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Abstract

We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–
arin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous,
iecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties
t singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure
pace, and in particular, show that the pressure constraints can be enforced at an algebraic level.

2021 Elsevier B.V. All rights reserved.
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1. Introduction

The first inf–sup stable finite element spaces that yield divergence-free approximations for incompressible fluid
odels on simplicial triangulations were given in the classical paper by Scott and Vogelius [1]. Their lowest order

air, defined on a two-dimensional domain, used quartic Lagrange finite elements and piecewise cubic polynomials
or the discrete velocity and pressure spaces, respectively; since then, there have been several efforts to find lower
rder inf–sup stable and conforming finite element spaces that produce divergence-free approximations [2–10].

If we confine ourselves to Lagrange elements for the velocity space, then a reduction of polynomial degree, while
reserving stability, can be done on certain splits (i.e., refinements) of a simplicial mesh. For example, Zhang proved
tability of the three-dimensional cubic–quadratic pair on Alfeld splits [5], and stability of the three-dimensional
uadratic–linear pair on Worsey–Farin splits [10]. On the other hand, Zhang suggests that piecewise linear Lagrange
lements for the velocity are unstable on Worsey–Farin splits [10, p. 244]. One of the main objectives of this paper
s to show that indeed the linear case is stable if coupled with the correct pressure space.
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The main goal of this paper is to construct inf–sup stable and divergence-free pairs on simplicial (split) meshes
sing a linear-constant velocity–pressure pair on Worsey–Farin splits (3D) and Powell–Sabin splits (2D). As far
s we are aware, this is the first three-dimensional pair with these properties using linear Lagrange elements for
he discrete velocity space. The main driver of our construction is an explicit characterization of the divergence
perator acting on the Lagrange finite element space developed in [11,12]. Such characterizations naturally lead to
he definitions of the discrete pressure space. In particular, the pressure space is a subspace of piecewise constants
ith weak continuity constraints on singular edges (Worsey–Farin) and singular vertices (Powell–Sabin).
Our results in two dimensions are similar to those in [6], where Zhang showed stability of a Stokes pair with linear

agrange elements for the velocity space on Powell–Sabin splits. However, the pressure space was not characterized
n [6] and as a result, a pressure basis is not explicitly constructed. Due to the implicit definition of the pressure
pace, one is forced to solve the resulting algebraic system by the iterated penalty method (IPM). In contrast, the
xplicit characterization of the pressure space we provide opens the door to a library of solvers based on the standard
ixed formulation.
An advantage of the proposed schemes is their low computational cost and simple velocity spaces, which

re supported in finite element software libraries. On the other hand, the discrete pressure spaces are subspaces
f piecewise constants with weak continuity properties at singular edges and singular vertices; these spaces are
onstandard, and in particular are not readily available on computational software packages. Nonetheless, we show
hat these weak continuity properties can be enforced entirely at the algebraic level. One can simply form the
lgebraic saddle point problem using the full (unstable) linear-constant pair, and then perform elementary row and
olumn operations to this system to enforce the weak continuity constraint. As a result, the proposed discretizations
an be implemented on standard finite element software packages (e.g., FEniCS).

We note that degrees of freedom and commuting projections were given in [11,12]. In fact, an entire exact
equence of spaces were presented. However, stability (e.g., inf–sup stability) was not shown, which is something
e carry out here.
Moreover, we provide numerical experiments to validate our theoretical results. In particular, we show that

he computed solution is satisfying the standard error estimates in mixed formulation. Also, we provide a time
omparison between the stiffness matrix modification method described above and the iterated penalty method.

The paper is organized as follows. In the next section we provide the notation used throughout the paper
nd introduce the Stokes problem. Section 3 proves the inf–sup stability of a low-order finite element pair on
owell–Sabin splits. In Section 4 we prove stability of the analogous three-dimensional pair on Worsey–Farin
plits. In Section 5 we discuss implementation aspects on Powell–Sabin splits and in Section 6 we do the same for
orsey–Farin splits. Finally, in Section 7 we provide numerical experiments.

. Preliminaries

In this section we develop basic notation that we use throughout the paper. We provide this in the following list:

• Th is a shape-regular, simplicial triangulation of a contractible polytope Ω ⊂ Rd (d = 2, 3).
• hT = diam(T ) for all T ∈ Th and h = maxT ∈Th hT .
• For an n-dimensional simplex S (n ≤ d) and m ∈ {0, . . . , n}, denote by ∆m(S) the set of m-dimensional

simplices of S. Likewise, for a simplicial triangulation Qh , we let ∆m(Qh) denote the set of m-dimensional
simplices in Qh .

• Pr (S) denotes the space of polynomials of degree ≤ r with domain S. Analogous spaces of vector-valued
functions are given in boldface, e.g., Pr (S) = [Pr (S)]d .

• We define the following function spaces on Ω :

L2(Ω ) := {w : Ω ↦→ R : ∥w∥L2(Ω) := (
∫
Ω

|w|
2)1/2 < ∞},

H m(Ω ) := {w : Ω ↦→ R : ∥w∥Hm (Ω) := (
∑

|β|≤m

∥Dβw∥
2
L2(Ω))

1/2 < ∞},

and the spaces with boundary conditions:

L̊2(Ω ) := {w ∈ L2(Ω ) :

∫
w = 0},
Ω

2
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H̊ m(Ω ) := {w ∈ Hm(Ω ) : Dβw|∂Ω = 0,∀β : |β| ≤ m − 1}.

Analogous vector-valued function spaces are denoted in boldface, e.g., H1(Ω ) = [H 1(Ω )]d .
• For a simplicial triangulation Qh , we define the spaces of piecewise polynomials

Pk(Qh) =

∏
K∈Qh

Pk(K ), Pk(Qh) =

∏
K∈Qh

Pk(K ), Pc
k(Qh) = Pk(Qh) ∩ H1(D),

P̊k(Qh) = Pk(Qh) ∩ L̊2(D), P̊
c
k(Qh) = Pk(Qh) ∩ H̊

1
(D),

where D̄ = ∪K∈Qh K̄ . Thus P̊k(Qh) consists of piecewise polynomials of degree ≤ k with respect to the
triangulation Qh with mean zero, and P̊

c
k(Qh) is the space of continuous, piecewise polynomials of degree ≤ k

with vanishing trace (i.e., the kth degree vector-valued Lagrange finite element space).
• The constant C denotes a generic positive constant, independent of the mesh parameter h.

.1. The Stokes problem

The Stokes equations defined on a polygonal domain Ω ⊂ Rd with Lipschitz continuous boundary ∂Ω is given
y the system of equations

− ν∆u + ∇ p = f in Ω , (2.1a)

div u = 0 in Ω , (2.1b)

u = 0 on ∂Ω , (2.1c)

here the velocity u = (u1, . . . , ud )⊺ and pressure p are functions of x = (x1, . . . , xd )⊺, and ∇, ∆ denote the
radient operator and vector Laplacian operator with respect to x respectively. In (2.1a), ν is the viscosity.

The weak formulation for (2.1) reads: Find (u, p) ∈ H̊
1
(Ω ) × L̊2(Ω ) such that ∀(v, q) ∈ H̊

1
(Ω ) × L̊2(Ω ) we

ave

ν

∫
Ω

∇u : ∇v −

∫
Ω

(div v)p =

∫
Ω

f · v, (2.2a)∫
Ω

(div u)q = 0. (2.2b)

t is well known that the problem (2.2) has a unique solution [13].
Let V̊ h × Y̊h ⊂ H1

0(Ω ) × L2
0(Ω ) be a conforming and finite dimensional pair. Then the finite element method for

2.1), based on the standard velocity–pressure formulation, seeks (uh, ph) ∈ V̊ h × Y̊h such that ∀(v, q) ∈ V̊ h × Y̊h
e have

ν

∫
Ω

∇uh : ∇v −

∫
Ω

(div v)ph =

∫
Ω

f · v, (2.3a)∫
Ω

(div uh)q = 0. (2.3b)

he discrete problem (2.3) is well-posed if and only if the pair satisfies the inf–sup condition

sup
0̸=v∈V̊ h

∫
Ω (div v)q

∥∇v∥L2(Ω)
≥ β∥q∥L2(Ω) ∀q ∈ Y̊h,

for some β > 0.

