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Keywords: This paper extends our recent work [1] to evaluate the elastic fields and effective modulus of a composite
Eshelby’s equivalent inclusion method containing arbitrarily shaped inhomogeneities for both two-dimensional (2D) and three-dimensional (3D) prob-
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lems. Based on Eshelby’s equivalent inclusion method (EIM), the material mismatch between inhomogeneities
and matrix phases is represented with a continuously distributed eigenstrain on inclusions. Since there exists
singularities at the vertices of polyhedral inhomogeneities, domain discretization of inhomogeneities is used
to interpolate the eigenstrain distribution, and high accuracy is obtained by using the closed-form integrals
of the source field. The influence of the singularity decays in rl and r% for 2D and 3D problems respectively.
Because Eshelby’s tensors depend on the shape instead of the size, the iBEM is particularly suitable for cross
scale modeling of composites with a wide range of particle sizes. Although a number of elements are required
to provide high fidelity results of the local field around the vertices, in general, very few elements or a
single element are enough for each inhomogeneity to obtain the convergent solutions of the effective material
properties, which enables virtual experiments of a composite containing many inhomogeneities. This novel
numerical method has been verified with the finite element method (FEM) with much more elements. Virtual
experiments of composites with many particles demonstrate its versatile capability and great potentials.

1. Introduction inclusions. For the conventional Eshelby’s second problem, the eigen-
strain field is constant over the inhomogeneity because the volume’s in-

Considering an infinitely extended matrix embedded with one ellip- tegral of Green’s function is constant. Several factor, however, may lead
soidal subdomain with different elastic modulus (inhomogeneity) under

far-field stress, Eshelby [2] proposed to substitute the sub-domain by
the same material as the matrix but with continuous inelastic strain
field, namely eigenstrain, to represent the stress disturbance caused by
the material mismatch, which is called the equivalent inclusion method

to the non-uniformity of the eigenstrain field, such as, interactions be-
tween inhomogeneities [1,4-6], interactions between inhomogeneities
and boundary [10-12],micro-structural dependent size effect [8,9,13],
shape effect [14-17] and various loading conditions [1,4,11,18].

(EIM). With the equivalent stress conditions of the inhomogeneity, the Although the EIM has been successfully applied to the ellipsoidal/
eigenstrain field could be determined and superposed with the far-field elliptical inhomogeneities, for polygonal inclusions, a number of pi-
stress to obtain the entire elastic fields. Since the explicit volume/area oneering works on the classic Eshelby’s tensor can be found in the
integral of the Green’s function for ellipsoidal or elliptical inclusions literature [13,19-25] for inclusion problems with a prescribed eigen-

are available in literature, the EIM is intensively applied to investigate
the disturbed stress field [3-5]. Shodja et al. [6] combined the EIM and
Hill’s theorem to determine the stress intensity factors of cracks with
arbitrary orientation under non-uniformed far-field stress. Jin et al. [7]
investigated the stress field and displacement field of the elliptical

strain only. For inhomogeneity problems, the eigenstrain distributed
needs to be solved by the EIM, the Eshelby’s tensor for a constant
eigenstrain is not sufficient because the mismatch eigenstrain will
obviously not be uniform due to the non-uniformity of Eshelby’s tensor.

inclusion with the closed-form solution. Recently, Wu and Yin [26,27] derived the solution for a polynomial
Based on the strain gradient theory, Ma and Gao [8,9] derived form of eigenstrain and used EIM to solve for the elastic fields of
the analytical strain-gradient Eshelby’s tensor for elliptical/ellipsoidal an infinite domain containing polygonal/polyhedral inhomogeneities.
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However, there are two challenging issues to apply the method di-
rectly [28,29] for actual experiments of composites with arbitrary
shaped of inhomogeneities:

(1) Singularity effects exists on the edges of the polyhedron, vertices
for polygon and polyhedron. The assumption of single polynomial form
of eigenstrain over the inhomogeneity domain cannot capture the local
solution accurately.

(2) Actual composites samples exhibit a certain size (finite domain),
the interactions between inhomogeneities and the boundary cannot be
quantified.

To improve the accuracy of the EIM on polygonal/polyhedral inho-
mogeneities, two general approaches were used in the literature: (i) in-
crease the order of eigenstrain field [4,5,26] or the strain field [13], and
(ii) discretization over the inhomogeneities with small/elementary ele-
ments [30-32]. As for the first approach, based on the continuity of the
eigenstrain field, it could be expanded in Taylor series [5]. However,
Wu and Yin [26,27] have shown that even with the quadratic order
eigenstrain, the prediction of stress fields of one triangular/tetrahedral
inhomogeneity under uniform far-field load may not be accurate enough
due to the singularity. It is not effective to use a single polynomial func-
tion to approximate the eigenstrain distribution accurately. Regarding
to the second approach, Nakasone et al. [30] and Hou [32] et al.
discretized the inhomogeneity domain with triangular elements and
apply the numerical EIM. Zhou et al. [31] discretized the subdomain
with small enough rectangular elements, where the eigenstrain field
is approximated by a piecewise uniform function. A certain level of
agreement was obtained in their work. The continuity of eigenstrain,
however, is lost under the assumption of uniform eigenstrain in the ba-
sic elements. In addition, even had the assumption be acceptable with
small elements, to approach the boundary of the polygonal/polyhedral
subdomains may lead to a dramatic increase of the number of elements,
which causes inefficiency of computation. It is the first time in this
paper to use the analytical Eshelby’s tensor for piece-wise continu-
ous eigenstrain at the C° continuity for a high accuracy and rapid
convergence to the exact solution by refining the mesh.

For the second challenging issue of the finite domain, it is important
to consider the boundary effect on the local field because different
loads can be applied to the boundary in physical experiments and
an actual specimen always exhibits a finite size. The infinite domain
is a theoretical assumption. To reproduce physical experiments in a
computer, the inclusion-based boundary element method (iBEM) com-
bines the EIM and BEM [1,11,33] to consider the effects from both the
inhomogeneities and boundary. The advantages of iBEM are as follows:
(1) For ellipsoidal or elliptical inhomogeneities, no internal mesh is
required either for the matrix nor for the subdomains, and a polyno-
mial eigenstrain can provide tailorable accuracy to the exact solution.
(2) For arbitrary polygonal/polyhedral inhomogeneities, a piece-wise
eigenstrain on a discretized inhomogeneity ensures the high accuracy
with the C° continuity of the eigenstrain field. Refining particle dis-
cretization can approach the exact solution for the inhomogeneity
problems. (3) Because no mesh is required in the matrix, and Eshelby
tensors on inhomogeneities are size independent, the ill-conditioned
mesh is avoided, and the size gradation of inhomogeneities could be
simulated given the dimensions and locations. Notice that although
the ellipsoidal or elliptical inhomogeneities have been simulated with
traditional Eshelby’s tensors [1], it can also be reproduced by a number
of polyhedrons or polygons numerically [26] or represented by the
integral of infinitesimal polygonal/polyhedral elements analytically.

With the above advantages, the iBEM is particularly suitable for
modeling the effective material behavior containing a large variety of
inhomogeneities in size, shape, and material properties. It can be used
for particle interaction crossing size-scales and virtual experiments of a
physical composite specimen. It can predict both the local field and
non-local behavior of a composite specimen. We compare the iBEM
with the existing methods in the literature as follows:
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(1) The EIM has been applied to simulate the elastic fields of
ellipsoidal or elliptical inhomogeneities, which served as the founda-
tion for several micromechanics models, i.e, Mori-Tanaka method, the
self-consistent scheme, and the dilute model [33-35] using various
homogenization assumptions without directly considering the bound-
ary effect and the effect of particle-particle interactions. The iBEM
easily addressed the boundary effect by the boundary integral, more-
over, it extended the particle shape to arbitrary shapes of inhomo-
geneities. Hence, iBEM is not only applicable to micromechanics, but
also serves a versatile computational method for materials or structures
with heterogeneous microstructure.

(2) Due to the limitations of micromechanics models, several nu-
merical methods were developed to conduct the virtual experiments
of composite under various boundary conditions (BC). In the previous
work, the traditional BEM adopts the multi-region [36-38], which
meshes the boundary of subdomains and collocate the boundary nodes
with continuity conditions of tractions and displacements. Proposed by
Beer [39], the major disadvantage of the multi-region method is the in-
troduction of additional equations and unknowns to the linear system of
equations. Therefore, it is expensive and uncertain to obtain the stable
and convergent solution for angular shape of particles, particularly for a
large number of particles. The present iBEM uses the same fundamental
solution for the whole domain with stress equivalence and avoids the
interface continuity equations.

(3) Helsing [40] proposed an adaptive algorithm based on the
Fredholm’s integral equation for multiple cracks and investigated the
effective elastic properties under 10,000 cracks in 2D problem. Fu
et al. [41], Fu and Rodin [42] and Lai and Rodin [43] developed the
fast Galerkin BEM for domain containing many particles. Liu [44] and
Liu and Shen [45] applied the fast multipole algorithm. Wu et al. [46]
extended it for two-dimensional nonlinear interface debonding prob-
lem. Although the fast multipole method (FMM) can significantly save
the computational cost, it still relies on the interface continuity equa-
tions for the multi-region domain. On the contrary, the iBEM can use
very few or even merely one element for each particle with analytical
integral of particle domain to achieve high accuracy. The concept
of FMM has also been used in iBEM to define an influence zone or
particle interaction cutoff given a certain error limit, so that iBEM can
theoretically achieve the same level of computational efficiency.

(4) To avoid the multi-region issue, the revised boundary-
domain [47], eigen-field based boundary integral equations [8,48,49]
are proposed. The dual reciprocity BEM (DRBEM), introduced by
Nardini and Brebbia [50], avoids the volume/area integral of non-
homogeneous terms (i.e, body force) through approximation with basis
functions [51,52]. Although DRBEM could solve the problem with
BEM in original form, its numerical accuracy is highly determined by
selections of basis functions, locations of the domain points [39,53].
Ingber et al. [54] conducted a comparison of domain integral with the
DRBEM and particular solution method, and proved better accuracy
for method with domain integral. However, all those methods rely
on the numerical integrals over the particle, which bring difficulties
for different shapes of particles. For example, a spherical particle
needs a lot of linear elements to match the geometry. The iBEM
integrates the analytical domain integral for ellipsoidal/elliptical and
polyhedral/polygonal particles into the computation and represents the
highest accuracy for the domain integral.

(5) Another extension of the FEM/BEM is the combination of isogeo-
metric analysis (IGA) [55], namely IGAFEM [56-58] and IGABEM [39,
59-62], whose advantage is the seamless integration with CAD. Beer
et al. [39,63] proposed an iterative scheme to simulate the inclusion
problem, which converts the mismatch initial stress to body force and
traction increments. And such body force increments in a general inclu-
sion could only be treated by numerical domain integral of the Green’s
function. Compared with FEM or FVM, iBEM exhibits advantages in
a much lower degree of freedom (DOF); different from IGABEM [63],
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the iBEM is based on the closed-form area (2D) or volume (3D) in-
tegrals of the Green’s function and avoids the numerical stability and
convergence in iterations.

