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Abstract

We prove that the free energy of the log-gamma polymer between lattice points (1, 1)
and (M, N) converges to the GUE Tracy—Widom distribution in the M'/3 scaling,
provided that N/M remains bounded away from zero and infinity. We prove this
result for the model with inverse gamma weights of any shape parameter 6 > 0
and furthermore establish a moderate deviation estimate for the upper tail of the free
energy in this case. Finally, we consider a non i.i.d. setting where the weights on
finitely many rows and columns have different parameters, and we show that when
these parameters are critically scaled the limiting free energy fluctuations are governed
by a generalization of the Baik—Ben Arous—Péché distribution from spiked random
matrices with two sets of parameters.
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1 Introduction and main results
1.1 The log-gamma polymer

The log-gamma polymer was introduced by Seppildinen [36] and is the only vertex-
disorder 1 + 1 dimensional directed polymer model that is known to be exactly solvable,
in the sense that the distribution of its free energy can be computed explicitly. The
contribution of our present work is to establish asymptotics of this model’s free energy
fluctuations over a very wide range of parameters which control the dimensions of the
polymer as well as the nature of its disorder. Proving these general asymptotic results
require us to considerably rework the fundamental starting formula for this model, i.e.
the Fredholm determinant Laplace transform formula. Our asymptotic results have
applications that are being pursued in a number of contexts including showing tightness
of the log-gamma line ensemble [7], showing a phase transition for the maximum of
the log-gamma polymer free energy landscape [6,26] and showing that the log-gamma
polymer converges to the KPZ fixed point [43].

Definition 1.1 A continuous random variable X is said to have the inverse-gamma
distribution with parameter 6 > 0 if its density is given by

1{x >0} 4, o
To - x cexp(—x ). (1.1)

fo(x) =
The log-gamma polymer model that we consider in this paper depends on two
integers M, N > 1 and two sets of parameters ¢ = (ai,...,0y) € R’:’O and
a=(ai...,ay) € RV suchthat6; ; = o; —a; > Oforalli = 1,..., M and
j=1,...,N.

Weletw = (w;j:1<i<M,1<j<N)denote the random matrix such that
wj,j are independent random variables with density fp, ; as in (1.1). We denote by
(2, F, P) the probability space on which w is defined. A directed lattice path is a
sequence of vertices (x1, y1), ..., (Xkx, Yk) € Z? such that x; < xp < --- < Xk,
yi <y <---<yrand (x; — xj—1) + (yi — yi—1) = 1fori =2,..., k. In words, a
directed lattice path is an up-right path on Z2, which makes unit steps in the coordinate
directions (see Fig. 1). We let ITy; x denote the set of directed paths 7 in 72 from
(1, 1) to (M, N). Given a directed path = we define its weight

w(r) = ]_[(i’j)en wi . (1.2)
We also define

ZMN _ Znen w(r), (1.3)
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Fig. 1 A directed lattice path = € I1ys y in the log-gamma polymer model

to be the partition function of the model.

The main goal of this paper is to understand the asymptotic behavior of log ZM-V
as N, M — oo while N/M remains bounded away from 0 and co. We describe these
asymptotic results now.

1.2 GUE Tracy-Widom asymptotics

In this section we consider the log-gamma polymer with i.i.d. weights. Fix 6 > 0 and
assume thata; = Oforall j =1,...,Nando; =0 foralli =1,..., M. Before we
state the result we introduce some necessary notation. Define the function

Zoo 1
n=0 (n+9—z)?

8(2) = , (1.4)

ZOO 1
n=0 (n+z)?

and observe that g is a smooth, increasing bijection from (0, 6) to (0, co). Clearly, the
inverse function g_l : (0, 00) — (0, 9) is also a strictly increasing smooth bijection.
We now define for x € (0, co) the function

ho(x) =x - W(g ' (x) + W@ —g ' (1)), (1.5)

where W (x) is the digamma function, i.e.

@ > L
W(Z)_F(Z)_ yE+n2:(:)[n+l n—i—z]’ (1.6)
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and yg is the Euler constant. One readily observes that /g is a smooth function on
(0, 00). Finally, for any x > 0 we define

oo o0 ]/3
X 1
7= [Z TEF=ISEAP Drey: —g‘(x>>3} -7

n=0 n=0

For all N, M > 1, we define the rescaled free energy

log ZMN + Mhg(pm)

FM N = = T (o)

. pm=N/M. (1.8)

We are now able to state the convergence to the Tracy—Widom distribution.

Theorem 1.2 Let 0 > O and & € (0, 1). Let F(M, N) be as in (1.8) and assume that
we let M, N go to infinity in such a way that the sequence pyy = N/M € [8, 8] for
all sufficiently large M. Then for all y € R we have

where Fgug is the GUE Tracy—Widom distribution [42].

Remark 1.3 Note that Z¥-N and ZV-M are equal in distribution. Using the fact that
g 1 (1/x) = 0 — g~ (x), this implies that F(M, N) and F(N, M) are also equal in
distribution. Owing to this symmetry, it suffices to prove Theorem 1.2 for pys € [4, 1].

Remark 1.4 Some special cases of Theorem 1.2 had been established in previous
works. First, it was proved in [11, Theorem 1] that the free energy log Z*-N has
Tracy—Widom GUE fluctuations with a restrictive assumption on the shape parame-
ters of the gamma distribution (6 was assumed to be sufficiently small), and only for
the free energy along the main diagonal M = N, i.e. pyy = 1. The result was then
extended in [25, Theorem 2.1] to cover all values 6 > 0, still restricting to the diagonal
direction. Theorem 1.2 extends the result of [11,25] to any sequence of slopes py, that
is uniformly bounded away from O and co. We mention that the asymptotic analysis
becomes notably more involved once pj; # 1—see Remark 1.18. For arbitrary slope
p, the expression for hg(p) given in (1.5) is a consequence of the law of large num-
bers for the free energy proved in [36, Theorem 2.4]. In the physics literature, [40]
used a non-rigorous replica Bethe ansatz and critical point analysis to compute the
Tracy—Widom GUE limit (1.9) for general slopes.

Remark 1.5 Theorem 1.2 constitutes an important input of a work in preparation [7]
proving the tightness of the top curve of a discrete version of the Airy line ensemble
[14] naturally associated to the log-gamma polymer [22,44]. This top curve describes
the free energy of polymer paths of fixed length, seen as a function of the endpoint,
and is expected to converge to the Airy, process as the length of polymer paths goes
to infinity.
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Remark 1.6 We mention that if N/M — 0, there are two cases that are understood:
if N remains bounded the fluctuations are of Gaussian type and described by the
O’ Connell-Yor semi-discrete directed polymer [32];if N = M'/* with0 < o < 3/14
the fluctuations follow the GUE Tracy—Widom distribution as follows from the notably
more general setup of [2].

Theorem 1.2 is proved in Sect. 4.1. The starting point of our analysis is a for-
mula, Theorem 2.12, for the Laplace transform of Z M.N This formula expresses the
Laplace transform as a Fredholm determinant of a convolution kernel that depends
on the parameters @ and a of the model. The proof of Theorem 1.2 is then based on
the asymptotic analysis of this Fredholm determinant formula via the steepest descent
method. The main challenges that we overcome in this pursuit are finding suitable
contours that allow us to perform a steepest descent argument and obtaining the nec-
essary estimates for the kernel in our Fredholm determinant along these contours.
The behavior of the integrand in the definition of the kernel along various contours is
studied in Sect. 5 and estimates on the kernel itself are given in Sect. 6.3.

Our starting formula in Theorem 2.12 leverages an earlier result of [10] (which in
turn built upon earlier work of [5,11,15]) which contain a similar Laplace transform
formula. Namely, the functions in [10] are the same, though the contours on which they
are integrated and on which the Fredholm determinant is defined are rather different
and unsuitable for the broad range of asymptotics that we investigate here. Reworking
that formula into one which is appropriate for asymptotics requires significant effort
and is the content of Sect. 2. The preface to Sect. 2 provide discussion on this point
and the relation of our work to previous literature.

1.3 Moderate deviation estimate

The careful asymptotic analysis of the Fredholm determinant carried out for the proof
of Theorem 1.2 also yields, as a byproduct, moderate deviation bounds for the one
point fluctuations of the free energy. These bounds hold uniformly in the slope. Such
tail bounds are of independent interest, and we will provide one application in a paper
in preparation [6]. That work considers the maximum of the free energy landscape
for the log-gamma polymer. In other words, we allow the starting and ending points
for the log-gamma polymer to vary within an N by M box and study maximum for
the logarithm of the associated partition functions. In [6], we prove a phase transition
for how this maximum is achieved as controlled by 6. This is partially motivated by
recent results of [26] which relates this question to the study of a singular values for
a random Schrodinger operator on the honeycomb lattice.

We continue with the same notation as in the previous section. In particular, 6 > 0
isfixedando; =6 fori =1,...,Manda; =0for j =1, ..., N. The below result
is proved in Sect. 4.2.

Theorem 1.7 Let 6 > 0 and § € (0,1) be given. Then there exist constants
C1, Ca, c1,c2 > 0alldepending on 0, § such that the following holds forall M, N € N
with N/M € [8,8 1andx > 0

32

P(F(M,N) > x) < Cre= ™M 4 Cre 2", (1.10)
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Remark 1.8 A different upper-tail estimate has been previously obtained in [21], which
proves a large deviation principle for log ZM-V with an explicit rate function. In the
present setting, this corresponds to scaling x as x = M>/3y. More precisely, for y > 0
fixed, [21, Theorem 2.2] shows

P (f(M, N) > yM2/3) < Ce M,

where /(-) is an explicit rate function. It was noted in [21, Remark 2.9] that I (¢) =
Ce32 4 o(e3?) as e goes to 0, which is consistent with Theorem 1.7. Here C > 0 is
a constant depending on 6 and the ratio of N and M. The inequality in Theorem 1.7
becomes relevant (i.e. not implied by the results from [21]) in the moderate deviation
regime, that is when we consider deviations of F (M, N) by x, whose size is smaller
than M?/3 and much larger than 0.

Remark 1.9 For very large M, the distribution of F(M, N) is close to the Tracy—
Widom distribution by Theorem 1.2, and the right-hand side of (1.10) is dominated by
Chre™2Y " which, up to the values of C; and ¢, corresponds to the upper-tail behavior
of the Tracy—Widom distribution.

Remark 1.10 Some upper-tail estimates of one-point fluctuations have been obtained
for a variety of models in the KPZ universality class, such as the KPZ equation itself
[16,19], the asymmetric simple exclusion process [18], the semi-discrete O’ Connell—
Yor polymer model [39], longest increasing subsequences of a random permutation
[28,35], or the Laguerre Unitary ensemble [29] (which relates directly to exponential
last passage percolation, i.e. the zero temperature limit of the log-gamma polymer).
In particular, [28] proves a moderate deviations principle with the optimal constant
c =4/3.

1.4 Baik-Ben Arous-Péché asymptotics

In the following section we describe a different scaling limit for the free energy of the
log-gamma polymer model from Sect. 1.1, which is obtained when a finite number of
the parameters a; and «; are suitably scaled. As will be explained, one obtains another
limit, which is a finite rational (in terms of the determinantal kernel) perturbation of the
GUE Tracy—Widom distribution. We call the resulting distribution a Baik—Ben Arous—
Péché (BBP) distribution with two sets of parameters. We define this distribution in
the following section.

BBP asymptotics with one set of parameters were first defined in the study of expo-
nential last passage percolation in the original BBP paper [4] and their two parameter
deformation was then introduced by Borodin—Péché in [13]. This class of distribu-
tions have been shown to arise in some interacting particle systems [1,3,4] and in the
O’Connell-Yor semi-discrete directed polymer [8,41] when initial data or boundary
conditions are suitable perturbed (as presently). They should similarly arise in all
Kardar-Parisi-Zhang universality class models.

For the log-gamma polymer model, our results are the first instance of BBP asymp-
totics that have been obtained. In fact, one of our motivations for filling this gap now
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is that there is a significant interest recently in BBP type asymptotics due to the key
role that they play in the general convergence theorem announced in [43]. In a sense,
the results of [43] suggest that once the BBP asymptotics are established for the log-
gamma polymer, it should be possible to prove convergence of the model to the KPZ
fixed point. We state exactly those needed asymptotic result as Theorem 1.15 below.

1.4.1 Borodin-Péché’s extension of the BBP distribution with two sets of parameters

We introduce the following useful notation. For a € C and ¢ € (0, 7) we define the
contour Cy_¢ to be the union of {a + ye~ 9} yer+ and {a + ye'?) yer+ oriented to have
increasing imaginary part. Throughout the paper we write i = /—1 and reserve the
usual letter i for indexing purposes.