3. Inf–sup stability on Powell–Sabin triangulations

Let Th be a simplicial, shape-regular triangulation of Ω ⊂ R2. The Powell–Sabin refinement of Th , denoted by
TPS

h is obtained by the following procedure [14]. First connect the incenter of each triangle T ∈ Th with its three
vertices. Next, the incenters of each adjacent pair of triangles are connected with an edge. If T has a boundary
dge, then the midpoint of the boundary edge is connected to the incenter of T . Thus, this procedure splits each
riangle in Th into six subtriangles; cf. Fig. 1. We set

T PS
= {K ∈ TPS

: K ⊂ T̄ }.
h

3
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Fig. 1. Two triangles in the mesh Th (left) and their Powell–Sabin refinement (right). The singular vertices in the Powell–Sabin refinement
re depicted in red.

emark 3.1. The Powell–Sabin refinement is defined via the incenter of each triangle; this choice ensures that the
ine connecting these points intersects the common edge of two macro triangles [15]. We will refer to such interior
oints of the macro triangulation as split points, as is commonly done in the literature. Other choices of split points
an be made as long as the line intersecting them intersect the common edge [16]. The theoretical arguments will
emained unchanged. However, for the sake of concreteness, we assume that the split points in the Powell–Sabin
efinement are chosen as the incenters.

One feature of the Powell–Sabin triangulation is the presence of singular vertices.

efinition 3.2. We say that a vertex in a simplicial triangulation is singular if the edges meeting at the vertex fall
n exactly two straight lines.

Let SI
h and SB

h denote the sets of interior and boundary singular vertices in TPS
h , respectively, and set Sh = SI

h ∪SB
h .

ote that the cardinalities of the sets SI
h and SB

h correspond to the number of interior and boundary edges in Th ,
espectively. For z ∈ SI

h , we denote by Tz ⊂ TPS
h the set of four triangles that have z as a vertex. We write

z = {K (1)
z , K (2)

z , K (3)
z , K (4)

z } with K ( j)
z ∈ TPS

h , labeled such that K ( j)
z and K ( j+1)

z have a common edge. Likewise,
for z ∈ SB

h , we set Tz = {K (1)
z , K (2)

z } ⊂ TPS
h to denote the two triangles that have z as a vertex. We set nz = |Tz|,

i.e., nz = 4 if z ∈ SI
h and nz = 2 if z ∈ SB

h .

3.1. Finite element spaces on Powell–Sabin triangulations

It is well known that, on singular vertices, the divergence operator acting on the Lagrange finite element space
has “weak continuity properties”; the precise meaning of this statement is provided in the following lemma. Its
proof can be found in, e.g., [1,17].

Lemma 3.3. For z ∈ Sh , and piecewise smooth function q, define

θz(q) :=

{
q|K (1)

z
(z) − q|K (2)

z
(z) + q|K (3)

z
(z) − q|K (4)

z
(z) z ∈ SI

h,

q|K (1)
z

(z) − q|K (2)
z

(z) z ∈ SB
h .

Then there holds θz(div v) = 0 for all v ∈ P̊
c
k(TPS

h ).

Based on Lemma 3.3, and on a discrete de Rham complex, divergence-free finite element pairs for the Stokes
problem have been constructed and analyzed in [6,11] on Powell–Sabin triangulations. Here, we focus on the lowest-
order case, where the velocity space is the linear Lagrange space, and the pressure space is a subspace of piecewise
constants with a weak continuity property at singular vertices. We first define the spaces without boundary conditions
and then the ones with boundary conditions.

V PS
h : = Pc

1(TPS
h ),

Y PS
h : = {q ∈ P0(TPS

h ) : θz(q) = 0 ∀z ∈ SI
h}.
4
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e now define an intermediate pressure space

Ŷ PS
h := {q ∈ P0(TPS

h ) : θz(q) = 0 ∀z ∈ Sh}.

The spaces with boundary conditions are

V̊
PS
h : = V PS

h ∩ H̊
1
(Ω ),

Y̊ PS
h : = Ŷ PS

h ∩ L̊2(Ω ).

3.2. Stability of V̊
PS
h × Y̊ PS

h

The stability of the pair V̊
PS
h × Y̊ PS

h is implicitly shown in [18, Lemma 3.3]. Here we give more details.

Theorem 3.4. There holds div V̊
PS
h ⊆ Y̊ PS

h . In addition, the pair V̊
PS
h × Y̊ PS

h is an inf–sup stable pair for the Stokes
problem, i.e.,

sup
0̸=v∈V̊ PS

h

∫
Ω (div v)q

∥∇v∥L2(Ω)
≥ β∥q∥L2(Ω) ∀q ∈ Y̊ PS

h ,

for some β > 0 independent of the mesh parameter h.

Proof. The inclusion div V̊
PS
h ⊆ Y̊ PS

h follows from Lemma 3.3 and the definition of Y̊ P S
h .

For T ∈ Th , let z ∈ Sh with z ⊂ T̄ and let {K1, K2} ⊂ T PS be the two triangles in the Powell–Sabin refinement
of T that have z as a vertex. Let νi be the outward normal of Ki perpendicular to the common edge ∂K1 ∩ ∂K2;
see Fig. 2. We define the jump operator of a function p defined on T at z as

[[p]] (z) = p|K1 (z)ν1 + p|K2 (z)ν2.

Note that if T1, T2 ∈ Th are two macro triangles with a common point z ∈ Sh then θz(p) = 0 if and only if[[
p|T1

]]
(z) =

[[
p|T2

]]
(z). In particular, a piecewise constant function p with zero mean belongs to the space Y̊ PS

h if
and only if [[p]] (z) is single-valued for all z ∈ Sh .

For each T ∈ Th , let T A denote the local triangulation of T consisting of three triangles, obtained by connecting
the vertices of T with its incenter, which is known as the Clough–Tocher or Alfeld split of T . Let q ∈ Y̊ PS

h , and let
w ∈ H̊

1
(Ω ) satisfy div w = q and ∥∇w∥L2(Ω) ≤ C∥q∥L2(Ω). Set wh ∈ P̊1(Th) to be the Scott–Zhang interpolant [19]

of w with respect to Th . By [11, Lemma 10], there exists a unique v ∈ V̊
PS
h such that

v(a) = wh(a) ∀a ∈ ∆0(Th),∫
e
(v · ne) =

∫
e
(w · ne) ∀e ∈ ∆1(Th),

[[div v]] (z) = [[q]] (z) ∀z ∈ Sh,∫
T

(div v)p =

∫
T

qp ∀p ∈ P0(T A) ∩ L2
0(T ),∀T ∈ Th,

where ne is a unit vector normal to e. Integration-by-parts shows
∫

T div v =
∫

T div w =
∫

T q , and therefore, by [11,
Lemma 11], there holds div v = q. A standard scaling argument, and using the H 1-stability of the Scott–Zhang
nterpolant, then shows ∥∇v∥L2(Ω) ≤ C∥q∥L2(Ω). □

. Inf–sup stability on Worsey–Farin splits

Let Th be a simplicial triangulation of a polyhedral domain Ω ⊂ R3. The Worsey–Farin triangulation TWF
h is

obtained by splitting each tetrahedron into twelve sub-tetrahedra by the following procedure [20] (cf. Fig. 3).
Similar to the Powell–Sabin case, for each T ∈ Th , we connect the incenter (which we refer to as an interior split
point) of T to its vertices. Next, the incenters of neighboring pairs of tetrahedra are connected with a line. This

creates a face split point (a vertex) on each face of F of T which we denote by m F . If T has a boundary face, then

5
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w

Fig. 2. The Powell–Sabin split of a single triangle.