(6) Moreover, besides the BEM, most numerical methods require
the discretization of the entire domain, such as finite element method
(FEM) and finite volume method (FVM). Sukumar et al. [64] and Du
et al. [65] proposed the extended finite element method (XFEM) to
solve the inhomogeneity problems, in which the FEM approximation
is enriched by additional discontinuous functions. Benowitz and Wais-
man [66] later used the numerical spline-based enrichment function
with inclusion internal boundary discretization. The iBEM contains the
singularity in the Eshelby’s tensor as well, but only the integral over
the particle is required. Therefore, much fewer degrees of freedom is
needed to solve the problem.

Particularly, the iBEM is suitable for cross-scale modeling and sim-
ulation because the Eshelby’s tensor is size independent and dimen-
sionless. It can predict the effective material performance with a given
microstructure conveniently because the traction and displacement on
the boundary are the principal variables to solve [1]. As the effec-
tive material behaviors do change with the shapes (i.e, aspect ratio,
orientations), size gradation (i.e, dimension) and distribution of the
inhomogeneities, the iBEM can capture the difference caused by these
microstructural features. The iBEM’s using analytical integrals on inho-
mogeneities can avoid the numerical integral issues and provide higher
accuracy in comparison with the above BEM methods.

Overall, the iBEM integrates the boundary integral equation (BIE)
and equivalent inclusion method (EIM) [1] to solve the inhomogeneity
problem for a number of particles embedded in a matrix with certain
loads on the boundary or inhomogeneities. As the extension, although
the ellipsoidal/elliptical geometry is versatile, this paper enables the
simulation of arbitrary shaped polygonal/polyhedral inhomogeneities
by the domain discretization method, which is the main limitation
in our previous work [1]. Section 2 formulates the closed-form Es-
helby’s tensor for arbitrary polygonal/polyhedral inclusions based on
the shape functions; whereas Eshelby’s tensor for elliptical inclusions
have already existed in the literature [1,4]. Subsequently, the numer-
ical implementation of the inclusion-based boundary element method
(iBEM) is presented. In Section 3, the iBEM is verified with the FEM
results for the convergence performance and accuracy. Thanks to the
closed-form domain integral, only 1 element for the inclusion can
provide the exact solution for the unbounded domain and high fidelity
solution for bounded domain with iBEM. For inhomogeneity problems,
the iBEM exhibits a high convergent rate as well. Section 4 illustrates
inhomogeneity problems with the case studies of close interactions of
multiple particles and boundary. The singularity of eigenstrain and
its influence zone on the stress distribution is discussed as well. In
Section 5, the virtual experiments are conducted to obtain the effec-
tive modulus under uni-axis loading and periodic boundary condition
(PBC). Due to the merit of analytical integral in inhomogeneities,
iBEM can handle with particle interactions and provide predictions
of effective material behaviors. The effect of mesh refinement on the
average field is investigated by adjusting the volume fraction, global
size of the elements, which indicates with a comparatively coarse mesh
could provide engineering applicable data. A many-particle system with
> 3,000 particles are demonstrated for the convergence of the effective
elasticity with the number of particles in the virtual material samples.
In conclusions, this novel algorithm of iBEM for isotropic elastic com-
posites with arbitrary polygonal/polyhedral inhomogeneities provides
versatile capability to solve for both local fields and overall material
behavior. It is a powerful tool for cross-scale modeling and virtual
experiments of composites.
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Fig. 1. Schematic illustration of multiple inhomogeneities embedded in a domain D
with prescribed boundary conditions.

2. The formulation of the inclusion-based boundary element
method (iBEM)

2.1. General problem statement

Consider multiple inhomogeneities 2! (I = 1,2,...) embedded in a
bounded domain D subjected to various boundary conditions shown as
Fig. 1 such as Neumann, Dirichlet types. Shown in Fig. 1, the matrix
domain is denoted by 2° and therefore D = Q°(J,_,,  «'. Notice
that, for 2D problem, it can be an either plane stress or plane strain
problem. This paper uses plane strain for the formulation in which the
inhomogeneities can be considered as long prisms or fibers with the
corresponding cross sections. However, the formulation can be used for
plane stress problems by replacing the elastic moduli. Here ¢; and u;
are prescribed tractions and displacements, respectively. An inelastic
strain may exist on Q/, written as sf.’ , which can, for example, be a
thermal strain or misfit strain, and is also called eigenstrain [4]. For
the isotropic elastic medium, let Ciljkl = M6&;6 + n' (6 8j + 6,6,
where A/ and u’ denote the Lame constants of the Ith phase of the
composite, where I = 0 and I = 1,2,... representing the matrix and
the Ith inhomogeneities phases, respectively. The governing equations
can be written as,

I I I
CinCsi— g ) +b; =0 forxeQ

€8]

which is the Navier equation in each material domain of 7 =0, 1,2, ....
Here the displacement field u, is continuous and differentiable whereas
eigenstrain e;,’ is piece-wise continuous. For simplicity, the body force
b; is taken as zero unless it is specified particularly.

Assuming no debonding on the interfaces, the boundary value prob-
lem of inhomogeneities could be enacted with the continuity equations
of displacements and tractions in Eq. (2).

(2)

where 92! represents the interface between the I'th subdomain and
the matrix; superscript + and — denote the outer, inner surface of the
interface, respectively; n; is the unit normal vector of the surface.

Considering the traction and displacement boundary conditions on
0D, this BVP could be solved by the multi-region BEM with two
challenges: (1) the prescribed eigenstrain on the inhomogeneities needs
to be addressed carefully; (2) the singularity on the vertices of polygon
requires very fine elements to obtain an accurate results, which leads
to high computational costs.

- _ - 1
o".*j'.(x)n;r = o (X}, ut(x) =u; (x) onoQR
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This paper proposes to avoid the multi-region BEM by using an
eigenstrain to simulate the material mismatch. In our recent work [1,
11,671, the inclusion problem (prescribed eigenstrain) and the inho-
mogeneity problem (equivalent inclusions) have been studied for ellip-
tical/ellipsoidal particles, in which the displacement and strain/stress
fields can be accurately predicted with a polynomial-form eigenstrain.
For angular particles, since the Eshelby’s tensor has singularities on the
vertices (2D & 3D) and edges (3D), the eigenstrain distribution becomes
complex in the neighborhood of them. Therefore, to address its complex
distribution, a piece-wise function can be applied to approximate the
eigenstrain with C° continuity. The governing equation in the absence
of body force can be written as

—-C°

wl
Lk €kli =0

®)

0 0 0
A +u )u,»_,»/- +

where eigenstrain EZ/I is piece-wise continuous on inclusions 2! (I # 0)
only and is zero on the matrix Q°. Compared with Eq. (1), Eq. (3)
exhibits uniform stiffness over the whole domain D with eigenstrain
sources on the inclusions Q! (I # 0).

Using the Maxwell-Betti’s reciprocal theorem with the aid of Green’s
function [33], one can write the solution with the Green’s function
technique:

U (X) = / Gy (x, x ) ;(x")dx" — / T (%, x Ju; (x")dx’
oD oD

- /D G[/(X’X,)Cr?pjklgltlym’ x")dx' “4)
where G; j(x,x' ) is the fundamental solution or elastic Green’s function
to describe the field at x caused by a point source field at x’, which is
written as in terms of the harmonic and bi-harmonic potentials as

1

1, 5
16701 — v0y Vi )

G,-j(x,x’) = ﬁéijqb -
and T;(x,x’) = %C,kal(ij’, + Gy; ), is the fundamental solution of
traction. The harmonic and bi-harmonic potentials can be written as
¢ =—-Injx-—x']> and v = —|x—x’|2w for 2D case [26], and
¢ = ﬁ and y = |x — x'| for 3D case, respectively.

In this paper, the closed-form domain integral of shape function
interpolated eigenstrain is implemented in the iBEM code, which is
elaborated in Appendix A and can be applicable to both the inclu-
sion and inhomogeneity problems. Although we only demonstrate the
domain discretization scheme with 6 - node triangular element (2D)
and 10 - node tetrahedral element (3D), readers can follow the same
fashion to extend for linear elements and other quadratic elements.
Subsequently, the stress equivalent equations are setting up over the
particle domain to transfer the inhomogeneity problem to an equivalent
inclusion problem as follows [2,4]:

0 . b N _ I .o b

Cijk/ Dyt E;cl = &) = Chipy + (g + ‘E;cz) (6)
where e’,:, is the strain caused by the boundary integral as follows:

1
e x =z / (G (%, X) + Gy (%, X))t (x")

2 Jop

— [Ty (%, x") + Tp; (%, X ) (xdx! )
and ¢, the strain caused by the area integral as follows:

1

£, (x) = -3 /Q (Gt X)) + Gy %, XDIC) e (X)X ®

Given a polynomial eigenstrain distribution in an elliptical/ellipsoidal
particle, the integral can be conducted analytically and the stress
equivalence can be established in Appendix B. For angular particles,
domain discretization will be introduced in the next section. Therefore
combining the stress equivalent equations with the boundary element
collocation, the eigenstrain and boundary displacement/traction can be
solved and the overall elastic field can be calculated.
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2.2. Closed-form domain integral with shape functions

The domain integral over the particle is obtained by the summation
of the integrals over all elements through Eq. (4). Before considering
the elastic fields caused by multiple elements/inhomogeneities, the
integral of a single element on Q¢ is introduced as below and the entire
solution is the superposition of all elements. Although the isotropic
elastic Green’s function differs in 2D and 3D problem, the domain
integral for 2D can be derived in 3D Green’s function by applying the
Hadamard’s regularization [8,26]. Therefore, for a uniform eigenstrain
on an inclusion, the domain integrals in both 2D and 3D problems can
be defined in terms of biharmonic ¥ and harmonic & potentials as
Eq. (9).