Definition 1.11 Letr,c € Z>p and fix X = (x1, ..., x) € Rlandy = (y1,..., ¥) €
R such that min(y) > max(X). In addition, suppose that a, b € R are such that
min(y) > b > a > max(X) (by convention max(¥) = —oo if r = 0 and min(y) = oo
if ¢ = 0). With this data set for r € C

Fipp:z,5(r) = det (1 + KP) , 111
BBP;%,5 (") et(I+ K, L2(Conere) (1.11)
where KBPBP is defined in terms of its integral kernel
1 LW = x) 17 Om— )
KPP0y = — [ [ o—= [
27i Je, (v —xp) m — w)
T n=1 m=1 (1.12)

exp(—v3/34+w?/3 —rw+rv)
' (v —w)(w —v)

In equation (1.11) the expression on the right-hand side is a Fredholm determinant;
we refer the reader to Sect. 2.1 for some basic definitions and facts about the latter.
Explicitly, we have

o0
1
det(I+KBBP> =1+ _/ /
' L2(Ca3x/4) nZ:;”! Ca,37/4 Ca3n/4
n u dvi
i,

det[KPPP ;. 0))] .
etk i vp) j=1 1 Lo

(1.13)

The following result summarizes the basic properties we will require for Fpp. 3 5—
its proof can be found in Sect. 4.3.

Lemma 1.12 The integral in (1.12) is absolutely convergent, each summand in (1.13)
is an absolutely convergent integral and the resulting series is absolutely convergent
for each r € C; in particular, the function Fggp.z ; from Definition 1.11 is well-
defined. Moreover, Fggp.z 5(r) does not depend on the choice of a,b as long as
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120 G. Barraquand et al.

min(¥) > b > a > max(X), is entire in r and defines a cumulative distribution
function, when restricted to R.

We call Fgpp,z,5 the Baik—Ben Arous—Péché distribution with two sets of parame-
ters. The name comes from the fact that when ¢ = 0 we have that Fpp. 3 3 becomes
the usual Baik—Ben Arous—Péché distribution [4] as can be deduced from [9, Lemma
C.2]. When r = ¢ = 0 then Fggp,z 5 becomes the Tracy—Widom distribution. Note
that in its full generality, Fppp, 3,5 Was first introduced in [13], hence we could call it
the Borodin—Péché distribution, though for shorthand we will refer to all one and two
parameter distributions as BBP.

Remark 1.13 In [13] the authors considered a generalization of the extended Airy
kernel, which they called the extended Airy kernel with two sets of parameters. If
one sets the time parameters #; = f, in [13, equation (4)] one precisely arrives at
Fggp;z,5- In particular, Fgpp, 3,5 arises from the extended Airy kernel with two sets
of parameters the same way the GUE Tracy—Widom distribution arises from the usual
extended Airy kernel.

Remark 1.14 There are other asymptotic problems which one could pursue for the
log-gamma polymer based on our preasymptotic formula. This includes studying the
model where inhomogeneity parameters are decaying or growing according to a certain
profile (see related work in [12,23]), or taken random under some distribution (see
related work in [20,24]).

1.4.2 Asymptotic result

Going back to the log-gamma polymer from Sect. 1.1 we consider a different scaling
regime of the model. Let us first state the scalings and asymptotic result, and we will
provide some explanations for this specific choice of scalings in Sect. 1.5 below.

We fix r,c € Z>o and assume M, N > 1. We fix ¥ = (x,...,x) € R and
Y= (1,...,Y) € Rsuchthat min(y) > max(x) (if r = 0 or ¢ = 0 this condition is
void). We also fix 8 > 0, pyy = N/M and g, hy, oy as in Sect. 1.2. With this choice
of parameters we consider the following scaling

aj(M,N)=g " (pa) + xj05 "o M3 o Py for j =1, .,

@i (M, N) =g " (pa) + yioy " padM ™ + o1 3 fori = 1, ¢,

aj(M,N)=0f0rj=r+1,...,N—|—r aif(M,N)y=06fori=c+1,...,M +c,
(1.14)

where we always assume that M is sufficiently large so that o; —a; > 0 for j =
1,...,N+randi =1,..., M+ c(this is possible by our assumption that min(y) >
max(X) and py, is bounded away from 0 and co).

In this section we consider the one-point asymptotics of the rescaled free energy

IOg ZM+C,N+r 4 Mh@(pM)
M1364(pum) '

FM+c,N+r) = (1.15)
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when N, M — ooand py; = N /M remains bounded away from 0 and oco. We mention
here that the distribution of ZM+%N+T is invariant under separate permutations of
the parameters («q, ..., ¢y +c) and (ay, ..., ay+r). This can be deduced from [15],
which relates the distribution of the partition function ZM+¢N+" to class-one g, (R)-
Whittaker functions or alternatively from Theorem 2.12. Thus in (1.14) we could
have rescaled any r (resp. ¢) of the a; (resp. «;) parameters, and not necessarily those
of lowest index, without affecting the distribution of Z¥¥¢N+" and correspondingly
FM +c,N+r).
The below result about this scaling regime is proved in Sect. 4.3.

Theorem 1.15 Let 6 > 0 and § € (0, 1) and assume the same notation as in the
beginning of the section. Let F(M + ¢, N +r) be as in (1.15) and assume that we let
M, N go to infinity in such a way that the sequence py = N/M € [8,87 '] for all
sufficiently large M. Then for allr € R

lim P(F(M +c¢c,N+r) <r)= Fppp.z.5(), (1.16)
M— o0 ’

where Fggp.z 5y is as in Definition 1.11.

Remark 1.16 The distribution of (M, N) and F(N, M) are equal, up to changing the
parameters (X, ¥) into (=¥, —X). Furthermore, the BBP distribution is left invariant
by such an exchange of parameters, as can be seen by performing the change of
variables (v, w) — (—w, —v) in (1.13). Hence, as in Remark 1.3, it suffices to prove
Theorem 1.15 for pys € [6, 1].

Remark 1.17 Convergence to the one parameter BBP distribution (i.e. Fgpp. 3,3 With
¢ = 0) has been previously established for the O’Connell-Yor semi-discrete polymer
in [9]. In addition, the O’Connell-Yor semi-discrete polymer with vertical and hor-
izontal boundaries is considered in [10,41], and [41] established convergence to the
two parameter BBP distribution Fppp. 3 5. The starting Laplace transform Fredholm
determinant formulas that are used in [10,41] are of a similar form as those that we
use here. For the O’Connell-Yor polymer, the core of the asymptotic analysis is based
on understanding the behavior of the real part of F,(z) = logI'(z) — Kz> /2 + fiz
along various contours, where « > 0 is a slope parameter and f, is some appropriate
constant. In contrast, the core of our paper’s asymptotic analysis is based on under-
standing the behavior of the real part of G 9(z) = kW (z) — V(0 — z) — 8.2, Where
W is the digamma function of (1.6), x > 0 is a slope parameter, 6 > 0 is the param-
eter of the inverse gamma variables, and gy . is some appropriately chosen constant.
Unlike Fi (z), the function G ¢(z) involves two parameters (k, 0) and two digamma
functions, which makes the study of its real part along different contours in Sect. 5
quite involved.

Remark 1.18 The result in [25] corresponds to setting M = N andr = ¢ = 0 in
Theorem 1.15. In [25] the authors dealt with the case x = 1 of our formulas, which
also significantly simplifies the analysis and they manage to use the same contours
as in [10] since one gets nice cancellations coming from the fact that the coefficients
in front of W(z) and —W (6 — z) are the same in G, ¢(z). When k # 1 a completely
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different choice of contours and analysis becomes necessary to obtain useful estimates
on the real part of G (2).

1.5 Heuristic explanation for the scalings

Let us now explain why we have scaled the parameters a; and o; as in (1.14) and
provide some heuristic interpretations. For simplicity of the discussion, assume that
only one column has a different shape parameter, that is, we assume thatr = 0, c = 1
and oy € (0, 0), such that the shape parameters of weights are 01 ; = a1 < 0 along the
fist column, and for all i > 2, j > 1, 6; ; = 6. This means that the polymer weights
w;, ; will be typically larger on the first column, and polymer paths may spend more
time there.

Using the law of large numbers for the free energy of the i.i.d. model (see [36]
or Theorem 1.9 in our present work), and the fact that E [log wy, j] = —W¥(ay), one
expects that for N = [ pM | the contribution to the partition function of paths which
exit the first column near the location (1, x M) to be approximately

exp ( — MxW(ay) — Mhg(p — x)).

Thus, we expect the law of large numbers for the free energy will be given by

lOgZM+1’N
lim —22 _ _ max [—x‘ll(ozl)—hg(p—x)}. (1.17)
M—o00 M x€(0,p)

When o is large enough, the maximum in (1.17) is achieved at x = 0, but when
oy < O, for a certain critical value 6., the maximum is attained at some x > 0. The
critical value 6, is such that

—W(0,) = —hj(p), orequivalently 6, =g '(p).

This argument can be extended to several rows and columns being perturbed, and leads
to the scalings considered in (1.14).

When o) < 6., we expect that polymer paths yielding the main contribution to the
free energy will stay on the first column for a length x M, where x is the maximizer
in (1.17). The fluctuations of weights on the first column would dominate and this
would result in Gaussian asymptotics. This could be proved through an asymptotic
analysis of the Fredholm determinant as in the proof of Theorem 1.15, or via more
probabilistic methods, but we leave this out of the scope of the paper.

When, however, o1 > 6., the first column being different will have no effect at
large scale in the scalings and statistics (this can be rigorously deduced from our
Theorems 1.2 and 1.15).

Consider now the critical case and leta; = g~ !(p) —i—yloe_l (pm)M~'3 asin 1.14.
Itis expected that paths yielding the main contribution to the partition function will exit
the first column at a random vertical coordinate of order M%/3 (this heuristic claim
is partly justified by the results of [36] on the transversal exponent of paths under
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the quenched polymer measure). This M>/3 is precisely the scale which balances the
energy/entropy competition: the contribution to the free energy of the weights on the
first column will have roughly the same variance as the contribution of bulk weights,
the relative proportion being controlled by the parameter y;. This results in BBP
asymptotics interpolating between Gaussian and GUE Tracy—Widom statistics.

Remark 1.19 Usingresults from [21] on thei.i.d model, there is another way to interpret
the value of the critical point. Denote by Z(m, n; M, N) the partition function between
points (m, n) and (M, N) of the i.i.d. log-gamma polymer model as in Sect. 1.2. It
is proved in [21, Theorem 4.1] that for any n, m > 1, the vertical increments ratios
Z(m,n; M,N)/Z(m,n + 1; M, N) almost surely converge, as M and N = [pM |
go to infinity, to an inverse gamma random variable of parameter g~'(p) (while the
horizontal increments ratios Z(m,n; M, N)/Z(m + 1,n; M, N) converge to inverse
gamma random variables of parameter & — g~ !(p)). Hence, the critical value of o] is
precisely such that the weights on the first column have the same size as the vertical
increments ratios in the i.i.d model.

1.6 Outline

Section 2 establishes the Fredholm determinant Laplace transform formula stated as
Theorem 2.12. Section 3 contains the asymptotic analysis of this Fredholm determinant
formula. Section 4 concludes with proofs of Theorems 1.2, 1.7, 1.15 and Lemma 1.12.
“Appendix 5 records properties of the digamma function ¥ and proves some technical
lemmas about the function Gy y arising in Sect. 3. Finally, “Appendix 6” contains
classic estimates for the gamma function and uses them to prove a number of estimates
used in Sects. 2 and 3.

2 Laplace transform formula

The goal of this section is to obtain a formula for the Laplace transform
E[ exp(—uZM-N)] of the partition function for the log-gamma polymer which is suit-
able for asymptotic analysis. This result is given as Theorem 2.12 and expresses
E[ exp(—uZ™-N)] in terms of a Fredholm determinant (see Sect. 2.1 for a definition
and basic properties of the latter). To be suitable for asymptotic analysis means that
the contour for the L2 space of the Fredholm determinant, as well as the contour used
in defining the kernel (via a contour integral) should be steep descent contours for the
integrand functions in the scaling N, M — oo that we eventually perform.

