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Abstract— This letter develops, theoretically justifies,
and experimentally implements an optimization-based non-
linear control methodology for stabilizing quadrupedal
locomotion. This framework utilizes virtual constraints
and control Lyapunov functions (CLFs) in the context of
quadratic programs (QPs) to robustly stabilize periodic
orbits for hybrid models of quadrupedal robots. Proper-
ties of the proposed QP are studied wherein sufficient
conditions for the continuous differentiability of the con-
troller are presented. Additionally, this letter addresses the
robust stabilization problem of the orbits based on the
Poincaré sections analysis and input-to-state stability (ISS).
The proposed controller is numerically and experimentally
validated on the A1 quadrupedal robot with 18 degrees of
freedom to demonstrate the robust stability of trotting gaits
against external disturbances and unknown payloads.

I. INTRODUCTION

Legged locomotion can be described by hybrid systems
consisting of continuous-time domains representing the La-
grangian dynamics and discrete-time transitions representing
the change of contact points with the environment [1]–[5].
Nonlinear controllers that address hybrid models of locomo-
tion have been developed based on controlled symmetries [6],
hybrid reduction [7], transverse linearization [8], and hybrid
zero dynamics (HZD) [5], [9]. The HZD approach considers
a set of output functions, referred to as virtual constraints, for
continuous-time domains of locomotion and asymptotically
regulates them using an input-output (I-O) linearizing con-
troller [10]. HZD controllers have been validated for whole-
body motion control of underactuated bipedal robots [5], [11]–
[13] and powered prosthetic legs [14], [15].

The extension of nonlinear HZD-based controllers to
quadrupedal locomotion is a challenge due to its multi-contact
nature. In particular, the nonlinear controllers must satisfy
the feasibility of the ground reaction forces (GRFs) during
different domains of locomotion. This motivates the integra-
tion of optimization-based methods with nonlinear controllers
(e.g., quadratic programming (QP)-based nonlinear controllers
and model predictive control (MPC)) to address the feasibility
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constraints. Many MPC approaches are tailored to the real-
time planning of reduced-order models of locomotion, but not
full-order models, see, e.g., [16]–[19]. In addition, one draw-
back of QP-based nonlinear control approaches is the possible
lack of continuous differentiability (i.e., C1) of the feedback
laws with respect to the system’s state [20]. Practically, the
stability analysis of periodic locomotion can be checked via
the eigenvalues of the Poincaré map [2], [21] which requires
C1 continuity of the feedback laws. Hence, lack of smoothness
of the feedback laws prohibits the use of the powerful Poincaré
sections analysis tools to study the stability of gaits.

The overarching goal of this letter is to present a continu-
ously differentiable and QP-based nonlinear controller, based
on virtual constraints and control Lyapunov functions (CLFs),
to robustly stabilize hybrid periodic orbits for quadrupedal
locomotion. The objectives and contributions of this work are
as follows. We study the properties of the proposed QP-based
nonlinear controller and present sufficient conditions under
which the feedback laws become C1. We investigate conditions
under which the orbit is invariant for the closed-loop hybrid
system. The robust stability properties of the periodic orbit
under the proposed nonlinear controller are studied via the
Poincaré sections analysis and input-to-state stability (ISS).
We numerically and experimentally validate the proposed non-
linear controller on the advanced A1 quadrupedal robot with
18 degrees of freedom (DOFs) to demonstrate the stability
and robustness of trotting gaits against unknown payloads and
external disturbances. To the best of the authors’ knowledge,
this is the first time a full-order HZD controller with exact
feedback linearization has been implemented on quadrupedal
robots. The use of a model-based CLF for locomotion has only
been validated on bipedal platforms [5], making this the first
application of a model-based CLF to quadrupedal locomotion.

Our previous work [22] has used QP-based nonlinear con-
trollers for numerical simulations of quadrupedal locomotion
without studying the C1 continuity, invariance of the orbit,
and robust stability. The current work technically addresses
these properties while experimentally evaluating the control
framework on hardware. This work also differs from [20]
and [23] in that the proposed control framework satisfies the
C1 continuity whereas the controller in [20] only meets the
continuity conditions but not the C1 continuity, and [23] uses
the CLF condition to parameterize the rigid coupling between
two subsystems for distributed control of a quadruped.

