lemma 4.6, we see that a function g € Y})N F is uniquely determined by

/[[q]]e Ve € AI(FCT)\{er), YF € Ay(Th), (4.32)

/ qp Vp € Po(TH), VT € Ty, (4.3b)
T
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and a function g € f/}v F is determined by (4.3) but with (4.3a) restricted to interior faces. Likewise, Lemma 4.7
shows that a function v € VZVF is uniquely determined by the values

v(a) VYa € Ao(Tp), (4.4a)
/ (v-np)  VF e AT, (4.4b)
F
/ [dive], Ve e A(F")\{er}, YF € Ay(T)), (4.4¢)
(dive)p  Vp e V(T),VT € Ty, (4.4d)
T

and a function v € VhWF is uniquely determined by (4.4) but with (4.4a) and (4.4b)—(4.4c) restricted to interior
vertices and interior faces, respectively.

Remark 4.9. Because dim Po(T*) = 4, the DOFs show dim YVF = 4|7, +2|F7|, where |F!| denotes the number

L . S . o WF L
of interior faces in 7J,. Likewise, dimV, = 3(|\7{,| + |3"£| + |Tx]), where |\7{,| denotes the number of interior
vertices in T),. This dimension count agrees with three times the number of interior vertices in T)'F.

We will need the following estimate to prove inf—sup stability.

Proposition 4.10. Let v € V¥ and T € T),. For m = 0, 1, there holds

2
|v|Hm(T)5Ch;1—2m(h‘} 3 p@P+ Y )/v.np‘ +h3T||divv||§2(T)>.
F

aeAy(T) FeAy(T)

Proof. Let 7 be the reference tetrahedron, apd let Fr : T — T be an affine bijection with Fr(x) = Arx + br
with A7 € R¥*3 and by € R3. We define 9 : T — R3 via the Piola transform

AR
 det(Ar)’
Let 7VF be the split of 7 induced by TWF and the mapping F; ', i.e.,

TVF = (F;(K): K e TVF).

v(x)

x = Fr(x).

Then ¥ is a continuous piecewise linear polynomial with respect to TWF, and therefore by equivalence of norms,
and Lemma 4.7,

|f’|2m<f>fc( > p@r+ Y ‘/FvnF

aeAy(l) FeAy(T)

2 2
v Y Y [ - s | [@os).
] e

Pely(T) ee Al (FCT)\(2, V(D)
2(T) e A{(FCI\ (2 171207 21

2

where \070(?) = To(f‘A) N L%(f), and T is the split of T induced by TA and the mapping FT_I. By well-known
properties of the Piola transform, we have

1 —
di = div 9(x), . = [ v-n;.
iv v(x) det(A) iv v(x) fpv nr /ﬁv n;

Thus, we have

2
$hmy = (X 1detanav@l’ + Y | /F”-nF‘

aeAy(T) FeAy(T)
2 2
+  sup ‘f(divﬁ)ﬁ’ )
T
1

el [ o
+ldeAn Yo Y0 | [ Mdivel,
}|e| e 135{7()(?)

FeAy(T) ecAy(F)\ler 151
P L2(H~=

9
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Next, for p € Vo(T) with |pll,27) = 1. let p : T — R be given by p(x) = p(%). Then p e Vo(T),
||P||L2(T) = 4/6|T|, and

f(cﬂVﬁ)ﬁ = /(div )p.
T T

We conclude

—_— 2 2
sup ‘/;(divf))ﬁ‘ < sup ‘/T(divv)p)

peVo peVo(T)

181 2()=1 1Pl 27y=v6ITI
: 2 2 : 2 3 : 2
S Sup ”dlvvllLZ(T)“p”LZ(T) = 6|T|||d1Vv”L2(T) S ChTHdlvanZ(T)'
peVo(T)
1Pl 2y =TT