There are two instances prior to this paper of Fredholm determinant formulas for
E[ exp(—uzM:-N )], which have yielded asymptotics. The firstis in [11] where a small
contour integral formula was derived under the assumption that a@; are sufficiently small
and positive. The asymptotic analysis in [11] was performed when «; are all equal to
a fixed & > 0 and a; = 0, under the assumption that 6 is sufficiently close to zero.
The second is in [25], where starting from the formulas in [10] the authors were able
to derive a large contour integral formula that allows one to perform the asymptotic
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analysis when «; = 0 and a; = 0 without any restriction on 6. We mention that the
asymptotic analysis in both [11] and [25] has only been performed when M = N.

It turns out that neither of the formulas in [11] and [25] are very good for asymp-
totics when M # N and 6 > 0 is arbitrary. The small contour formulas of [11] are
immediately inapplicable as the contours only exist under the assumption that 6 is
small enough, which leaves the large contour formulas from [10,25]. When M = N
the integrand functions in these formulas enjoy a certain symmetry, that dramatically
simplifies their analysis and allows one to establish that they behave nicely along
certain vertical contours, which are suitable for asymptotics. The approach in [25] is
to work with these vertical contours. When M # N the behavior of the integrand
functions along vertical contours becomes unclear—we believe (although we haven’t
proved this) that the vertical lines are no longer descent contours. On this account,
for the general M # N case we needed to develop a formula with different contour
choices.

We discovered that the kernel in the Fredholm determinant formula for

E[exp(—uZ M.N )] behaves nicely along lines of slope 1 and this works for any
M, N > 1. The necessary estimates of the kernel along these contours will be intro-
duced later in Sect. 3 as Lemmas 3.5, 3.7, 3.9 and Proposition 3.11, whose proofs take
up the majority of Sects. 5 and 6.3.
Once we have discovered a suitable choice of contours for our asymptotic analysis we
face the immediate obstacle of ensuring that E[ exp(—uzM-N )] can be written as a
Fredholm determinant involving precisely these contours—there are several problems
in doing this and the purpose of this section is to overcome them all. We elaborate on
these problems below.

Firstly, there is no generic formula for ]E[ exp(—uZ M.N )] and instead one is forced
to start with the formulas in [10] that are for a certain polymer model that mixes
Seppaildinen’s log-gamma polymer [36] and the O’ Connell-Yor semi-discrete polymer
[33]. This mixed polymer is a one-parameter generalization of the log-gamma polymer,
which in addition to the «;’s and a;’s depends on a positive parameter 7. This model
is recalled in Sect. 2.2, where it is also established that its partition function Z M.N (1)
converges weakly in the T — 0+ limit to the partition function ZM-V of the log-
gamma polymer. The benefit of working with Z*-¥(7) is that in [10] the authors
established a general formula for its Laplace transform E[ exp(—uZ™-" (1))]. The
idea then is to start from the formula for E[ exp(—uZ™-¥ (1))], deform the contours
in that formula to the suitable contours we want in our case and send t to 04-. Since
the functions that are being integrated over these contours are meromorphic, one has a
certain level of flexibility in deforming one set of contours to another that is suitable;
however, as we are dealing with infinite contours, this necessitates that we justify the
deformation near infinity. In addition, sending t to 0+ requires certain estimates near
infinity that would allow the appropriate application of the dominated convergence
theorem. Obtaining estimates near infinity is a second problem we face, which is
resolved with the technical Propositions 2.15, 2.17 and 2.19.

A third problem we face is that the formula for E[exp(—uZM N (r))] in [10] is
only correct under the additional assumption that min(@) — max(a) > 1 while we are
interested in the fully general case of min(a) — max(a) > 0. We recall the formula
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from [10] for the correct parameter range in Proposition 2.8 and explain the issues with
this formula for general parameters in Remark 2.9. In order to fix the third problem
we derive a new formula for E[ exp(—uZ™N (1))] in Theorem 2.13, which holds in
the general case min(a) — max(a) > 0. The way Theorem 2.13 is proved is fairly
involved and takes up the majority of Sect. 2.4. The basic idea of the proof, which
will be elaborated significantly later, is to start from Proposition 2.8, which works
when min(a) — max(a) > 1 and do the deformation of the contours for that range.
Then one performs an analytic continuation argument to extend the validity of the
result to the full range of min(a) — max(a) > 0. As part of the proof, we required a
statement detailing when a Fredholm determinant depending on a complex parameter
z is analytic in that parameter—see Lemma 2.3.

The above few paragraphs give a sketch of the approach we will be taking in this
section. The argument is fairly involved, but the guiding principle is that we want
to start from the formulas for E[exp(—uZ M.N (r))] in Proposition 2.8, deform the
contours in that formula, perform an analytic continuation in a suitable parameter and
then send t — 0+. Although simple in appearance, this sequence of steps requires
one to obtain fairly detailed estimates of the integrand functions in our formulas and
constantly be careful in avoiding the large number of poles coming from gamma and
sine functions that are part of these functions.

2.1 Background on Fredholm determinants

We present a brief background on Fredholm determinants and state and prove a few
key technical lemmas that we will use throughout this section. A reader may skip
this background material and refer back to it when we begin to manipulate Fredholm
determinants in the later parts of this section. For a general overview of the theory of
Fredholm determinants, the reader is referred to [37] and [27]. For our purposes the
definition below is sufficient and we will not require additional properties.

Definition 2.1 Fix a Hilbert space L2(X, ), where X is a measure space and p is a
measure on X. When X = I', a simple (oriented) piecewise smooth contour in C, we
write L2(I") where forz € T, d 1 (z) is understood to be %. Here and throughout
the paper, we denote the imaginary unit i = /—1, to distinguish it from i which will
often be used as an index parameter.

Let K be an integral operator acting on f € L>(X, u) by Kf(x) = fX Kx,yf()
du(y). K(x,y) is called the kernel of K and we will usually assume that K (x, y)
is continuous in both x and y. If K is a trace-class operator then one defines the
Fredholm determinant of / + K, where [ is the identity operator, via

o0 n
I
det(/ + K)p2(x) =1+ ) E/X.-~/Xdet[1r<(x,-,xj)]?,,-=1]_[du(x,-), @1
i=1

n=1

where the latter sum can be shown to be absolutely convergent (see [37]).
The expression appearing on the RHS of (2.1) can be absolutely convergent even if
K is not trace-class. Whenever X and K are such that the RHS in (2.1) is absolutely
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convergent, we will still call it det(/ + K)2(x). The latter is no longer a Fredholm
determinant, but some numeric quantity we attach to the kernel K. Of course, if K
is the kernel of a trace-class operator on L%(X) this numeric quantity agrees with
the Fredholm determinant. Doing this allows us to work on the level of numbers
throughout most of the paper, and avoid constantly checking if the kernels we use
represent a trace-class operator.

In some of our applications we will have that the kernel K (x, y) depends in addition
on a complex parameter z, and then we write K, (x, y) to reflect this dependence. A
basic question which will be important in our analysis is when can one deduce that
det(I + K:);2(x) is not just well-defined (meaning that each summand in (2.1) is
well-defined and the sum is absolutely convergent) but also analytic in z. We provide
sufficient conditions for this to hold in Lemma 2.3 below. Our proof of that lemma
uses the following result.

Proposition 2.2 [31, Theorem 1]. Let (2, A, ) be a measure space, G C C an
open set and B(G) the o-algebra generated by all open subsets of G. Suppose that
f G x Q — Cis afunction that satisfies the following assumptions:

1) f(z,-) is A-measurable for every 7 € G;

(2) f(-, w) is holomorphic in G for every w € €2;

3) fQ | f (-, w)ldu(w) is locally bounded, that is, for all zg € G there exists § > 0
such that

sup /Q |f (2, wldp(w) < co.

2€G,|z—z0]| <8

Then fQ f(z, w)du(w) is holomorphic in G and may be differentiated under the
integral. More precisely, we have for any n > 0 the following conclusions:

(1) oI f is B(G) ® A-measurable and, for every A C G, sup 4 |9 f(z, )| is A-
measurable;
(2) for all compact K C G

f sup |32 £ (z, w)| dp(w) < oo
Q zeK
3) fQ f(z, w)du(w) is holomorphic in G and for each z € G,

a / 2 )dp(@) = / 0 £ (2, )d ().
Q Q

Lemma 2.3 Suppose that T is a piecewise smooth contour in C and G C C is open.
Suppose that K,(x, y) is a function such that

(1) K.(-,-)is a measurable functionon I' x T for each z € G,
(2) foreach x,y €T the function K (x, y) is analytic in z on G.

@ Springer



Fluctuations of the log-gamma polymer free energy with... 127

In addition, suppose that for every zo € G there exist a 6 > 0 and a measurable
function F(x) on " (depending on zo and §) such that

sup sup |K,(x,y)| < F(x) and / F)ldu(x)| =M < o00. (2.2)
r

z€G,|z—z0|<é yel’

Then for each z € G one has that det [Kz(xl-, xj)]?j=
in particular [, - - [ det [ K (x;, xj)]:ljzl [T'2, du(x;) is well defined. Moreover,
Jor z € G the series det(I + K;) 21y in (2.1) is absolutely convergent and defines a
holomorphic function of z in G.

| is integrable on T'", so that

Proof Let zo € G and § > 0 be sufficiently small so that Ns(z9) := {z € C :
|z —zo| < 8}1is contained in G and the condition in (2.2) is satisfied for some function
F. In particular, we have by Hadamard’s inequality that if x, ..., x, € I', then

n
det [Kz(x,-, xj)]?,j:l‘ < n"/? l—[ F(x;),

i=1

sup
2€G,|z—2z0l<8

and the latter is integrable by assumption. It follows from Theorem 2.2 that

B, (2) :=/F~-~/rdet [KeGioxp] o [ [dnen
i=1

is holomrphic in Ns(zo) and by (2.2) | B, (z)| < n"/?- M" for z € N;(zo). We conclude
that

o0

det(I + K)oy =1+ Y

n=1

B, (2)
n!

is absolutely convergent, and hence also holomorphic in Ns(z¢) as the uniform limit of
holomorphic functions, cf. [38, Chapter 2, Theorem 5.2]. Since zg € G was arbitrary
we conclude that det(/ + K;) 2 is holomorphic in G. O

The following lemmas provide a framework for proving convergence of Fredholm
determinants, based on pointwise convergence of their defining kernels and estimates
on those kernels. The proofs can be found in [17, Section 2.5].

Lemma 2.4 Suppose that T is a piecewise smooth contour in C and KV (x, y), for
N € N U {oo), are measurable kernels on T' x T such that limy_ o K% (x, y) =
K (x,y) for all x,y € T. In addition, suppose that there exists a non-negative,
measurable function F (x) on T such that

sup sup KN (x, V)| < F(x) and / FX)|dux)| =M < 0.
NeN yel’ r
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Then, for each n > 1 and N € N U {00}, one has that det [I(N(x,-,xj)]?j:1
integrable on T, so that in particular [i.--- [ det[KN (x;, xj)]:l,jzl [T, di(xi)
is well defined. Moreover, for each N € NU {oo} the series det(I + KN)Lz(F) in(2.1)
is absolutely convergent and limy_, o, det(] + KN)Lz(F) =det(I + K*)2(1)-

is

Lemma 2.5 Suppose that T'1, 'y are piecewise smooth contours and the function
x,y,2) — gfxy(z) is measurable for (x,y,z) € 't x 'y x Ty forall N € NU {oo}
and satisfies limy s o gi\{y (2) = g;’?y (z) forall (x,y,z) € T'1 xI'1 x I'y. In addition,
suppose that there exist bounded non-negative measurable functions Fi and F» on '}
and T'y respectively such that

sup sup Ig)]xy(z)I < F1(x)F>(z), and / Fi(w)|dpu(u)| = M; < oo fori =1,2.
NeN yel I

Then for each N € N U {oco} one has sz |g£{y(z)||d,u(z)| < 00 and in particu-

lar KN (x, y) = fl"z g)lc\fy (z)du(z) are well-defined. Moreover, KN (x, y) satisfy the
conditions of Lemma 2.4 withT' =T'1 and F = F1 M.

2.2 Mixed polymer model

In [10] the authors considered a polymer model that mixes Seppildinen’s log-gamma
polymer [36] and the O’Connell-Yor semi-discrete polymer [33]. In the language of
Whittaker processes [5], which we will not use or rely directly upon, this model arises
as a mixture of the Plancherel and pure alpha specializations. The model depends on
a parameter T > 0 as well as two sets of real parameters {a;};>; and {¢;};>1, which
satisfy o, > 0 and o0y, — @, > O for all m,n € N.

