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HIGHLIGHTS

o First self-powered wireless sensing platform entirely inside the window frame.

o Milli-watt level power management with thermoelectric energy harvesting.

e Energy equilibrium analysis proposed for the self-powered design at any location.
e Platform robust to various sensors and contributes the smart building envelope.
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A new thermoelectric-powered wireless sensor network platform is presented for the low-cost environmental
sensing in building envelopes through thermoelectric energy harvesting and ultra-low power management. It is
designed and prototyped entirely inside a window frame without compromising architectural aesthetics. This
self-powered sensing platform is achieved by maximizing the harvested energy from building envelopes and
optimizing the wireless sensing unit’s energy consumption. It harvests milli-watt level thermoelectric power from
the temperature gradient across building envelopes through thermoelectric generators with an optimized ther-
mal connector. The harvested energy is voltage-boosted and regulated through two integrated circuits that are
tailored for ultra-low-power input. A low power system-on-chip is used to supervise the environmental sensing
and wireless data communication. The energy consumption is tailored by adjusting the system sleep time to
match the harvested energy. The proposed platform is prototyped in a window frame and thoroughly tested,
where 1.5 mW of power is harvested from thermoelectric generators under 6 °C of temperature difference, and a
33.4% efficiency to the battery. In the meantime, 0.42 mW power is consumed by the wireless sensing unit under
a sampling period of 2 h, which reaches the energy equilibrium state. The energy equilibrium algorithm can
project the battery energy based on historical weather conditions, so as to achieve the self-powered condition
given a geographic location. This smart building envelope systems include the unique innovations in self-
powered system architecture, thermally optimized internal structure, and milli-watt level power management.

1. Introduction associated greenhouse gas (GHG) emissions [1]. Globally, about 30% of

total energy and 60% of electricity are consumed on buildings [2]. The

A grand challenge emerging in the energy system is to address the
critical national needs of energy security, economic competitiveness,
environmental responsibility, smart serviceability, and workability
simultaneously. The building sector is the largest consumer of elec-
tricity. It was reported that the buildings sector accounts for about 76%
of electricity use and 40% of all United States primary energy use and
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primary energy consumptions in buildings are heating, ventilation, air
conditioning, lighting, and other major appliances (water heating, re-
frigerators, dryers, etc.) [3]. The share of electricity use in building
sectors has grown dramatically from 25% of the United States annual
electricity consumption in the 1950 s to 40% in the early 1970 s, and to
more than 76% by 2012 [1]. In this sense, smart building management
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becomes significantly important to achieve optimal interior comfort
with minimal energy expenditure. The smart building concept emerged
at the beginning of the 1980 s and has been continuously evolving
during the past decades [4-6], where the ability to adapt to the dynamic
environments is considered as the central aspect in its definition [7].
Research shows that a potential energy saving of 34.78% could be
achieved by the smart buildings comparing to conventional buildings,
through the optimal control of major building components like the
heating, ventilation, air conditioning, and lighting systems [8].

The concept of the smart building has attracted significant attention
in the civil engineering industry during the past decade and is estimated
to worth 53.45 billion by 2022 [9]. Significant attention has been paid to
the controlling algorithms of the smart building management systems
(BMSs) thanks to the boom of artificial intelligence, with many discus-
sions about energy consumption forecast [10-12], smart grid technol-
ogy [13], and in-room occupancy detection [14]. In contrast, the
importance of the sensor network was underestimated with fewer
research and discussions. Traditional systems rely heavily on wired
sensors to monitor the environment, which comes with substantial
workforce and time in both installation and maintenance. Therefore, the
concept of the wireless sensor network (WSN) becomes more and more
popular in BMSs to ease the installation and maintenance, to enhance
the flexibility in dangerous areas, and to reduce the cost of sensor de-
ployments [15]. However, most of these sensors are powered by either
replaceable or rechargeable batteries, which means they are exposed to
limited battery life, environmental hazards, and complex replacement
procedures [16]. For certain applications in the building environment, it
could be difficult to replace the battery of WSN and could result in an
enormous scale of maintenances cost.

The energy harvesting technologies provide an excellent solution to
elongate the battery life and reduce the maintenance cost of a WSN such
that the self-powered wireless sensor network (SPWSN) system can be
achieved. Energy harvesting technologies use power generating ele-
ments such as solar cells [17], piezoelectric elements [18], electro-
magnetic components [19,20], and thermoelectric elements [21] to
convert light, pressure, vibration, and heat energy into electricity. A
comprehensive review of energy harvesting applications in the buildings
can be found in [22], from which photovoltaics and thermoelectricity
are two primary energy sources for the WSN systems in buildings. A
solar energy based SPWSN was proposed by Tzortzakis et al. [23] for the
environmental monitoring and smart city design, with the correspond-
ing field test conducted on the campus of the National Technical Uni-
versity of Athens. The solar panels provided abundant energy supply up
to 3.5 W but also resulted in a relatively bulky size of the prototype.
Moreover, since solar energy enjoys a much higher power output than
other energy harvesting sources, the proposed system is not robust to the
cases where solar energy is not available. The thermoelectric (TE) en-
ergy serves as a potential alternative when solar energy is not available.
Compared to solar energy, TE energy harvester suffers from much lower
power and voltage output, which cast challenges to the conversion ef-
ficiency and energy equilibrium for the WSN. Recently, a new TE energy
harvester for the building energy management WSN was proposed by
Wang et al. [24] by harvesting the wall-mount heater with 60 °C surface
temperature, and a 25% end-to-end efficiency was achieved with 1.7%
duty cycle. A higher efficiency TE-based WSN system is later proposed
by Guan et al. [25], with the end-to-end efficiency ranging from 44.2%
to 75.4% under different open-circuit voltages. The system was built
based on a two-stage boosting scheme with tens of microwatts to several
milliwatts power input from thermoelectric generators (TEGs). How-
ever, both systems mentioned above are tested in the lab and did not
discuss the potential applications in the building industry.