II. HYBRID MODEL OF LOCOMOTION
The objective of this section is to address hybrid dynamical

models of quadrupedal locomotion. We consider floating-



based models for general quadrupedal robots whose legs end
at point feet. The generalized coordinates of the robot are
assumed to be denoted by q ∈ Q ⊂ Rnq , where Q represents
the configuration space for some positive integer nq . The state
vector can be taken as x := col(q, q̇) ∈ X ⊂ Rn, in which
X := TQ denotes the state space with n = 2nq . In addition,
the joint-level torque inputs are shown by u ∈ U ⊂ Rm, where
U is a closed and convex admissible set of inputs for some
m < nq . The equations of motion can be described by the
following ordinary differential equations (ODEs)

D(q) q̈ +H (q, q̇) = B u+
∑
`∈G

J>` (q)λ`, (1)

where D(q) ∈ Rnq×nq denotes the positive definite mass-
inertia matrix, H(q, q̇) ∈ Rnq represents the Coriolis, cen-
trifugal, and gravitational terms, and B ∈ Rnq×m denotes the
input matrix. In addition, G represents the index set of ground
contact points, J`(q) := ∂p`

∂q (q) ∈ R3×nq denotes the Jacobian
matrix at the contact point ` ∈ G, p`(q) ∈ R3 represents the
Cartesian coordinates of the contact point, and λ` ∈ R3 is
the corresponding GRF. By defining λ := col{λ` | ` ∈ G}, the
state equation can be expressed as

ẋ = f(x) + g(x)u+ w(x)λ (2)

subject to the holonomic constraints p̈ = 0, where p :=
col{p` | ` ∈ G} represents the Cartesian coordinates of all con-
tact points, which implies rigid contact and no foot slippage.
More formally, we have p̈` = J`(q) q̈+ ∂

∂q (J`(q) q̇) q̇ = 0 for
all ` ∈ G. We remark that this model is valid if λ` ∈ FC for
all ` ∈ G, where FC := {col(λx, λy, λz) |λz > 0, |λx| ≤
µ√
2
λz, |λy| ≤ µ√

2
λz} denotes the friction cone for some

friction coefficient µ.
Quadrupedal locomotion can be expressed by multi-domain

hybrid systems. Using [2, Theorem 4.3], the stability analysis
of periodic orbits for multi-domain hybrid models can be
reduced to that of single-domain hybrid models. In this ap-
proach, the reset map for the equivalent single-domain hybrid
system can be expressed as the composition of the flows
of the remaining continuous-time domains and discrete-time
transitions in the order they are executed in the multi-domain
hybrid systems’ cycle. In particular, assuming domain 1 is the
main continuous-time domain, the equivalent reset law can be
expressed as ∆ := ∆N→1◦FN ◦· · ·◦∆2→3◦F2◦∆1→2, where
N denotes the number of domains and Fi and ∆i→j represent
the flow of the continuous-time domain i and the reset law
during the discrete-time transition i→ j [24], respectively, for
all i, j ∈ {1, · · · , N} [25, Sec. IV]. In this paper, we study
periodic orbits corresponding to double-domain trotting gaits,
which have left-right symmetry. Using [26, Remark 11], one
can apply symmetry to the controller of domain 1 to construct
the controller for domain 2. Hence, without loss of generality,
we will focus on single-domain hybrid models of locomotion
as follows:

Σ :


ẋ = f(x) + g(x)u+ w(x)λ, x ∈ X
p̈ = 0

x+ = ∆(x−), x− ∈ X ∩ S,
(3)

where S represents the guard of the hybrid system, referred to
as the switching manifold. The state solutions of Σ undergo
an abrupt change according to the C1 reset law x+ = ∆(x−)
when they hit the guard S .

Assumption 1 (Periodic Orbit): There exists a period-one
orbit O for the system Σ that is transversal to the switching
manifold S . In particular, O := {ϕ?(t) | 0 ≤ t < T} for
some periodic state solution ϕ?(t) and some fundamental
period T > 0. Furthermore, the orbit intersects the switching
manifold in exactly one point, i.e., {x?} := O ∩ S is a
singleton, where O denotes the set closure of O.