Before we go into the definition let us briefly explain our interest in this model.
As mentioned above, the model depends on parameters {a;};>1, {;}i>1 and T > 0
and for each M, N € N gives rise to a random quantity Z*-V (7), called the partition
function, which depends only on {a,-}f.\': 1 {ai}i"i ; and 7. As we explain around (2.8),
this partition function converges weakly as T — 0+ to the partition function Z¥-V for
the log-gamma polymer with parameters {a,-}f.V: 1 i} | (recall from Sect. 1.1 or see
below). In [10] the authors were able to find a formula for the Laplace transform for
ZM-N (1), recalled below as Theorem 2.8. We are ultimately interested in obtaining a
formula for the Laplace transform for Z*-V which is suitable for asymptotic analysis
as N and M grow. The way we go about this is by rewriting the known formula
the Laplace transform of Z*-"V(7) in a manner which is then amenable to the limit
T — 0+. This rewriting and T — 04 limit transition are performed in Sects. 2.3 and
2.4 below.

Definition 2.6 The mixed polymer model is a probability distribution on up-right paths
connecting points (—M, 1) and (r, N). These paths consist of two parts: a discrete
portion ¢ and an adjoined semi-discrete portion ¢°?. A discrete up-right path ¢¢
from (i1, j1) to (i¢, je) (written as qbd 2 (i1, 1) ' (ig, je)) is an ordered set of
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points ((i1, j1), (i2, j2), - - ., (ig, j¢)) With each (ig, jx) € 7? and each increment
(ik, Ji) — Gk=1, Jk—1) € {(1,0), (0, 1)}. A semi-discrete up-right path ¢Sd from (0, n)
to (r, N) (written as d)‘d : (0,n) / (r, N)) is a union of horizontal line segments
((0,n) = (sp,m) U ((sn,n+ 1) > (Spg1,n+ 1)) U---U((sy-1, N) — (7, N))
where 0 < s, < Sp41 < --- <sSy—1 < T.

The state space of the model consists of pairs ¢ = (¢¢, $*¢) such that ¢¢ is a
discrete up-right path and ¢*? is a semi-discrete up-right path, which are adjoined to
each other in such a way that for some 1 < n < N we have ¢>d (=M, 1) S (—1,n)
and ¢*¢ : (0,n) 7 (1, N).

We turn to defining the polymer probability measure on this space, along with
its partition function. Assume that w; ;j for —-M < i < —land1 < j < N are
independent random variables such that w; ; have the same distribution as log X; ;
with X; ; inverse-gamma distributed as in (1.1) with parameter 0 = apr4;41—a; > 0.

Asbeforewehavea = (g, ..., ay) € ]RQ’IO andd = (aj, ...,ay) € RV .Inaddition,
assume that B, (t) = a,t + W, (¢t) forn =1, ..., N, where W, (¢) are i.i.d. Brownian

motions, which are independent of the w;, ;. To each path ¢ = (%, p°?) we associate
the energy

N
E@):= Y wij+Busa)+ Y (Br(sk)— Bilsio1)). (23)
(i,j)epd k=n+1

This energy is random, asitis a function of w; ; and the By’s. We associate a Boltzmann
weight e£® to each path ¢. The polymer measure on ¢ is then proportional to this
weight. The normalizing constant, or polymer partition function, is written as Z*-" (1)
and is equal to

eEPgps, (2.4)

N

o=y Y
— #54:(0,n) /(z,N)
n=1 ¢d:(=M,1) /(~1,n)
where d¢Sd is Lebesgue measure on the simplex 0 < s, < --- < sy—1 < 7, identified
with ¢%9.

We remark that in [10] the partition function was denoted by ZV-M(7), and we
have opted to swap the roles of M and N to make the notation closer to the one from
Sect. 1.1—apart from this change we follow the same notation as in [10] (Fig. 2).

We next recall [10, Theorem 2.1], which is the main ingredient we need in deriv-
ing our Laplace transform formula for ZM-¥_ In order to state the theorem we

need a few definitions. Below we write max(X¥) = max(xy, ..., x,) and min(x) =
min(xg, ..., x,) for X = (x1, ..., x,) € R™.
Definition 2.7 Letd = (aj,...,an) € RY, @ = (a1, ..., ay) € Ri”o and suppose

that min(a) — max(a) > 0. Set yu = %max(c'z') + %min(&) and n = %max(&') +
%min(&) and fix ¢ € [0, w/4). With the latter data we let we let Cj.5.4 denote the
union of the contour {u + yei(”+¢)}yeR+ and {u + yei(”_¢)}yeR+ oriented so as to
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Wy N w_) N 4 (T, V) )
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Fig.2 An example of a mixed polymer path

v+ D,

’ 1/2
'S N 2d
o—o0—o0—+ == —t s
n ® ® |0 o
F]
/

Fig. 3 The left part depicts the contours Cg.5.¢ and v + Dy for v € Cy.g.¢- The black dots denote the

points v, v+ 1, v+2, ..., the light gray ones denote {o; +m :i =1, ..., M, m € Z=} and the dark gray
ones {a; —m :i=1,...,N,m € Z>q}. The right part depicts the contour D,
have increasing imaginary part. For any v € Cy.q.¢ We choose R = —Re(v) + 7,

d > 0 and define a contour D, as follows: D,, goes by straight lines from R — ico to
R—id,to1/2—id,to 1/2+id,to R +id, to R + ico. The parameter d is sufficiently
small so that v + D, does not intersect Cj.g.4. If ¢ € [7/6, w/4] we may take any
d € (0, 1/4]. See Fig. 3.

Proposition 2.8 [10, Theorem 2.1] Fix integers N > 9, M > 1, a real number t > 0
and @ = (aj,...,any) € RN, @ = (o1, ...,ay) € Ri’lo. Assume that min(a) —
max(d) > 1. For all u € C with Re(u) > 0 we have

E [e—“ZM’N(”] = det (I + Ku) 12 2.5)

Casag)
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where the operator Ky, is defined in terms of its integral kernel

) 1 N I'v—ay)
Kuw) = oo [ reora o [T
v n=1 "

ﬁ F(Olm —v— S) usevts+ts2/2ds

(ot —v) v+s—

(2.6)
m=1

The contours Cg.5.4 and Dy, are as in Definition 2.7 with ¢ = /6 and d = 1/4.

Remark 2.9 Proposition 2.8 is formulated precisely as [10, Theorem 2.1], except that
in [10, Theorem 2.1] the authors assumed that min(&) — max(d) > 0, whereas we
have assumed min(@) — max(a) > 1. This strengthened assumption is necessary in
order for the result to be valid with the prescribed choice of contours. Specifically, in
order for the result to hold one needs to pick contours in such a way that the poles of
the functions I'(o; — v — s) lie strictly to the right of the contour D,,. If v = u the
latter function has a pole at min(a) — u and by the definition of D, we must have
that min(a) — u > %, which upon replacing u = %max(c_i) + %min(&) implies we
must have min(a) — max(a) > 1. We believe that the authors of [10] overlooked this
point when making their choice of contours and the issue remained unnoticed in [41];
however the results of the two papers hold if one assumes min(a) — max(a) > 1. We
further remark that this problem was previously observed in [25, Theorem A.1], where
the authors proposed a different choice of contours in order to fix the issue. The authors
of [25] worked exclusively in the homogeneous case when «; are all equal to the same
number 6 > 0 and g; = 0. In this case the restriction becomes 6 > 1. It is worth
mentioning that the choice of contours in [25, Theorem A.1] fixes the problem for
0 € (0, 1] but creates a new problem when 6 > 8. In particular, the choice of contours
in [25, Theorem A.1] only works when 6 € (0, 8) since unfortunately the authours
failed to take into account the poles coming from I'(—s)["(1 +s) ats = 1,2, ...,
which all need to be to the right of D,,.

We end this section by showing that the partition function Z*-¥ () converges
weakly to Z¥-N from Sect. 1.1 as T — 0+. Let us define Z*-*(0) by

zMm0) = 3 B0, 2.7)
94:(~M. 1) 7 (~Ln)

and observe that this random variable has the same distribution as the log-gamma
partition function Z¥-" with parameters {a; Y {ai}f‘i | from (1.3). We claim that

lim ZMN(z) = z"N(0) almost surely. (2.8)
T—>0+
To see this let Ex denote the event

Ex = {|Bk(s)| < Kfors € [0.1].k € (1.... N} and lim By(s) = 0}.
S—>
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Fig.4 The figure depicts the
contour Cy ¢ for ¢ = 37/4 and
Dy (b, w/4,d) witha, b € R and
b > a. The black dots denote the
points v, v+ 1, v+2,...

Then on E, as the volume of the simplex 0 < 5, < 5,41 < --- < sy—1 < T isat
most tV 7,
N-1
lim sup Z"¥ (1) < lim sup Z ZMn () . N1 CNADK o 7 M.N () — zM-N (),
>0+ =0+ n=1

lim inf ZM-N (7) > liminf ZM-N (0)eB¥ @ = ZM:N (0).
=04 =0+

Since Ugen Ek s a set of full probability we conclude (2.8).

2.3 Laplace transform for the log-gamma polymer

In this section we derive as Theorem 2.12 a formula for the Laplace transform of ZM-V
from (1.3), which is suitable for asymptotic analysis in the sense we described earlier.
We continue with the same notation as in Sect. 2.2 and also introduce the following
notation, see also Fig. 4.

Definition 2.10 Fora € C and ¢ € (0, ) we define the contour C, ¢ to be the union
of {a + ye 1P} yer+ and {a + ye'?) yer+ oriented to have increasing imaginary part.

Definition 2.11 Suppose thata € C, ¢ € (0,7),d > 0 and v € C. From this data
we construct a contour that consists of two parts. The first, called D,lj, is Cqp\{z :
Im(z) € [Im(v) —d, Im(v) +d]}. Let z_, z4 be the points on C, 4 that have imaginary
parts Im(v) — d and Im(v) + d respectively. The second part of the contour, called Dg,
consists of straight oriented segments that connect z_ to v + 2d —id to v + 2d + id
to z4+. We will denote the resulting contour by D, (a, ¢, d) or just D, when the other
parameters are clear from context.

The goal of this section is to establish the following result.
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Theorem 2.12 Fix integers N > 9 M > landa = (ay,...,ay) € RN, a =
(ay,...,0n) € Ri”o such that min(a) — max(a) > 0. Leta,b,d € Rand u € C be

such that min(@) > b > a > max(a), d € (0, min (1/4, (b — a)/4)) and Re(u) > 0.
Then

E I:eflAZM'N:I = det (1 + KM)L2(Ca.3J1/4) s (29)
where the operator K, is defined in terms of its integral kernel
Koo, o) 1 f P ﬁ T(v—ay) 5 T(om —w) u”dw
T 2w Jp, sin(r (v — w)) AT —ay) L2 T —v) w—v"
(2.10)

where Cy 354 and Dy = Dy (b, w/4, d) are as in Definitions 2.10 and 2.11.

To prove Theorem 2.12 we need the following result, whose proof is postponed to
Sect. 2.4.

Theorem 2.13 Fix integers N > 9, M > 1, a real number T > 0 and a =
(ai,....,ay) € RN, @ = (ai1,...,am) € RY such that min(@) — max(a@) > 0.
Let min(a) > b > a > max(d), d € (0,min(1/4, (b —a)/4)) and u € C with
Re(u) > 0. Then

_ 7MN
E [e uz m] =det (I + K3) 12¢, 100 (2.11)
where the operator K|} is defined in terms of its integral kernel
N
1 '(v—
Ky, v) = — — l_[ v = an)
2wi Jp, sin(w (v — w)) il I'w —ay)
M _ 2.2
1—[ oy, — w) u? Vet —v )/zdw7 2.12)

ol oy, —v) w—v

with Cy 354 and Dy = Dy (b, /4, d) as in Definitions 2.10 and 2.11.

Remark 2.14 The Fredholm determinants in Theorems 2.12 and 2.13 are asin Sect. 2.1.
In particular, part of the statement of these theorems is that the kernels are well-defined,
each term in the series (2.1) is finite and the series converges for the given choice of
parameters.

In addition, we require the following two results, whose proofs are given in Sect. 6.