Fig. 3. Representation of a Alfeld split T A (left) and Worsey–Farin split T WF (right) with two faces shown. Solid lines denote external
edges of the split, whereas dashed lines denote internal edges. The internal split point is mT , whereas m F1 and m F2 are face split points.

we connect the incenter of T to the barycenter of the face by a line. Finally, the face split points are connected to
the vertices of the face. For each T ∈ Th , we denote by T WF the triangulation resulting from local Worsey–Farin
refinement of T , i.e.,

T WF
= {K ∈ TWF

h : K ⊂ T̄ }.

Remark 4.1. Similar to the Powell–Sabin refinement (cf. Remark 3.1), taking the interior split point as the incenter
in the Worsey–Farin refinement guarantees that the line intersecting adjacent interior split points intersects a common
face. Provided that the refinement is shape-regular and the local triangulations are quasi-uniform, the arguments and
analysis given below hold for arbitrary split points provided that the line intersecting them intersect the common
face.

Definition 4.2. An edge in a 3D simplicial triangulation is called singular if the faces meeting at the edge fall on
exactly two planes.

By construction, the Worsey–Farin triangulation contains many singular edges; for each face in the unrefined
triangulation Th , there are three associated singular edges in TWF

h .
Let ES

h denote the set of singular edges in TWF
h , and let ES,I

h and E
S,B
h denote the sets of interior and boundary

singular edges, respectively. For each e ∈ ES
h , let Te = {K (1)

e , . . . , K (ne)
e } denote the set of tetrahedra that have e as

an edge. Here, ne = 4 if e is an interior edge, and ne = 2 if e is a boundary edge. We assume the tetrahedra are
labeled such that K ( j)

e and K ( j+1)
e share a common face.

.1. Finite element spaces on Worsey–Farin triangulations

Similar to the two-dimensional case, the divergence operator acting on the Lagrange finite element space has
eak continuity properties on singular edges (cf. [12], [21, Lemma 5.7.4]).
6
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emma 4.3. For e ∈ ES
h , and a piecewise smooth function q, define

θe(q) =

{
q (1)

e |e − q (2)
e |e + q (3)

e |e − q (4)
e |e e ∈ E

S,I
h ,

q (1)
e |e − q (2)

e |e e ∈ E
S,B
h ,

here q ( j)
e = q|

K ( j)
e

. Then there holds θe(div v) = 0 for all v ∈ P̊
c
k(TWF

h ).

Analogous to the Powell–Sabin case, we define the finite element spaces to discretize the Stokes problem on
orsey–Farin splits. We first define the spaces without boundary conditions

V WF
h = Pc

1(TWF
h ),

Y WF
h = {q ∈ P0(TWF

h ) : θe(q) = 0 ∀e ∈ E
S,I
h }.

hen, we define an intermediate pressure space

Ŷ WF
h = {q ∈ P0(TWF

h ) : θe(q) = 0 ∀e ∈ ES
h }.

e now define the spaces with boundary conditions

V̊
WF
h = V WF

h ∩ H̊
1
(Ω ),

Y̊ WF
h = Ŷ WF

h ∩ L̊2(Ω ).

.2. Stability of V̊
WF
h × Y̊ WF

h

In this section, we show the pair V̊
WF
h × Y̊ WF

h is inf–sup stable. First we introduce some notation. Let T ∈ Th ,
nd let T A denote the local triangulation of T consisting of four tetrahedra, obtained by connecting the vertices of

T with its incenter, i.e., T A denotes the Alfeld split of T [15,22]. For a face F ⊂ T , denote by FCT the set of three
riangles formed from F by the Worsey–Farin refinement, i.e., FCT is the Clough–Tocher refinement of F [15]. We
enote by ∆I

1(FCT) the set of three interior edges in FCT, and let eF ∈ ∆I
1(FCT) denote an arbitrary, fixed interior

dge of FCT.
To prove inf–sup stability we will need the degrees of freedom of these space. In order to define degrees of

reedom of the above spaces we need to define a jump on singular edges.

efinition 4.4. Let T ∈ Th , let F be one of its faces, and let e ∈ ES
h be a singular edge with e ⊂ F . Let

K1, K2 ∈ T WF be the two micro-tetrahedra that have e as an edge. Let νi be outward unit normal to Ki that is
erpendicular to the common face ∂K1 ∩∂K2. Then the jump of a piecewise smooth function p defined on T across
is defined as

[[p]]e = p(1)
|eν1 + p(2)

|eν2, where p(i)
= p|Ki .

emark 4.5. Let T1, T2 ∈ Th and let e ∈ ES
h be common to both T1 and T2 then it is clear that θe(p) = 0 if and

only if
[[

p|T1

]]
e =

[[
p|T2

]]
e, that is, a piecewise constant function p belongs to the space Ŷ WF

h if and only if [[p]] |e

s single-valued for all ES
h .

We now state the degrees of freedom (DOFs) for the spaces V̊
WF
h and Y̊ WF

h . We first define the local DOFs. The
proofs of the following two lemmas are particular cases of [12, Lemmas 5.10–5.11]. For completeness, we provide
the proofs of the results.

Lemma 4.6. A function q ∈ P0(T WF) is uniquely determined by∫
e

[[q]]e ∀e ∈ ∆I
1(FCT)\{eF }, ∀F ∈ ∆2(T ), (8 DOFs), (4.1a)∫

T
qp ∀p ∈ P0(T A), (4 DOFs). (4.1b)

where the integral of q is done component-wise.
[[ ]]e

7
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roof. The dimension of P0(T WF) is 12 (the number of tetrahedra in T W F ), so it suffices to show that if
∈ P0(T WF) vanishes on the DOFs (4.1), then q ≡ 0. For a face F ∈ ∆2(T ), let Q1, Q2, Q3 be the three

riangles of the Clough–Tocher split FCT with respect to the split point m F . Without loss of generality, assume
hat eF = ∂Q1 ∩ ∂Q2. By (4.1a), noting that q is piecewise constant, we see that q|Q3 (m F ) = q|Q1 (m F ) and
|Q2 (m F ) = q|Q3 (m F ). By transitivity, we have [[q]]e = 0 for all e ∈ ∆I

1(FCT), and therefore, since F ∈ ∆2(T )
as arbitrary and q is piecewise constant, we conclude q ∈ P0(T A). The DOFs (4.1b) then yield q ≡ 0. □

emma 4.7. A function v ∈ Pc
1(T WF) is uniquely determined by the values

v(a) ∀a ∈ ∆0(T ), (12 DOFs), (4.2a)∫
F

(v · nF ) ∀F ∈ ∆2(T ), (4 DOFs), (4.2b)∫
e

[[div v]]e ∀e ∈ ∆I
1(FCT)\{eF }, ∀F ∈ ∆2(T ), (8 DOFs), (4.2c)∫

T
(div v)p ∀p ∈ V̊0(T ) := P0(T A) ∩ L2

0(T ), (3 DOFs). (4.2d)

ere, the integral of [[div v]]e is performed component-wise, and nF is the outward unit normal of ∂T restricted to
F.

roof. There are 9 vertices in T WF. Therefore dimPc
1(T WF) = 9 · 3 = 27, which is the number of DOFs in (4.2).

e show that v ∈ Pc
1(T WF) vanishes on (4.2) if and only if v ≡ 0. As an intermediate step, and to show that the

OFs induce continuity in the global space, we show that if v ∈ Pc
1(T WF) vanishes on (4.2a)–(4.2c) restricted to a

ingle face F ⊂ ∂T , then v|F = 0.
Fix F ⊂ ∂T , and suppose that v ∈ Pc

1(T WF) vanishes on (4.2a)–(4.2c) restricted to F . Using (4.2a), we have
|e = 0 for all e ∈ ∆1(F), and therefore, due to (4.2b), there holds v · nF |F = 0. We now show that the tangential
omponent vF := nF × v × nF vanishes on the boundary of T .