III. QP-BASED NONLINEAR CONTROLLER
This section presents a nonlinear control scheme, based

on QP, virtual constraints, and CLFs, for whole-body motion
control and robust stabilization of the orbit O. The properties
of the QP-based nonlinear controller are studied to show that
it becomes C1 on an open neighborhood of the orbit.

A. Formulation of the QP-based Nonlinear Controller
We consider a set of holonomic virtual constraints as output

functions y := h(x) ∈ Rm to be imposed by the action of a
feedback controller.

Assumption 2 (Output Properties): The output function
y(x) is assumed to be smooth (i.e., C∞) with uniform relative
degree 2 [10] with respect to the control input u in (3) on an
open neighborhood of the orbit O. In addition, y(x) vanishes
on O, that is, y(x) = 0 for all x ∈ O.

Differentiating the output function y(x) along the
continuous-time dynamics (2) and setting the result equal to
the desired output dynamics to solve for u yields

ÿ = LgLfy u+ LwLfy λ+ L2
fy = −KP y −KD ẏ + v, (4)

where “L” represents the Lie derivative, KP and KD are
positive definite matrices, and v ∈ Rm is an auxiliary input.
We remark that in (4), ÿ is an affine function of both the
inputs u and the GRFs λ, and LgLfy and LwLfy denote the
corresponding decoupling matrices. The right-hand side term
−KP y − KD ẏ + v represents the desired output dynamics
that we ultimately want to achieve by solving for (u, λ). By
defining η := col(y, ẏ) ∈ R2m, the output dynamics (4) can
be written in a compact form as follows:

η̇ = f̄(η) + ḡ(η) v := F η +Gv, (5)

where

F :=

[
0 I
−KP −KD

]
∈ R2m×2m, G :=

[
0
I

]
∈ R2m×m.

Since F is Hurwitz, for every positive definite Q = Q>,
there exists a unique and positive definite P = P> such that
F>P + P F = −Q. A function Vε(η) is said to be a rapidly
exponentially stabilizing CLF (RES-CLF) for (5) if there are
positive scalars c1, c2, c3 > 0 such that for all 0 < ε < 1 and
η ∈ R2m, the following conditions are met

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2

inf
v

{
Lf̄Vε(η) + LḡVε(η) v +

c3
ε
Vε(η)

}
≤ 0. (6)



Following [5], Vε(η) := η>Pε η is an RES-CLF for (5) with
Pε := diag( 1

εI, I)P diag( 1
εI, I). More specifically, we can

show that the CLF condition can be expressed as the following
affine inequality in terms of v

V̇ε +
c3
ε
Vε = ψ0(x) + ψ1(x) v ≤ 0, (7)

where c3 := λmin(Q)
λmax(P ) , ψ0(x) := η>(F>Pε + Pε F + c3

ε Pε) η,
and ψ1(x) := 2η>PεG. From Assumption 2, η = 0 for all
x ∈ O, and hence, the inequality (7) is reduced to the trivial
case of 0 v ≤ 0 on the orbit.

Analogous to (4), the algebraic holonomic constraints aris-
ing from the stationary contacts of the stance leg ends with
the ground can be expressed as

p̈ = LgLfp u+ LwLfp λ+ L2
fp = 0. (8)

Assumption 3: The contact constraints are regular in that
the square matrix LwLfp(x) is full-rank for every x ∈ X .

We aim to solve for (u, λ, v) that satisfy the output dynam-
ics (4) and the contact condition (8) while addressing the CLF
condition (7) as well as the feasibility constraints u ∈ U and
λ ∈ FC. For this purpose, we set up the following real-time
strictly convex QP

min
(u,λ,v,δ)