Finally, we use IIA}III < Ch}1 and | det(Ar)| = 6|T| < Ch3. to get

2
3y < C(H Y @R+ Y \/v.np(

aeAy(T) FeAy(T) F

+hh Y 3 ‘/I[divv]]e

2
30 4; 2
+ hT||d1vv||L2(T)),
FeA(T) ee Al (FCT)\{er}

and therefore

2
2 —1-2m 4,2 —1-2, 4 2
0Pz, < CHE 2o < Chp 2 (W Y @l + Y ‘/v.nF’
aeAy(T) FeAyT) YF

s > 3| [,

Fely(T) eeAj(F)\ep} ¢

2
<ch (0 Y @+ Y ‘/v.np‘ + v ol ),

aeAo(T) FeAyr) VT

2
3 . 2
+ i ldiv ol

where the last inequality comes from standard trace and inverse inequalities. [J

Theorem 4.11. The pair ‘O/ZVF x YWF is inf-sup stable.

Proof. Fix g € IOK}YVF, and let w € fll(Q) satisfy divw = g and [|[Vw|| ;2. < Cllgll 2 Let w, € fj’l(Th) be the
Scott—Zhang interpolant of w with respect to T, [19]. Define v € VhWF such that (cf. (4.4))

v(a) = wy(a) Va € Ay(Ty),
/(v'”F) = /(w'"F) VF e Ay (Tp),
F F

[divol, = [ [ql. Ve € A[(F)\{er}, YF € Ay(Ty),

(divv)p = / qp Vp € Vo(T),VT € Ty.
T

Noting (divv — q) € Y}Y" F (cf. Lemma 4.3) and using Lemma 4.6 we conclude that dive = g. The proof of

Lemma 4.7 shows v € ‘D/ZVF since w, wy, € IEI](!Z).
We apply Proposition 4.10 to (v — wy,) with m = 1:

2
IV = w)ll} ) < Ch;3(h‘; Yool —w)@P+ ) / (v —w,) np
aeAy(T) FeAyT) 7F
+ v (0 = w22 7,
10
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2
—cnp( Y ‘/(w —wp) - n| g - divunl,,)
FeAyT) UF

-3 .
< ChP (I3 Y llw = wilZsgp, + b llg — divaoy |2, )
FeAy(T)

= C(1g12 ) + 19020 + 7 1w = w1255, )
2 -2 2 2 2
S C(”q”LZ(T) + hT ”w - w/”l”LZ(T) + ”V(w - wh)”LZ(T) + ”th”LZ(T))’

where we used a standard trace inequality in the last inequality. We then sum over T € T}, and apply stability and
approximation properties of the Scott-Zhang interpolant to conclude ||[Vv|l,2) < Cllgll 2. U

5. Implementation aspects for Powell-Sabin splits

The only tricky part to implement these finite elements is the pressure spaces since they have non-standard
constraints in their definitions. In this section and the subsequent one, we give details to form the algebraic system
for the Stokes problem.

5.1. A basis for }A’; S and the construction of the algebraic system

Recall that the space )A’}f S consists of piecewise constant functions satisfying a weak continuity property at
vertices. Clearly, this is a non-standard space, and in particular the space is not explicitly found in current finite
element software packages. Nonetheless, in this section, we identify a basis of the space )?,f S, and as a byproduct
show that the weak continuity property 6,(¢g) = 0 can be imposed purely at the algebraic level.

As a first step, we note that, by definition of the Powell-Sabin triangulation,

TS ={KY: KV eT,, ze8,.

With this (implicit) labeling of the triangles in J}°, we can write the canonical basis of Po(T}®) as the set
{0} € Po(TES) with

<p§f>|K5,->=5v,za,,, Vz,veSy, i=1,....n,, j=1,...,n,.

The next proposition shows that a basis of Y} is easily extracted from the basis of Po(TF®) (see Fig. 4).