Let µ ∈ P̊c
1(T A) ⊂ P̊c

1(T WF) be the piecewise linear hat function with respect to the incenter of T . Let K ∈ T A

e the tetrahedron in the Alfeld refinement of T such that F ⊂ ∂K . Then, because v · nF |F = 0, there holds
· nF |K = cµ for some c ∈ R. The DOFs (4.2c) and the arguments in the proof of Lemma 4.6 shows that div v|F

s continuous on each F ∈ ∆2(T ). Write the tangential divergence as divF vF = div v|F − nF · grad (v · nF )|F .
ince nF · grad (v · nF ) = cnF · gradµ|F , and gradµ|F is constant on F , we conclude that divFvF is continuous
n F .

Next, let µF ∈ P̊1(FCT) be the hat function satisfying µF (m F ) = 1 where we recall m F is the face split point of
F induced by the Worsey–Farin refinement. Because vF |∂F = 0, we may write vF |F = cFµF for some constant cF .
Then divFvF |F = cF · gradFµF is continuous, and therefore cF ≡ 0. Thus, vF |F = 0 and we conclude v|F = 0.

Thus, we conclude that if v ∈ Pc
1(T WF) vanishes on (4.2), then v|∂T = 0. Due to (4.2c)–(4.2d), integration-

by-parts, and Lemma 4.6, there holds div v = 0. Because v|∂T = 0, we write v = cµ for some c ∈ R3. Then
div v = c · gradµ = 0 in T . This implies c = 0, and so v ≡ 0. □

Remark 4.8. Lemmas 4.6 and 4.7 induce the global spaces Ŷ WF
h and V WF

h , respectively. To see this, first note
the proof of Lemma 4.6 shows that if a piecewise constant function is single-valued for two edges of an interior
face, then it is single-valued on all three edges by transitivity. Therefore a piecewise constant function q is in Ŷ WF

h
if and only if the DOFs (4.1a) are single-valued (cf. Remark 4.5). Likewise, if a piecewise linear polynomial v is
single-valued at the DOFs (4.2), then the proof of Lemma 4.7 shows that the function is continuous, i.e., v ∈ V WF

h .
Conversely, Lemma 4.3 shows that the DOFs (4.2) are single-valued on V WF

h .

From Lemma 4.6, we see that a function q ∈ Y WF
h is uniquely determined by∫

e
[[q]]e ∀e ∈ ∆I

1(FCT)\{eF }, ∀F ∈ ∆2(Th), (4.3a)∫
qp ∀p ∈ P0(T A),∀T ∈ Th, (4.3b)
T

8
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nd a function q ∈ Ŷ WF
h is determined by (4.3) but with (4.3a) restricted to interior faces. Likewise, Lemma 4.7

hows that a function v ∈ V WF
h is uniquely determined by the values

v(a) ∀a ∈ ∆0(Th), (4.4a)∫
F

(v · nF ) ∀F ∈ ∆2(Th), (4.4b)∫
e

[[div v]]e ∀e ∈ ∆I
1(FCT)\{eF }, ∀F ∈ ∆2(Th), (4.4c)∫

T
(div v)p ∀p ∈ V̊0(T ),∀T ∈ Th, (4.4d)

nd a function v ∈ V̊
WF
h is uniquely determined by (4.4) but with (4.4a) and (4.4b)–(4.4c) restricted to interior

ertices and interior faces, respectively.

emark 4.9. Because dimP0(T A) = 4, the DOFs show dim Ŷ WF
h = 4|Th |+2|F I

h |, where |F I
h | denotes the number

f interior faces in Th . Likewise, dim V̊
WF
h = 3(|VI

h | + |F I
h | + |Th |), where |VI

h | denotes the number of interior
ertices in Th . This dimension count agrees with three times the number of interior vertices in TWF

h .

We will need the following estimate to prove inf–sup stability.

roposition 4.10. Let v ∈ V WF
h and T ∈ Th . For m = 0, 1, there holds

|v|Hm (T ) ≤ Ch−1−2m
T

(
h4

T

∑
a∈∆0(T )

|v(a)|2 +

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

v · nF

⏐⏐⏐2

+ h3
T ∥div v∥

2
L2(T )

)
.

roof. Let T̂ be the reference tetrahedron, and let FT : T̂ → T be an affine bijection with FT (x̂) = AT x̂ + bT
ith AT ∈ R3×3 and bT ∈ R3. We define v̂ : T̂ → R3 via the Piola transform

v(x) =
AT v̂(x̂)
det(AT )

, x = FT (x̂).

Let T̂ WF be the split of T̂ induced by T WF and the mapping F−1
T , i.e.,

T̂ WF
= {F−1

T (K ) : K ∈ T WF
}.

hen v̂ is a continuous piecewise linear polynomial with respect to T̂ WF, and therefore by equivalence of norms,
nd Lemma 4.7,

|v̂|
2
Hm (T̂ ) ≤ C

( ∑
â∈∆0(T̂ )

|v̂(â)|2 +

∑
F̂∈∆2(T̂ )

⏐⏐⏐ ∫
F̂

v̂ · n̂F̂

⏐⏐⏐2

+

∑
F̂∈∆2(T̂ )

∑
ê∈∆I

1 (F̂CT)\{êF̂ }

⏐⏐⏐ ∫
ê

[[
d̂iv v̂

]]
ê

⏐⏐⏐2

+ sup
p̂∈V̊0(T̂ )

∥ p̂∥L2(T̂ )=1

⏐⏐⏐ ∫
T̂

(d̂iv v̂) p̂
⏐⏐⏐2)
,

here V̊0(T̂ ) = P0(T̂ A) ∩ L2
0(T̂ ), and T̂ A is the split of T̂ induced by T A and the mapping F−1

T . By well-known
roperties of the Piola transform, we have

div v(x) =
1

det(AT )
d̂iv v̂(x̂),

∫
F

v · nF =

∫
F̂

v̂ · n̂F̂ .

hus, we have

|v̂|
2
Hm (T̂ ) ≤ C

( ∑
a∈∆0(T )

| det(AT )A−1
T v(a)|

2
+

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

v · nF

⏐⏐⏐2

+ | det(AT )|2
∑

F∈∆2(T )

∑
e∈∆1(F)\{eF }

⏐⏐⏐ |ê|
|e|

∫
e

[[div v]]e

⏐⏐⏐2

+ sup
p̂∈V̊0(T̂ )

∥ p̂∥ =1

⏐⏐⏐ ∫
T̂

(d̂iv v̂) p̂
⏐⏐⏐2)
.

L2(T̂ )

9
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Next, for p̂ ∈ V̊0(T̂ ) with ∥ p̂∥L2(T̂ ) = 1, let p : T → R be given by p(x) = p̂(x̂). Then p ∈ V̊0(T ),
∥p∥L2(T ) =

√
6|T |, and∫

T̂
(d̂iv v̂) p̂ =

∫
T

(div v)p.

e conclude

sup
p̂∈V̊0(T̂ )

∥ p̂∥L2(T̂ )=1

⏐⏐⏐ ∫
T̂

(d̂iv v̂) p̂
⏐⏐⏐2

≤ sup
p∈V̊0(T )

∥p∥L2(T )=
√

6|T |

⏐⏐⏐ ∫
T

(div v)p
⏐⏐⏐2

≤ sup
p∈V̊0(T )

∥p∥L2(T )=
√

6|T |

∥div v∥
2
L2(T )∥p∥

2
L2(T ) = 6|T |∥div v∥

2
L2(T ) ≤ Ch3

T ∥div v∥
2
L2(T ).