γ1

2
‖u‖2 +

γ2

2
‖λ− λd‖2 +

γ3

2
‖v‖2 +

γ4

2
δ2

s.t. LgLfy u+ LwLfy λ+ L2
fy = −KP y −KD ẏ + v

LgLfp u+ LwLfp λ+ L2
fp = 0

ψ0 + ψ1 v ≤ δ
u ∈ U , λ ∈ FC, (9)

where γ1, γ2, γ3, γ4 > 0 are weighting factors. The equality
constraints of (9) correspond to the I-O linearization (4) and
rigid contact assumption (8). The CLF condition (7) is then
relaxed by introducing a defect variable δ ∈ R. Theorem 1
will show that this relaxation would allow the C1 continuity
of the optimal solution of the QP with respect to x in
an open neighborhood of the orbit O. The QP considers
the feasibility condition of the torque inputs and GRFs as
inequality constraints. The cost function finally tries to find
the minimum 2-norm (minimum power) torques u that impose
the actual GRFs λ to follow a desired GRF profile λd(x)
while reducing the magnitude of the defect variable δ and the
auxiliary input v. Note that in this work, λd = 0. The existence
and uniqueness of the solution to this strictly convex QP will
be shown via Assumption 4 and Theorem 1.

For future purposes, the optimal solution of the QP (9) is
denoted by (u?(x), λ?(x), v?(x), δ?(x)) and is parameterized
by the state vector x. Furthermore, the closed-loop hybrid
system can be expressed as

Σcl :


ẋ = f cl(x), x ∈ X
p̈ = 0

x+ = ∆(x−), x− ∈ X ∩ S,
(10)

where f cl(x) := f(x)+g(x)u?(x)+w(x)λ(x) is the closed-
loop vector field. We remark that λ(x) = λ?(x) as from (8),
λ(x) can be uniquely computed based on u?(x).

B. Continuous Differentiability of the Feedback Controller

The QP in (9) can be expressed in a compact form as the
following parameterized optimization problem

P(x) :


min
ξ

J(ξ, x)

s.t. ρi(ξ, x) = 0, i ∈ Ieq := {1, · · · , neq}
ωj(ξ, x) ≤ 0, j ∈ Iineq := {1, · · · , nineq},

where ξ := col(u, λ, v, δ) represents the decision variables to
be determined. The Lagrangian for P(x) is defined as

L(ξ, α, β, x) := J(ξ, x) +
∑
i∈Ieq

αi ρi(ξ, x) +
∑
j∈Iineq

βj ωj(ξ, x),

where α and β are the Lagrange multipliers corresponding
to the equality and inequality constraints, respectively. A
point (ξ?, α?, β?) satisfies the Karush-Kuhn-Tucker (KKT)
conditions for P(x0) if 1) ∂L

∂ξ (ξ?, α?, β?, x0) = 0, 2) all
equality constraints are met at (ξ, x) = (ξ?, x0), 3) all
inequality constraints are satisfied at (ξ, x) = (ξ?, x0), and
4) βj ωj(ξ

?, x0) = 0 with βj ≥ 0 for all j ∈ Iineq
(complementary slackness). A point (ξ?, α?, β?) satisfies strict
complementary slackness if there is not any j ∈ Iineq for which
both βj = 0 and ωj(ξ?, x0) = 0. A point (ξ?, α?, β?) is said
to be regular if the gradients of the active constraints of P(x0)
are linearly independent.

The point (ξ?, α?, β?) satisfies the second-order sufficient
conditions (SOSC) of the QP P(x0) if a) the KKT conditions
are met, and b) the Hessian matrix meets the condition
z> ∂

2L
∂ξ2 (ξ?, α?, β?, x0) z > 0 for all z 6= 0 such that

1) z> ∂ρi∂ξ (ξ?, x0) = 0 for all i ∈ Ieq,
2) z>

∂ωj

∂ξ (ξ?, x0) = 0 for all j ∈ Iineq where β?j > 0,
3) z>

∂ωj

∂ξ (ξ?, x0) ≤ 0 for all j ∈ Iineq where β?j = 0.
Assumption 4: (Optimality on the Periodic Orbit): We sup-

pose that, for all x0 on the orbit O, the QP P(x0) is feasible
and there exists a point (ξ?(x0), α?(x0), β?(x0)) that satisfies
the SOSC. The point (ξ?(x0), α?(x0), β?(x0)) also satisfies
the strict complementary slackness for P(x0). We further
suppose that the optimal control and GRFs take values in the
interior of the sets U and FC, that is, u?(x0) ∈ int(U) and
λ?(x0) ∈ int(FC), where “int” represents the interior of a set.