Proposition 5.1. For each z € 8§}, and j € {2, ...,n.}, define
1/f(j) — (p(j) + (—l)j(p(l)
Z Z z "
Then {wz(j) : 2 €8y, j=2,...,n;} forms a basis of ?;FS.

Proof. Note that the number of functions {1//Z(j ) } given is ZzeSh (n; — 1), and

dim ¥,"$ = dim Py(THS) — 18| = Z n. — |8y = Z(nz —1.
z€8), z€8),

)

Z

Because ¥ € ¥, P, and they are clearly linear independent, we conclude that { Z(j )} form a basis of ¥, (3 S. O

We now explain how Proposition 5.1 provides a simple way to construct the stiffness matrix for the Stokes

. o PS ° . . . .
problem using the V,” x ¥} S pair. To explain the procedure, we require some notation.
Let A be the matrix associated with the bilinear form

o PS
(v,w)—>/ vWov:Vw overv,weV,,
Q
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Fig. 4. Local mesh T, with z € S,’l. Top row: Values of canonical basis functions of piecewise constants {<p§j )}’;Z: |- Bottom row: Values of

basis functions of piecewise constants with weak continuity constraint {W )}?"': 2

and let B is the matrix associated with the bilinear form

(v,q) — —/ (divv)g overv e ‘.7:8, q € TO(T,I:S).
Q

The stiffness matrix for the Stokes problem based on the (unstable) f/zs X fPo(‘J',IZS) pair is given by

(i o)

We emphasize that this system can be easily constructed using standard finite element software packages.
; . o PS . oPS
Let {¢p"'}_, denote a basis of V, with N =dim V" so that

Aij= v/ Ve : Ve dx.
0

Let M = dim ?0(‘3’,11)5), the number of triangles in T3, and introduce the local-to-global label mapping o
§x{l,...,n,} = {1,2,..., M} such that

Buaey = - [ @,
Q
Then by Proposition 5.1, we have for z € §, and j =2, ..., ng,
- / (div gDy = — / (divg©)pl) — (—1)/ / (divg“)p"
2 2 Q
= Biowj + (=1 Biose)-

This identity leads to the following algorithm.
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Algorithm

1. Construct Powell-Sabin triangulation ‘J'Zs
2. Construct B € R¥*M based on the ‘Q/ZS x Po(TFS) pair.

3. Set B = B.
4. For each z € §,, and for each j € {2, ..., n;}, do the elementary column operation

B:,a(z,j) - B:,a(z,j) + (_1)j B:,a(z,l)-

5. Delete column B. ;(; 1) for each z € 8.

The stiffness matrix for the Stokes problem based on the ‘O/];S X )A’{ S pair is then given by

(; 1;) ‘ 5.1)

Remark 5.2. In the numerical experiments below, we further delete a single arbitrary row and column of the
matrix B in (5.1). This modification mods out the global constant function in the space fhP S, and Theorem 3.4
implies that the reduced saddle point problem is invertible. A simple post-processing step is then performed on the
discrete pressure solution to impose the zero mean-value constraint. Alternatively, the mean-value constraint can be
imposed via a standard Lagrange multiplier.

6. Implementation aspects for Worsey—Farin splits
6.1. A basis for I?,YV ¥ and the construction of the algebraic system
Notice that the collection of local triangulations T, (with e € £9) do not form a disjoint partition of the global
triangulation T)'F. In particular, there exists K € T)" such that K € T, and K € T, with e, s € £} and e # 5. As
a result, the methodology used in the previous section for Powell-Sabin meshes is not directly applicable.
Instead, we consider a geometric decomposition of the mesh based on the face split points in ‘J’,‘:’F. To this end,
we denote by 8! and 8 the sets of interior and boundary face split points, respectively, and set 8, = 8/ U8Z. For
z €8, let T, = {Kz(l), el K;”Z)} denote the set of tetrahedra in U',\LVF that have z as a vertex (cf. Fig. 5). Here,

n; = 6 if z is an interior vertex, and n, = 3 if z is a boundary vertex. For an interior face split point z, we assume
the simplices in 7 are labeled such that

) @ G 1) @ 6 © 2
K7, K7, KX CT", KV, K>, K> CT

for some T, T® e T, and that K’ and K" share a common face for j € {1,2,3}. For a boundary split
point z, the set T, = {K z@, K Z@, K ;3)} is labeled arbitrarily.
We clearly have

TXVF:{KZ(]): z2€8y,j=1,...,n;}, 6.1)

and the map (z, j) > K Z(j )is injective. Furthermore, each local partition J, contains three singular edges.