'I’:/ wdx', @

And the domain integral of Green’s function is obtained in terms of the
two potentials as below,

= pdx’
QE

)]

1
= -G, C° dx' = ———
ikl /(u" im,n™~ mnkl X 87[(1 _ V)
X [Py = 2v® ;81 — (1 — V)@ 8il + P 5] (10a)
1 1
Sijkr = 5 @ikt,j + 8jri) = Srd—v)
X W gsij = 2v® ;65 — (1= V(@D 46 + D ;84 + P .5y + D 16,
(10b)

where g, and S;;;, are Eshelby’s tensors for displacement and strain,

respectively. For linear or quadratic eigenstrain distribution, we can
obtain the Eshelby’s tensor similarly [26,27]. Following we use 2D
problem as an example to demonstrate the domain discretization of
eigenstrain distribution. Consider an arbitrary polygonal subdomain
Q! discretize it with E! elements and N/ nodes, and the unknowns are
eigenstrain on each node. Therefore, like other discretization methods,
the eigenstrain inside the subdomain is piece-wise continuous. Without
the loss of any generality, consider the 6 - node quadratic triangular
element, say (x{,xé), (x%,x%), and (x?,xg) are the corner nodes, the
eigenstrain distribution in the element can be written in terms of
eigenstrain on the nodes as

3 6
el ()= Y (el = DL+ Y (el AL LY 1)
n=1 n=4
where L" = " + p"x; + y"x, is the area coordinates of the triangular
element; a!, ! and y! are the components of shape functions of the Ith
local node as (let the other two other local nodes be named as J, K,
respectively),

J K K.,J J K K
a]_x]xz—xlxz ﬂlzxz—xz ylle —Xl
2A ’ 24 24
1 xi xé 12)
24=det[1 x* x2
3003
1 X)X

In Eq. (11), the eigenstrain of an interior point is obtained through
quadratic interpolation of the shape functions. Obviously, for both
corner and middle points, the interpolation functions contains uniform,
linear and quadratic components, thus one could rewrite the integral in
superposition as Eq. (14),

Injx-x|* -1
A’:/ Lix—x P =X = o oty g gy, 44w, (13)
»

2

2
+ @'yl + aJVI)Tz + By + ﬂJJ’[)le + ﬁlﬁj'lvu + }’1715”22

Infx —x'|> = 1
A”:/ L -y PR ol @l
e
14

where ¥,¥; and ¥;; are uniform, linear and quadratic biharmonic
potentials defined in our recent work [26]. Notice for the displacement,
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which is related to the third order partial derivative of the domain
integral, requires the original form @,. Since no partial differentiation
is applied on @, the divergence theorem cannot be used, hence, in
Appendix C, its original form is given for both 2D and 3D. Similarly,
the shape function interpolated harmonic potentials could be expressed
by I'! and I'"Y through changing the integral components as In |x — x|,
Then, using the technique of Green’s function, the disturbed displace-
ment field u/(x) caused by eigenstrain in Q7 is analytically formulated
as Eq. (15),

0 s !
_/Ql G[-j’m(X,X,)ijkls;i[(x,)dx/ = m
X [Ak[,kli = 2vByy; — 41— V)Bik,k]
15)

where A;; and B;; are given as

El 4 10
A= Z 2(2/1” - ANE)" - Z4A”(gj})" (16a)

w=1 n=1 n=5

El 4 10
By= Y Yer' —rhe) - Y 4r )" (16b)

n=5

Notice that in FEM, it interpolates the displacement with shape func-
tion, so the strain/stress inside one element maintains the continuity
one order lower than the displacement; whereas the iBEM interpolates
the eigenstrain instead and the analytical domain integrals of eigen-
strain is always continuous and differentiable. For the 3D problem,
the 10-node quadratic tetrahedral element is illustrated in [27] and
elaborated in Appendix C.

Moreover, to demonstrate the method, we used the 6-node trian-
gular and 10-node tetrahedral quadratic elements, which could map
most of geometries of subdomains. However, it can be extended to
other types elements, for example, the 3-node triangular or 4-node
quadrilateral elements in 2D problem, 4-node tetrahedral and 8-node
brick elements. Since the elastic fields is solved by domain integrals as
Eq. (15), one only needs to modify the shape functions in Eq. (14) and
Eq. (C.3), respectively. Taking 3-node triangular element as example,
the shape functions contains the linear components, which can be
handled completely in [26,27]. As for 4-node quadrilateral element,
one needs to rewrite the shape function in terms of source, i.e xl’ xé,
then those components can be integrated with linear and quadratic
potentials. Following the same fashion, other types of elements can be
applied directly. Although higher order elements, say cubic order of
eigenstrain, might provide sound improvement in both mesh quality
and convergence, the quadratic elements perform well with a few more
elements as shown in the following case studies, so that we have
implemented the algorithm up to quadratic shape functions in the iBEM
code so far.

2.3. Equivalent stress conditions and the singularities of Eshelby’s tensor
and eigenstrain

For the cases of elliptical/ellipsoidal inhomogeneities, the eigen-
strain is assumed as the Taylor series expanded at the centroid, hence,
18 and 60 equations are required for 2D and 3D problem, respec-
tively [1] considering the symmetry of eigenstrain.

The domain discretization method proposed in Section 2.2 is a
subdomain collocation method with the stress equivalent equations es-
tablished on the subdomain and the unknowns are the eigenstrain of the
nodes. Therefore, for each node, 3 and 6 stress equivalent equations are
required, respectively. If one can establish the same number of linearly
independent equations, the eigenstrain field can be solved and then the
elastic field can be illustrated. A natural way to establish the equation
system is to set up stress equivalence on all the nodes themselves.
However, due to the singularity at the vertices and discontinuity of
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Eshelby’s tensor on the edge (2D) or surface (3D) points, the numerical
issue should be well addressed to obtain practical solutions.

In the conventional boundary element method (BEM), for the multi-
region initial strain/stress problem, the equations setting up at the
interfaces are on the displacements and tractions, which is one-order
lower singularity compared to the strain field. In the literature, the
strain/stress fields on the interfaces are recovered by multiplying the
displacement [68], traction with the derivative form of shape functions,
which is similar to FEM. Other researchers [30,69] mapped the linear
3-node linear triangular element and 4-node linear tetrahedral element
into isoparametric square, cubic coordinates, respectively. Although
using the mapping coordinates could approximately solve the 2D prob-
lems, it downgrades the merit of analytical domain integrals of the
Eshelby’s tensor and is challenging to be extended to 3D problems.
Therefore, in this paper, an alternative scheme is proposed to set up
the stress equivalent equations on the Gauss integral points instead of
exactly on the nodes themselves, which avoids the singularity issue, as
follows:

(1) For the Ith element, derive the stress residual on each Gauss
integral point from the stress equivalent condition in Eq. (17),

0D = ACyy t (), + e )+ Clyy €y a7
where AC;;, = CI.’/. o= C[.Oj 4 is the mismatch of stiffness tensor. Since the

original stress equivalent equation is expected to hold at any point of
the inhomogeneity, thus, a necessary or weaker condition is the stress
residual over the I'th element is zero.

(2) Apply the weight of each Gauss point on its stress residual o¢
and distribute it on the nodes of the element. For simplicity, this paper
uses the same number of Gauss points as the nodes in the element and
assign the residual to the closest node. However, more Gauss points can
be used and other distribution method can be used.

(3) Collect the weighted stress residuals on each node and make
the sum equal to zero. If one node only exhibits on one element, no
summation is necessary. Otherwise, the contribution from each element
should be considered.

Therefore, we can set up the closed system of linear equations.
Notice that Steps (2) and (3) can be implemented by the collection of
stress residuals on a node by integrating the weighted residual on the
neighboring Gauss points with the aid of a kernel function. However
when a node is associated with only one element or Gauss point, the
integral weight on the stress residual on a vertex node is trivial.

When the linear equation system for eigenstrains and boundary
unknowns is established and solved, one can use them to calculate the
displacement field by the area integral in Eq. (4). Therefore, the strain
and stress fields can be calculated. Notice that as shown in Appendix D,
the Eshelby’s tensor exhibits a Inr singularity on vertices [20,26] for
2D problems as well as 1/r on vertices and Inr on edges for 3D
problems [20,27]. As a result, the eigenstrain on the vertex also exhibits
a singularity of Inr and 1/r for 2D and 3D problems, respectively.
Therefore, the stress singularity in the inhomogeneity problem may end
up at In? r and 1/r2 for 2D and 3D problems, respectively. Although the
particle discretization exhibits numerical errors with a shape function
of eigenstrain distribution, because eigenstrain is indeed continuous
within the particle, the influence zone of the singularity on the vertices
is small (Appendix D), and also the area integral is based on the exact
solution, this algorithm can provide high-fidelity results to the elastic
field with low mesh sensitivity. In addition to the physical singularities
on the vertices and along the edges, the handling of mathematical
singularities at the interior nodes (i.e., post process to solve stress /
strain) is also elaborated in Appendix D.

2.4. Implementation of the iBEM algorithm
The formulation of iBEM has been implemented with the C++

code. The iBEM has successfully simulated > 1000 ellipsoidal parti-
cles [1] or elliptical particles. The above stress equivalent equations
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Box I.

can be integrated into the global matrix Eq. (18) for the simulation of
polyhedral/polygonal and ellipsoidal/elliptical particles in the bounded
domain (see Box I), where dim = 2or3 for the 2D or 3D
problem, respectively; Q is diagonal matrix introduced by the rigid
body method to eliminate the singularity issues of BEM [36] , which
is elaborated in Appendix E ; K’/ and 7/ denote the summation of
domain integrals of Green’s function regarding to displacement and
strain fields of the Jth node, respectively. The rank of the matrix is
marked under itself. Again, N is number of boundary nodes; N¢/ is the
number of elliptical inhomogeneities; N' is the total number of nodes
of polygonal/polyhedral inhomogeneities.

Here the interactions between inhomogeneities and boundary are
considered as follows:

(1) The interactions between inhomogeneities and boundary is in-
troduced by the components, i.e g%/, K/, where the superscripts I,J
represent the Ith elliptical inhomogeneity and Jth polygonal internal
node, respectively. The superscript 0,1,2 denote the uniform, linear
and quadratic terms with respect to the eigenstrains, as shown in
Appendix B.

(2) The interactions between inhomogeneities is considered in stress
equivalent equations inserted below the traditional BEM global matrix,
where ’ means the partial derives of the Eshelby’s tensor. Eq. (18)
considers the uniform, linear and quadratic eigenstrain terms, although
lower order terms could predict the field accurately for some cases,
such as dilute particle distributions and stiffer fibers.

Once the eigenstrain distribution is obtained, the displacement and
strain/stress fields could be calculated. Unlike other methods with
numerical integrals or approximation of the internal fields, the iBEM
algorithm keeps the advantage of BEM that all the elastic fields could
be expressed in the analytical form.

3. Numerical verification and comparisons with FEM

The aforementioned algorithm has been implemented in the soft-
ware package to conduct virtual experiment with various boundary
conditions. To verify its accuracy, this section conducts two numerical
cases studies: (1) subdomain with prescribed eigenstrain, i.e, thermal
strain; (2) inhomogeneity embedded matrix under a vertical uniform
load. Shown in Fig. 2, the isosceles triangle (2D) / tetrahedral (3D)
with edge and height w = h = 0.lm are embedded in the matrix,
whose bottom are fixed. The load is applied on the subdomain or the
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boundary. For the boundary element part, (1) 200 3-node line elements
(2D); (2) 1,176 4-node quadrilateral elements (3D) are applied, while
the domain discretization in the subdomains vary in cases. For the finite
element part, the types of elements used are (1) combination of linear,
quadratic triangular elements and bilinear quadrilateral elements (2D);
(2) combination of linear, quadratic tetrahedral elements and trilinear
hexahedral elements (3D).

3.1. Inclusion problem for a subdomain with prescribed eigenstrain

Firstly the inclusion problem is considered as the subdomain ex-
hibits the same stiffness as the matrix. Structural steel is selected with
Young’s modulus E; = 200 GPa, Poisson’s ratio v = 0.3 and thermal
expansion coefficient a; = 1.2x107° ﬁ When a triangular/tetrahedral
sample is taken out, to repair the hole, a similar larger sample is cooled
down (C' = ) 20° to tightly refill it without welding. The misfit
strain can be described by the thermal strain as well in form of a
prescribed eigenstrain £}, = 2.4 x 10745;.