Remark 1: Assumption 4 is not restrictive and states that
the QP has a feasible solution that satisfies the SOSC and
complementary slackness for every point on the desired orbit,
which follows simply from the strict convexity of the problem.
It also states that the torques and GRFs corresponding to the
desired trajectory remain in the interior of the feasible sets,
which can be met during trajectory optimization of the desired
periodic orbit O. In particular, the trajectory optimization
problem for generating O can be constrained by a conservative
subset of the feasible sets U and FC such that the desired orbit
remains in the interior of the actual feasible sets U and FC at
all times during locomotion.

Theorem 1: (Existence, Uniqueness, and C1 Continuity of
the Optimal Solution): Under Assumptions 1-4, there exist
an open neighborhood of the periodic orbit O, denoted by
N (O), and a continuously-differentiable function ξ?(x) :=



col(u?(x), λ?(x), v?(x), δ?(x)), such that for all x ∈ N (O),
ξ?(x) is an isolated optimal solution of the QP P(x).

Proof: Since f(x), g(x), w(x), and y(x) are smooth
(i.e., C∞), the cost function J(ξ, x) and constraints ρ(ξ, x)
and ω(ξ, x) are smooth in x on an open neighborhood of the
orbit. In addition, J(ξ, x) and constraints ρ(ξ, x) and ω(ξ, x)
are smooth in ξ. We next show that for all x0 ∈ O, the
optimal solution of P(x0), denoted by (ξ?, α?, β?), satisfies
the regularity condition. From Assumption 2, ÿ = 0 on the
orbit. Hence, according to the output dynamics (4), the optimal
v value must be zero, i.e., v? = 0. Since ψ0 = 0 and
ψ1 = 0 on the orbit, the relaxed-CLF condition in (9) is
reduced to 0 ≤ δ. According to the positive term γ4

2 δ
2 in

the cost function, we can conclude that δ? = 0. Hence, the
relaxed CLF condition, which is expressed as an inequality
constraint, is indeed active on the orbit. From Assumption 4,
u? ∈ int(U) and λ? ∈ int(FC). Consequently, the feasibility
constraints u ∈ U and λ ∈ FC of the QP (9) are inactive on
the orbit. We now study the rank of the gradients of the active
constraints with respect to ξ = col(u, λ, v, δ) that is reduced
to the following matrix on the orbitLgLfy(x0) LwLfy(x0) −I 0

LgLfp(x0) LwLfp(x0) 0 0
0 0 0 −1

 . (11)

By Assumption 3, LwLfp(x0) is full-rank, and hence, the
gradient matrix in (11) has full row rank for every x0 ∈ O.
Thus, all sufficient conditions of Fiacco’s Theorem (see [27,
Theorem 2.1] or [20, Theorem 1]) are met, resulting in the
existence, uniqueness, and C1 continuity of optimal solutions
of the QP on an open neighborhood of the orbit O.

IV. ROBUST STABILITY
The objective of this section is to address the robust

stabilization problem of the periodic orbit O based on the
Poincaré sections analysis and ISS. We consider the closed-
loop hybrid model (10) subject to external disturbances during
the continuous-time domain as follows:

ẋ = f cl(x) + a(x) d, (12)

where a(x) is a smooth function and d is an external wrench
(i.e., disturbance) defined by a finite-dimensional set of pa-
rameters [21, Sec. II.C]. Typical examples include constant
disturbance inputs or splines whose parameters change from
one domain to another. We suppose that dk ∈ D repre-
sents the parameterization of the disturbance during the k-th
continuous-time domain, where D is a domain containing the
origin. The evolution of the perturbed hybrid system on the
Poincaré section S can then be described by the following
discrete-time dynamics

xk+1 = R(xk, dk), k = 0, 1, · · · , (13)

where R : S × D → S represents the Poincaré return map
parameterized by the disturbance dk. To study the properties
of the Poincaré map, we make the following assumption.

Assumption 5: We suppose that for all x ∈ O, the matrix

T (x) := LgLfy − LwLfy (LwLfp)
−1 LgLfp ∈ Rm×m

is full-rank.
Remark 2: Assumption 5 is not restrictive and is met

inherently if the system is not overactuated. In this work,
we consider a trot gait that does not have an overactuated
continuous-time domain, so this assumption is satisfied. In
the proof of Theorem 2, we will show that this ensures the
uniqueness of the torques corresponding to the periodic gait.