The building envelopes, as the skin of buildings and the main barrier
against the external environment, are crucial to the environmental
sensing and energy harvesting [26]. Some well-known applications
include the building integrated photovoltaic-thermal roofing systems
[27], sun-powered smart window blinds [28], and wind energy
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harvester inside double-skin facades [29]. However, for sensing appli-
cations inside building envelopes, no physical energy source, such as
solar or wind, is available. This limitation creates challenges to energy
harvesting and WSN applications for the building envelopes. The
traditional building envelope designs tend to break the heat transfer and
minimize the thermal infiltration by stacking as many thermal resistant
materials as possible. Therefore, a thermal break up to 25°C can be
easily formulated across the profile, as is schematically shown in Fig. 1.
The temperature difference across the building envelope could provide
tens of micro-watt to a few milli-watt level of thermal energy harvesting
and is a good power supply for WSN nodes. However, due to the chal-
lenges of thermal energy harvesting, i.e. the ultra-low power and voltage
output, and the limited space inside building envelope profile, no study
or design of self-powered WSN system has been observed in the building
envelopes.

In this paper, a thermoelectric-powered wireless sensor network
(TPWSN) platform is proposed for low-cost environmental sensing in
building envelope components and is prototyped into a building window
system. The platform is designed entirely inside the window frame with
no wired connections to the outside and therefore has no visual
compromise to the window’s architectural aesthetics. To the best of the
authors’ knowledge, it is the first self-powered WSN system inside the
building window systems and robust to other building envelope struc-
tures such as facades and roofs. With a slight modification of the window
structure and a minor compromise of its thermal performance, the
platform takes advantage of the temperature difference across the
window frame for the thermoelectric energy harvesting. It achieves the
energy equilibrium between the consumption and the harvesting, which
significantly elongates the limited battery life of traditional WSN sys-
tems. In energy harvesting, a thermally optimized energy harvesting
structure is proposed inside the limited space of window frame for an
optimal power output, which is supported by heat transfer analysis
through the finite element method. The milli-watt level thermoelectric
power is voltage-boosted and regulated through two integrated circuits
tailored for ultra-low-power input. In the meantime, a low power
system-on-chip (SOC) is applied to supervise the environmental sensing
and wireless data communication, and is thoroughly tested for efficiency
and energy consumption. The total energy consumption is tailored by
adjusting the system sleep time to match the harvested energy so that
the self-powered design could be realized. Comprehensive discussions of
the design methodologies and experimental validations are elaborated
for energy harvesting and the wireless sensor subsystems. An energy
equilibrium algorithm based on the test performance is proposed to
predict the battery energy level and achieve the self-powered design by
properly engineering key design parameters. The self-powered system
architecture and energy equilibrium algorithm, the thermally optimized

Fig. 1. Thermoelectric energy across the building envelope.
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internal structure, and the milli-watt level power management of the
proposed TPWSN serve as valuable references and guidance to the
design and applications of the next generation smart building envelope
systems.

The rest of the paper is organized as follows. Section 2 focuses on the
architecture and the design philosophy of the TPWSN system. The en-
ergy availability across the window profile and the thermally optimized
harvester are first analyzed and designed in Section 2.1. The energy
harvesting subsystem and wireless sensor network subsystem are
designed and discussed in Section 2.2 and Section 2.3. The energy
equilibrium algorithm is theoretically formulated in Section 2.4 based
on the key design parameters to aid the self-powered design. In Section
3, the subsystems are integrated into the window frame and tested under
a controlled temperature gradation, where the amounts of energy con-
sumption and energy harvesting are continuously monitored and
calculated. Section 4 presents the energy equilibrium design and the
battery energy prediction based on the case study of the historical
temperature data in New York City to theoretically achieve eternal
battery life. Such a self-powered design could be extended to any loca-
tion with proper engineering of the key parameters. Section 5 discusses
the cost analysis and potential limitations of the TPWSN system under
real applications. Section 6 summarizes the paper with conclusive
remarks.

2. System architecture, design, and analysis

The architecture of the SPWSN system is schematically shown in
Fig. 2, which consists of an energy harvesting subsystem and a wireless
sensor network subsystem. The energy harvesting subsystem contains
harvesters for energy conversion, energy management circuits for
optimal energy extraction and regulation, and rechargeable batteries for
permanent energy storage. The harvested energy is consumed by the
wireless sensor network subsystem, which is made of sensors, micro-
processors, and wireless communication systems. The microprocessors
are connected to both the sensors for environmental monitoring and the
wireless communication system for data transmission. The data from a
system node will be sent out to an external server for permanent storage,
which will serve as valuable information for the optimal heating,
ventilation, and air conditioning (HVAC) control and building man-
agement. In an ideal SPWSN, the energy harvesting subsystem should

(@)
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collect as much energy as possible and stabilize the dynamic power
source into batteries; whereas the wireless sensor network subsystem
should consume as little energy as possible to achieve the energy equi-
librium while fulfilling the function in environmental sensing and
wireless data transmission.

The thermoelectric powered WSN follows the architecture of a gen-
eral SPWSN and uses the thermoelectric generator (TEG) as the energy
harvester. A TEG is usually made of many thermocouples that could
generate electrons under thermal gradients. In the meantime, the
building envelope, as the building’s skin, is designed to keep the internal
environment stable. Therefore, large temperature differences could be
easily formulated across the building envelope profiles, thanks to the
original thermal-breaking structures like the thermal isolator and the
thermal resistive foam. The abundant thermal energy could be harvested
via the TEGs to serve the energy consumption of WSN units, so as to
formulate a thermoelectric-powered WSN system.

In the scope of this research, the Schiico AWS 75 window system is
used for the prototype, which has an internal structure shown in Fig. 3.
The proposed TPWSN system fills the rectangular dashed box in Fig. 3 to
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Fig. 3. Schematic design of TPWSN inside a window system.
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replace the original thermal resistive foam. It has physical contact with
the B and C surfaces to achieve the maximum thermal conduction and
optimal thermal energy harvesting. The detailed design philosophies for
both the energy harvesting subsystem and the wireless sensor network
subsystem are described in the following subsections.