Proposition 2.15 Fix M,N > 1,a = (a1, ...,an) € RN, @ = (a1, ..., apy) € RM,
T >0, a compact set K C C and v, u € C with Re(u) > 0. Then there exist positive
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constants L, Cy, co, dependingon M, N, a,a, T, v, uand K, such thatift € [0, T},
x,ae K, w=a+zarg(z) € [n/4, /31U [—x/3, —7 /4], |[w| > Lo

M
T Hm:l I'(x +om — w)uwfvet(wzfuz)/2
sin(r (v — w)) ]_[flvzl I'(w — ay,)
< Coe~colwlloglwl (2.13)

Remark 2.16 The proof of Proposition 2.15 can be found in Sect. 6.1, see Proposi-
tion 6.1, and boils down to analyzing the real parts of the functions

M N
Z logT'(x + oy — w) — Zlog I'(w — ay,) and Tw?

along lines of slope ¢ € [n/4, /3] U [—n/3, —m/4]. The most common way we
apply Proposition 2.15 in the text is in applications of Cauchy’s theorem, where we
seek to deform infinite w-contours near infinity. Specifically, the estimate in (2.13)
allows us to justify deforming one infinite w-contour to another one as long as both
contours are contained in a region covered by order one translates of the sectors
arg(z) € [n/4, /31U [—n/3, —m /4] in C, and the deformation does not cross any
poles of the integrand.

Proposition2.17 Fix M\N > 1, T > 0, t € [0,T], @ = (ay,...,an) € RV,
a=(ai,...,ay) € RM andu € CwithRe(u) > 0. Put 6y = min(a) — max (@) and
assume that 6y > 0 and 8y € (0, min(1/4, 60/16)). Suppose that v, v' € Cq ¢ as in
Definition 2.10 with a € [max(a) + 8o, min(@) — 58] and ¢ € [37 /4, 57 /6). Finally,
fixb € [a+28¢, min(a)—380] and denote by D, the contour Dy (b, 7 /4, 8) as in Defi-
nition2.11. Then there exists a positive constant Cy depending ona, a, 8o, u, N, M, T
(and not t ) such that if x € C with d(x, [0, 1]) < 8¢ then we have

/ mdp(w) ﬁ (v —ay) ﬁ T(x + i — w) u? Vet @ —v")/2
D )

, sin( (v — w) ol 'w —ay) ol I'x +a, —v) w—v

< CO .
=1+ vf2

(2.14)

Remark 2.18 The proof of Proposition 2.17 can be found in Sect. 6.1, see Proposi-
tion 6.3, and boils down to analyzing the real parts of the functions

M N
Z logT(x + oy — V) — Zlog I'(v —a,) and Tv?

m=1 n=1

along lines of slope ¢ € [37 /4, 5 /6]U[7x /6, Sm/4]. Obtaining good bounds on the
last expression and combining the latter with (2.13) allows us to control the integral
in (2.14) over Dllj, as in Definition 2.11. The integral over Dg, as in Definition 2.11,
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is estimated by deforming D% to a short contour connecting z_, z4+ and estimating
the integral over this new contour and the sum of the residues at the simple poles
v = w+k for k € N that are being crossed in the process of the deformation. The way
we apply Proposition 2.17 in the text is to obtain kernel estimates that are necessary
for the application of Lemmas 2.3 and 2.4.

Proof of Theorem 2.12 From (2.8) we know that Z¥-V (1) converges almost surely to
ZM-N(0) as T — 0+. By the bounded convergence theorem (here we use Re(u) > 0)
and the distributional equality of Z**V (0) and Z”" we conclude

E [e—”Z’”’”] = lim E [e—"ZM’N(”] . (2.15)
=0+

In view of Theorem 2.13 it suffices to show that

lim det (I + K;;)

0t L2(Caana) — det (1 + Ku)p2

(Ca3n/4) * (2.16)

From Proposition 2.15 we have that K[ (v, v’) and K, (v, v') are well-defined. Let
us denote

wz—vz)/Zuw—v M

7( N _ B
Fr(w,v',v) = e )l_[ '(v—ay,) 1—[ (o, — w)

sin(zw(w — v))(w — v’ C'(w —ay,) Ty, —v)

n=1 m=1

It is clear that pointwise for fixed v, v, w we have lim;_g Fy(w,v,v) =
Fo(w, v, v). By the Dominated convergence theorem with dominating function
Co exp(—co|w| log |w]|) (here we use Proposition2.15 with K = {0}U[max(a), min(@)],
T =1,and M, N,a,a,u, v as above) we conclude for v, v € Cy 37/4

1
lim K!(v,v)= lim — | Fr(w,v,v)d
0 u (@, v) 0+ 27 D, (W, v, v)dw
1
= — Fo(w, v, v)dw = K, (v, V). (2.17)
2mi D,

Let 80 = min(d/4,a — max(a), (min(@) — b)/4). By Cauchy’s theorem we can
deform D, (b, /4, d) in the definition of K (v, v") and K, (v, V') to Dy (b, /4, &)
without affecting the value of the integrals. Here the poles we need to avoid during the
deformation are the points v +n for n € Z coming from sin(w (w — v)) in F; (w, v/, v)
and the points «,,, + n forn € Z, n > 0 coming from the functions I' (¢, — w) in
F(w, v, v) and by the definition of 8y and d we know that none of these poles are
crossed in the process of the deformation. We continue to write D,, for this new contour.
From Proposition 2.17 (appliedto T = 1,a, b, M, N, u, a, & as in the statement of this
theorem, 8y = min(d /4, a — max(a), (min(@) — b)/4), x = 0, ¢ = 37w /4) we know
that if ¢ € [0, 1] there is a T-independent constant C such that for v, v' € C, 35 /4 We
have

Co

K'(v,V)| < ——.
Ki)l = s

(2.18)
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Using (2.17) and (2.18) we apply Lemma 2.4 with I' = C; 374, F(v) = %ﬁ)‘z to
conclude (2.16). In particular, observe that Lemma 2.4 implies that the series defining

the determinants on both sides of (2.16) are absolutely convergent. O

2.4 Proof of Theorem 2.13

In this section we give the proof of Theorem 2.13, which we needed to prove The-
orem 2.12. We require the following proposition, whose proof is deferred to Sect. 6.

Proposition2.19 Fix M,N > 1,a = (a1, ...,an) € RN, @ = (a1, ..., ay) € RM,
T > 0, a compact set K C C and v, u € C with Re(u) > 0. Then there exist positive
constants Ly, Cy, co, depending on M, N, a, a, t, v, u and K, such thatif w = a +z
witha € K, arg(z) € [x/4, 7w /21U [—n/2, —m /4], |w| > Lo we have

T T, T — w)

. i uw—ve‘f(wz—vz)/2 < Coe_CO|w|lOg|w|. (219)
sin(z (v —w)) [T,_, T'(w —ay)

Remark 2.20 Let us briefly explain the difference between Proposition 2.15 from the
previous section and Proposition 2.19. Proposition 2.15 is formulated slightly more
generally in that (2.13) holds for all x in a compact set K, while in (2.19)we have
set x = 0. In the second part of the proof of Theorem 2.13 one of the arguments
will require an analytic continuation in x, which demands we get estimates not just
at x = 0 but in a neighborhood of it. In the first part of the proof of Theorem 2.13
we will not need the same type of generality for the estimate and Proposition 2.19
will suffice for our purposes. A more important difference is that in Proposition 2.15
we assumed arg(z) € [r/4,7/3] U [—n/3, —m /4], while in Proposition 2.19 we
assume arg(z) € [r/4,7/2] U [—n/2, —m/4]. The reason behind this difference is
that in Theorem 2.8 the contour D, extends vertically up near infinity, and we need
estimates when |arg(z)| = 7 /2. Yet another difference is that the constants Co, cg, Lo
in Proposition 2.15 only depended on 7" as long as T € [0, T']—here it is important that
we get uniform estimates near O since in the proof of Theorem 2.12 we performed the
limitt — 0+4. In the proof of Theorem 2.13 t > 0is fixed and the constants Cy, cg, Lo
in Proposition 2.15 are only proved to exist for the range of arg(z), provided T > 0.
In plain words, there is a difficulty in showing that Co, ¢ in the two propositions exist
either if 7 is close to 0 or when |arg(z)| is close to 7 /2. If one of these quantities is
bounded away from its problematic value, the constants exist. Then Proposition 2.15
assumes |arg(z)| is bounded away from /2, while Proposition 2.19 assumes 7 is
bounded away from O.

Proof of Theorem 2.13 The proof is split into two parts. In the first part we prove the
theorem under the assumption that min(e) — max(a) > 1 and in the second part we
extend the result to the case when min(a@) —max(a) > 0. Each part of the proof is split
into several steps, and begins with a brief description of the argument for the reader’s
convenience. Throughout we work with the same notation as in Theorem 2.13.
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Part I In this part we prove the theorem under the assumption that min(@) — max(a) >
1. Before we go into the details let us sketch our approach. In Step 1 we apply
Proposition 2.8 and reduce the proof of the theorem to the establishment of a cer-
tain integral identity. This identity essentially states that the n-fold contour integral
of det [Kf(v,, v/)] | over Ca /6 equals the one over C/} /4 One would like to
argue that the two 1ntegrals are equal by Cauchy’s theorem. In order to implement this
approach one needs to fix the w-contour somehow and deform the v-contours from
Ciain /6 10 Cy 3574, but the problem is that no fixed w contour works. Presumably, one
can simultaneously deform the v and w contours without crossing any poles of the
integrand and then argue that by Cauchy’s theorem the value of the integral does not
change. This type of deformation is somewhat delicate because we are dealing with
infinite contours and also because the w-contours depends on v’s. The way around this
issue is to first truncate the Cz.5. /6 and C; 354 contours. For the truncated contours,
one can fix the w-contour and perform the deformation. The challenge is in showing
that the truncation and deformation steps produce a small error. The exact nature of
the truncation is explained in Step 2. Step 3 shows that the truncation and deformation
of the contours produces only a small error, and in Step 4 the application of Cauchy’s
theorem is justified for the truncated contours.

Remark 2.21 We point out that in [25] a similar strategy was carried out with two
crucial differences. Firstly, [10, Theorem 2.1] is only formulated for ¢ € (0, 7 /4), but
when the theorem is recalled in [25, Theorem A.1] it is formulated for ¢ € (0, 7w /4].
We point out that the authors in [25] provide the necessary decay estimates that would
enable them to deform the contours to ¢ = 7 /4 and all the arguments in that paper
go through. Part of our proof of Theorem 2.13 is actually justifying this deformation
carefully. Secondly, their contour is D, with ¢ = 7 /2, and one reason it works for them
is that they have nice estimates for the integral that come from elegant cancellations
coming from the fact that they work with M = N.If M # N the estimates they get
no longer hold and one is better off working with ¢ = /4.

We now turn to the proof. For clarity we split the proof into several steps.
Step 1 In this step we reduce the proof of the theorem to establishing the following
equality for every n > 1

/ / det K(v,, vj)] 1l_ldv,
. 5 i,j=

a;a;m/6 a;o;m/6

det K(v ,V5) dv; =0, (2.20)
‘/;a /4 ‘/; l / :I 111] l

a3m/4
where K (v, V') is defined in terms of its integral kernel

F'(v—ay)
'(w — ay)

| N
K(U V) = 271 /D sm(n(v —w)) H

n=1
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ﬁ Ty — w) u®e?TW=—+t@=v72/24,, @.21)

ol I'(ay —v) w—v

where D, = D, (b, /4, d) as in Definition 2.11 with min(@) > b > max(u, a)
and d € (0, min(1/4, a — max(d), (b — max(u, a))/8, (min(@) — b)/8). Recall u =
(max(a) + min(@))/2 from Definition 2.7.

As explained in the proof of Theorem 2.12 we have that K (v, v’) in Theorem 2.13
is a well-defined measurable function on I' x I" where I' = C 35/4. In addition,
det (1 + K ,f) is a well-defined absolutely convergent series as in (2.1) for
any T > 0.

As shown in the proof of Proposition 2.8 (see [10, Theorem 2.1]) the right side of
(2.5) is given by an absolutely convergent series as in (2.1) for any T > 0—here we
use the fact that min(@) —max(a) > 1, which is the case under which Proposition 2.8
holds. Consequently, to prove the theorem it suffices to show that these sums are
termwise equal, i.e. for each n € N we have

L%(Ca,37/4)

n
/ / det [Ku(vi,vj)]?’jzlndvi
c&:&;n/é c&;&:ﬂ/ﬁ i=1
n
_ / / det [K7 (v ]! [ dvi (2.22)
Cajsnja JCaj3nja h i=1

Notice that we can apply a change of variables w = s + v in (2.6) and by Cauchy’s
theorem deform the resulting contour v + D, to DU, without affecting the value of the
kernel. The decay estimates necessary to deform the contour near infinity come from
Proposition 2.19 applied to K = {0} U [max(a), min(«)], and M, N, d, @, T, u as in
the statement of the theorem. Here we implicitly used the functional equation

I —s) = (2.23)

sin(s)’

which can be found in [38, Chapter 6, Theorem 1.4]. This proves that the left side
of (2.22) is equal to the first term in (2.20). Analogously, by Cauchy’s theorem we
can deform the contour D, in the definition of K (v, v’) to the contour Dv without
affecting the value of the kernel. The decay estimates necessary to deform the contour
near infinity come from Proposition 2.15 applied to K = {0} U [max(a), min(a)],
T =tand M, N, d, a, u as in the statement of the theorem. The conclusion is that
the right side of (2.22) is equal to the second term in (2.20). Thus we have reduced
the proof of the theorem to establishing (2.20).