Finally, we use ∥A−1
T ∥ ≤ Ch−1

T and | det(AT )| = 6|T | ≤ Ch3
T to get

|v̂|
2
Hm (T̂ ) ≤ C

(
h4

T

∑
a∈∆0(T )

|v(a)|2 +

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

v · nF

⏐⏐⏐2

+ h4
T

∑
F∈∆2(T )

∑
e∈∆I

1 (FCT)\{eF }

⏐⏐⏐ ∫
e

[[div v]]e

⏐⏐⏐2

+ h3
T ∥div v∥

2
L2(T )

)
,

and therefore

|v|
2
Hm (T̂ )

≤ Ch−1−2m
T |v̂|

2
Hm (T̂ ) ≤ Ch−1−2m

T

(
h4

T

∑
a∈∆0(T )

|v(a)|2 +

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

v · nF

⏐⏐⏐2

+ h4
T

∑
F∈∆2(T )

∑
e∈∆1(F)\{eF }

⏐⏐⏐ ∫
e

[[div v]]e

⏐⏐⏐2

+ h3
T ∥div v∥

2
L2(T )

)
≤ Ch−1−2m

T

(
h4

T

∑
a∈∆0(T )

|v(a)|2 +

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

v · nF

⏐⏐⏐2

+ h3
T ∥div v∥

2
L2(T )

)
,

here the last inequality comes from standard trace and inverse inequalities. □

heorem 4.11. The pair V̊
WF
h × Y̊ WF

h is inf–sup stable.

roof. Fix q ∈ Y̊ WF
h , and let w ∈ H̊

1
(Ω ) satisfy div w = q and ∥∇w∥L2(Ω) ≤ C∥q∥L2(Ω). Let wh ∈ P̊1(Th) be the

cott–Zhang interpolant of w with respect to Th [19]. Define v ∈ V WF
h such that (cf. (4.4))

v(a) = wh(a) ∀a ∈ ∆0(Th),∫
F

(v · nF ) =

∫
F

(w · nF ) ∀F ∈ ∆2(Th),∫
e

[[div v]]e =

∫
e

[[q]]e ∀e ∈ ∆I
1(FCT)\{eF }, ∀F ∈ ∆2(Th),∫

T
(div v)p =

∫
T

qp ∀p ∈ V̊0(T ),∀T ∈ Th .

oting (div v − q) ∈ Y WF
h (cf. Lemma 4.3) and using Lemma 4.6 we conclude that div v = q . The proof of

emma 4.7 shows v ∈ V̊
W F
h since w,wh ∈ H̊

1
(Ω ).

We apply Proposition 4.10 to (v − wh) with m = 1:

∥∇(v − wh)∥2
L2(T ) ≤ Ch−3

T

(
h4

T

∑
a∈∆0(T )

|(v − wh)(a)|2 +

∑
F∈∆2(T )

⏐⏐⏐ ∫
F

(v − wh) · nF

⏐⏐⏐2

+ h3
∥div (v − w )∥2

)

T h L2(T )

10
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= Ch−3
T

( ∑
F∈∆2(T )

⏐⏐⏐ ∫
F

(w − wh) · nF

⏐⏐⏐2

+ h3
T ∥q − div wh∥

2
L2(T )

)
≤ Ch−3

T

(
h2

T

∑
F∈∆2(T )

∥w − wh∥
2
L2(F) + h3

T ∥q − div wh∥
2
L2(T )

)
≤ C

(
∥q∥

2
L2(T ) + ∥∇wh∥

2
L2(T ) + h−1

T ∥w − wh∥
2
L2(∂T )

)
≤ C

(
∥q∥

2
L2(T ) + h−2

T ∥w − wh∥
2
L2(T ) + ∥∇(w − wh)∥2

L2(T ) + ∥∇wh∥
2
L2(T )

)
,

here we used a standard trace inequality in the last inequality. We then sum over T ∈ Th and apply stability and
pproximation properties of the Scott–Zhang interpolant to conclude ∥∇v∥L2(Ω) ≤ C∥q∥L2(Ω). □

. Implementation aspects for Powell–Sabin splits

The only tricky part to implement these finite elements is the pressure spaces since they have non-standard
onstraints in their definitions. In this section and the subsequent one, we give details to form the algebraic system
or the Stokes problem.

.1. A basis for Ŷ PS
h and the construction of the algebraic system

Recall that the space Ŷ PS
h consists of piecewise constant functions satisfying a weak continuity property at

ertices. Clearly, this is a non-standard space, and in particular the space is not explicitly found in current finite
lement software packages. Nonetheless, in this section, we identify a basis of the space Ŷ PS

h , and as a byproduct
how that the weak continuity property θz(q) = 0 can be imposed purely at the algebraic level.

As a first step, we note that, by definition of the Powell–Sabin triangulation,

TPS
h = {K ( j)

z : K ( j)
z ∈ Tz, z ∈ Sh}.

ith this (implicit) labeling of the triangles in TPS
h , we can write the canonical basis of P0(TPS

h ) as the set
ϕ

( j)
z } ⊂ P0(TPS

h ) with

ϕ( j)
z |K (i)

v
= δv,zδi, j ∀z, v ∈ Sh, i = 1, . . . , nv, j = 1, . . . , nz .

The next proposition shows that a basis of Ŷ PS
h is easily extracted from the basis of P0(TPS

h ) (see Fig. 4).

roposition 5.1. For each z ∈ Sh and j ∈ {2, . . . , nz}, define

ψ ( j)
z = ϕ( j)

z + (−1) jϕ(1)
z .

hen {ψ
( j)
z : z ∈ Sh, j = 2, . . . , nz} forms a basis of Ŷ PS

h .

roof. Note that the number of functions {ψ
( j)
z } given is

∑
z∈Sh

(nz − 1), and

dim Ŷ P S
h = dimP0(TPS

h ) − |Sh | =

∑
z∈Sh

nz − |Sh | =

∑
z∈Sh

(nz − 1).

ecause ψ ( j)
z ∈ Ŷ PS

h , and they are clearly linear independent, we conclude that {ψ
( j)
z } form a basis of Ŷ PS

h . □

We now explain how Proposition 5.1 provides a simple way to construct the stiffness matrix for the Stokes
roblem using the V̊

PS
h × Y̊ PS

h pair. To explain the procedure, we require some notation.
Let A be the matrix associated with the bilinear form

(v,w) →

∫
ν∇v : ∇w over v,w ∈ V̊

PS
h ,
Ω

11
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Fig. 4. Local mesh Tz with z ∈ SI
h . Top row: Values of canonical basis functions of piecewise constants {ϕ

( j)
z }

nz
j=1. Bottom row: Values of

asis functions of piecewise constants with weak continuity constraint {ψ
( j)
z }

nz
j=2.

nd let B̃ is the matrix associated with the bilinear form

(v, q) → −

∫
Ω

(div v)q over v ∈ V̊
PS
h , q ∈ P0(TPS

h ).

he stiffness matrix for the Stokes problem based on the (unstable) V̊
PS
h × P0(TPS

h ) pair is given by(
A B̃

B̃⊺ 0

)
.

e emphasize that this system can be easily constructed using standard finite element software packages.
Let {φ(i)

}
N
k=1 denote a basis of V̊

PS
h with N = dim V̊

PS
h so that

Ai, j = ν

∫
Ω

∇φ( j)
: ∇φ(i) dx .

et M = dimP0(TPS
h ), the number of triangles in TPS

h , and introduce the local-to-global label mapping σ :

S × {1, . . . , nz} → {1, 2, . . . ,M} such that

B̃i,σ (z, j) = −

∫
Ω

(div φ(i))ϕ( j)
z .