2.1. Energy harvesting subsystem

2.1.1. Energy harvester

The thermoelectric generators harvest the thermal energy from
building envelopes for WSN systems. In order to achieve the optimal
energy harvesting, the temperature difference across the window profile
must be efficiently directed to TEG surfaces. However, the TEG’s
thickness is usually limited to 2-4 mm to avoid the buckling of its
thermocouples, which means TEG itself is not possible to fill the 42.5
mm cavity in Fig. 3. Therefore, an energy harvester with a thermally
optimized internal connector is needed to efficiently transport the
thermal gradient from window frames to TEG surfaces. The design
philosophy of the energy harvester is discussed in this subsection.

From a single TEG’s perspective, its power output depends on the
number of thermocouples and individual thermocouple’s harvesting
power. The harvesting power of a single thermocouple is the product of
the voltage and current, both of which are linearly proportional to the
applied temperature difference ATrgs. The number of a TEG’s thermo-
couples depends on the TEG’s size, which is equivalent to its surface area
Arggbecause the thickness is usually fixed. Therefore, the overall power
output is related to the surface area and temperature difference as
below:

PTEGCXATEG'(ATTEG)2 (@]

One can simply fill the space with thermally conductive materials,
like metals, to transport the maximum temperature gradient from win-
dow frames to TEG’s surfaces. However, such design introduces signif-
icant amount of extra material to the system and impacts other design
parameters such as the material cost and window’s operating efficiency.
Therefore, the weight of the thermal connectors, wyc, must be consid-
ered in the design. A new metric is defined as follows to evaluate the
performance of an energy harvester:

_ Arzge(ATr6) ~ Prec

Eva
(0rc)" (0rc)"

(2)

where « is a scaling factor that indicates the importance of the weight
comparing to the power output. The larger the value of a, the more
important the weight of the connector. The ideal thermal connector
should generate the maximum TEG power output and have the mini-
mum additional weight, and thus maximize the evaluation metric in Eq.
(2). It should also fit into the limited space inside the window frame.
Therefore, different designs are proposed and analyzed with commercial
Finite Element (FE) software ABAQUS to maximize the evaluation
metric.

Since both the area Arzc and the temperature difference ATz
depend on how the TEG is placed, five difference placement designs
shown in Fig. 4 are modeled, with the TEG-vertical angle ranging from
0" to 60° (maximum) at an increment of 15". In the meantime, four
different internal structures are investigated from pure solid, three-
bridge, one-bridge, and hollow structures, as illustrated in Fig. 5. The
wall thickness and bridge width are prescribed as 1.5 mm. The TEG
thickness is prescribed at 3 mm, which is the most common thickness in
the market. The 2D profiles are extruded for 60 mm to formulate the 3D
FE models for the analysis. Therefore, a total of 20 different models are
constructed for heat transfer analysis.

The heat transfer through the thermal connector witch air cavity
generally includes convection, conduction, and thermal radiation. Ra-
diation becomes considerable with a large temperature difference,
which does not exist here, so it is not considered in the present FE
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analysis. Convection is usually the dominant form of heat transfer in
liquids and gases. It involves both heat diffusion (conduction) and
advection caused by the motion of the fluid. For air cavities with a
smaller than 50 mm distance, the heat transfer from advection is usually
smaller than diffusion [30]. In window applications, the air cavities are
sealed to avoid leakage and compromise of thermal performance.
Therefore, the bulk motion of air inside the cavity is very limited. The
thermal conductivities of the metal (aluminum) frame, TEG, thermal
isolator (PA66), and air are listed in Table 1. Although the air in the
cavities may move internally with a temperature gradient, which leads
to a Nusselt number greater than 1 [39], because the thermal conduc-
tivity of the air is so low in comparison with the aluminum (0.026 versus
160), the advection effect of air flow is neglected in the FE model. The
steady state heat conduction analysis is conducted for the twenty
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Table 1
Thermal conductivities of materials in the finite element model.
Materials Aluminum TEG Thermal isolator Air
(PA66)
Thermal conductivity (W/ 160 1.7 0.3 0.026
m-K)

proposed designs, and the FE configuration of the three-bridge 45 °C
design is shown in Fig. 6. The in-room side of the aluminum frame is
applied with 25 °C fixed temperature boundary, while the out-of-room
side is applied with 0°C.

The TEG’s surface temperature is extracted from the central plane of
all the 3D Finite Element models and plotted for comparison. For
simplicity, examples from different thermal connector designs and
placement angles are selected, and the temperature profiles on the two
surfaces of TEG are plotted in Fig. 7 and Fig. 8, respectively. Fig. 7 shows
the temperature profiles under different TEG placement angles for the
three-bridge design, while Fig. 8 shows the temperature profiles under
different thermal connector designs when the placement angle is 45 °C.
The normalized location, which is defined as the point location over the
TEG length, is used since different TEG placement angles will have
different TEG length. It is seen in Fig. 7 that the temperature difference
ATrgg reduces with the increase of the placement angle, but the tem-
perature distributions under each angle follow the same trend and are
almost in parallel. It is observed in Fig. 8 that the temperature distributes
uniformly over the surface for the solid connector design and follows a
parabolic trend for the hollow connector design. The outlying points are
because of the edge effect and thus are ignored in the analysis.

The temperature difference across the TEG and the thermal con-
nectors’ weight are extracted from twenty FE models to calculate the
corresponding evaluation metrics under three different scaling factors
a =0, 0.5, and 1. The evaluation metrics are grouped by the scaling
factor and normalized, after which they are plotted in Fig. 9 with respect
to different placement angles and internal structures. Surprisingly, the
best performing angle is always 0 °C under different scaling factors. It is
because that the tilted TEG also reduces the temperature difference,
although they slightly enlarge the contact surface. The contact surface
has a first-order influence on the power output, while the temperature
difference has a second-order influence. Therefore, the contribution of
the additional contact surface does not outperform the loss from the
temperature difference.