Step 2 For L > 0 welet vy and v_ be the points on Cg.5. /6 such that vy | = [v_| = L
and vy lie in the upper and lower complex half-planes respectively. By taking L
sufficiently large we can ensure that v+ are well defined and have negative real part.
We similarly denote by w the points on C, 354 such that lw+| = L and for large
enough L we have w4 are well-defined with negative real part and that the angle the
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Cominii
a;a;m /6

(j(l..'irr/-l

Fig. 5 The left part depicts the contours Cj.5. /6 and Cy 3774 as well as the points w4 and vy given by
the intersection of these contours with the circle of radius L centered at the origin. The right part depicts
the contours Cé‘ ,C IL and CL

line joining w4 with vy makes with the x-axis is at least /4, see the left side of
Fig. 5.

We also introduce the following contours. We let Cé denote the part of Cj.5.5/6
contained intheset By = {z € C: |z] < L}, CL denotes the part of Cy 37/4 contained
in BL, l denotes the two straight segments connecting w—_ to v— and w4 to vy,
cL U CL and CL denotes the part of Ca37/4 contained in By. All of these
contours are 0r1ented to have increasing imaginary part. See the right side of Fig. 5.

Lete > 0be given. We claim that we can find L sufficiently large so thatif L > L
we have the following statements

/ f det K(v,,v,)] ‘ l_[dv,
aan/é aotrr/6 L=l
_// det [Rwi, v Hdvi <& (2.24)
¢ Jeg S hIENL
n
/ / det K(vl,v])] Hdvl-
a 3 /4 a 3 /4 =1 i=1
~ n n
_/ f det[Rwi,vp] _ []du| <e (2.25)
cL cL z,]=ll_=1
~ n "
det [K(v-,v)] dv;
/cg /cob o ’Vf=‘g l
~ n n
_ dt[K i ] dv; ; 2.26
/CL /CL et | K (vi, vj) i,j:lg vi| <€ (2.26)
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/CL /Cdet K(vl,v])] lgdvi
/CL /Cdet R (v;. ,)] lgdvi. (2.27)

If the above are true, we conclude that the left side of (2.20) is bounded in absolute

value by 3¢, which would imply (2.20) as € > 0 is arbitrary. We establish the above

statements in the steps below.

Step 3 In this step we prove (2.24), (2.25) and (2.26). We prove (2.27) in the next step.
If we apply Proposition 2.17 to T = 1, §p = c?, b = l;, x =0,¢ =3r/4 and

a,u,a,o, M, N as in the statement of the theorem we see that we can find a constant

Co > 0 such that

Co

, 2.28
=17 1+ f? (228)

as long as v, v" € Cg 37/4. Analogously, we can apply Proposition 2.17to T = 7,
so=d,b=b,x =0,¢ =57/6,a = wand M, N,d,a,u as in the statement of
the theorem to show that (2.28) also holds (with a possibly bigger constant Cq) for

v,v" € Ci.3:7/6. In particular, by Lemma 2.4 we know that det [K (vj, v])] | is
i,j=
integrable on I'" if I' = Cy 374 or I' = Cj.5.7/6, Which implies that we can make L

sufficiently large so that (2.24) and (2.25) both hold.
Notice that we can rewrite the expression in the absolute value of (2.26) as

Z f /Cél det [k(vi, vj)]:_’jzl Edvi. (2.29)

€1,....6,€{0,1}:)"; €;>0

By Hadamard’s inequality and (2.28) we have

det [k(vi, vj)] "/2]_[ = |U 7 (2.30)

Also we observe that there is a constant A that depends on Cy such that for all L
sufficiently large

Cold Cold A
/ MSAand/ oldpI . 2.31)
ct 1+ v? cr 14?2 1+L

The first inequality in (2.31) follows from the integrability of —— and the second

1+| |
from the fact that for large L the contour C IL is typical distance L away from the origin,
and has length less than 2. Combining (2.29), (2.30) and (2.31) we conclude that the
right side of (2.26) is bounded by
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wy df20

14+w_

Fig. 6 The left part illustrates the contours C L and CL as well as one of the interpolating contours Cy 1.
As k varies from 0 to K the contours Cy, traverse a collection of contours so that Cy = CL and Cgx = CL
and the contours Cy and Cy 41 have maximal horizontal separation A /K . The right part depicts the contours
Cy and Cy 1 schematically (some distances have been exaggerated to make the picture comprehensible) as
well as the contour Dy. The contour Dy is a translate by 3/20 of C, in the strip Im(z) € [Im(w—), Im(w4)]
and departs at angles £ /4 at w+ + d/20 to infinity. The point 1 + w_ is drawn to indicate that 1 + C
and 1 4 Cy4 are both to the right of Dy

)3 )2 l—[ A _nleay
€ — ’
€1,....€,€{0,1}:)"; €;>0 i=1 (1+1L) L+1

where we used that the sum is over €; not all equal to 0. The above implies that (2.26)
holds as long as L is taken large enough.
Step 4 In this step we prove (2.27). In principle, one would like to argue that the
integrands are analytic in the v variables and that in deforming C* to C* we do not
pass any poles. Formalizing this idea is intricate, since the D, contours depend on the
v’s. This is why we introduce a sequence of contours Ci, which interpolates between
the contours CL and C”, and for each C; we define a corresponding contour Dy, for
the w variables. For these new contours we show that the deformation of Cy to Cyy
is possible without affecting the value of the integral, which ultimately yields (2.27).
For each s € [Im(w_-), Im(w4)] we let (x1(s), s) and (x2(s), s) denote the unique
points on CX and C that have y-coordinate equal to s. Let |A| = max |x1(s) — x2(s)|
and suppose that K is a sufficiently large positive integer such that A /K < d /40,
where we call that d was defined in Step 1. Foreachk =0, 1, ..., K we let C; denote
the contour

k
Gk = {(X(S), §) 1 x(s) = X1(8) + £ x2(8). s € [Im(w-), |m(w+)]} .

whose orientation is of increasing imaginary part. See the left part of Fig. 6.
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We claim that foreachk =0, ..., K — 1 we have

det K (vi,v;) dv;
/Ck Lk ir»Uj :I l_[ i
~ n n
= det | K (vi, vj) dv;. (2.32)
/Ck+1 /Ck-H [ o jIi’j:1il:! l

When k = 0 the left side of (2.32) equals the left side of (2.27), while atk = K — 1
the right side of (2.32) equals the right side of (2.27). Consequently, (2.32) implies
(2.27) and we focus on establishing (2.32).

By expanding the determinants and substituting the definition of K (v, v') we see
that it suffices to show that foreachk € {1,..., K — 1} and o € S, we have

/ // / F(v],w])dwjl—[d
Ck Cx /Dy, Dy, ‘»: Wj=Vo(j) ;3

/ / / / F(Uj’ /)dwj Hdv,, where
Ci+1 Cry1 Dul Dy, '= w] - UO-(]) i=1

N
F(v,w) = 1_[ I'(v —an) F(Olm —w) MW7UETU(U)7U)+‘E(U)7U)2/2
’ sin(m (v — w)) P(w—ay) - L T(am —v) '

n=1

(2.33)

We deform all Dvi contours to the contour Dy, which consists of the following three
pieces:

(1) Itequals Cx + 3/20 forz : Im(z) € [Im(w-), Im(w)];
(2) Itisgivenby z(s) = w4 +d/20+ (s —Im(w4)) +i(s —Im(w.)) fors > Im(w);
(3) Itis givenby z(s) = w_+d/20+|s — Im(w_)|+i(s —Im(w_)) fors < Im(w_).

In words, Dy closely follows Cy a small distance away to the right and departs at angle
47 /4 once it reaches the end of C; + 3/20, see the right part of Fig. 6.

Notice that by construction Cyy1 is at most a distance d /40 away from Cj (hor-
izontally) and so when deforming [)v,- to Dy for v; € Ci or Cxy1 we do not cross
any poles of the integrand. Indeed, the poles are located at oy, 1 + oy, 2 + s - - -
as well as v; + Z. We do not cross any of the poles «;,, | + oy, 2 + oy, ... since
by construction 5, W, a € (max(a), min(e)). On the other hand, we do not cross any
of the poles v; + Z since Dy is to the right by at least ci/40 and at most J/ZO from
both C and Cj41—this ensures that v; are to the left of Dy and v; + 1 to the right.
By Cauchy’s theorem the value of the integrals does not change and the estimates
necessary to deform the contours near infinity come from Proposition 2.15 applied to
K = {0} U [max(a), min(@)], T = 7 and M, N, a, o, u as in the statement of the
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theorem. We have thus reduced (2.33) to

F Y
L Lk LA
Cr Ce /D I Dy Wj—=Va(j) ;3
/ / / / F(v/,w/)dwjl—[d
Ck+1 Cer1 /Di Dy Wj—=Va(j) ;3

and in particular, our use of Proposition 2.15 also implies that the integrals above are
absolutely convergent. The latter, by Fubini’s theorem, allows us to exchange the order
of the integrals, reducing the proof of (2.33) to showing that

F(vj,w])
du(vy)
\/.Dk ‘/;)k |:‘/(;k v/Ck 1_[ w] - UU(/) 1_[ a
/ / F(Ujawj) Hdﬂ(vz :|1_[de -0
Ck+1 Ck+1

— Vo () j

The above is now immediate since by Cauchy’s theorem we may deform the contour
Cy to Cy+1 without crossing any poles. Thus, we have established (2.24), (2.25), (2.26)
and (2.27), which concludes the proof of the first part of the theorem.

Part Il We let as before 6p = min(@) — max(a) > 0, and note that in Part I we proved
the statement of the theorem when 6y > 1. In this part we prove the theorem in the
case when 0y € (0, 1]. For 6 > —0y we let Py denote the probability measure of
the mixed polymer model where the X; ; (as in Definition 2.6) have inverse-gamma
distribution with parameters o; — a; + 6. We also write g for the expectation with
respect to this measure. With the notation as in the statement of the theorem we have
from the first part of the proof the following statement for 6 > 1 — 6y

E, [e—uZM,N(T)] =det (1 + K 9) 2c, 100 (2.34)
where
N
C(v—
K;,G(Uv U/) = — — 1_[ @ _an)
2wi Jp, sm(n(v w)) il I'w —ay)
lA—/I[ I'(a, +60 —w) Ut =2y, (2.35)

]l"(ozm—i—@—v) w—1

The goal is then to show that (2.34) holds when 6 = 0 and we accomplish this in three
steps. In the first step we show that the left side of (2.34) has an analytic continuation
in 6 in the right half-plane {z € C : Re(z) > —6p}. In the second step we construct an
auxiliary function G (2) and show that the latter is analytic in an open neighborhood
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of [0, 1]. Finally, in Step 3 we prove that both the left and right sides of (2.34) are
equal to G, (0), which concludes the proof of the theorem.
Step 1 We define

Fu®) =g [e#""],

and note that the function F, () makes sense for any 6 > —6. In this step we show
that F, (0) has an analytic continuation to V = {z € C : Re(z) > —60p}. To see this,
notice that from (2.3) and (2.4) we have

+a;—0—1 _
o S G BY T T ey exp (=) oy T PGB
u = >
Hi:l Hj:l F(aj i +9)

where H, (¥, B) = exp (—u Z Z /

n=1 ¢d:(—M,1) /(~1,n)

eEF@Papsd |, and
4:(0,n) /(z,N)

N
E@):= Y xij+Buls)+ Y (Blsx) = Bi(sio1)).
(i,j)€¢7d k=n+1
(2.36)
In the top line (2.36) we recall that By, ..., By are independent Brownian motions

with drifts {an},’yzl. Next if zg € V and Re(zg) > —6p + 28 for some § > 0 we have

H, (%, B)H_[l_” e ]‘CXP( )dx,l HP(dB)< sup /RNM

sup /
zilz—zol<8 JRYM e = 2ilz—20/<8

Xi;Re(Z)*a/Jra[fl exp ( )dx,j = l_[ l_[ sup T'(Re(z) +a; —a; )

1 i=1j=1% z:|z—z0] <4

=
<

i

J

(2.37)

The last statement and Theorem 2.2 imply that the numerator in the first line of (2.36)
is analytic in V and so is ]_[,N:l ]_[jwzl r-! (aj — a; + z). This proves the claim.