Definition 1: A fixed point x? is said to be locally ISS
(LISS) for (13), if there exists ε > 0, a class KL function
%, and a class K function $ such that

‖xk − x?‖ ≤ %(‖x0 − x?‖, k) +$ (‖d‖l∞) , ∀k = 0, 1, · · · ,

for all x0 ∈ S ∩ Bε(x?) and d ∈ Bε(0), where Bε(x?)
and Bε(0) are open ε-neighborhood balls around x? and 0,
respectively, and ‖d‖l∞ represents the l∞-norm.

We are now in a position to present the following theorem to
investigate the existence of a fixed point and its LISS property
for the Poincaré return map.

Theorem 2: (Invariance and Robust Stability): Under As-
sumptions 1-5, the following statements hold.

1) The orbit O is invariant under the flow of the closed-
loop hybrid system in the absence of the disturbance d.
In particular, x? is a fixed point for the Poincaré map
in the absence of d, that is R(x?, 0) = x?.

2) If the eigenvalues of Π0 := ∂R
∂x (x?, 0) are strictly inside

the unit circle, then x? is LISS for (13).
Proof: Part (1): From Assumptions 2 and 4 and the proof

of Theorem 1, for every x ∈ O, the QP P(x) is feasible and
the optimal v value is zero (i.e., v? = 0). Hence, the equality
constraints are reduced to LgLfy u+ LwLfy λ+ L2

fy = 0 and
LgLfp u + LwLfp λ + L2

fp = 0. Eliminating the GRFs from
these equations, we can conclude that

T (x)u+ L2
fy − LwLfy (LwLfp)

−1 L2
fp = 0. (14)

This, together with Assumption 5, implies that u is a unique
solution for this set of equations which coincides with the
open-loop control input that generates the orbit. Hence, O is
invariant under the flow of the closed-loop hybrid dynamics.

Part (2): Unlike [21], the closed-loop vector field is C1,
but not twice continuously differentiable (i.e., C2). Theorem
1 together with the transversality condition in Assumption 1
implies that R(x, d) is C1 with respect to (x, d) on an open
neighborhood of (x?, 0). Since Π0 is a Hurwitz matrix, for
every Q0 = Q>0 > 0, there is a unique P0 = P>0 > 0 such that
the discrete-time Lyapunov equation Π>0 P0 Π0 − P0 = −Q0

is satisfied. This shows zero-input exponential stability and
thereby zero-input asymptotic stability of the fixed point x?

for the Poincaré return map. We can then conclude the desired
local ISS property holds by invoking [29]. More formally, we
can choose the Lyapunov function W (x) := δx>P0 δx, where
δx := x − x?. From [30, Lemma 2], there are ε, ζ0, σ0 >
0 such that for all x ∈ S ∩ Bε(x?) and all d ∈ Bε(0) ⊂
D, ∆W := W (R(x, d)) − W (x) ≤ −ζ0 ‖δx‖2 + σ0‖d‖2.
Since λmin(P0) ‖δx‖2 ≤ W (x) ≤ λmax(P0) ‖δx‖2, we can
conclude that Wk+1 ≤ ν Wk + σ0‖dk‖2, where ν := 1 −

ζ0
λmax(P0) < 1. For d = 0, this inequality is reduced to Wk+1 ≤



Fig. 1. Simulated and experimental data for a forward trot subject to a payload of 4.54 (kg). The joint phase plots are shown for the front right leg.

Fig. 2. This experiment displays A1 trotting under the influence of both a 4.54 (kg) payload (36% of the robot’s weight) and push disturbances.
The quadruped was able to resist these uncertainties and continue trotting. Videos of the experiments are available online [28].

ν Wk, and hence, ν ∈ [0, 1). We can show that

Wk ≤ νkW0 + σ0

k−1∑
j=0

νk−1−j‖dj‖2 ≤ νkW0 +
σ0

1− ν
d2

max,

where dmax := supk≥0 ‖dk‖. This latter inequality together
with the property

√
a+ b ≤

√
a +
√
b results in ‖δxk‖ ≤√

λmax(P0)
λmin(P0) ‖δx0‖ (

√
ν)k +

√
σ0

λmin(P0) (1−ν) dmax for all k =

0, 1, · · · which completes the proof.