The internal structure also has a major impact on the heat transfer.
The more solid the internal structure, the better heat transfer between
the frame and the TEG, and the heavier the total weight would be.

Aluminum
window frame

0°C boundary
condition

Thermal isolator

Aluminum
window frame

25°C boundary
condition

Thermal electric
generator

Thermal
connector

Fig. 6. Finite element model of the three-bridge 45 °C design.
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Therefore, it is coupled with how the weight is valued versus the power
output. The scaling factor @ = 0, 0.5, and 1 indicate that the additional
weight has no influence, half as important, and equally important as the
energy harvesting on the evaluation metric. Correspondingly, the best
performing internal structure is the solid, the three-bridge, and the one-
bridge structure. The hollow structure, although having the smallest
weight, is outperformed by the one-bridge model when a = 1. When the
scaling factor « is prescribed at 0.5, the three-bridge design is the
optimal structure, which is selected for prototype fabrication.

The three-bridge structure with a 0-degree design generates the best
performance when the scaling factor « = 0.5. Unfortunately, none of the
commercial TEGs fit this dimension in the window frame. Therefore, the
30mm x 30mm x 3.7mm TEG is chosen for the prototype, which corre-
sponds to the 45 °C placement angle. Four thermal connectors with a
three-bridge internal structure and 45 °C TEG angle are manufactured
by “i.materialise” using 3D printed aluminum. Fig. 10(A) shows the final
energy harvester unit that contains two soldered TEGs and two 3D
printed thermal connectors, with a depth of 60 mm. It replaces the
original thermal resistive foam and is implemented inside the window
frame, as illustrated in Fig. 10(B). The two sides of the energy harvester
unit are attached to the two aluminum window frames to direct the
temperature gradient from the window frame to the TEGs. In the pro-
totype, two identical energy harvester units are implemented into the
window frame, as is shown in Fig. 11, for thermal energy harvesting.

It is worth mentioning that the temperature variation along the
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Fig. 10. A) Energy harvester with two TEGs; B) Position of the energy harvester unit inside the window frame.

extrusion is not considered in the analysis. In a real application, the
temperature varies bi-directionally both across the window profile and
along the extrusion. The implemented TEG units will not only influence
the window temperature profile but also interact with neighboring units.
In 3D ABAQUS simulation, a single unit will influence the neighboring
temperature profile up to the distance of a single unit’s width, in both
directions. Therefore, the TEG units could either be placed intermit-
tently with the interval of twice the width to maximize its energy har-
vesting, or placed continuously to save the retrofitting cost, which
requires further studies and trade-off analysis.

2.1.2. Battery and management circuits

The TEGs depend on the temperature difference for energy har-
vesting. However, the temperature difference is usually dynamic over
time, which makes the power source unstable. Moreover, the voltage

output from TEGs is very small (usually tens of mV for the close circuit
voltage) for building envelope applications, making it impossible to
charge the battery alone. Therefore, a voltage regulator is needed to
boost and stabilize the ultra-low input voltage to a battery charging
voltage.

The LTC 3108 from Linear Technology is selected as the DC/DC
converter to boost up the voltage from 20 mV to 5 V. The energy effi-
ciency of the LTC 3108 is tested with the input voltage ranging from 50
mV to 1V and plotted in Fig. 12, where a maximum efficiency at 70% is
reached when the input is around 70 mV. The efficiency drops to 40%
when the input voltage is 100 mV, and reduces with the increase of the
input voltage. The LTC3108 is used for voltage boosting and regulation.
A battery management circuit is also needed for permanent energy
storage and battery protection.

The LTC4071 from Linear Technology is used as the battery man-
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Fig. 11. Window frame prototype with two energy harvesters.
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Fig. 12. LTC 3108 energy conversion efficiency.

agement circuit, which operates from 550nA to 50 mA. It allows the
battery to charge from very low current under continuous and inter-
mittent sources and provides overcharging and over-discharging pro-
tection. The circuit consumes 550 nA of operating current, and the
averaged conversion efficiency is above 95%. Therefore, it is well suited
to charge low-capacity Li-Ion or thin-film batteries in energy harvesting
applications. The LTC4071 is used together with the LTC3108 to boost,
regulate, and manage the voltage from TEGs to the battery. A diode is
applied between LTC3108 and LTC4071 to control the current direction
and avoid energy leaking. It is worth to mention that the LTC4071
controls the voltage of the whole circuit and that the LTC3108 output
usually does not reach 5 V but depends on the need of the battery
charging process.

The energy supply from TEG depends on the indoor and outdoor
temperature and is dynamic across the year. Therefore, an energy

Applied Energy 305 (2022) 117791

storage unit is needed to store energy during peak season for con-
sumption in the off-season. The Li-Po battery is used in this paper thanks
to its high energy capacity, density, and efficiency. The 100 mAh battery
is used during the lab test in Section 3.1 to capture and magnify the slow
charging process. It is also concluded in Section 3.2 that a 500 mAh
battery is large enough for New York to achieve the energy equilibrium
stage. Since the unit is designed to stay inside the window frame for
decades, the battery cycle life and the replacement cost shall be dis-
cussed before the real application but is currently not considered in this
research.

2.2. Wireless sensor network subsystem

The energy harvesting unit extracts the energy from the ambient
environment and feeds the wireless sensor network unit, which consists
of the sensors, microprocessors, and wireless communication devices. A
low-cost and low-energy-consumption sensor, DHT11, is selected for the
temperature and moisture measurement. Various kinds of sensors can be
applied if needed. The microcontroller ESP 32 FireBeetle is selected as
the system-on-chip (SOC) for the data collection, preprocessing, and
wireless communication. It is a model optimized in the deep sleep mode
for the minimum energy consumption with the advertised current con-
sumption as low as 10 uA.The lowest measured consumption is
approximately 50 pA, but still outperforms the majority of the SOC in
the market. The Wi-Fi is used to transport data to the clouds wirelessly.