Proposition 6.1. There holds
dim ¥"" = 48} | + IS} .
Proof. Recall from Remark 4.9 that
dim ¥ = 41T, | + 2|,

where |3’,€ | is the number of interior faces in J),. From (6.1), we have

12Ty ] = [T = 61841 + 3187,
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KM nor®

Fig. 5. Cross-section of the Clough-Tocher refinement of an interior face F = a7 N aT® with face split point z.

and by construction of the Worsey—Farin split, there holds
1F71 = IS 1.
Therefore,

.5 1

dim Y\VF = 4T, | +2|1F] | = 5(6|3g| +31821) + 2181 = 41841 + 18E1. O

For an interior split point z, and for a piecewise constant function ¢ on 7T, the three constraints 6,(g) = 0 read
g1 —qg2+4gs —q4 =0,
92— q3+ 496 —q5 =0,
g3 —q1+q4—qs =0,

where ¢; = gl ()
We write this as a 3 x 6 linear system

We clearly see that this matrix has rank 2 (e.g., adding the first and third rows gets the negation of the second row).
We find that the nullspace of C is given by

1 1 0 -1
1 0 1 -1
1 0 0 0
null(C) = span ol:1il'lol: 1 o
0 0 1 0
0 0 0 1

These four vectors implicitly give us a basis for )A’}}VF. In particular, we have

Proposition 6.2. For z € 8 and j € {1,2,...,n;}, let gz);'i ) be the piecewise constant function

¢§1>|K5i>=5,},z5i,j Yo,z€8, i=1,....n,, j=1,...,n..
14
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For an interior face split point z, define
3 3 1 2
4 4 1
YD = o 4 o0,
5 5 2
YO = g 4 @,
6 6 1 2
YO = O _ ) _ @
For a boundary face split point z, define
3 3 1 2
1/f§)=§0£)+(ﬂ§)+§0§).

Then {g[/zfj)} is a basis of )A’}}VF

Proof. The proof essentially follows from the same arguments as Proposition 5.1, noting that the number of given
v is

41811 + |88 = dim YT
by Proposition 6.1. [

As in the two-dimensional case, Proposition 6.2 gives an algorithm to construct the stiffness matrix for the Stokes
. o WF 5 . . . . o WF .
problem using the V, x Y"F pair. First, we construct the stiffness matrix based on the V,  x Po(T)'F) pair:

A B
BT 0)°

and then perform elementary column olperations on the B.
o W . WF
Let {()S(k)},iv=1 denote a basis of V,, with N =dimV, . Let M = dim iPo(‘J',l:S), the number of tetrahedra in
‘TX’F, and introduce the local-to-global label mapping o : 8, x {1,...,n,} — {1,2,..., M} such that

Bioejy=— /Q (div ¢®)pl.

Algorithm 1

. Construct Worsey—Farin triangulation TFS
~ o W .
. Construct B € RV*M based on the V,,  x Po(T)'F) pair.