Then by Proposition 5.1, we have for z ∈ Sh and j = 2, . . . , nz ,

−

∫
Ω

(div φ(i))ψ ( j)
z = −

∫
Ω

(div φ(i))ϕ( j)
z − (−1) j

∫
Ω

(div φ(i))ϕ(1)
z

= B̃i,σ (z, j) + (−1) j B̃i,σ (z,1).
his identity leads to the following algorithm.

12
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Algorithm

1. Construct Powell–Sabin triangulation TPS
h

2. Construct B̃ ∈ RN×M based on the V̊
PS
h × P0(TPS

h ) pair.
3. Set B = B̃.
4. For each z ∈ Sh and for each j ∈ {2, . . . , nz}, do the elementary column operation

B:,σ (z, j) = B:,σ (z, j) + (−1) j B:,σ (z,1).

5. Delete column B:,σ (z,1) for each z ∈ Sh .

The stiffness matrix for the Stokes problem based on the V̊
PS
h × Ŷ PS

h pair is then given by(
A B

B⊺ 0

)
. (5.1)

Remark 5.2. In the numerical experiments below, we further delete a single arbitrary row and column of the
matrix B in (5.1). This modification mods out the global constant function in the space Ŷ PS

h , and Theorem 3.4
implies that the reduced saddle point problem is invertible. A simple post-processing step is then performed on the
discrete pressure solution to impose the zero mean-value constraint. Alternatively, the mean-value constraint can be
imposed via a standard Lagrange multiplier.

6. Implementation aspects for Worsey–Farin splits

6.1. A basis for Ŷ WF
h and the construction of the algebraic system

Notice that the collection of local triangulations Te (with e ∈ ES
h ) do not form a disjoint partition of the global

triangulation TWF
h . In particular, there exists K ∈ TWF

h such that K ∈ Te and K ∈ Ts with e, s ∈ ES
h and e ̸= s. As

a result, the methodology used in the previous section for Powell–Sabin meshes is not directly applicable.
Instead, we consider a geometric decomposition of the mesh based on the face split points in TWF

h . To this end,
we denote by SI

h and SB
h the sets of interior and boundary face split points, respectively, and set Sh = SI

h ∪ SB
h . For

z ∈ Sh , let Tz := {K (1)
z , . . . , K (nz )

z } denote the set of tetrahedra in TWF
h that have z as a vertex (cf. Fig. 5). Here,

nz = 6 if z is an interior vertex, and nz = 3 if z is a boundary vertex. For an interior face split point z, we assume
the simplices in Tz are labeled such that

K (1)
z , K (2)

z , K (3)
z ⊂ T (1), K (4)

z , K (5)
z , K (6)

z ⊂ T (2)

for some T (1), T (2)
∈ Th , and that K ( j)

z and K ( j+3)
z share a common face for j ∈ {1, 2, 3}. For a boundary split

point z, the set Tz = {K (1)
z , K (2)

z , K (3)
z } is labeled arbitrarily.

We clearly have

TWF
h = {K ( j)

z : z ∈ Sh, j = 1, . . . , nz}, (6.1)

and the map (z, j) → K ( j)
z is injective. Furthermore, each local partition Tz contains three singular edges.

roposition 6.1. There holds

dim Ŷ WF
h = 4|SI

h | + |SB
h |.

roof. Recall from Remark 4.9 that

dim Ŷ WF
h = 4|Th | + 2|F I

h |,

here |F I
h | is the number of interior faces in Th . From (6.1), we have

WF I B
12|Th | = |Th | = 6|Sh | + 3|Sh |,

13
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Fig. 5. Cross-section of the Clough–Tocher refinement of an interior face F = ∂T (1)
∩ ∂T (2) with face split point z.

and by construction of the Worsey–Farin split, there holds

|F I
h | = |SI

h |.

Therefore,

dim Ŷ WF
h = 4|Th | + 2|F I

h | =
1
3

(
6|SI

h | + 3|SB
h |

)
+ 2|SI

h | = 4|SI
h | + |SB

h |. □

For an interior split point z, and for a piecewise constant function q on Tz , the three constraints θe(q) = 0 read

q1 − q2 + q5 − q4 = 0,
q2 − q3 + q6 − q5 = 0,
q3 − q1 + q4 − q6 = 0,

here q j = q|
K ( j)

z
We write this as a 3 × 6 linear system

Cq⃗ :=

⎛⎝ 1 −1 0 −1 1 0
0 1 −1 0 −1 1

−1 0 1 1 0 −1

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

q1
q2
q3
q4
q5
q6

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

e clearly see that this matrix has rank 2 (e.g., adding the first and third rows gets the negation of the second row).
e find that the nullspace of C is given by

null(C) = span

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
−1
−1
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

These four vectors implicitly give us a basis for Ŷ WF
h . In particular, we have

roposition 6.2. For z ∈ Sh and j ∈ {1, 2, . . . , nz}, let ϕ( j)
z be the piecewise constant function

ϕ( j)
| = δ δ ∀v, z ∈ S , i = 1, . . . , n , j = 1, . . . , n .
z K (i)
v

v,z i, j h v z

14
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F

F

T

P
ψ

b

p

a

T

or an interior face split point z, define

ψ (3)
z = ϕ(3)

z + ϕ(1)
z + ϕ(2)

z ,

ψ (4)
z = ϕ(4)

z + ϕ(1)
z ,

ψ (5)
z = ϕ(5)

z + ϕ(2)
z ,

ψ (6)
z = ϕ(6)

z − ϕ(1)
z − ϕ(2)

z .

or a boundary face split point z, define

ψ (3)
z = ϕ(3)

z + ϕ(1)
z + ϕ(2)

z .

hen {ψ
( j)
z } is a basis of Ŷ WF

h .

roof. The proof essentially follows from the same arguments as Proposition 5.1, noting that the number of given
( j)
z is

4|SI
h | + |SB

h | = dim Ŷ WF
h

y Proposition 6.1. □

As in the two-dimensional case, Proposition 6.2 gives an algorithm to construct the stiffness matrix for the Stokes
roblem using the V̊

WF
h × Ŷ WF

h pair. First, we construct the stiffness matrix based on the V̊
WF
h × P0(TWF

h ) pair:(
A B̃

B̃⊺ 0

)
,

nd then perform elementary column operations on the B̃.
Let {φ(k)

}
N
k=1 denote a basis of V̊

WF
h with N = dim V̊

WF
h . Let M = dimP0(TPS

h ), the number of tetrahedra in
WF
h , and introduce the local-to-global label mapping σ : Sh × {1, . . . , nz} → {1, 2, . . . ,M} such that

B̃k,σ (z, j) = −

∫
Ω

(div φ(k))ϕ( j)
z .

Algorithm 1

1. Construct Worsey–Farin triangulation TPS
h

2. Construct B̃ ∈ RN×M based on the V̊
WF
h × P0(TWF

h ) pair.
3. Set B = B̃.
4. For each interior face split point z ∈ Sh do the elementary column operations

B:,σ (z,3) = B:,σ (z,3) + B:,σ (z,1) + B:,σ (z,2),

B:,σ (z,4) = B:,σ (z,4) + B:,σ (z,1),

B:,σ (z,5) = B:,σ (z,5) + B:,σ (z,2),

B:,σ (z,6) = B:,σ (z,6) − B:,σ (z,1) − B:,σ (z,2).

5. For each boundary face split point z ∈ Sh do the elementary column operation

B:,σ (z,3) = B:,σ (z,3) + B:,σ (z,1) + B:,σ (z,2).

6. Delete columns B:,σ (z,1) and B:,σ (z,2) for each z ∈ Sh .

The stiffness matrix for the Stokes problem based on the V̊
WF
h × Ŷ WF

h pair is then given by(
A B

B⊺ 0

)
, (6.2)

Remark 6.3. In the numerical experiments below, we further delete an arbitrary row and column of B to ensure

the system (6.2) is invertible; cf. Remark 5.2.