As the brain of the system, the ESP 32 is responsible for the data
reading, preliminary calculation, and wireless communication to
external servers. The routines in ESP 32 are schematically shown in
Fig. 13, which work in an infinite loop. After waking up from N mins
deep sleep, the ESP 32 connects to the local Wi-Fi network and reads the
signal from the connected sensors, after which it preprocesses the signal
to a particular format and send it to an online proxy named IFTTT to log
the data to Google Sheets. The IFTTT stands for ‘If This Than That’. Itis a
web-based service provider which creates chains of conditional state-
ments to help logging data to Google cloud services. The whole system
goes to sleep again after confirming the receipt from IFTTT. The loop
continues until the system is out of power.

A current shunt circuit is designed to monitor the current con-
sumption with the data acquisition (DAQ) system. A 3.1 O resistor with a
maximum power limit of five watts is used for voltage measurement. The
ESP 32 is programmed to cycle at five minutes, and seven cycles are
recorded with DAQ, with a sampling frequency of 10 Hz and the

Google Sheets

Cloud data storage \
IFTTT & ==

Online proxy Deep sleep for N mins

f }

)> N

Wake up by timer
= e
®

Connect to local Wi-Fi

Read sensor data

"~

N

Fig. 13. Routines of the ESP 32.
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measurement precision at 1 x 107> mA. Fig. 14 shows the current
consumption in all seven cycles, while Fig. 15 shows a magnified con-
sumption during the awake mode in the first cycle. It is clearly seen that
the regular awake mode consumes approximately 40 mA, and the Wi-Fi
mode consumes 115 mA. The average energy consumption is presented
in Table 2, where the awake mode consumes approximately 70 mA
while the deep sleep mode consumes 45 pA. The average time needed for
the awake mode is 7 s, which majorly depends on the connection speed
to the local Wi-Fi network. Therefore, the total power consumed is
calculated as:
Vawake® Lawake ® tawake + Viieep® Lsteep  Tsteep

Peyee = 3
’ Lawake + t.vlecp

The total power consumption can be tailored with the energy
availability and the energy harvesting speed by controlling tc,.

A parametric study is conducted based on a 500 mAh battery and is
shown in Table 3. It is seen that the power consumption reaches 0.42
mW when the deep sleep time is two hours, and the corresponding
battery life is slightly more than half a year. Despite the low sampling
frequency, battery life is still relatively short comparing to civil struc-
tures’ service life. Therefore, energy harvesting is needed to achieve the
energy equilibrium state.

Although ESP 32 is very energy efficient, its start-up current con-
sumption reaches 450 mA, which could be a challenge for the system
design. If the start-up current requirement were not met, the system
could not start properly and will continuously leak energy until a
manual reset or the battery depletion.

2.3. Energy equilibrium analysis

For traditional WSN systems, the system lifetime depends on how
long the battery could last, after which the battery needs to be manually
replaced to resume the service. In order to elongate the system lifetime,
a naive design philosophy is to treat the harvested energy as a supple-
ment to the batteries, while a more advanced philosophy is to use the
harvested energy at an appropriate rate such that the system continues
to operate perennially, which is so-called the energy-neutral operation
[31]. A node is said to achieve the energy-neutral operation if the
desired performance can be supported forever purely by the harvested
energy. In order to achieve the energy-neutral state, many predictive
models were proposed to forecast energy availability based on historical
records [32]. Among them, the exponentially weighted moving-average
(EMMA) method is one of the most straightforward models to predict
future energy supply, such as the future solar power with local weather
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Fig. 14. ESP 32's awake and deep sleep current consumption.
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Fig. 15. ESP 32's awake current consumption in the first cycle.

conditions [33]. Apart from traditional methods, modern artificial in-
telligence methods such as the neural network [34], support vector [35],
and tree-based models [36] were also used for future energy predictions.
An accurate predictive model is useful for cases when the short-term
parameter governs. For the TPWSN application, however, the govern-
ing parameter is the temperature difference between internal and
external, which cycles over the period of a year. The complicated pre-
dictive models are no longer feasible considering the SOC’s limited
computational power. A practical and efficient approach is to engineer
the historical temperature data, and apply a statistic safety factor. As
long as the battery can survive the yearly cycling, the energy-neutral
condition is satisfied, and the lifetime of a node will be extended
without limits. In this section, an energy equilibrium algorithm is pro-
posed based on the test measurements to predict the battery energy
level, assuming that the historical temperature data is available and long
enough to draw a statistical conclusion. A case study based on New York
City’s weather condition is conducted in Section 3.2 to guide the energy
equilibrium design and engineering.

Two constraints for the battery level must be satisfied in order to
achieve the energy equilibrium condition: a) the battery energy level
cannot be below zero; b) the energy level of the battery is better to stay
below the maximum capacity to avoid wasting of the harvested energy.
The two constraints are written as:

Whﬂ@+/%©%—/%©ﬁ—/mM®W&€@ﬂ

B(1) = B(0) + /U Py (&)dé — /0 Pc(£)de — /0 Preadé < B,3t € (0,T)
©)]

where B(t) is the battery energy level at any time t and B is the
maximum energy the battery can sustain; Py, Pc and Ppq stand for the
power of harvesting, consumption, and leakage of battery correspond-
ingly; T is the time scale of the analysis.