Due to the eigenstrain, the displacement/strain field around the
neighborhood of the inclusion is disturbed. The elastic field can be
analytically expressed with the integral of the inclusion domain and
boundary integral as well. Hence, the domain discretization in iBEM
is unnecessary and a single element produces the convergent results
shown in Fig. 3,

However, the FEM requires many elements to illustrate the variation
of the elastic field due to the singularity at the vertex. To illustrate the
convergence situation of the FEM, the cases with three FEM meshes
at the height of 1.25 (746 elements), 0.3125 (4128 elements) and
0.05 (178,436 elements) cm are applied for 2D problem; whereas the
height of 1.25 (37,104 elements), 0.3125 (232,398 elements) and 0.1
(1,418,222 elements) cm are used for 3D problem. Notice that the
size of elements is altered in the subdomain and its neighborhood
accordingly to generate mesh with smooth transition. Indicated in
Fig. 3, good agreement with the convergent results of FEM is observed
with a single element for the inclusion problem of the iBEM, since it is
the analytical domain integral of the Green’s function.

Although overall the FEM could provide convergent results with
refined mesh, it is observed that the numerical instability at the vertex,
particularly for 3D case, because it exhibits higher singularity level of
1/r than the 2D case of Inr [20,26,27]. Because iBEM has included
the singularity into the analytical integral of the Eshelby’s tensor, it
is robust and stable once the eigenstrain is prescribed.
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Fig. 2. Geometry and boundary conditions of the inclusion problem with a prescribed strain sf’/..

Fig. 4 shows the comparison of converged stress distribution with
stress concentration and singularity at the neighborhood of the vertices
for the 2D case between iBEM and FEM. The number of elements used
in iBEM are 201 (200 for boundary mesh and 1 for the triangular in-
clusion); while in FEM, 171,949 elements are applied for smooth stress
plot (both inclusion and inhomogeneity case). Due to the boundary con-
finement at the bottom, the variation of stress field exhibits a gradation
pattern in the x, direction with in the subdomain, and the variation at
the vertices at the bottom is smaller than the top vertex. Comparing
Fig. 4(a), (b) with Fig. 4(c) and (d), it is hard to identify the differences
between them as the stress local fields are similar. However, there are
some minor differences in the neighborhood of the vertices and the
edges of the triangular subdomain. Notice that the stress contour plot
(Fig. 4(a) and (b)) are plotted with uniformly distributed points, say
401 x 401, and there is no approximation as the stress is computed with
analytical integral equations. As for FEM, if one uses the interpolated
stress (stress at some point of the specific element), the results are
approximated with numerical errors. To mitigate such effects, only the
stress of the nodes are selected to plot, which is the reason why the
edges of Fig. 4(c) and (d) are with less stress fluctuations.

3.2. Triangular/tetrahedral inhomogeneity under a uni-axial load

In this section, the subdomain in Section 3.1 is substituted with an
aluminum alloy with Young’s modulus E, = 70 GPa and Poisson’s ratio
v, = 0.33. In addition to the boundary conditions prescribed in Fig. 2,
a downward uniform axis load 1 MPa is applied at the top line (2D) /
surface (3D). Other sides are free of traction. Therefore, it becomes an
inhomogeneity problem for the material mismatch between the particle
and matrix. Herein the mismatched eigenstrain is used the simulate the
material difference in the equivalent inclusion problem, and it varies
in an angular particle. The domain discretization will be used and the
results will be compared with the FEM results as Fig. 5. For the 2D
triangular problem, 1, 4 and 25 elements are applied in the inhomo-
geneity. Interestingly, when a single element is used on the inclusion,
though the solution exhibits a small disparity from the convergent
FEM results (178,436 elements), it predicts the trend and singularity of
elastic solutions pretty well, because the Eshelby’s tensor of the particle
plays the dominant role and the influence region of the eigenstrain
singularity is quite limited, which is shown in Appendix D. When the
number of elements increase, say 4, the difference between FEM and
iBEM rapidly reduces and it agrees well even in the neighborhood of
vertex. It is observed that a more refined mesh indeed improves the
results, as the number of elements increase 25. However, the disparity
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between iBEM — 25 and iBEM — 4 is negligible, which implies the
good convergence behavior. Similarly, for the 3D problem, 1, 8 and 64
elements are employed. Due to the higher order of singularities and
discontinuity of the surfaces, the 8 element case has little discrepancy
around the bottom part of the tetrahedron. The stress curve iBEM —
61,(8) is parabolic in [0.05,0.10]m, exactly inside one element, which
suggests a refined mesh will provide better stability. Hence, in the
64 element case, the solution agrees well with the convergent FEM
results (1,418,222 elements). Moreover, for FEM, it is barely possible to
describe stress singularities with such small number of elements, since
a high number of nodes is necessary to shown the large variation of a
curve with displacement on the nodes.

Fig. 6 shows the comparison of contour plot of the stress field
between iBEM and FEM. The number of elements used for iBEM are
225 (200 for boundary mesh and 25 for triangular subdomain).In com-
parison with Fig. 4 for the inclusion problem, the stress in the inho-
mogeneity problem varies more intensively because eigenstrain is not
uniform as the inclusion problem. As shown in Appendix D, because
the eigenstrain may approach infinite or zero at the vertices, the stress
singularity in the inhomogeneity problem can be at a higher level than
the inclusion problem with a uniform eigenstrain.

3.3. Circular inhomogeneity under a uni-axial load

The iBEM can handle with the ellipsoidal particles by using the
classical solution of Eshelby’s problem [2,4] and the present boundary
integral equations. As a demonstration, this section only applied the
2D case with a circular inhomogeneity [26], and the ellipsoidal cases
are elaborated in our recent work [1,11,67]. Considering a circular
aluminum alloy (E, = 70 GPa, v, = 0.33) inhomogeneity with diameter
a = 10 cm is placed at the center of a 20 x 20 cm? square steel plate.
Thanks to the analytical domain integral [1,4], no mesh is needed for
the circular inhomogeneity but the polynomial form of eigenstrain can
provide tailorable accurate results. Here the stress field from the iBEM
is compared with FEM of at 3 cases with uniform, linear and quadratic
eigenstrains, respectively.

Notice that this is different from the classic Eshelby’s inhomogeneity
problem because the finite domain is used. Specifically, the boundary
integral plays a role on the eigenstrain distribution in the EIM. If
the domain size increases, the linear or quadratic eigenstrain terms
will reduce and the constant eigenstrain can reach high accuracy as
Eshelby’s solution does.

Indicated in Fig. 7, there exists no singularity effect in the local
field and the difference between “quadratic” term and FEM is very
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small. Notice that even only one inhomogeneity is considered, the of eigenstrain field as the particle and the matrix are at the similar
“uniform” and “linear” terms of eigenstrain may not capture the change dimension, which leads to inaccurate approximation of the stress field.
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With the quadratic term, iBEM provides excellent agreement with the
FEM which uses 40,900 small elements at a size of 0.1 cm. Surely,
the isogeometric analysis (IGA) with FEM might avoid the problem of
geometric approximation and reach high accuracy with less elements.
It is in another category of consideration as IGA can be applicable to
iBEM as well.

Different from angular inhomogeneity, although the stress discon-
tinuity exists cross the boundary of the sub-domain, the traction and
displacement continuity is still satisfied, and no stress singularity is
induced. Although the higher order of eigenstrain provides more ac-
curate results, the shape of stress distribution curve for the uniform
eigenstrain is similar to those for the linear or quadratic eigenstrain
distribution, because the Eshelby tensor for the constant eigenstrain
plays a dominant role on the domain integral.

4. Results and discussion

This section will use the iBEM to solve inhomogeneity problems and
demonstrate its unique capability to simulate heterogeneous material
systems. Although both 2D and 3D cases are implemented in the iBEM,
this section mainly uses 2D cases to illustrate the method unless it is
specified for 3D cases. However, most conclusions in 2D cases can be
generalized to 3D cases as well.

4.1. Mesh choice of polygonal inhomogeneities

Discussed in Section 3.2, there exists singular effect of stresses in the
neighborhood of the vertices, where the eigenstrain exhibits a larger
variation in comparison to the eigenstrain field of the central part.
In this section, the contour plots of eigenstrain field with 3 different
global element size are applied below as, (1) 5 cm (4 elements); (2)
2 cm (25 elements); and (3) 0.5 cm (426 elements). Shown in Fig. 8,
each contour plot contains 24 levels to exhibit the difference. The
€5, is concentrated around the middle part, whereas €], concentrates
around the two side vertices. Although the overall distribution follows
the similar pattern for three element resolutions, obviously smaller
elements can capture the eigenstrain singularity better with a larger
distribution range. Refiner mesh does not improve much in the middle
parts, because the singularity effect is limited to the neighborhood of
the vertices. The peak eigenstrain is located at the top area along the
edges, where the dark red area (522 > 2.7 x 107%) reduces as the global
elements decreases.

The above observations provide an alternative mesh strategy to
improve both the accuracy and efficiency that: (1) for interior middle
part, one could simply use larger/coarse mesh; (2) extra attentions
could be paid on the neighborhood of the vertex and edges, if one
pursues the high accuracy. Notice that because Eshelby’s tensor is size
independent, iBEM can maintain good numerical stability even with
very fine elements. However, in the comparison with FEM in Fig. 5, 4
and 25 elements cases have already predicted accurate results, which
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implies that the change of eigenstrain at some “sensitive” regions (i.e,
around vertices or edges) only produces limited influences to the global
solutions. In the common sense, no special measurements are required
to be applied at those regions during the mesh process, a uniform mesh
is acceptable.

Notice that as shown in Appendix D, because the elastic field is
obtained by the integral of eigenstrain over the particle domain and
the influence of the eigenstrain at one point decays at 1/r? or 1/r
for 2D or 3D problems respectively, a minor error at one point may
not affect the overall accuracy significantly. Particularly, although the
eigenstrains at the vertex and boundary nodes are sensitive to the mesh,
their effects on overall results of the stress distribution are localized on
their neighborhood. That is the reason why even a single element can
provide good prediction of the trend of elastic field variation.

4.2. Inhomogeneity-boundary interactions

Shown in Fig. 2, the triangular inhomogeneity is located at the
center of the square along the x, axis, where the distance between the
bottom line and boundary is 5 cm. In order to observe the boundary
effect, the distances are modified as 0.5,2,4,6 cm, respectively. In
Fig. 9(a), the variation of normal stresses are compared along the x,
direction in the range of [0.1,17] cm. The stress discontinuity exists
at the bottom for o, only while o5, remains continuous, whereas the
singularity is observed for both stresses at the top vertex. When the
inhomogeneity moves toward the center, stress discontinuity at the
bottom difference grows, because the boundary confinement reduces.