15
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W

Table 1
Errors and rates of convergence for the 2D example (7.3) with ν = 1.

h ∥u − uh∥L2(Ω) Rate ∥p − ph∥L2(Ω) Rate ∥∇ · uh∥L2(Ω) β

2−2 1.70E−01 – 5.26E 00 – 2.70E−14 1.56E−01
2−3 5.66E−02 1.587 3.77E 00 0.480 6.65E−14 1.38E−01
2−4 1.35E−02 2.068 1.68E 00 1.166 2.38E−13 1.07E−01
2−5 3.35E−03 2.011 8.28E−01 1.021 8.38E−12 1.06E−01
2−6 8.77E−04 1.934 4.25E−01 0.962 4.05E−10 9.34E−02

Table 2
Errors and rates of convergence for the 2D example (7.3) with ν = 10−2.

h ∥u − uh∥L2(Ω) Rate ∥p − ph∥L2(Ω) Rate ∥∇ · uh∥L2(Ω)

2−2 1.70E−01 – 1.02E−01 – 2.43E−14
2−3 5.66E−02 1.587 5.79E−02 0.816 5.88E−14
2−4 1.35E−02 2.068 2.76E−02 1.069 2.36E−13
2−5 3.35E−03 2.011 1.37E−02 1.010 8.39E−12
2−6 8.77E−04 1.934 6.96E−03 0.977 4.05E−10

7. Numerical experiments

In this section, we perform some simple numerical experiments for the Stokes problem on Powell–Sabin and
orsey–Farin splits. We note standard theory shows that the velocity and pressure errors satisfy

|u − uh |H1(Ω) ≤ (1 + β−1) inf
vh∈V̊ h

|vh − u|H1(Ω), (7.1)

∥p − ph∥L2(Ω) ≤ inf
q∈Y̊h

∥p − q∥L2(Ω) +
ν

β
|u − uh |H1(Ω), (7.2)

where either V̊ h × Y̊h = V̊
PS
h × Y̊ PS

h or V̊ h × Y̊h = V̊
WF
h × Y̊ WF

h , ν > 0 is the viscosity, and β is the inf–sup constant
for the finite element pair V̊ h × Y̊h .

7.1. The Stokes pair on Powell–Sabin splits

We consider the example such that the data is taken to be Ω = (0, 1)2, and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

u =

(
π sin2(πx1) sin(2πx2)

−π sin2(πx2) sin(2πx1)

)
, p = cos(πx1) cos(πx2). (7.3)

Let Th be a Delaunay triangulation of Ω and TP S
h the corresponding Powell–Sabin global triangulation.

The resulting errors, rates of convergence, and inf–sup constants are listed in Tables 1 and 2 for viscosities ν = 1
and ν = 10−2, respectively. We compute the inf–sup constants by solving a Stokes eigenvalue problem [23]. The
results show that the L2 pressure error and the H 1 velocity error converge with linear rate, the discrete velocity
solution (and error) are independent of the viscosity ν, and the pressure error improves for small viscosity. The
experiments also show that the inf–sup constant does not deteriorate as the mesh is refined with β ≈ 0.1. These
results are in agreement with the theoretical estimates (7.1)–(7.2)

In Tables 3 and 4, we compute the right-hand side of (7.2) and (7.1), respectively, and compare the data with
the computed errors ∥p − ph∥L2(Ω) and |u − uh |H1(Ω). Again, the results are consistent with (7.1)–(7.2), and they
suggest that the term ν

β
|u − uh |H1(Ω) is the dominant term in the pressure error (7.2) for moderately sized viscosity

values.
16
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Table 3
Errors for the 2D example (7.3) with ν = 10−2 and the RHS of (7.2).

h ∥p − ph∥L2(Ω) |u − uh |H1(Ω) β infq∈Y̊ PS
h

∥p − q∥L2(Ω) RHS of (7.2)

2−2 1.02E−01 3.77E 00 1.56E−01 6.08E−02 3.02E−01
2−3 5.79E−02 2.17E 00 1.38E−01 2.77E−02 1.84E−01
2−4 2.76E−02 1.07E 00 1.07E−01 1.35E−02 1.13E−01
2−5 1.37E−02 5.32E−01 1.06E−01 6.61E−03 5.67E−02
2−6 6.96E−03 2.72E−01 9.34E−02 3.28E−03 3.24E−02

Table 4
Errors for the 2D example (7.3) with ν = 10−2 and the RHS of (7.1).

h |u − uh |H1(Ω) β inf
vh∈V PS

h
|vh − u|H1(Ω) RHS of (7.1)

2−2 3.77E 00 1.56E−01 3.08E 00 2.28E+01
2−3 2.17E 00 1.38E−01 1.63E 00 1.34E+01
2−4 1.07E 00 1.07E−01 8.04E−01 8.31E 00
2−5 5.32E−01 1.06E−01 4.06E−01 4.23E 00
2−6 2.72E−01 9.34E−02 2.05E−01 2.39E 00

Table 5
Errors and rates of convergence for the 3D example (7.4) with ν = 1.

h ∥u − uh∥L2(Ω) Rate ∥p − ph∥L2(Ω) Rate ∥∇ · uh∥L2(Ω) β

1/2 1.29E 00 – 9.81E 00 – 5.07E−14 1.31E−01
1/4 8.58E−01 0.588 19.4E 00 −0.98 5.20E−13 1.31E−01
1/8 3.93E−01 1.286 16.6E 00 0.414 2.68E−12 1.32E−01
1/16 1.32E−01 1.573 10.5E 00 0.667 4.10E−12 1.32E−01
1/32 3.69E−02 1.839 5.75E 00 0.872 4.32E−12 1.32E−01
1/48 1.68E−02 1.941 3.93E 00 0.936 6.07E−12 1.32E−01

7.2. The Stokes pair on Worsey–Farin splits

We consider the example such that the data is taken to be Ω = (0, 1)3, and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

u =

⎛⎝ π sin2(πx1) sin(2πx2)
−π sin2(πx2) sin(2πx1)

0

⎞⎠ , p = cos(πx1) cos(πx2) cos(πx3). (7.4)

Let Th be a Delaunay triangulation of Ω and TW F
h be the corresponding Worsey–Farin global triangulation.

The resulting rates of convergence of the numerical experiments for viscosities ν = 1 and ν = 10−3 are listed
in Tables 5 and 6, respectively. We also state the computed inf–sup constant on these meshes, and the results show
that it stays uniformly bounded from below with β ≈ 0.13 on all meshes. The stated errors, especially those in
Table 5, indicate that the rates of convergence are still in the preasymptotic regime. On the other hand, for small
viscosity value ν = 10−3, Table 6 shows that the pressure error converges with linear rate. This behavior suggests
that |u − uh |H1(Ω) is larger than infq∈Y̊ WF

h
∥p − q∥L2(Ω), in particular, ν

β
|u − uh |H1(Ω) is the dominating term in the

ressure error (7.2) for moderately large viscosity values.
To verify this claim, we explicitly compute the terms in the right-hand side of (7.2) with ν = 1 and report the

esults in Table 7. The results show that indeed |u − uh |H1(Ω) is the dominating term in the pressure error (7.2).