The analysis based on continuous-time steps is necessary when the
energy harvesting and consumption have close periods. For the case
where the energy harvesting period (one year) is much longer than the
prescribed energy consumption period (hours or minutes), the analysis
in continuous time steps brings too much detail into the calculation.
Such a problem can be avoided by analyzing discrete time steps. The
constraints in Eq. (4) are converted to the corresponding discrete form as
addressed below:
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Table 2

ESP 32’s current consumption and awake time measurements.
Cycle 1 2 3 4 5 6 7 Average
Awake time (s) 7.5 6.1 6.1 8.4 8.3 6.2 6.2 7.0
Awake current (mA) 70.30 75.16 71.57 63.12 66.34 72.35 70.89 69.96
Deep sleep current (uA) 42.69 46.21 44.34 46.13 43.82 45.10 44.80 44.73

awake mode P, and the deep sleep mode P
Table 3
. : Pyet, + Pyot 2

Parametric study of battery life. J I ta - b p 4 (P, —P,) - —;1_ t (10)

Deep sleep time 5min 30 1h 2h 4h a $ a $
min where t, and ¢, stand for the time spent during the awake mode and
Averaged power consumption 6.07 1.17 0.67 0.42 0.29 deep sleep mode, respectively. The awake mode is like the fixed cost of
(mW)

500 mAh battery lifetime (day)  12.70  65.93 115.25 18445  263.75

B1)=BO)+ > Pu(i)ar=3 " Pe(i)ar—3 " P Ar>0,31€ (0,7)

0)+ 3 Pyl ar= 3"V Pe(i)ar=3 " Py Ar<B,3re (0.7)

(5)

where At is the prescribed time step for the analysis, e.g., At=1 hour
for the analysis based on the temperature measurement data with pre-
cision to 1 h. It is worth pointing out that At may not be the same with
the period of energy consumption (e.g., the energy consumption loops
every two hours, but the At can be one hour). The total time t may not be
divisible by the step At, but since t is usually much larger than At, the
remaining of the division has limited influence on the overall perfor-
mance and is thus neglected in the equation.

For the energy harvesting based on the thermoelectric generator, the
harvested power is linearly proportional to the area of the TEG surface
Arge and the number of TEGs nygg. It is also quadratically proportional
to the temperature difference AT7gg, since both voltage and current are
linearly dependent on the ATrgg. Therefore, the power of energy har-
vesting is addressed as:

ATz
ATz

nrec Arec

Py = H
n Arec

(6)

wherey stands for the energy conversion efficiency in the voltage
boosting, regulating and battery charging process, and « indicates the
results and parameters measured in the test. For the TEGs integrated into
the window frame, the temperature difference of TEG is directly related
to the temperature difference of the window frame by the reduction
factor 4:

ATwin
A

ATTEG = (7)

Therefore, the total energy harvested is addressed in the discrete
form as:

2

/At 1/ At .

nreg A AT, (i
S opylijar=>y T TCp, LILION ®
= = " Armec | A*ATrzc

It is seen that only the window temperature difference ATy, is a
function of time step i. All the other parameters are constant once the
product configuration has been determined. The total energy harvested
is therefore simplified into:

f nTEGATEG r/i
Py(i)At=—= AT Wm i) (©)]
= n ATEG ‘ATTrG =0

The harvested energy is consumed by the wireless sensor network
unit at the rate of P¢, which is an averaged value depending on the

power, while the sleep mode is like the variable cost of power, which can
be controlled to tailor the overall power consumption level. Since the P,,
P;, and t, cannot be manipulated, the only adjustable variable for power
consumption is the deep sleep time ;. The overall power consumption is
inversely proportional to the deep sleep time and will gradually con-
verges to the P; with the increase of ;. The total energy consumption is
written as:

t/At t/At 1,
;Pc(z)Atfg{P +(Pa =P |t an

It is worth pointing out that the increase of the sleep time will
compromise the data acquisition frequency and thus jeopardize the
overall performance. Therefore, although the sleep time is adjustable, it
could not exceed a certain design limit.

The power consumption is averaged over the cycle and that the
consumption cycle may not coincide with the prescribed time step for
the analysis. Therefore, the discrete form of the battery energy level is
thus written as:

t/At

e AT At
B(t) = B(0) +1£¢ “:GPHZniz D AT ()
n Argc X 'ATTEG i—0
t/At
- Z{P +(P. 7P) } ‘At— ZP]eakAt 12)

The corresponding iterative form is written as:

nrecAreG nAt

B(m)=B(m—1)+ ]
U Amg  PeATig

AT2. (mAt)

win

la
- {PSJr(Pd fPS)[

aTls

:| 'At*P]eakAt (13)

Once the initial condition B(0) is given, the battery energy level B(t)
can be projected based on the temperature measurement data. The
battery constraints in Eq. (5) shall be checked and followed during the
analysis.

Since the temperature difference ATy, cycles at the period of a year,
the projected battery energy B(t) fluctuates with the period of one year.
The difference of the neighboring maximum and minimum AB,, gives the
energy capacity needed for the year n and can be used to determine the
battery’s capacity. A straightforward way is to multiply the maximum
difference by a safety factor as ésmaxAB,,, which gives a good estimation
when the historical data is limited. Another approach is to fit the his-
torical difference AB,(n = 1, 2,..N) into the Gaussian distribution so that
the battery capacity can be determined with a prescribed confidence
level.

3. Experiments and predictions
3.1. Experiments of TPWSN

Considering the milli-watt power from the thermal energy harvesting
and the extremely small current after the voltage boosting, it is critical to
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ensure that the tiny current is not wasted and can be accepted by the
battery. Moreover, the harvested thermal energy must be larger than the
consumed energy by the WSN node to fulfill the self-powered design
objective. Therefore, the energy harvesting unit and the wireless sensor
network unit are integrated in this subsection to formulate a complete
TPWSN system for lab tests. The flow chart of the system is shown in
Fig. 16. The harvested energy is first voltage-boosted by LTC3108 and
then regulated by LTC4071 to charge the battery. A diode is applied to
control the current direction so that it would not leak back to LTC3108.
One 3.7 V 100 mAh Adafruit Lithium-Ion Polymer (Li-Po) battery is used
for energy storage and supply to the wireless sensor network unit. In
order to generate a stable temperature gradient across the window
frame, the bottom surface of the window frame is immersed into the ice
water for cooling, and the top surface is attached with controlled water
flow for heating. The system is connected to a data acquisition system for
continuous monitoring of the temperature profile and the battery en-
ergy, as is shown in Fig. 17.

The temperature of the water bath is controlled at 40 °C for a stable
temperature profile across the window frame. Any other temperature
will result in a monotonic increase or decrease over time. The charging
of the battery is quantified by the increase of the battery’s voltage. Since
the amount of harvested energy is small, a small capacity battery is used
to magnify the charging process so that the charging can be observed
during the test.