The other example in this section investigate the effect of the
dimension of the triangles, say w = h = 2,5,10 and 18 cm. Shown in
Fig. 10, the variation of normal stresses are compared along the x, axis,
when d = 0.5 cm. With the increase of the triangle size, the boundary
confinement reduces the levels of stress discontinuity and singularity. It
provides some insight that grain boundary could strengthen materials
although the interfacial strength can be an issue.

4.3. Interactions between inhomogeneities

In the previous section, the boundary effect on the stress field is
significant if the inhomogeneity is close to the boundary. Besides the
boundary interactions, another important issue is inhomogeneity inter-
actions, especially when they are close to each other. Without changing
the matrix geometry shown in Fig. 2, inhomogeneities are rearranged
as shown in Fig. 11 as top-down (2 triangular inhomogeneities), side by
side (2 triangular inhomogeneities). The material assignment keeps the
same as previous sections, but one case study is added by switching
the material properties of matrix and inhomogeneities. Since the in-
teractions between inhomogeneities are dependent on the ratio of the
distance to the width w of inhomogeneity, therefore, the ratio is set
as 0.05 for an intensive interaction. In addition, the boundary effect
is also included by setting the exactly same distance d = 0.5 cm. The
dimensions of the triangles are modified as 7 = 9.25 cm and w = 10 cm
to satisfy the above conditions.
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Fig. 11. Schematic plot of the placements and boundary conditions of the two triangular inhomogeneities, (a) top-down; (b) side by side.

4.3.1. Top-down inhomogeneity interaction

Shown in Fig. 12, the normal stresses distribution along the x,
(symmetric center line) is plotted for both stiff and soft inhomogeneity
cases by switching steel and aluminum for the inhomogeneity and
matrix, respectively. When aluminum is particle, the stress on the
particles changes small due to the boundary confinement. However,
when steel is particle, the stress increases significantly in the loading
direction.

4.3.2. Side-by-side inhomogeneity interaction

Shown in Fig. 13, the normal stresses distribution along the x;
(symmetric center line) is plotted for both stiff and soft inhomogeneity
cases for the side-by-side particle interaction. The stress distribution
on the particles exhibit opposite trends between stiff and soft particle
cases. Stress is relaxed slightly between the two vertices. Although a
compressive uni-axial load is applied along x, direction, significant
tension is induced in x, direction for stiff particle case when particles
are close to each other.

4.3.3. Top-down circular and triangular inhomogeneities interaction

In this section, the top triangle is replaced by a circular inho-
mogeneity with radius a 3 cm as shown in Fig. 14. The normal
stresses distribution along the x, (symmetric center line) is plotted for
both stiff and soft inhomogeneity cases in Fig. 15. Stress o,, exhibits
singularity still at the vertex of the triangle but no singularity at the
circle boundary. Although stress discontinuity exists, it is a small gap
compared with the singularity. Compared with Fig. 12, the circular
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Fig. 12. Normal stresses variation along x, axis in range of [0.1,19.9] cm with top-down
inhomogeneity interactions.

particle case exhibits lower stress variation for both stiff or soft particle
cases. Therefore, if possible, angular inhomogeneities shall be avoided
for minimizing the local stress variation.

Fig. 16 illustrates the detailed stress distribution. Around the cir-
cular inhomogeneity, stress concentration of ¢,, occurs at two sides
of the aluminum particle in compression; while tensile stress of o,; is
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Fig. 15. Normal stresses variation along x, axis in range of [0.1, 19.9] cm with top-down
circular and triangular inhomogeneity interactions.

induced on its top and bottom. For the case of the circular steel particle,
the stress level on the particle is much higher than the aluminum case
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Table 1

The effective modulus of the composite containing one 12.5% triangular inhomogeneity
with different number of division seed, where soft and stiff represents the aluminum
and steel inhomogeneities, respectively.

#Seed  #elements E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff)

1 1 173.699 0.304714  78.236 0.327353
2 4 173.704 0.304676  78.256 0.327304
3 9 173.706 0.304663  78.259 0.327299
5 25 173.708 0.304656  78.261 0.327294
15 181 173.708 0.304652  78.261 0.327294

due to the stiffer particle. Around the triangular inhomogeneity, the
stress variation mainly occurs around the neighborhood of the vertex
and is relatively small in the other range, which also confirms that
the eigenstrain is more uniform, so that coarse mesh may provide a
reliable result. Particularly, because the singularities are localized at
the vertices, the effect to the overall material behavior may be averaged
out, which will be discussed in the following section.

As demonstrated in the above cases, because the iBEM only uses
mesh on the particle or inclusion and boundary elements, when particle
moves in the matrix, the same mesh can be used.

4.4. Effective elasticity of a material sample

In Section 3, we have verified the iBEM algorithm with case studies
of inclusion and inhomogeneity problems by comparisons with the
FEM results for the local fields. Although the results for inhomogeneity
problem are sensitive to the mesh, convergent results can be obtained
with small number of elements. Even a single element provides a
good prediction of the trend of the stress variation. For an actual
material sample containing some inhomogeneities or particles, when
we test the material properties, from the relationship of overall load
and deformation, one can calculate the effective elasticity, which is
based on the average stress and strain instead of the local elastic field.
It creates a possibility that a very few elements in iBEM can predict the
effective elastic moduli.

Actually, the iBEM is particularly suitable for the prediction of effec-
tive material properties by the boundary information. Given a test load
on the boundary, say traction, the response of the displacement along
the boundary can immediately provide information for the stiffness of
the material system. Therefore, iBEM can be a powerful tool for virtual
experiments. This section will illustrate the convergence of the effective
elasticity with the number of elements in a particle and also the size of
a representative volume of element (RVE).

In Fig. 9, with the refined global element size, the eigenstrain
field exhibits mesh-related property merely in the neighborhood of the
vertices, which implies the local field shares the same features. To
investigate the effective mechanical behavior of the composites, several
methods could be applied, such as (1) classic micromechanical analysis;
(2) a unit cell under the periodic boundary conditions (PBC);(3) an
adequately large RVE with a test loading. The limitation of microme-
chanical models have been discussed in the introduction, and the PBC
will be implemented and discussed in this section. In the following, the
effect of refinement of mesh on the effective modulus is investigated
under the uni-axial loading.

4.4.1. Effective modulus for one triangular/tetrahedral inhomogeneity

In Fig. 2 of Section 3.1, one triangular/tetrahedral inhomogeneity
is located inside a plate/cube (edge 20 cm). For the effective modulus
test, the bottom constrained displacement condition is only applied to
the x, direction, and the top pressure keeps the same as 1 MPa. Listed
in Table 1, the effective modulus is collected with different size steps.
Since the Eshelby’s tensor is dimensionless, thus, instead of specifying
the global element size, the number of division seed (#Seed) along the
edge is applied.
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Table 2

The effective modulus of the composite containing one 1.8% tetrahedral inhomogeneity
with different number of division seed, where soft and stiff represents the aluminum
and steel inhomogeneities, respectively.

Table 3

The effective modulus of the composite containing one 30% triangular inhomogeneity
with different number of division seed, where soft and stiff represents the aluminum
and steel inhomogeneities, respectively.

#Seed  # elements E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff) #Seed  # elements E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff)

1 1 196.770 0.300111  71.397 0.329230 1 1 143.910 0.313749  91.949 0.324680

2 8 196.771 0.300098  71.411 0.329186 2 4 143.947 0.313584  91.999 0.324628

3 27 196.770 0.300094  71.413 0.329174 3 9 143.960 0.313544  92.003 0.324624

4 64 196.771 0.300092  71.414 0.329169 5 25 143.966 0.313522  92.008 0.324619

8 324 196.771 0.300092  71.414 0.329168 15 181 143.970 0.313511  92.009 0.324618
FEM 20,228 143.974 0.313353  92.004 0.324783

Table 4

In Tables 1 and 2, we can observe the good convergence behavior
of iBEM in the modeling of effective modulus. Let the bottom line data
serve as the reference of convergent results, we can see the following
aspects of the convergence of elastic moduli:

(1) For softer triangular inhomogeneity, 5.18 x 1073%,2.30 x 1073%,
1.15x 107*% and 0;

(2) For stiffer triangular inhomogeneity, 3.19 x 1072%,6.39 x 1073%,
2.56 x 1073% and 0;

(3) For softer tetrahedral inhomogeneity, 5.08x1074%,0,5.08x1074%
and 0;

(4) For stiffer tetrahedral inhomogeneity, 2.38 x 1072%,4.2 x 1073%,
1.4x1073% and 0.

Notice that the results are round to three decimal place, thus the
difference 0 is actually a non-zero small number and can be neglected
in the sense of engineering applications. In the above cases, a single
element for one particle could provide an acceptable prediction of the
effective, which saves efforts in computation and enables virtual ex-
periments of large particle systems. However, the interactions between
inhomogeneities and boundary is relatively low due to the low volume
fraction. Hence, in the following case study, the volume fraction of
triangle and tetrahedral inhomogeneity increase to 30% and 6.6% and
the similar trends is exhibited in Tables 3 and 4, respectively. For a
reference, an FEM case study is conducted with 20,228 elements for
the 3D case with 30% of particles.

The differences between the 1 element (no discretization) case and
the bottom line case do not exceed 0.14%, which implies that even the
boundary interactions is considered, the iBEM still provide good results
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The effective modulus of the composite containing one 6.6% tetrahedral inhomogeneity
with different number of division seed, where soft and stiff represents the aluminum
and steel inhomogeneities, respectively.

#Seed  # element E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff)

1 1 188.627 0.300792  75.328 0.327344
2 8 188.626 0.300730  75.388 0.327203
3 27 188.627 0.300718  75.400 0.327173
4 64 188.700 0.0.300704  75.441 0.327164
8 324 188.711 0.300696  75.450 0.327157

for very few element mesh. For the 2D case at 30%, comparing the FEM
and 1 element iBEM case (due to symmetry of geometry and boundary
conditions, only half domain is meshed for FEM.), the differences are:

(1) for soft inhomogeneity, 4.4 x 1072% and 1.26 x 10~'% for young’s
modulus and Poisson’s ratio, respectively;

(2) for stiff inhomogeneity, 5.97x1072% and 3.17x10~2% for young’s
modulus and Poisson’s ratio, respectively.

Considering its excellent convergence performance in prediction of
effective modulus, even including the boundary and inhomogeneity
interactions, only #Seed = 1,2 will be used in Section 4.4.2. The case
studies of elliptical / ellipsoidal inhomogeneities can be referred in [1],
and no repeat discussion will be added below. Here we show the case
of multiple triangular/tetrahedral inhomogeneities.
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Table 5

The effective modulus of the composite containing 25 triangular inhomogeneity (30%
volume fraction) with different number of division seed, where soft and stiff represents
the aluminum and steel inhomogeneities, respectively.

#Seed  # elements E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff)

1 25 147.568 0.303659  94.958 0.317976

2 100 147.530 0.303955  94.980 0.317757
Table 6

The effective modulus of the composite containing 27 tetrahedral inhomogeneity (6.7%
volume fraction) with different number of division seed, where soft and stiff represents
the aluminum and steel inhomogeneities, respectively.