Step 2 In this step we construct an auxiliary function Gu(z)forzina neighborhood of
[0, 1] as follows. Let 8o = min(d /4, a — max(a), (min(a) — b)/4), where a, b are as
in the statement of the theorem. For z € U := {z € C : d(z, [0, 1]) < §p} we define

G =dt<1 K ) , 238
u(2) € + Ky ; L2(Carnye) ( )

where the operator K u.z 18 defined in terms of its integral kernel

I'(v — ay)
I'(w —ay)

N
,”(v v)—% b, sm(n(v—w) l—[

n=1
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, (2.39)

ﬁ C'(z+ oy —w) U=t =v3/2 g,
ol I'z+ oy, —v) w—v

where D, = D, (b, /4, 8o) isasin Definition 2.11. To show that G (z) is well-defined
we start by applying Proposition 2.15 with T = 7, K = U, and a,u, M, N, d, & as
above to conclude that for v, v € C, 35 /4 we have

|
zeU J Dy,

M '(z+ oy —w) U=t =v272 4,

I'(z+ oy, —v) w—1

T ﬁ I'v—ay)

sin(r (v — w)) 'w —ay)

n=1

|dw| < oo, (2.40)

m=1

where |dw| denotes integration with respect to arc-length and we also used that |T"(z)|
is uniformly bounded over compact sets that are disjoint from Z. Equation (2.40)
implies that I?u,z(v, v') is well-defined for each v, v" € Cy 37/4 and moreover, by
Theorem 2.2, we know that I%,M(v, v’) is analytic in U for each fixed v, v’ € Ca3n/4.

We next apply Proposition 2.17 for T = 1, a,b,dy as above, ¢ = 37 /4,
M, N, a, o, u as in the statement of the theorem. The conclusion is that we can find a
constant Cyp > 0 such that for all v, v' € Cy 37 /4 we have

- Co
sup | Ky (v, v)] <€ ———.
v 1+ (v

(2.41)
Equation (2.41) and Lemma 2.3 imply that G, (z) is well-defined and analyticinz € U.
Step 3 In this step we show that both the left and right sides of (2.34) are equal to
G,, () for all 6 € [0, 1]. In particular, setting & = 0 concludes the second part of the
proof of the theorem.

We observe that if x € (1 — 6, 1] we know that G, (x) equals the right side of
(2.34) with 6 replaced with x and D, = D, (a, b, §p). In view of (2.34) we conclude
that Gu(x) = F,(x) for x € (1 — 6y, 1] and since both functions are analytic in
a neighborhood of [0, 1] we conclude that the left side of (2.34) equals G.(0) for
0 € [0, 1], cf. [38, Chapter 2, Corollary 4.9].

By Cauchy’s theorem we can deform the D, (b, 7/4,d) contour in (2.35) to
Dy (b, /4, 8o) (here §p was defined in Step 2) without affecting the value of the inte-

gral, at which point we recognize that det (I +K;, 2@ ) = Gu(é). In other
! a3m/4

words, the right side of (2.34) equals G, (0) for all & € [0, 1]. This suffices for the
proof.

3 Asymptotic analysis of Fredholm determinants

In this section we investigate the limit of the Fredholm determinant det(/ +
Ku)12(c, 37 /4) from Theorem 2.12 when the parameters are appropriately scaled (the
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precise scaling is given in Definition 3.1). The exact convergence statement, which
is the main technical result of the paper, is given in Theorem 3.2 and is proved in
Sect. 3.3 after some preliminary results are presented in Sect. 3.2. Theorem 3.2 is used
later in Sect. 4 to establish Theorems 1.2 and 1.15.

3.1 Limit of det(l + KU)LZ(C,,,31[/4)

In this section we show that when the parameters in the definition of det(/ +
Ku)12(c, 37/4) from Theorem 2.12 are scaled appropriately the Fredholm determi-
nant converges to a limiting one. We first turn to specifying how we scale parameters.

Definition 3.1 Let W (x) denote the digamma function, i.e.

T > 1
\p(x)_r(x)_ )/E+nX:(:)<n+1 n+z>, 3.1

where yg is the Euler constant.
Suppose that M, N > 1 and 6 > 0 are given. We let z.(M, N) denote the maximizer
of

Wy n@x) =NV(x)+ MY —x)

on the interval (0, 6). Notice that the above expression converges to —oo as x — 0+
or x — 60— and also the function Wy, n(x) is strictly concave, hence the maximum
exists and is unique. We let Wjs n denote Wy v (2c).

For any « > 0 we define

00 o0 1/3
o 1
Oy = (Z (n + ZC)3 + Z (n + 9 — Zc)3> .

n=0 n=0

The way we scale the parameters is as follows. We will let M, N — oo while
M > Nandoa = N/M > §, where § > O is fixed. Wesetoe = a«(M, N) = N/M and
for a given x € R we set

_yl3
u=u(x,M,N):=eVmn—M"0ux

Notice thatif ¢ € [§, 1] and 6 > 0 is fixed then oy, is positive and bounded away from
0 and oo, see e.g. (5.4). Finally, we fix r, ¢ € Z>( and vectors X = (x1, ..., x;) € R,
¥ = (¥1,..., ) € R such that min(¥) > max(X). If r = 0 we set max(x) = —o0
and if ¢ = 0 we set min(y) = co. We also let a € RN+ and @ € RY*¢ be such that

a;(M,N)=z. +xi0,'M~3 oM™y fori =1,...,r,
a(M,N)y=0fori =r+1,...,r+ N,
o; (M, N):zc+yi0071M_1/3 ~|—0(M_1/3) fori =1,...,c
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aj(M,N)y=60fori =c+1,...,c+ M.

We also let ;1 = (max(X) 4+ min(y))/2 with the convention that © = 0 if r = ¢ = 0,
uw=max(X)+1lifc=0andr > 0, u = min(y) — 1 if r = 0 and ¢ > 0. We always
assume that M is sufficiently large so that so that min(@) > z. + po, 'M~1/3 >
max(a) and min(a) > 0.

We further let K, be as in Theorem 2.12 for the vectors @, a and parameter u as
above,a = z.+uoy ' M~V 3 and b, d arbitrarily chosen so as to satisfy the conditions
of that theorem. We also define the contour D to be the contour that consists of the
vertical segment connecting 0 + o —ip and i + p + ip and for [Im(z)| > p it agrees
with Cj /4 from Definition 2.10, where p > 0 is chosen sufficiently small so that
min(¥) > u + p, see Fig. 7. The contour D is oriented to have increasing imaginary
part. fc=0welet p = 1.

The main result of the section is as follows.

Theorem 3.2 Fixx € R and assume the same notation and scaling as in Definition 3.1.
Then

A/Ili—l>noo det (I + Ki)12(Cozmya) = det (I + K)?O)LZ(CM,SNM) , 3.2)
where the operator K{° is defined in terms of its integral kernel
K®Ww, V) = L/ g (w)dw, with
o 2mi Jp oY ’
r C 3 3
(w — xp) (ym —v) exp(—v’/3+w’/3 —xw+ xv)
s =[To—"TT 5= , ,
o W=xn) S (Y — w) @ —w)w =)
(3.3)

where Cy, 3774 is as in Definition 2.10 and D isasin Definition 3.1.

Remark 3.3 The Fredholm determinant on the right side of (3.2) is as in Sect. 2.1. In
particular, part of the statement of the theorem is that the kernel K2°(v, v') is well-
defined, each term in the series (2.1) is finite and the series converges for the given
choice of parameters.

3.2 Relevant estimates

In this section we introduce some notation and establish a few results that will be
useful for the proof of Theorem 3.2, which is given in the next section.

Definition 3.4 Define
Gyu,N(@) :=Nlogl'(z) —Mlogl'(® —z) — Wy Nz —Cu N, (3.4
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DJ\[

e /

“a,3m /4

] = _1/:
C 37w /4 a+ po, 11‘1\[ 1/8

Fig.7 The left part depicts the contour D from Definition 3.1 and the contour C .37 /4- The dark gray dots
are x1 ..., xr and the light gray ones are yy, ..., yc. The right part depicts the contour CZ 37/4 8 defined

in Step 1 of the proof of Theorem 3.2 in Sect. 3.3 and the contour Dyy = D, U DOM U DIT/I' The dark gray
dot represents a; fori = 1, ..., r and the light gray ones the points m 4+ «; form > 0andi =1,...,c
Some of the distances are exaggerated

where Cyy vy = NlogI'(z.) — MlogI'(0 — z¢) — Wy NZc, and z., Wy y are as in
Definition 3.1. We also define

Gu(2) =M "Gy n(2) =alogl(z) —logl'(0 —2) — M~ "Wy nz — M~ 'Cuy n,

where we recall thatoe = N/M € [8, 1] as in Definition 3.1. Continuing with the nota-
tion from Definition 3.1 we define the contours Dy through Dy = z.+0, IM~=13.D,
see Fig. 7. The contours Dy, are oriented to have increasing imaginary part and we
write Df,l for the slope *1 pieces of Djs and DR,I for the vertical part of the contour.

We next state several results for future use. The first three are proved in Sect. 5.4
and the third one is proved in Sect. 6.3

Lemma3.5 Fix0 > 0,6 € (0, 1) and assume that M > N > 1, N/M € [8, 1]. There
exist constants C > 0 and r > 0 depending on 6 and § such that G4 is analytic in the
disc |z — z¢| < r and the following hold for |z — z;| <r:

Go(2) + (2 — 20)°07 /3] < Clz — ze|%;

Re[Gy(2)] = (v2/2)% |2 — zc|30) /6 when z € C,, 4 withp = /4, (D)

Re[Gy(2)] < —(v2/2)3|z — z:|302 /6 when z € C,, 4 with ¢ = 37/4.

In the above equations z., oy are as in Definition 3.1 and C, 4 is as in Definition 2.10.

Remark 3.6 The first line in (3.5) describes the Taylor expansion of G, near the critical
point z.. The second and third line in (3.5) provide quantified estimates of the real part
of G, along the rays departing from z. at angles £ /4 and £3m /4. In particular, the
rays departing from z. at angles 4= /4 are locally ascent contours and those departing
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at angles 37 /4 are locally descent contours for G,. These estimates will be useful
in our steepest descent analysis once we truncate the contours in the definition of our
kernels so that only the behavior near z. becomes important.

Lemma 3.7 Fixﬂ > 0,6 € (0,1) and assume that M > N > 1, N/M € [§, 1]. Let
2(r) = z¢ + re'® with z. as in Definition 3.1. Then we have

d
Re [d_GM’N(Z(r))} <0, provided that ¢ = 3m/4 or ¢ = S /4,
r

Re [%GM,N(z(r))} > 0, provided that ¢ = /4 or ¢ = —m /4.
(3.6)

In addition, if 51 > 0 is given then there is a constant ¢ > 0 depending on 81,65, 6
such that

Re [GM,N(z(r))] < —c(M + N)rlog(l +r) foranyr > §;
provided ¢ = 3w /4 or ¢ = Sm/4,
Re [GM)N(z(r))] > c(M 4+ N)rlog(l +r) forany r > 6
provided p = /4 orp = —m /4,
3.7

Remark 3.8 Equation (3.6) shows that the rays departing from z, at angles 4+ /4
are ascent contours and those departing at angles +37/4 are descent contours for
Gy, n- Equation (3.7) provides quantified estimates on how quickly the real part of
G p .y decreases along these contours. The function G, in Lemma 3.5 and G y in
Lemma 3.7 are related by G4 (z) = M -G M .N(2), see Definition 3.4. Then equation
(3.5) provides us with decay estimates near z., while (3.7) provides us with decay
estimates away from z. for G,(z). The estimates in (3.6) and (3.7) will be useful in
our steepest descent analysis to justify that truncating the contours in the definition of
our kernels produces only a small error.

Lemma3.9 Fix60,A > 0,6 € (0, 1) and assume that M > N > 1, N/M € [§, 1].
There exist constants My, Co > 0 depending on §,0, A such that if M > M,
x € [—A, Al and z(r) = zo + re’® with z. as in Definition 3.1, r > 0 and
¢ € {m/4,3m /4,51 /4, T /4} we have

Re[Gyr n(z(r) + xM~V3) — Gy n(z(r)]| < CoM?/ - (1 + 7). (3.8)

Remark 3.10 In the course of our steepest descent analysis, we would prefer to work
with the contours C,_4 with ¢ = 7/4 and ¢ = 37 /4 and use the estimates in
Lemmas 3.5 and 3.7. Unfortunately, in order to avoid the poles at x, and y,,, that
appear in (3.3) when r + ¢ > 0, we might need to work instead with slightly shifted
contours C, ;. p-1/3 4 that avoid these poles. Equation (3.8) allows us to compare
how much the real part of Gy, v changes when we do this slight horizontal shift, and
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allows us to use our good estimates of the real part of Gy y on C;_ 4 and find slightly
worse, but still good enough for our purposes, estimates of Gy, y on C,_p-1/3 4.