Four thermocouples are implemented across the window profile, as
indicated in Fig. 18. The temperature distributions over time are
continuously monitored by the DAQ, with the sampling frequency of 2
Hz, which are plotted in Fig. 19. It is seen that under the warm water
supply, the heat transfer across the window frame reaches a stable
balance. The temperature measurements of four thermocouples are
24 °C, 11 °C, 5 °C, and 2.5 °C, corresponding to the top side of the
window, the top side of the TEG, the bottom side of the TEG, and the
bottom side of the window. The temperature difference ratio 1 is defined

TEG harvest energy

L

( Voltage boost A
(LTC3108)

y

[ Current control |
(Diode)

L

\, J

\.

( Battery management )
L (LTCiIO71) )

Permanent storage )
| (Li-Po battery) )

ESP 32
consumption

Fig. 16. Energy flow chart.
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Thermocouples
embedded

Fig. 18. Prototype with embedded thermocouples and controlled tempera-
ture gradations.

as the temperature difference of the window divided by the temperature
difference of TEGs, A = AT,n/ATrgs. It is a function of the window’s
internal profile and independent of the external weather conditions.
Therefore, 1 =~ 3.5 as measured in the experiment is expected to remain
stable in different weather configurations and can aid the energy equi-
librium analysis.

The voltage output from four TEGs is measured and plotted against
the temperature difference in Fig. 20, where a linear trend line of the
measurement is observed. The voltage output stabilizes to 0.1 V given

30
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Fig. 19. Temperature distribution over time.
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the 5 °C temperature difference across TEG surfaces. In order to obtain
the current output from the TEGs, a separate test is conducted with a
similar test configuration, except that the battery is changed to super-
capacitors. The supercapacitor has a much lower energy density than the
battery and can be fully charged by the TEGs in a few hours, so that the
current can be calculated based on energy equilibrium. It is measured
that 3 h are needed to fully charge two identical 2.7 V 1F super-
capacitors. Considering the 40% conversion efficiency of the LTC3108
and the 100 mV voltage output from TEGs, the current output from the
four TEGs is determined as 15 mA. Therefore, the total power output
from four TEGs is calculated as P = V x I = 1.5mW.

The voltage and current measurements for every component are
listed in Table 4, with the calculated power and the conversion effi-
ciency. Since the battery has the highest energy density, it controls the
circuit’s voltage so that the LTC4071 will always have a voltage slightly
over the battery’s voltage. The diode takes 0.5 V of voltage with an ef-
ficiency of 88%. The 100 mV voltage output from TEGs is boosted by
LTC3108 to 4.3 V with a 40% conversion efficiency, such that the bat-
tery can be charged. The total power into the battery is calculated at
0.51 mW, and the overall conversion efficiency is calculated as:

1= 13108 X Naioae X Naom1 = 33.4% a4

Therefore, the total energy that can be stored into the battery in an
ESP 32's 2-hour cycle is 0.27 mAh.

The battery’s voltage is continuously monitored by the DAQ and
plotted in Fig. 21, with the measurement precision of 1 x 107>V, It is
seen that the start-up of ESP 32 will quickly drain power from the bat-
tery, causing a significant drop in the measurement. After the ESP 32
enters the deep sleep mode, the battery’s voltage gradually stabilizes
and increases over time, which is plotted separately in Fig. 22.
Approximately 0.001 V of battery voltage is raised in the 2 h charging
cycle, indicating that the harvested energy outperforms the consumed
energy in this specific testing configuration. It serves as a reference in
the energy equilibrium modeling in the next subsection, where the en-
gineering philosophy is discussed.

3.2. Energy equilibrium case study

Following the experiments discussed in the previous subsection, the
parameters for energy harvesting are recorded asn = 4,Argc = At =
9cm2, Py = 1.5mW, AT = 5°C, A = 35, and 71 =  f3108* 14071 *
Ngiode = 0.334. The power consumption of the ESP 32 system is measured
in section 2.2 with the voltage Vgsps2 = 3.7 V, awake current I, =
70mA, and deep sleep current Iy = 45uA. The ESP 32 awake time is 7 s.

0.12
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Fig. 20. The voltage output versus the temperature difference on TEG.
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Table 4
Voltage, current, and energy efficiency of the energy harvester.
Voltage/mV Current/mA Power/mW Efficiency
TEG 100 15 1.5
LTC3108 4300 0.140 0.6 40%
Diode 3800 0.140 0.54 88%
LTC4071 3800 0.135 0.51 95%
i Second cycle
3.80 - First cycle y
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N
g ESP 32 ESP 32
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Fig. 21. Li-Po battery’s voltage measurement over two cycles.
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Fig. 22. Li-Po battery’s charging process over two cycles.

It is seen from the energy equilibrium analysis that two variables, the
number of TEGs nyge and the deep sleep time t;, can be used to achieve
the balance between harvesting and consumption.

The historical temperature data of New York City, as plotted in
Fig. 23, is used for the energy equilibrium analysis. The per-hour tem-
perature data is measured 2 m above ground in Central Park and lasts for
3.5 years from 2016 to 2019. The external window frame is assumed to
have the same temperature as the environment, while the internal
window frame has a temperature the same with the room temperature of
21 °C. Since the LTC3108 cannot take alternating current, the energy
can only be harvested when the external temperature is lower than the
internal temperature.

The energy equilibrium analysis is applied to predict the battery
energy level based on the historical temperature data. In the case study,
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Fig. 23. New York City historical temperature profile.

the initial battery level is prescribed at 100 mAh. The system is assumed
to deploy on the first day of a year, when the ambient temperature is
low. The battery energy predictions based on different t; and nyzg are
determined and plotted in Fig. 24. It is seen that the energy equilibrium
state can be achieved by parametric studies. The battery capacity can
also be determined by looking at the local maximum and minimum in a
single cycle. The rule of thumb for the energy equilibrium design is to
choose a slightly upgrowing curve to avoid the battery depletion and
minimize waste. Among the four scenarios, the case with t; = 2hrs and
nrgc = 4 can achieve the balance between energy harvesting and con-
sumption without wasting too much energy. For building applications,
the frequency requirement for data acquisition is relatively low. One
measurement in one or two hours is already enough for many applica-
tions. The nrgg = 4 takes 120 mm length of window profile and is
equivalent to 3% the extrusion length of a typical 1 m>-sized window.
For large-sized windows or modern facade structures, it is very easy to
get an extrusion length of more than 8 m. Therefore, if a higher sampling
frequency is needed, more energy harvesting units can be implemented
to increase the harvested energy.