#Seed  # elements E (soft) (GPa) v (soft) E (stiff) (GPa) v (stiff)

1 27 188.578 0.300192  75.437 0.326844

2 216 188.457 0.300196 75.571 0.326824
4.4.2. Effective  modulus  with  multiple  triangular/tetrahedral

inhomogeneities

In this section, the particle interactions are introduced by adding
more inhomogeneities into the simulation domain. Again, the effective
moduli are compared through changing various division seed (#Seed)
of the edges. Without the loss of any generality, 25 equal sized isosceles
and 64 tetrahedrons are uniformly distributed in the square/cube with
the total volume fraction equals 30% and 6.6%, as illustrated in Section
5.1. Because Eshelby’s tensor decreases rapidly with the distance be-
tween field and source point (Appendix D), thus it is reasonable to setup
a global cutoff “distance ratio p” to minimize the computation efforts.

Taking the 2D domain integral for instance, define p = ﬁ, where

L= \/ﬁ is the characteristic length of the triangular element and A
is the area. Similarly, define p = (6V)!/3 for tetrahedral elements in 3D
and V is the volume. When p > 15, the domain integral plays a small
role in the elastic solution, hence, the contribution can be neglected.
The cut-off can be redefined with the required accuracy. Notice that
the choice of p may influence the accuracy of the solution, however,
the accuracy could be compromised to save computational efforts if the
error is controlled.

Shown in Tables 5 and 6 , when p = 15, the errors increase up to
0.82% but it is still acceptable with the single element case. Notice that
if global cutoff is not considered, the effective young’s modulus for
are 147.544 GPa and 95.066 GPa for softer and stiffer inhomogeneity,
respectively. Moreover, in the case of division seed #Seed at 2, the
differences are comparatively small, which is due to the sizes of the
element are larger, so the “cutoff” condition is not triggered frequently.

4.4.3. Effective modulus under periodic boundary condition

Directly applying a test load on the boundary of a small sample in
the virtual experiments may not be representative for actual composites
which cover a large area of volume. To consider the effective material
properties of a composite, the periodic boundary condition (PBC) is
commonly used on a unit cell to represent the microstructure features.
The effective modulus can be calculated in the similar fashion from
the averaged stress and strain relation under the PBC [1]. Fig. 17
illustrates the volume fraction of aluminum inhomogeneities varying
from 0 to 40%. At each volume fraction step, 1, 9 and 25 equal-sized
inhomogeneities are uniformly distributed in the square plate with the
PBC.

Given a volume fraction of particles, the effective moduli can reach
a convergent solution with one inhomogeneity unit cell under the PBC
as it is overlapped with the cases of 9 or 25 particles, which is different
from the virtual experiments in the last Section. Therefore, only one
inhomogeneity could provide accurate results under the present case,
because the interactions are partially considered in the PBC constraint
equations in displacements and traction of the unit cell. However, it is
observed that the disparity between the 9 case and 25 case starts when
volume fraction is larger than 30%. Such phenomenons leave an initial
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Fig. 17. Effective elastic moduli of inhomogeneities under the periodic boundary
condition with 1,9 and 25 particles with the same boundary element mesh (400
elements).

impression that when the particle interactions become much more
intensive, even the PBC cannot predict the effective moduli. However, it
should still be cautious to generalize this observation to every case and
particle interactions may be stronger for different shapes and stiffness
ratios between the particle and matrix. In Fig. 17, the effective Young’s
modulus obtained under PBC are very close to each other with the
inhomogeneity interactions; whereas the Poisson’s ratio shows slight
difference when the volume fraction is higher. Besides more intensive
interactions, another issue is that the accuracy of boundary element
part decreases due to the increase of inhomogeneities. Taking the 2D
problem as example, in Section 3, 50 elements are applied for each
edge of the square plate. Because the Eshelby’s tensor is dimensionless,
even the distance between particles and boundary decrease, the ratio
between the distance and characteristic length of the particle remain
the same, given the uniform alignment. Therefore, the interaction
between particles and boundary does not change too much. However,
when the particles are closer to the boundary, the accuracy decreases
because fewer boundary elements are applied to describe the field.
Shown in Fig. 17, the maximum error between case 25 and case 1 is
0.06%, which is small and the closer results (as 1) can be obtained
through a refined boundary mesh (i.e., 1600 boundary elements).

For 3D problem, because the maximum volume fraction of a tetra-
hedron is %, to simulate higher volume fractions, a smaller cube is
discretized with 12 tetrahedrons. Shown in Fig. 18, the effective moduli
are compared with the classic micromechanical models, namely the
dilute and Mori-Tanaka models [4] as reference. Notice that the two
classic micromechanical models are based on the Eshelby’s tensor of cir-
cular or spherical particles; whereas the present iBEM results are based
on the angular particles, which is in between the two micromechanical
models. Generally, the dilute model does not consider the interaction of
inhomogeneities and underestimates the effective elasticity. Therefore,
the iBEM results are reasonable. Although the local elastic field is
significantly affected by the particle shape, the effective elasticity does
not change significantly by the particle shape, but closely depends
on the particle volume fraction. The iBEM provides a powerful tool
to predict the effective stiffness of composites with arbitrarily shaped
particles.

4.5. Virtual experiments of size gradation and random distribution of par-
ticles on the effective elasticity

In Section 4.4, the effective moduli are solved through uni-axial
loading, unit cell under periodic boundary conditions and verified
with FEM and micromechanical models. In this section, to exhibit the
robustness of the method, instead of considering a RVE or unit cell, the
virtual experiment with over 1,137 tetrahedral and 3,470 triangular
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Fig. 18. Comparison of the iBEM results with the dilute and Mori-Tanaka models for the effective elastic moduli of composites under the periodic boundary condition in (a) 2D

and (b) 3D cases.

Fig. 19. Schematic plot of 2D and 3D inhomogeneities distribution with 50% volume fraction.

particles are used for a composites with 50% volume fraction. Shown
in Fig. 19, for example, 1591 triangular inhomogeneities are created in
a 0.2 m x 0.2 m square plate. The mesh is generated by the following
steps:

(1) Mesh the square with triangular elements;

(2) Use a pseudo-random function, which is written in combinations
of “time.h” and “stdlib.h” to select the elements; (Notice that, the time
library can generate random seeds, without which the randomness will
not exist.) Since the elements are numbered in sequence, they can be
selected with non-repeating generated random integers.

(3) In order to alter the size of elements, in step (2), setup a
area/volume fraction (higher than the target), hence, some elements
need to be shrunken accordingly. Use the pseudo-random function in
(2) again, select elements and control the ratio of shrinking until the
target is achieved. (Notice that if no requirement for the size difference,
step (3) can be dropped by setting the target fraction in step (2).)

In Sections 4.4.1 and 4.4.2, we have demonstrated the good con-
vergence performance with very few number of elements to represent
an inhomogeneity. Therefore, in this section, triangles and tetrahe-
drons are represented by 1 element. Shown in Table 7, the effective
moduli are compared with different numbers of inhomogeneities: for
2D problem, 6,500 and 3470 particles are included; whereas for 3D
problem, 61,338 and 1137 particles are included, respectively. Although
the orientation and size of particles are relatively random, the effective
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Table 7
The effective modulus of virtual composite samples with 50% of aluminum particles
randomly distributed in a steel matrix.

# 2D particles E(GPa)2D) v(2D) # 3D particles E(GPa)3D) v(3D)

6 115.168 0.311444 61 125.776 0.305335
500 115.509 0.311746 338 124.4481 0.306705
3470 115.334 0.311482 1137 124.698 0.306706

Young’s modulus and Poisson’s ratio are stable for the virtual experi-
ments of the samples with different number of particles under the same
volume fraction at 50%. The 3D case shows a lower Young’s modulus
than the 2D case.

5. Conclusions

This paper presents a novel numerical method, inclusion-based
boundary element method (iBEM), to investigate the elastic fields for
particulate composites containing arbitrarily shaped inhomogeneities.
The material mismatch is simulated by an distributed eigenstrain on
the particles. The displacement field is calculated by surface or line
integral on the boundary and volume/area integral on the inclusions for
3D and 2D problems, respectively. For ellipsoidal or elliptical particles,
the eigenstrain is written in the Taylor expansion at the centroid;
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whereas for angular particles, domain discretization is used. The do-
main integral over the volume or area is conducted analytically with
the exact solution, which leads to more rapid convergence with fewer
elements. Adapted to various kinds of loading conditions, effective
material properties are obtained through both virtual experiments or
periodic boundary conditions. Some highlights of iBEM are provided
as follows:

1. The iBEM predicts the stress singularity by Eshelby’s tensor with
high stability and convergence by particle discretization for polygonal
particles;

2. The iBEM can provide very accurate prediction of local fields
for composites containing arbitrarily shaped particles with analytical
integrals of triangular and elliptical inclusions;

3. Because Eshelby’s tensor is size independent, the iBEM can sim-
ulate a large size range of particles;

4. For angular particles, Eshelby’s tensor handles with the singu-
larity analytically. Although the eigenstrain exhibits singularity, its
influence zone is very small and produce minor effects on overall
accuracy;

5. No mesh is need in the matrix, so that iBEM can simulate the
particle motion without the regeneration of mesh;

6. The iBEM can predict the effective material behaviors with a
single or very few elements on each particle, so that virtual experiments
of actual samples with a large number of particles can be conducted.

The virtual experiments with many particles show that the com-
posite sample with randomly distributed particles can reach a con-
vergent effective elasticity with relatively small number of particles.
The method is general and its extension to multi-physical problems is
underway.
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Appendix A. Inclusion problem with polynomial eigenstrains in a
bounded domain

In Section 2.1, we introduced the boundary value problem of mul-
tiple subdomains, which can be assigned with various material prop-
erties. Notice that, the similar knowledge introduced in Appendix A
can be found in our recent work [1], however, the appendix aims to
introduce some background in Eshelby’s problem. Before we consider
the inhomogeneities in Fig. 1, following Eshelby’s procedure [2], we
can consider an inclusion problem that the subdomains exhibit the
same stiffness as the matrix but is subjected to eigenstrains. Hereby,
the eigenstrain is a generic term that refers to non-elastic strain, such
as phase transformation, misfit or thermal strains. As illustrated in
introduction and Fig. 8, the eigenstrain field for angular particles can
barely be presented with a single polynomial terms. Thus, we propose a
piece-wise continuous eigenstrain field on inclusions Q! only and zero
on the matrix ©2°, and this section the displacement field caused by
such eigenstrain is given below.

/ X )Cp €y KDAX!