. Set B =B.
. For each interior face split point z € 8, do the elementary column operations

AW N —

B. 53 = B3 + B.oz,1) + B.o2)s
B.o¢4) = B.o@a) + B.o@ 1)
B. 55 = B.oz5 t Bio2)s
B. 5,60 = B.sz.6) — B.oz.1) — Bioz.2)-

5. For each boundary face split point z € 8, do the elementary column operation

B:,a(z,3) = B:,a(z,3) + B:,U(z,l) + B:,U(Z,Z)-

6. Delete columns B. ,(;,1) and B. 5, 2) for each z € §;,.

The stiffness matrix for the Stokes problem based on the ‘O/ZVF X )A’hWF pair is then given by

(ﬁT g) ’ (6.2)

Remark 6.3. In the numerical experiments below, we further delete an arbitrary row and column of B to ensure
the system (6.2) is invertible; cf. Remark 5.2.

15
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Table 1
Errors and rates of convergence for the 2D example (7.3) with v = 1.
h [l — uy ”LZ(Q) Rate lp — pn ”LZ(Q) Rate IV -up, HLZ(Q) B
272 1.70E—01 - 5.26E 00 - 2.70E—14 1.56E—01
273 5.66E—02 1.587 3.77E 00 0.480 6.65E—14 1.38E—01
2-4 1.35E—02 2.068 1.68E 00 1.166 2.38E—13 1.07E—01
273 3.35E—03 2.011 8.28E—01 1.021 8.38E—12 1.06E—01
26 8.77TE—04 1.934 4.25E—01 0.962 4.05E—10 9.34E—-02

Table 2

Errors and rates of convergence for the 2D example (7.3) with v = 1072

h lu —wupll20) Rate lp = pull2e) Rate IV -unllp20)

272 1.70E—01 - 1.02E—-01 - 243E—14

273 5.66E—02 1.587 5.79E—02 0.816 5.88E—14

2-4 1.35E—02 2.068 2.76E—02 1.069 2.36E—13

2-3 3.35E—03 2.011 1.37E—02 1.010 8.39E—12

276 8.77E—04 1.934 6.96E—03 0.977 4.05E—10

7. Numerical experiments

In this section, we perform some simple numerical experiments for the Stokes problem on Powell-Sabin and
Worsey—Farin splits. We note standard theory shows that the velocity and pressure errors satisfy

lu — sl < (L4+ 7Y inf [, —ulpy (o), (7.1)
veVy
. v
Ip = Pulliagy = nf Ip = qlli2g) + 2l = unlyo), (7.2)
qeYy IB

. o ° o PS ° o o o WF ° . . . . .
where either V), x Y, =V, x Y,f SorV,xY, = V, x Y,}N F v > 0is the viscosity, and B is the inf—sup constant
for the finite element pair V;, x ¥j,.

7.1. The Stokes pair on Powell-Sabin splits

We consider the example such that the data is taken to be {2 = (0, 1), and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

_ < 7 sin®(7wx;) sin(27 x,)

o sinz(rrxz) sin(27rx1)) , p = cos(mxy)cos(mwxy). (7.3)

Let T, be a Delaunay triangulation of 2 and T/ the corresponding Powell-Sabin global triangulation.

The resulting errors, rates of convergence, and inf—sup constants are listed in Tables 1 and 2 for viscosities v = 1
and v = 1072, respectively. We compute the inf-sup constants by solving a Stokes eigenvalue problem [23]. The
results show that the L? pressure error and the H' velocity error converge with linear rate, the discrete velocity
solution (and error) are independent of the viscosity v, and the pressure error improves for small viscosity. The
experiments also show that the inf—sup constant does not deteriorate as the mesh is refined with 8 =~ 0.1. These
results are in agreement with the theoretical estimates (7.1)—(7.2)

In Tables 3 and 4, we compute the right-hand side of (7.2) and (7.1), respectively, and compare the data with
the computed errors ||[p — ppll 2 and [# — up| g1 (). Again, the results are consistent with (7.1)—(7.2), and they
suggest that the term %|u — Up| 1) is the dominant term in the pressure error (7.2) for moderately sized viscosity
values.