.3. A numerical comparison with the Crouzeix–Raviart Stokes pair

In this subsection, we consider the Crouzeix–Raviart [24] (CR) Stokes pair, and compare it to PS and WF Stokes
airs.
17
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Table 6
Errors and rates of convergence for the 3D example (7.4) with ν = 10−3.

h ∥u − uh∥L2(Ω) Rate ∥p − ph∥L2(Ω) Rate ∥∇ · uh∥L2(Ω)

1/2 1.29E 00 – 1.33E−01 – 1.28E−15
1/4 8.58E−01 0.588 6.97E−02 0.932 3.43E−14
1/8 3.93E−01 1.286 3.70E−02 0.911 3.22E−13
1/16 1.32E−01 1.574 1.91E−02 0.953 6.40E−13
1/32 3.69E−02 1.838 9.68E−03 0.980 9.52E−13
1/48 9.63E−03 1.940 4.89E−03 0.983 1.03E−12

Table 7
Errors for the 3D example (7.4) with ν = 1 and the RHS of (7.2).

h ∥p − ph∥L2(Ω)
ν
β
|u − uh |H1(Ω) infq∈Y̊ WF

h
∥p − q∥L2(Ω) RHS of (7.2)

1/2 9.81E 00 8.17E+01 5.00E−01 8.22E+01
1/4 19.4E 00 6.49E+01 6.70E−02 6.50E+01
1/6 18.7E 00 5.17E+01 4.43E−02 5.17E+01
1/8 16.6E 00 4.24E+01 3.30E−02 4.25E+01
1/10 14.6E 00 3.57E+01 2.63E−02 3.57E+01
1/12 13.0E 00 3.08E+01 2.19E−02 3.08E+01

Fig. 6. PS and CR velocity (left) and pressure (right) errors with different viscosities.

7.3.1. CR pair vs. PS
We consider the example (7.3) on Ω = (0, 1)2. For the finite element pair, we consider the Crouzeix–Raviart

(CR) element pair on the unrefined triangulation Th .
The resulting errors and rates of convergence are compared with the Powell–Sabin pair in Fig. 6 for viscosities

ν = 1 and ν = 10−4. The mesh size updates in Fig. 6 are chosen so that the CR pair on mesh Th has a similar
number of degrees of freedom as the PS pair on the corresponding mesh size updates of TP S

h in Tables 1 and 2
respectively.

For ν = 1, the L2 velocity error magnitudes and (quadratic) convergence rates for the CR and PS pairs are
comparable. The pressure L2 error magnitudes for the CR pair are smaller than those for the PS element. Also, the
convergence rates for the CR pair are more evident compared to the pressure convergence rates of the PS pair on
coarse triangulations.

For ν = 10−4, the L2 pressure error magnitudes and convergence rates for the CR and PS pairs are sufficiently
close, similar to the ν = 1 case. However, while the PS and CR velocity errors both converge quadratically, the
velocity L2 error magnitudes for the PS pair are significantly smaller than those for the CR pair. Unlike the CR

pair, the velocity errors for PS pair are invariant with respect to the viscosity.

18
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Fig. 7. WF vs. CR velocity and pressure errors with different viscosities.

7.3.2. CR pair vs. WF
We consider the example (7.4) on Ω = (0, 1)3. For the finite element pair, we consider the Crouzeix–Raviart

element pair on the unrefined triangulation Th .
The resulting errors and rates of convergence are compared with the Worsey–Farin pair in Fig. 7 for viscosities

ν = 1 and ν = 10−3.
In the case of ν = 1, and in contrast to the WF pair, we observe asymptotic convergence rates for the CR pair

on relatively coarse meshes. The errors for both the velocity and pressure are smaller for the CR pair.
If we examine the case when ν = 10−3, we find that the errors for the pressure are comparable between the

CR and WF pairs. The errors for the velocity are roughly one order of magnitude larger for the CR pair, when
compared to those of the WF pair. Both methods exhibit similar convergence rates.

7.4. Iterated penalty method for (P1,P0) pair on Worsey–Farin splits

We consider the example such that the data is taken to be Ω = (0, 1)3, and the source function is chosen such
that the exact velocity and pressure solutions for (2.1) are given respectively as

u(x, y, z) = ∇ ×

⎛⎝0
g
g

⎞⎠ , p =
1
9
∂2g
∂x∂y

, (7.5)

where

g = g(x, y, z) = 212(x − x2)2(y − y2)2(z − z2)2.

imilar to the previous section, we let Th be a Delaunay triangulation of Ω and TWF
h be the corresponding

orsey–Farin global triangulation.
The iterated penalty method [25] applied to the Stokes equations with V̊ h = V̊

WF
h reads : Let u0

h = 0 and
, γ > 0 be parameters. For n ≥ 1, un

h is recursively defined to be the solution to the variational formulation

ν(∇un
h,∇v) + γ (∇ · v,∇ · un

h) = ( f , v) − (
n−1∑
i=0

ρ∇ · ui
h,∇ · v), ∀v ∈ V̊

WF
h . (7.6)

It is shown in [25] that limn→∞ un
h = uh and limn→∞

∑n
i=0 ρ∇·ui

h = ph . Also, [25] suggests to use ∥∇ ·un
h∥L2(Ω)

as a stopping criterion since the difference error between un
h, uh is given by

∥un
h − uh∥L2(Ω) ≤ C∥∇ · un

h∥L2(Ω).

The resulting rates of convergence of the numerical experiment are listed in Table 8. The errors ∥u − un
h∥L2(Ω)

n n −7
nd ∥p − ph∥L2(Ω) are computed with ∥∇ · uh∥L2(Ω) ≤ 10 and γ = ρ = 100.
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Table 8
Errors and rates of convergence for example (7.5) with ν = 1.

h ∥u − un
h∥L2(Ω) Rate |u − un

h |H1(Ω) Rate ∥p − pn
h∥L2(Ω) Rate

1/4 1.11768 – 11.55063 – 25.32256 –
1/8 0.48896 1.19273 7.53829 0.61566 22.35349 0.17992
1/16 0.15482 1.65908 4.15598 0.85905 13.67635 0.70882
1/32 0.04176 1.89040 2.13224 0.96282 7.24129 0.91736
1/48 0.01881 1.96680 1.42643 0.99145 4.88909 0.96875

Table 9
Time comparison between (IPM) and Algorithm 1 for
example (7.5) with ν = 1.

h (IPM) Algorithm 1

1/4 5.08E+00 3.35E+00
1/8 1.68E+01 2.93E+01
1/16 4.80E+02 2.60E+02
1/32 2.39E+03 9.37E+02
1/48 7.31E+03 6.45E+03

In Table 9 we provide a time comparison between the (IPM) and the method described in Algorithm 1. All of
he timings were done on a machine with a single 3.60 GHz Intel Core i9-9900K processor with 128 GB of 2400

Hz DDR4 memory.
For the iterated penalty method, we select γ = ρ = 100 and terminate iterations once ∥∇ · un

h∥L2(Ω) ≤ 10−7. At
each iteration of IPM, Eq. (7.6) must be resolved. In our work, this vector Poisson problem type problem is solved
via a conjugate gradient method with an algebraic multigrid (AMG) preconditioner. It is well known that optimal
multigrid methods can be designed for this class of problems [26].

For Algorithm 1, we instead work with the full discretization matrix (6.2), which results in a symmetric indefinite
linear system. To efficiently solve this saddle point problem, a block preconditioned Krylov subspace method is
used [27]. In particular, we precondition the stiffness matrix (6.2) by the block diagonal matrix(

A 0
0 S

)
,

where S = B⊺A−1 B is the Schur complement, and the flexible GMRES method as an outer iteration. The solver
is terminated once the Euclidean norm of the residual is less than or equal to 10−8. For simplicity, the inner

reconditioners are as follows: we use a preconditioner to A for approximating A−1, and the Schur complement
s approximated as S ≈ B⊺diag(A−1)B. It should be noted that this is not the only choice for block-type
reconditioning of the Stokes problem (e.g., see [28]); however, our numerical experiments indicate that we can
epurpose existing preconditioners to efficiently solve linear systems that arise from the proposed finite element
iscretization.

From Table 9, it is evident that for a fixed mesh spacing, the total run times for both methods are competitive,
ith the IPM technique being slightly slower for larger meshes. We find that in the case of the linear Stokes problem,
y utilizing preexisting preconditioners, both approaches provide similar accuracy and time to solution metrics.

To obtain a Reynolds robust, optimally scaling preconditioner, special multigrid techniques may have to be
nvestigated [29,30].
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