/a (XX )Cojklek[(x Y n, ! dx’ —/D 1 (XX ") mjklskl(x’)dx' (A.D)

=/D Gijm %X )Cpy sy €0 (XDNaX
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where €7, = 0 on 0D and G, -G,y are used.
Hence, Eq. (4) is derived. The thlrd "term 1n Eq (4) is summation
of influence brought by eigenstrain on every subdomain 2! and the
boundary integrals can be evaluated by the original boundary element
method in the next section. This section focuses on the domain integral
for an inclusion Q!. Assume the eigenstrain is in the form of e;‘j(x’ )=

+ x’g*l

vEne + O(x?) on the inclusion, where the superscript 0 and 1
represents the uniform and linear orders of eigenstrain, respectively.
For an elliptical/ellipsoidal subdomain, the integral of a polynomial

eigenstrain up to the quadratic terms was derived [1]:

_[) Gij (. X)C,) k[Ekl(X )ax' = g (e +g1kll’(x)£klp +grk1pq(x)5k1pq
(A.2)

where g, g, and g, are the uniform, linear and quadratic Es-
helby’s tensor for displacements, which have been provided in de-
tails [1,4]. For polygonal/polyhedral subdomain, the 2D domain inte-
gral is provided in Section 2.2 and the 3D domain integral is enclosed
in Appendix C. Rewrite Eq. (4) in terms of various domain integrals,
i.e elliptical and polygons, the displacement and strain field (within D)
can be expressed in Eq. (A.3) and (A.4), respectively,
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(A.4)

where S; 4, S;jx, and S;j,, are Eshelby’s tensor for uniform, linear
and quadratic eigenstrain field, which can be derived by the compati-
bility law, i.e, S, = %(g,-,(,l + gjxi,); similarly, H,,; and U,,; denote
the boundary integral of G;; and T;;, respectively. Hence, combining
the boundary integral and domain integrals, the inclusion problem is

solved.

Appendix B. Equivalent inclusion method for a bounded domain
by the Taylor’s expansion

In Appendix A, the inclusion problem is formulated as combina-
tion of boundary and domain integrals. Notice that, different to the
inclusion problem with prescribed eigenstrain, eigenstrain (usually con-
sidered as misfit stain) is applied to simulate the material mismatch and
required to be solved by the stress equivalent equation as follows,

c?

ijkl * (Bl)

Dep e —E) = Ci]jkl D(ep e
where e , and ¢, are the strains caused by the boundary and domain
integral respectlvely It can be set up at many points in the particle
as the algorithm for polygonal/polyhedral particles in Section 2.3 and
Eq. (17). If the eigenstrain distribution is smooth, it can be represented
by the eigenstrain at the centroid and its higher order derivatives
in term of the Taylor’s expansion on the point. Particularly, for el-

liptical/ellipsoidal particles, this method can be fast and accurate.
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In [1,4,5], the elastic field can be solved in tailorable accuracy with
polynomial-form eigenstrain and the equivalent conditions are listed
below,

0 .o b o WOIN _ I . by

Cijkl Dy tEy Ty )_Cijkl D (e tEL) (B.2a)
0 . b ’ W\ _ I . (b ’

Ciin * Eppp T €1gp =€) = Cripy * (e, + €5 ,) (B.2b)
0 . .b ' W20\ _ I . b /

Gt Crpon ¥ Exton = Eitrn) = Cijia * Epppn + €t pn) (B.20)

where the szl is the strain field by the boundary loading and ), is
the disturbed strain field by eigenstrain, which could be derived from
domain integrals of the Green’s function and eigenstrain. The stress
equivalent equations can be set up on the centroid of each particle for

the constant, linear, and quadratic terms as follows:

Nb Nb Nell
1 e e 01
ACL = D Higmttly + Y, Uil + Y, Suiart iy’ +
e=1 e=1 1=0
Nell nelt
w17 #21
+ Z Sk[aprabp + z Sk/abpqgabpq (BS)
1=0 =0
Aciﬂ'kl =
TR Z [Akl,klij = 2vByyij = 2(1 = v)(Byy g + BjkA,ki)]
8x(1 —v) =
0 %01 _
+ G =0
Nb Nb Nell
I e e *01
ACijk[ - Z Hklrm“m + z Uklrmtm + 2 Sk/abreab
e=1 e=1 1=0
Nell Nell
11 *21
+ z Sklahprgg[;p + z Sklabpqrgabpq
=0 =0
Acii'k[ X
o TEE Z [‘Akl,k[ijr = 2vBypijr — 2(1 = V)(Byjr + Bjk,kir)]
8x(l —v) =
0 w11 _
+ Cijklgklr =0
(B.4)
Nb Nb el
1 e e 01
ACi/.kl - 2 Hyjripmtt,, + Z Uktiwrmty + Z Skiabrw€ g
e=1 e=1 1=0
Nell Nell
=17 21
+ Z Sklabprwea[;p + 2 Sklabpqrwsabpq
I1=0 =0

C!, NP
ijkl
+ o 2 [ Akt piijro = 2VBricijro — 200 = VYBig gjrw + Bji kiro)]
8x(l —v) =

)

(B.5)

*21
klrw

21
klwr

0
+ Ci/.k](e +e€

)=0

Notice that, this method has been used for triangle or tetrahedral
elements as well [26,27], but the accuracy at the neighborhood of
vertex is not good. Therefore, it is recommended to use this method
on smooth particles and domain discretization on angular particles to
get high accuracy. Assembly of the equations on the boundary nodes,
Gaussian integral points for domain discretization, and centroids for
elliptical/ellipsoidal inhomogeneities can establish the linear equation
system. The numerical form is presented in Section 2.4.

Appendix C. Closed-form domain integral of 10-node quadratic
tetrahedral element and closed-form of @,

Consider the 10-node tetrahedral element, say (x[l,x;, xg),i =1,2,3,4
are 4 corner nodes and i =5, ..., 10 are 6 mid-nodes for the 6 edges,
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the eigenstrain distribution in the element can be written in terms of
eigenstrain on the nodes as,
4 10
e (x)= Y QL = DL e + Y AL LY &7 ()
n=1 n=5
where the superscript n represents the quantity associated with node
n, and no index summation rule is applied with it; «f,p’,y! and x’
are the components of the volume coordinates (linear shape function)
of the Ith local corner node and the complete form can be written as
LT =al +8'xT + Tl + 4 xé (let the other three local corner nodes be

J, K, L, respectively).

_ L K J K, L,J L J K _ J,L K _ K. J L J, KL
o = x1x2x3+x1 x2x3+x1x2x3 X X5X3 x| x2x3+x1x2x3
6V
(C.2a)
K.L_ L .J_  J K L K J,L _  K,L
;o Xy X3 T XyXy = X, X3 + x5 X5+ X, X5 — x5y Xy
pl = (C.2b)
9%
—xKxd 4 xExd 4 xIxK — xLxK — xIxL 4 xKxL
I 173 173 173 173 173 173
yl= (C.20)
(14
xKxd — xExd — xIxK 4 xExK 4 xIxE — xKxL
I 172 172 172 172 172 172
7= (Cc.2d)
6V

where V is the volume of the element. For corner node I, the shape
function is constructed as (2L! — 1)L!, whereas the one for mid-node
between Ith and Jth corner nodes can be written as 4L/ L’. Obvi-
ously, the products of two shape functions contains uniform, linear and
quadratic source terms, which can be treated in the same fashion as we
derived the linear, quadratic potentials by separating the source terms
into field and distance vector components [26,27]. Since the shape
functions include the products of two corner nodes, in the following,
we list the domain integral of L! and L! L’ with |x — x’| as an example
to rearrange the terms of same order,

Al =/ Lix —x'|ax' = o'V + gL, + v, + 41, (C.3a)
e

Al = / L'L|x =X'|dx' = o' a’¥ + (@' p’ +a’ p')¥,
w®

+ (aly’ + afy')’l’z + 'y’ +0:J;(’)'I’3

+ B BT+ B B W+ B + 8 W

+ BB Y Y+ X (C.3b)
where ¥; and ¥;; are the linear and quadratic biharmonic potentials
in [27]. Similarly, the domain integral of L' and L' L’ with |x — x’ |t
can be expressed by I'! and I'!’, respectively.

The original form of @, for 2D and 3D problem are listed below.

Using Eq. (4) in [26] and Eq. (2) in [27] (direct area/volume integral),

the @, can be expressed for 2D and 3D problems, respectively, as
follows:

Ny
D20 = x, @+ Y [0, (Hebr 1) = Helbr 1)
I=1

IR RONAESNONR) (C.42)
Ny Ny
@0 = 3,0+ 3 [ @, Frlarbyr.l}) - Faar by l7)
I=1J=1
+ (}‘(}I)p(PC(aI’bJI’I;[) —Felap, by 15
+ (0 )y (Fs(ap. byp. 15 = Flag. by 15,0 ] (C.4b)

where /L(} and 11(; are the unit outward normal and directional vector
of the Ith edge of the polygons; cf? is unit outward normal vector of
Ith surface of the polyhedron and; A(J) 7 and 'I? ; are the unit outward
normal and directional vector of Jth edge of the I'th surface. Then, the
analytical form of integrand functions are listed below,

)

He(b,le) = 5 8le — 6btan™! [%e] - 3leIn[b* + 1] (C.5a)
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Hg(b,le) = lb [5le* = 3ieIn[b® + Ie*]] (C.5b)
a? . 1 ale
Fyla,b,le)y= — [alblsm [——————]
b V(@ + )2 + 1)
b(~lal tan~' (2] + btanh™ [ ——L4 1) | (€.50)
b Va*+ b +1e?
a ale 1 Vbr+le?
Fc(a,b,le) = = [~ tanh™[ 1
v/ a2 2 2
+ l(a2 + bz)ln[w] (C.5d)
2 —le+ Va? +b% +1e?

a? 1 Vbr+1e?
L tanh ]
Vb% +le? Va2 + b +le?

(C.5e)

Fg(a,b,le) =

%b[\/a2+b2+le2+

Appendix D. Handling numerical singularities at interior nodes
and the influence of the singularity at the vertices

The interior elastic field of stress and strain in inclusions or inho-
mogeneities should be continuous based on the continuum mechanics
assumption. However, for triangular or tetrahedral domain integral,
as the field point coincides with the interior node, there exists a
mathematical singularity, which requires proper handling to evaluate
the number. In the literature, this problem can be referred in [36,
68] as the multi-region non-elastic problem, where some prescribed
thermal/inelastic strain is given. The routine method is to isolate the
singularity as follows:

(1) Generate a small circular (2D) / spherical (3D) exclusion zone,
where the strain is caused by constant circular/spherical Eshelby’s
tensor multiplied with eigenstrain at the node;

(2) The singularities canceled out themselves at the infinitesimal
circumference (2D) / shell (3D), thus the numerical integrals can
be conducted. Our recent work [27] proposed a simpler alternative
scheme, which abandons any numerical handling and it can be ex-
tended to 2D problem as well. Due to the assumption of distribution of
eigenstrain by shape functions, the domain integral contains uniform,
linear and quadratic terms of the eigenstrain distribution, in which
the linear and quadratic Eshelby’s tensors are written in terms of the
uniform Eshelby’s tensors and the distance vector [26,27] and the
singularity is only generated by uniform Eshelby’s tensors. When field
point coincides with the interior nodes, all other shape functions at
other nodes become 0, which implies the handling on the unit uniform
tensors only. Using the divergence theorem, the unit uniform tensor is
transferred to contour integrals, where no singularity exists any more
and the number can be evaluated exactly by avoiding the numerical
singularity in the mathematical formulation.