V. NUMERICAL AND EXPERIMENTAL RESULTS

This section aims to numerically and experimentally evalu-
ate the effectiveness of the proposed nonlinear control scheme.
We consider a full-order dynamical model of the quadrupedal
robot A1 made by Unitree. The floating-based model of
the mechanical system consists of 18 DOFs. Six DOFs are
unactuated and describe the absolute position and orientation
of the robot. The remaining 12 DOFs are the actuated joints
of the legs. More specifically, each leg has a 2 DOF hip joint
plus a 1 DOF knee joint. The robot weighs approximately
12.45 (kg) and stands up to 0.28 (m) off the ground. In this
paper, we consider a heuristic and symmetric periodic orbit
O for trotting at 0.1 (m/s). We remark that the orbit can also
be designed via trajectory optimization techniques. The orbit
satisfies Assumptions 4 and 5. We then consider 12 virtual
constraints to stabilize the orbit according to Assumption 2.
The first three components are defined in the Cartesian space
to track the desired trajectories for the geometric center of
the robot. The next three components are defined to regulate
the orientation of the torso. The remaining components are
defined in the Cartesian space to impose the swing leg ends
to follow the desired trajectories starting from the previous
footholds and ending at the upcoming ones.

The proposed QP-based controller in (9) is solved using
qpSWIFT [31] at 1kHz on an off-board laptop with an i7-
1185G7 running at 3.00 GHz and 16 GB of RAM. Under
nominal conditions, the computation time is 0.22 (ms) on
average over the course of one domain. The QP uses γn =

{1, 0.1, 1e6, 1e8} for the weights, and assumes a coefficient
of friction of µ = 0.7, which results in stable locomotion.

The proposed controller was first simulated in RaiSim
[32], which assumes a rigid contact model. Under nominal
conditions, the controller results in stable trotting. This is
further examined by subjecting the robot to push and payload
disturbances that are unknown to the controller. Similarly,
hardware experiments were performed under several distur-
bance conditions. The phase plots in Fig. 1 display the
simulated and experimental results of a trot gait subject to a
constant payload with a mass of 4.54 (kg), which is 36% of the
total body mass. The gap between simulated and experimental
results can be attributed to poorly modeled system dynamics,
compliant feet, lack of rigorous contact and state estimation,
and differences in the position of the payload. In light of
these potential shortcomings, the robot is able to remain stable
without knowledge of the payload. In addition to adequately
handling this unmodeled payload, the robot was further able to
robustly resist push disturbances during experiments without
becoming unstable. Snapshots of the experiment involving
both a payload and push disturbances can be found in Fig.
2 and the corresponding CLF may be found in Fig. 3. Even
under these disturbances, the derivative of the CLF remains
negative for nearly the entire trial, and becomes positive for
only brief moments (e.g., δ remains small). It can be observed
that the CLF spikes during the pushes and slowly decreases as
the robot continues to step forward. Due to the hybrid nature
of locomotion, convergence back to the orbit is subject to
constantly changing contact domains, leading to slow recovery.
Experiment videos are available online [28].

VI. CONCLUSIONS
This letter presented a nonlinear control scheme, based

on virtual constraints, CLFs, and QPs, to robustly stabilize
periodic orbits for hybrid dynamical models of quadrupedal
locomotion. The first theoretical contribution of this paper
established sufficient conditions such that this QP-based con-
troller is continuously differentiable on an open neighborhood
of the orbit. We subsequently showed the invariance of the



Fig. 3. CLF corresponding to the experiment in Fig. 2. The highlighted
portions indicate the pushes and corresponding recovery of the robot.

orbit and its robust stability via the Poincaré sections anal-
ysis and ISS. The effectiveness of the proposed controller
was verified both numerically and experimentally on the A1
quadrupedal robot. The full-order and nonlinear controller was
implemented on the robot as a model-based CLF-QP in real-
time. The robust stability of trotting gaits against external
disturbances and uncertainties arising from unknown payloads
was demonstrated in practice. Future research will investigate
the robustness of the gaits on rough terrains. We will also
explore the integration of this control scheme with higher-level
and MPC-based planning algorithms.
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