16
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Table 3
Errors for the 2D example (7.3) with v = 1072 and the RHS of (7.2).
h lp = prll2g) e —unlg o) B infqef’,fs lp —qll 20 RHS of (7.2)
272 1.02E-01 3.77E 00 1.56E—01 6.08E—02 3.02E-01
273 5.79E—02 2.17E 00 1.38E—01 2.77E—02 1.84E—01
2—4 2.76E—02 1.07E 00 1.07E-01 1.35E—-02 1.13E-01
273 1.37E—-02 5.32E—01 1.06E—01 6.61E—03 5.67E—02
26 6.96E—03 2.72E—01 9.34E—02 3.28E—03 3.24E—02
Table 4
Errors for the 2D example (7.3) with v = 1072 and the RHS of (7.1).
h lw —unlgigo) B infu,,ev}js [vn — ulgic) RHS of (7.1)
272 3.77E 00 1.56E—01 3.08E 00 2.28E+01
273 2.17E 00 1.38E—01 1.63E 00 1.34E4-01
24 1.07E 00 1.07E—01 8.04E—01 8.31E 00
2-3 5.32E-01 1.06E—01 4.06E—01 4.23E 00
26 2.72E—01 9.34E—02 2.05E—01 2.39E 00
Table 5
Errors and rates of convergence for the 3D example (7.4) with v = 1.
h llw —unll 20 Rate lp = prlli2) Rate IV - unll 20 B
1/2 1.29E 00 - 9.81E 00 - 5.07E—14 1.31E-01
1/4 8.58E—01 0.588 19.4E 00 —0.98 5.20E—13 1.31E-01
1/8 3.93E-01 1.286 16.6E 00 0.414 2.68E—12 1.32E-01
1/16 1.32E-01 1.573 10.5E 00 0.667 4.10E—12 1.32E-01
1/32 3.69E—02 1.839 5.75E 00 0.872 4.32E—12 1.32E-01
1/48 1.68E—02 1.941 3.93E 00 0.936 6.07E—12 1.32E-01

7.2. The Stokes pair on Worsey—Farin splits

We consider the example such that the data is taken to be {2 = (0, 1)3, and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

7 sin®(7x;) sin(2m x,)
u=\|-n sinz(nxz) sin(2wx;) |, p = cos(wrx;)cos(mwxy)cos(mxs). (7.4)
0

Let T, be a Delaunay triangulation of 2 and T}V be the corresponding Worsey—Farin global triangulation.

The resulting rates of convergence of the numerical experiments for viscosities v = 1 and v = 1073 are listed
in Tables 5 and 6, respectively. We also state the computed inf—sup constant on these meshes, and the results show
that it stays uniformly bounded from below with 8 & 0.13 on all meshes. The stated errors, especially those in
Table 5, indicate that the rates of convergence are still in the preasymptotic regime. On the other hand, for small
viscosity value v = 1073, Table 6 shows that the pressure error converges with linear rate. This behavior suggests
that [u — uy |y () is larger than infqe?)’“F 7 —qll;2(0) in particular, %|u — Un| (g 1s the dominating term in the
pressure error (7.2) for moderately large viscosity values.

To verify this claim, we explicitly compute the terms in the right-hand side of (7.2) with v = 1 and report the
results in Table 7. The results show that indeed |u — uy|y1(;) is the dominating term in the pressure error (7.2).

7.3. A numerical comparison with the Crouzeix—Raviart Stokes pair

In this subsection, we consider the Crouzeix—Raviart [24] (CR) Stokes pair, and compare it to PS and WF Stokes
pairs.