For a field point at a vertex, the singularity of Eshelby’s tensor
will create the stress singularity in the inclusion problem. Because of
the Inr singularity of the Eshelby’s tensor at a vertex of a triangular
inhomogeneity in 2D problems, the eigenstrain also exhibits a Inr
singularity or approaches zero at the vertex. For the 3D problem, the
In r singularity of Eshelby’s tensor will exhibit on the edge of an angular
particle similarly to the 2D problem; whereas the % singularity can be
found at the vertex [20,27]. We can show the stress singularity for the
inhomogeneity problem as below.

Without loss of generality, we investigate the singularity at the
top vertex of a tetrahedral inhomogeneity embedded in an infinite
domain D subjected to a far field stress a?j as Fig. D.20 in the Cartesian
Coordinate with the origin at the top vertex, in which an eigenstrain on
the particle is introduced to simulate the stiffness mismatch between
the inhomogeneity and matrix. If the stress equivalent condition in
Eq. (6) is satisfied at each position on the inhomogeneity, the equiva-
lent inclusion problem provides the exact solution to the inhomogeneity
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X3

X2

QO

0
Cijkl

Fig. D.20. An equivalent tetrahedral inhomogeneity Q' with e?/ embedded in the
infinite domain Q° subjected to a prescribed stress o'f)/..

problem. Due to the singularity of Eshelby’s tensor [20], the distri-
bution of eigenstrain in the neighborhood of the vertex is open for
investigation.

Because ¢}, is singular at the vertex for the inclusion problem, the
stress equivalent equation cannot be established exactly at the vertex,
which may produce a misconception that the eigenstrain must approach
the infinite at the vertex as well. Following we can investigate the
distribution of mismatch eigenstrain in the particle.

In Fig. D.20, a tiny spherical area ©° with the radius of § and the
center at x* is introduced. The integral of €}, over Q% can be written as

/ gkl(x)dx———/ /[Gk,j,(x x)+G,,Jk(xx)] Lmn mn(x Ydx'dx

// Gk,m,,(xx)dxg (x)dx

_/ 88, =xO)ek (x)dx!
(D.1)

where

_%[Gk,-yj,(x,x') + G (x.XICY,,
B 1

T 8x(1—wx—x/
+ (1= 20) (B8 + 1nS1)

+ 36n,n, +3(1 = 2v)5,,,nn

Eklmn(x’ X,) =

[=(1 = 2V)8 B

+ 3v(Sunpny + Opunyhy + Spuhp by + 6y,n,,ny) — 15n,mn,n, |

(D.2)
in which n = |§::§ and §? (x' —x") is the Eshelby’s tensor for the
small domain Q°.

el 5.5 S + 100 forx’ € (Q°
m k%mn + 5020 15(1 ( kmO1n + OknOim), orx’ € (£2°%)
%0(1 [(3p + 10V = 5)6,,6,,
S —x0) = +(3p — 10V + 5)(S1y81 + B B11)
mn

+ 151 = p?)Sgynyn, + 15(1 = 2v = p»)é,,,nen;
+15(v — pz)(ékmn,,nl + Oy, 1y + S,y + 8p,,,1)
+15(7p* = S)memyn,,n,],  forx’ & (29)

(D.3)
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where p = and n; =

ﬁ IX’ xO\ with x replaced by the sphere center
at x° in Eq. (D.2). For x’ € Q%, Eshelby’s tensor is a constant, namely
St . Forx' ¢ Q% or [x' —x°| > 8, comparing Egs. (D.2) and (D.3), one
can rewrite the Eshelby’s tensor as follows:

478° = 8

0 V(]
x) = G X ——
O = = 5= Cumn X' X0+ 15— o

kl mn

[5k15mn + 5km51n + 6kn51m (D4)
-5 (5klnmnn + 5mnnknl + 5kmnnn1 + 5lmnnnk + 5knnmn1 + 5lnnmnk)
+ 35n,mn,n,]

Here Eshelby’s tensor can evaluate the strain caused by a unit
uniform eigenstrain over a source domain, which is applicable to an
arbitrary shape. It exhibits the following properties:

(1) Eshelby’s tensor S is dimensionless and its distribution depends
on the shape of source domain and relative location. The integral of
Eshelby’s tensor of an inclusion over the inclusion itself is proportional
to the area or volume, referred to the similar shape of inclusion with a
unit area or volume for 2D and 3D cases respectively.

(2) Although Eshelby’s tensor S may exhibit a % singularity at the
neighborhood of an vertex, its integral over the inclusion is positive
definite and bounded with 0 < [, S(x')dx’ < V1, where V is the volume
of the inclusion and the unit tensor 1, = % (8kmB1n + SxnOim)-

(3) The Eshelby’s tensor of an area formed by the complement of a
large inclusion including a small one is the difference of the Eshelby’s
tensor of the larger triangle from the smaller one.

Now consider the eigenstrain distribution in the tetrahedron in
Fig. D.20. First let Q% € @, so that its center x° cannot be either on
the boundary or outside of €. The integral of Eq. (D.1) can be written
in two parts from Q% and Q with their areas indicated by V? and V.
Because Eq. (B.1) is supposed to be satisfied at every point on the
triangle £, with the aid of Eq. (D.1), the integral of Eq. (B.1) over Q¢
can be written as

ACj [V%% +/

Sb

!’ 0y ’ !/
klmrl(X -X )emn(X )dx

+ / S8 - O)e;jm(x’)dx’] +V0C, 1€ =0 (D.5)
3
where V4 = @ is the volume of ¢ AC,jk, =Cl, —Ch and g,

is the average eigenstrain of sphere w’. The Eshelby’s tensor in the
second term of the above equation is a constant, namely S}, . as the
eigenstrain is within the sphere. The third term is well defined because
Ix —x°| > 6 in the domain Q. Due to the continuity of eigenstrain,
Using the mean value theorem (MVT), Eq. (D.5) can be rewritten as

follows:
*6 ! 0
&j =~ ( ikt AClquCqu) €t

Vg/ klmn(x -x)ax'g,,
(D.6)

where £ is the eigenstrain a certain point in Q. Using Eq. (D.4), when
8 — 0, the higher order term of §° will decay to zero rapidly, and the
last term in the above equation can be rewritten

1 —
/ k[mn(X - XO)dX = élemn(Xl’Xo)dX, = Sﬁmn(xo) )

V&
where S&2 (x?) is the Eshelby’s tensor of the large tetrahedron £ at x°.

Here Property 3 is used. For § — 0, Eq. (D.6) defines the eigenstrain at

x¥ as

-1
*6 0 Q 0
Ej = (Szjkl +4C lqu quz) [Ek[ + (Sklmn(x )=

,(x0) is well defined and bounded.

Iilmn (D7)

lilmn ) E:‘nn] (DS)

If x0 is far from the vertices, S

Based on Property 2, Sukl + ACuqu[?qk, # 0. Therefore the above
equation can be solved. When x° — 0, Sﬁmn(x") « W Therefore, ;;*°
may exhibit a singularity of ~ when £ €, is non-zero.
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Notice that £, is located within Q, but it can change with x° and
approach zero. Therefore it can be related to ¢;; * as

*6 =k
;7" = Rijmn€

(D.9)

where R;;,,
rewritten as

defines their relationship. Therefore, Eq. (D.8) can be

-1
+(S5,,") = €, (D.10)

ijmn

+4c7! ¢V

R!
ijpq " pgkl

L/mn) mnkl

*8 c
& = [Sz/kl

If R is a definite tensor between 0 and oo, Eq. (D.10) will provide
g;kj‘s — 0 because S,.-?mn(xo) — o0, which makes R — 0. Therefore,
R can only be either 0 or co. Moreover, when R — 0, to make a
definite eigenstrain at the neighborhood of the vertex, it must exhibit a
convergent rate of r. Therefore, we can make the following conclusion:

When an angular elastic inhomogeneity embedded in another 3D
elastic solid is subject to an external load, the mismatch eigenstrain
approaches either zero or the infinite at a rate of r or %, respectively,
which leads to the stress singularity up to :—2

Now consider a continuously distributed eigenstrain field with the
eigenstrain singularity of 1 in the neighborhood of the vertex in
Fig. D.20. Although the stress at the vertex will exhibit a = smgularlty
at the vertex because the eigenstrain approach the 1nf1n1te at a rate of
%. Its influence to a field point x far from the vertex is provided as
follows. From Egs. (8) and (D.2), the influence decays at r%, and the
contribution of the singular eigenstrain in ©° to the strain at a point x
far from £2° can be written as

€l (x) = /Q ) Grimn X, Xek, (X)dX" = Gy (X, X7) /Q . e )dx’  (D.11)
where x* € Q°. Here the MVT is used because Gy, (x,x’) is well
defined for x is out of Q° and &’ (x)dx' = & (xX')r’drdX with dX
being the unit sphere surface is well defined too [4]. In other words,
singularity of the eigenstrain at the rate of ! in the expression of 1 dx
is transferred to rdrd X, which is without smgularlty, so that the MVT is
applicable. When 6 — 0, one can obtain x? — 0, so that the contribution
of the singular eigenstrain at the vertex decays at the rate of r% based
on the definition of G,,,,, in Eq. (D.2). Therefore, although the value of
eigenstrain on the vertex is not defined, its effect to the overall solution
is minimal. That is the reason why a single element for one particle can
provide fairly acceptable results with the iBEM.

Appendix E. Handling of the strong singularities in conventional
BEM global matrix

In Eq. (18), the iBEM algorithm is illustrated explicitly in the
matrix form, which is composed of the conventional BEM part (dealing
with the boundary conditions) and the inclusion part (dealing with
the particle material mismatch). The singularity issue for inclusion
part is handled by a subdomain collocation method as discussed in
Sections 2.2 and 2.3. Regarding the conventional BEM part, when
the source point coincides with the field point, there exists strong
singularity for the fundamental solution of traction, which leads to
numerical difficulty to calculate the diagonal element of the H matrix
containing Cauchy principal value integrals. Instead of direct mathe-
matical integral, Beer et al. [36] proposed an indirect method using
the rigid-body motion scheme to calculate the diagonal element of
H, say H;;. Consider a unit displacement field for all nodes (like
a rigid-body motion) without any traction on the boundary, which
should be an allowable solution and satisfy the same linear equation
system. Because the displacement and traction are given as 1 and 0,
respectively, we can use the linear equation system to calculate the
diagonal element of H instead. Therefore, the Cauchy principal value
integrals are avoided and the diagonal components of H matrix are
calculated as the summation of other elements in the same row as,

N

Hyp = z Hy,
J=LJ#I

(E.1)
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where N is the total dimension number in the global matrix related to
the displacements of boundary nodes.

In order to better describe the scheme in the matrix form for
programming purposes, we form two matrices instead: H;; with all
diagonal elements being zero, Q;; = H,; as a diagonal matrix. The
sum of H + Q is what we need to set up the linear equations system.
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