Given the local temperature data, the parameter t; and nrg; can be
properly engineered to achieve the self-powered goal at any location.
The difference between the maximum and the minimum battery energy
AB; can be determined easily from the prediction in Fig. 24, such that the
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Fig. 24. Battery energy predictions for TPWSN system in New York City.
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battery capacity can be calculated by multiplying the maximum differ-
ence maxAB; = 400mAh by a safety factor £. Therefore, a 500 mAh
battery is selected, assuming a 125% safety factor. It is worth
mentioning that the battery’s initial energy level depends majorly on the
deployment date. The 100 mAh initial energy is used in this case study as
an example, which works well since the deployment data is in winter
and the harvesting is stronger than the consumption. If the system is
installed in summer, more initial energy is needed to cover the con-
sumption till the harvesting seasons, so that the battery will not deplete.
A more conservative approach is to fully charge the battery before
deployment.

4. Discussion
4.1. Cost analysis

The proposed TPWSN system’s material costs are listed in Table 5,
with corresponding part numbers and vendor information. The total
costs add up to $182.3 for a single TPWSN system with two energy
harvesters and one wireless sensor network unit, which is very close to
its battery-powered WSN competitors [37,38]. However, significant
amounts of manpower and replacement cost during installation and
maintenance could be saved thanks to the self-powered design, which
contributes to the long-term return on investment. The thermoelectric
generator has the maximum percentage cost. If only one energy
harvester is used for a TPWSN system, the total cost is brought down to
$110, at the expense of a slightly smaller sampling frequency. It is also
worth mentioning that the thermal connectors is manufactured with 3D
printed aluminum, which costs more than $250 for each piece. Such cost
will be significantly reduced to a value close to the material cost with the
metal extrusion during mass production. Therefore, it is estimated as the
Aluminum material cost times a markup of 150% to cover then
manufacturing and logistic.

4.2. Limitations and future work

The proposed TPWSN system harvests thermoelectric energy across
the window frame for sensors and microcontrollers. It sits entirely inside
the window frame and is independent of external weather conditions.
However, some limitations are observed and deserve future improve-
ments. First of all, the thermoelectric energy harvester is highly
customized to the window frames, making it less robust to other building
applications. In comparison, the power management and wireless sensor
network subsystems are more robust to other SPWSNs applications.
Another major challenge is the potential compromise of the window’s
original thermal and waterproof performance. The thermal compromise
is less significant since only a small portion of the original thermal
resistive foam is replaced by the TPWSN. However, the proposed
TPWSN will change the window’s internal temperature profile, which

Table 5
Material cost breakdown of the TPWSN system.

Function Parts Vendor #  Unit Total
price price
$) $)

Sensor DHT 11 Adafruit 1 5 182.30

Micro-controller ESP 32 DFRobot 1 18

FIREBEETLE

Voltage booster LTC 3108 Linear Tech 1 8

Battery LTC 4071 Linear Tech 1 6

management

Battery 500 mAh Adafruit 1 8

battery

Thermoelectric 1261G-7L31- Custom 4 34.2

generator 04CL Thermoelectric

Thermo - - 4 0.12

connector
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impacts the water condensation inside the window frame. Therefore, it
might introduce potential water leakage and short current to the system.
From a market perspective, the proposed system is designed for newly
manufactured window frames and is not robust to retrofitting the
existing windows. More investigations are needed to provide a solution
for existing windows with different profiles.

5. Conclusions

This paper presents the design of a thermoelectric-powered wireless
sensor network system inside a window frame and demonstrates its
potentials for the next generation of smart building envelope systems.
The self-powered design is achieved by balancing the harvested and
consumed energy and is validated by the lab test. The corresponding
energy equilibrium analysis is proposed to achieve the balance in any
geographic location with appropriate engineering of variables. The case
study based on New York City demonstrated that the self-powered
design could be achieved with two energy harvesting units and one
measurement every two hours. The low sampling frequency is usually
enough for many building envelope applications but could be increased
by adding more energy harvesting units. The key system performance
and features are listed as follows:

e The optimized internal structure is proposed to maximize the tem-
perature difference on thermoelectric generator’s surfaces based on
heat transfer analysis in Abaqus.

e 5.1 mW thermoelectric power could be harvested based on 6 °C of
temperature difference on 9cm?of thermoelectric generator.

e A voltage boosting integrated circuit (LTC3108) and a battery

management circuit (LTC4071) are required to boost up and regulate

the ultra-small voltage for battery charging, which provides a 33.4%

energy conversion rate from thermoelectric generators to the

battery.

The power consumption depends on the ratio of awake and deep

sleep time and can be as low as 0.42 mW for one measurement every

two hours.

The sensor data is wirelessly transferred to Google Sheet through the

local Wi-Fi network, which could be changed to Bluetooth Low En-

ergy for lower energy consumption.

Energy equilibrium algorithm is proposed based on the test data,

based on which 9cm?of thermoelectric generators provides enough

power for the proposed system to work in New York City’s weather
condition.

The energy equilibrium design does not have a unique solution, and

the variables can be modified to accommodate the design and en-

gineering needs.

The proposed system is robust to various sensors and informs the

next generation of the smart building envelope systems.

Further studies are needed to quantify the impact of the proposed
system on the internal temperature profile, so as to eliminate the po-
tential water condensation inside the window frame. The retrofitting of
the existing window systems also deserves further investigation, such
that a much larger market could be available for future applications.
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