17
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Table 6
Errors and rates of convergence for the 3D example (7.4) with v = 1073,
h lle —upll 20 Rate lp = prllr20) Rate IV -unll 20
1/2 1.29E 00 - 1.33E—01 - 1.28E—15
1/4 8.58E—01 0.588 6.97E—02 0.932 343E—14
1/8 3.93E—01 1.286 3.70E—02 0.911 3.22E—13
1/16 1.32E—01 1.574 1.91E—-02 0.953 6.40E—13
1/32 3.69E—02 1.838 9.68E—03 0.980 9.52E—13
1/48 9.63E—03 1.940 4.89E—03 0.983 1.03E—12
Table 7
Errors for the 3D example (7.4) with v =1 and the RHS of (7.2).
h lp— p/,||L2(_Q) %lu — ”lllHl(Q) infqef,;NF lp— qHLz(Q) RHS of (7.2)
1/2 9.81E 00 8.17E+01 5.00E—-01 8.22E+401
1/4 19.4E 00 6.49E+-01 6.70E—02 6.50E4-01
1/6 18.7E 00 5.17E+401 4.43E-02 5.17E401
1/8 16.6E 00 4.24E+01 3.30E—-02 4.25E+401
1/10 14.6E 00 3.57E+401 2.63E—02 3.57E+401
1/12 13.0E 00 3.08E+01 2.19E—-02 3.08E4-01
Er T R T 10t INURRARY T E
Fooo —— CRv=1 |4 t —— CRv=1 |
- Tl — PSU:I4 1 § 7]”51/:[7‘ 1
1074 Rl — ||
= B Tl b 100 £ E
g 100 B i 1
3 E S IS H .
= [ el ] = r b
10t EIR U S, E
F 0 I |
1072 E [ \‘:I:::\\ i
i 1 102} eI o
103 3 E r RN B
Ll | | | Ll | Lol
103 10* 10° 10? 10* 10°
DOFs DOFs

Fig. 6. PS and CR velocity (left) and pressure (right) errors with different viscosities.

7.3.1. CR pair vs. PS

We consider the example (7.3) on {2 = (0, 1)>. For the finite element pair, we consider the Crouzeix—Raviart
(CR) element pair on the unrefined triangulation T,.

The resulting errors and rates of convergence are compared with the Powell-Sabin pair in Fig. 6 for viscosities
v =1 and v = 107*. The mesh size updates in Fig. 6 are chosen so that the CR pair on mesh T}, has a similar
number of degrees of freedom as the PS pair on the corresponding mesh size updates of T} S in Tables 1 and 2
respectively.

For v = 1, the L? velocity error magnitudes and (quadratic) convergence rates for the CR and PS pairs are
comparable. The pressure L? error magnitudes for the CR pair are smaller than those for the PS element. Also, the
convergence rates for the CR pair are more evident compared to the pressure convergence rates of the PS pair on
coarse triangulations.

For v = 1074, the L? pressure error magnitudes and convergence rates for the CR and PS pairs are sufficiently
close, similar to the v = 1 case. However, while the PS and CR velocity errors both converge quadratically, the
velocity L? error magnitudes for the PS pair are significantly smaller than those for the CR pair. Unlike the CR
pair, the velocity errors for PS pair are invariant with respect to the viscosity.

18
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Fig. 7. WF vs. CR velocity and pressure errors with different viscosities.

7.3.2. CR pair vs. WF

We consider the example (7.4) on 2 = (0, 1)3. For the finite element pair, we consider the Crouzeix—Raviart
element pair on the unrefined triangulation J},.

The resulting errors and rates of convergence are compared with the Worsey—Farin pair in Fig. 7 for viscosities
v=1and v =103

In the case of v = 1, and in contrast to the WF pair, we observe asymptotic convergence rates for the CR pair
on relatively coarse meshes. The errors for both the velocity and pressure are smaller for the CR pair.

If we examine the case when v = 1073, we find that the errors for the pressure are comparable between the
CR and WF pairs. The errors for the velocity are roughly one order of magnitude larger for the CR pair, when
compared to those of the WF pair. Both methods exhibit similar convergence rates.

7.4. Iterated penalty method for (Py, Py) pair on Worsey—Farin splits

We consider the example such that the data is taken to be {2 = (0, 1)3, and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

0 1 3%
ulx,y,2)=Vx|gl, p=- , (7.5)
2 9 0xdy

where
g =8, y,2)=2"%(x =20y = y)’(e = 2.
Similar to the previous section, we let T) be a Delaunay triangulation of {2 and T)'" be the corresponding
Worsey—Farin global triangulation.
. . . e o WF
The iterated penalty method [25] applied to the Stokes equations with V;, = V, reads : Let ug = 0 and
0,y > 0 be parameters. For n > 1, u}, is recursively defined to be the solution to the variational formulation
n—1 WE
v(Vup, Vo) +y(V- .V up) = (f.0) = _pV-uj.V-v), YoeV, . (7.6)
i=0
It is shown in [25] that lim,_, o ¥} = u; and lim,,_, o Z;’:O pV~u§, = pp. Also, [25] suggests to use ||V uj |l 2.0
as a stopping criterion since the difference error between uj, u;, is given by

luy, —unll20) < CIV - upll 200

The resulting rates of convergence of the numerical experiment are listed in Table 8. The errors |lu — uj || ;2.0
and || p — pjll 2 are computed with |V -} ]l;2o) < 1077 and y = p = 100.
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Table 8
Errors and rates of convergence for example (7.5) with v = 1.
h lu —ujll 20 Rate lu — uj L) Rate Ip = P2 Rate
1/4 1.11768 - 11.55063 - 25.32256 -
1/8 0.48896 1.19273 7.53829 0.61566 22.35349 0.17992
1/16 0.15482 1.65908 4.15598 0.85905 13.67635 0.70882
1/32 0.04176 1.89040 2.13224 0.96282 7.24129 0.91736
1/48 0.01881 1.96680 1.42643 0.99145 4.88909 0.96875
Table 9

Time comparison between (IPM) and Algorithm 1 for
example (7.5) with v = 1.

h (IPM) Algorithm 1
1/4 5.08E400 3.35E4+00
1/8 1.68E+4-01 2.93E+401
1/16 4.80E+402 2.60E402
1/32 2.39E4-03 9.37E402
1/48 7.31E4-03 6.45E+4-03

In Table 9 we provide a time comparison between the (IPM) and the method described in Algorithm 1. All of
the timings were done on a machine with a single 3.60 GHz Intel Core i9-9900K processor with 128 GB of 2400
MHz DDR4 memory.

For the iterated penalty method, we select y = p = 100 and terminate iterations once ||V - u}||;2(o) < 1077. At
each iteration of IPM, Eq. (7.6) must be resolved. In our work, this vector Poisson problem type problem is solved
via a conjugate gradient method with an algebraic multigrid (AMG) preconditioner. It is well known that optimal
multigrid methods can be designed for this class of problems [26].

For Algorithm 1, we instead work with the full discretization matrix (6.2), which results in a symmetric indefinite
linear system. To efficiently solve this saddle point problem, a block preconditioned Krylov subspace method is
used [27]. In particular, we precondition the stiffness matrix (6.2) by the block diagonal matrix

(%)

where S = BTA™!B is the Schur complement, and the flexible GMRES method as an outer iteration. The solver
is terminated once the Euclidean norm of the residual is less than or equal to 1078, For simplicity, the inner
preconditioners are as follows: we use a preconditioner to A for approximating A~', and the Schur complement
is approximated as S A~ BTdiag(A~!)B. It should be noted that this is not the only choice for block-type
preconditioning of the Stokes problem (e.g., see [28]); however, our numerical experiments indicate that we can
repurpose existing preconditioners to efficiently solve linear systems that arise from the proposed finite element
discretization.

From Table 9, it is evident that for a fixed mesh spacing, the total run times for both methods are competitive,
with the IPM technique being slightly slower for larger meshes. We find that in the case of the linear Stokes problem,
by utilizing preexisting preconditioners, both approaches provide similar accuracy and time to solution metrics.

To obtain a Reynolds robust, optimally scaling preconditioner, special multigrid techniques may have to be
investigated [29,30].
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