Proposition3.11 Let A > 0 and x > —A be given and let M, N, a,u(x, M, N) be
as in Definition 3.1. Then for any € > 0 there exist positive constants Mg, ¢, C > 0
depending on A, € and the parameters in Definition 3.1 such that if M > My, v, v’ €
Ca 37/4 we have

|Ku(v, v/)| < cM'3 and if lv — a| > € we further have
|Ky(v,v)| < CemcoMloe(+ivl), (3.9)

Ifr=c=0then My, c, C > 0depend only on 9, §, A and €.

Remark 3.12 When we prove Theorem 3.2 in Sect. 3.3 and Theorem 1.7 in
Sect. 4.2 we will need to truncate the v-contours in the Fredholm determinant
det (I + K,) L2(Cy32/4) and equation (3.9) will be used to show that such a truncation
produces only a small error for large M.

Lemma 3.13 There exists a universal constant C > 0 such that ifs € Cwithd(s,7) =
§>0

T

C
sin(rrs) = 5 (3-10)

Proof Lets = x +iy and observe that by the periodicity of the sine function it suffices

to prove the lemma for x € [—1/2, 1/2]. Notice that by the triangle inequality we

have

is __ e—is
2i

eVl o=yl eyl
= =
2 2

> |yl/2.

| sin(zs)| = ‘
If |y| > 1 and x € [—1/2, 1/2] the latter implies that

Isin(s)[87" > (Iyl/2)(/x2 +y) ™' = (yl/2Qly) ™! = 1/4,

which implies that (3.10) holds for all such s with C = 4. On the other hand, if
—1 <y <Tlandx €[—1/2,1/2] we have that

| sinrs)|s—! = |S0OTS)

s

and since s~ !sin(s) is a non-vanishing analytic function in the region (x,y) €
[—1/2, 1/2] x [—1, 1] we know that there exists C; > 0 such that [s~! sin(rs)| > C;
on this region. We may thus take C = 7 - max(C;l, 4) and then (3.10) would hold
forall s € C. O
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Lemma3.14 Forany § > 0 and A > 0 there exists My > O such that if M > Mg we
have

n/ZAnMn/3
Z <M. 3.11)
n=1
Proof From [34, (1) and (2)] we have for each n > 1 that
n! = 2an"2e e where (120 + )7 <1y < (120) 7! (3.12)

and so

nn/ZAnMn/3 _ en/ZAnMn/3(2n.n)—l/4 - (2A)nMn/3

T Jal =

We also see that

= A,.

Anyt  2AM'

An _\/I’l—i-l,

which implies that
Apy1 = A if /n+1<2AM"Y3and A,y < A, if Vn+1>2aM'3,

The above inequalities imply that for m = [4A2M?/3| we have A,, > A, for all
n € N. On the other hand, (3.12) implies

(4A2M2/3)m/2€m/2
e(m/2)logm

S (1 +m—l)n1/2 . em/2 S zem/z’

Am =

where the latter inequality holds provided M is sufficiently large and M > M.
Combining all of the above estimates we conclude that for all large M

yo A

n=1

n/ZAnMn/?: o [}
<D A=M Z Ap < 2Me™? 4 1.
n=1

n=M+

The latter clearly implies (3.11) for all large M, as the right side is O (exp(M?/3
log M)). O

3.3 Proof of Theorem 3.2

We assume the same notation as in Theorem 3.2 as well as Sect. 3.2 above. For
the sake of clarity we split the proof into four steps. In the first step we truncate the
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contour Cy 37 /4 and show that it suffices to prove the theorem for the truncated contour
using Proposition 3.11 and Lemma 3.14. In the second step we rewrite the Fredholm
determinant for the truncated contour in a way that is suitable for the application of
Lemma 2.5. In the third step we state several estimates, which show that the conditions
of Lemma 2.5 are satisfied, and the application of the latter and Lemma 2.4 concludes
the proof of theorem. The estimates from step three are then established in the fourth
and final step by appealing to Lemmas 3.5, 3.7,3.9 and 3.13.

Step I For € > 0 we let C;’3n/4 denote the portion of Cy 37/4 inside B (a)—the disk
of radius €, centered at a. We claim that there exists € € (0, 1/2) such that

Mli—I>noo det(I + KL,)Lz(%nM) = det (I + K°) (3.13)

L2(Cp37/4)

We prove (3.13) in the next steps. Here we assume its validity and conclude the proof
of the theorem.

Let us write C 374 = Co U C1 where Cy = CaE 3 /4 18 the portion contained inside

Bc(a) and C is the portion outside B (a). From the definition of Fredholm determi-
nants, see Sect. 2.1, we know that

e¢]

By
det(7 + Ku)2(c, yrp — det + K p2ce, ) = Z — where (3.14)

n=1

B, = Z (2m)" /.e '/c det [ Ky (vi, v))]} i e 1Hdvl

[ 6,16{0»”:21' €>0
(3.15)

By Hadamard’s inequality and Proposition 3.11 we have that if v; € C¢, fori =
1,...,nand M > M

n
)det [Ku(Ui, vf)];r'l,jzl‘ < a2 a3 1_[ Cefc'GiMlog(1+|UiD’ (3.16)
i=1

where the constants ¢, C and M are as in Proposition 3.11. Consequently, for all large
M we have

|B,| < Z nn/ZCnMn/3e—c/M € < e—c/M . nn/2(2C)nMn/3’
€1,....€,€{0,1}:)"; ;>0
(3.17)

where we used that the sum is over ¢; not all equal to 0 and ¢’ = (c¢/2) log(1 + ¢€).
From (3.17) and Lemma 3.14 applied to § = ¢//2 and A = 2C we deduce

o0

y o
!

n=1 n

- - Z n/2(2c)nMn/% —c/M/ZI G518)
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Combining (3.13) with (3.14) and (3.18) we conclude the statement of the theorem.

Step 2 In this step we rewrite det( + Ky)z2(ce 3/4) in a way that is more suitable

for the application of Lemma 2.5. Let r be as in Lemma 3.5 and fix € > 0 such that
€ < min(r/2, 1/2). We will prove (3.13) for this choice of €, which is fixed in the rest
of the proof.

By Cauchy’s theorem we may deform the D, (b, d, 7 /4) contour in the definition of
K, (v, V') to Dy from Definition 3.4 without affecting the value of the kernel as long
as M is sufficiently large. Indeed, notice that by our choice of € < 1/2 we have that
Cian 4t 1 lies to the right of Djs and so we do not cross any poles while deforming
Dy(b,d, m/4)to Dy, see Fig. 7. The decay estimates necessary to deform the contour
near infinity come from Proposition 2.15 applied to K = {0} U [max(a), min(a)],
T = 0anda, a, u as in the statement of this theorem.

Utilizing the above contour, we may perform a change of variables v; =
oa_lM_l/3f),- +zcand w = aa_lM_l/3111 + z. to rewrite

det(/ + Ku)r2c, ) = det(! + KMy, (3.19)

(Cp.37/4)°
where

1
M~ =~/ M,x , ~ ~
KX (U, v ) = l\ﬁ—lt\SEGaMlﬁ . 1\5/—M|S€UaMl/32_n.i 5 gﬁj/ (U))dU)a

where D = o, M'/3(Dy — z.) is as in Definition 3.1 and gg/[f;f(ﬁ)) = A’l"l -Ag’l . Aé"’,
where

r

M 1—[ (o, ' M~'3% 4 20 —ap) v Tlam — oy ' M~ 30 — z,)
(o ' M=13%0 + zc — an) 525 Tlom — 00 ' M~135 —z.)

M-135-1
AN = il 1~0°‘~ —, and
sin(tM~18367 " (0 — ) (W — V')

AM = MIGa (oo M7 )= Golibog M1 4ze)] e (=)

n=1

In view of (3.19), we see that to show (3.13) it suffices to prove that

lim det(I + KM),» y=det (I +K°
M—o0

. )Lz(Cﬂ.snm) . (3.20)

(C)L,3T[/4

Step 3 In this step we prove (3.20). Notice that for fixed 9, 0" € Cj 374 and W € D
we have

. Mx,~\ _ 00X/~
Jim g3 () = 2% (), (3.21)

@ Springer



154 G. Barraquand et al.

where ggoéf is as in the statement of the theorem. Indeed, we have for fixed 7, 7’ €
CIL,3JT/4 and w € D that

1

and also using Lemma 3.5 we see that

Jim AM = exp(—=13/3 + 0 /3 + x (b — W)). (3.23)
— 00

Finally, using the functional equation I'(z + 1) = zI['(z) and the scaling of a, for
n=1,...,rand o, form =1, ..., c from Definition 3.1 we get

r
AY =AYy AV, - AV, where AV =[]

n=1

(@ — Xxu + o(1)) 1—[ (m — 0+ o(1))
@ —xy +o(1) 1L (ym —w+o(1)

[152; Doy ' M~ By — o7 'M~13% + 14 0(1))

Al = 2 - — (3.24)
’ T2 Tlog M~1B3% —oy M~13x, +1 +o(1)’
AM. [T Doy 'M~13%5 — o7 ' M=%, + 1+ o(1))
Y I T M~ By — 0y M= 135+ 1+ 0(1)
From the last equation we conclude
(@ —x0) 177 Om — D)
lim AY = . 3.25
M— o0 ! rEII v—x,,)lzl —w) ( )

Equations (3.22), (3.23) and (3.25) imply (3.21).
We claim that we can find positive constants A;, A; > 0 fori = 1, 2, 3 such that for
all large enough M we have

|AM| < Ay -exp (1 — pellog(1 + |9 — w]) + [ — pllog(1 45 — ul)), 1AM < Ay
|AY | < A3 -exp (—(Ay + 23)(Ji0 — el log(1 + | — ) + |9 — pllog(1 + 5 — ul))),
(3.26)

provided that 0, v € Cp, 3774, [V — | < eog M3, |0 — | < eouM'3 and W € D.
We will prove (3.26) in the next step. Here we assume its validity and conclude the
proof of (3.20).

We may now apply Lemma 2.5 to the functions géuﬁf (w) with Fi(v) =
VA1A2Azexp(—A3|v — pflog(l + [0 — u]) + [x[[w]) = F2(v) and T'y = Cpy 374,
I'h = D. Notice that the functions F; are integrable on I';. As a consequence we see
that KM and K 2° satisfy the conditions of Lemma 2.4, from which we conclude (3.20)
and in particular that the right side is well-defined.
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Step 4 In this step we establish (3.26). We first deal with the bound on A’l"’ . Since the
denominators in A% are uniformly bounded away from 0 we conclude that

|AY|| = O (exp(rlog(1 + [W]) + clog(1 + [3]))) . (3.27)

In addition, since by assumption |0 — u| < €eou M 1/3 and e < 1/2 we see that both
the numeror and denominator of A% are uniformly bounded away from 0 and co so
that

A1 =0 (D). (3.28)

It follows from [30, (2), pp. 32] thatif z € Cand |arg(z)| < m —e forsome € € (0, )
then

(7)) = e 272 @2m) V2. (1 + 0(1—1)) , (3.29)

where the constant in the big O notation depends on € and we take the principal branch
of the logarithm. Also by [38, Theorem 1.6, Chapter 6] there are positive constants
c1, ¢ such that

< cpellloglzl (3.30)

I;
I'(z)

Equations (3.29) and (3.30) imply that we can find constants c¢3, ¢4 > 0 such that
|AM] < c3 - exp (C4a(;‘M*1/3|w| log(1 + a(;]M’l/3|11)|)> . 33D

Equations (3.27), (3.28) and (3.31) together imply the first inequality in (3.26).
We next deal with the bound on Aé” . We observe that for v € Cy 374, [V — | <

aaM1/3 and, w € D we have

Mg
sin(r M—130, 1 (5 — )

‘ = o). (3.32)

Indeed, if |7 M~ 36 1(5 — w))| > 1/2 the above follows from Lemma 3.13 and if

o

[mM~1B6 1 (5 — w))| < 1/2 we have

o

Mg ‘ B

aM~ 1 Bo (B — ) ‘ 1
sin(r M=, (5 — b)) |

sin(rM—136. (5 — )

—,
v — w|

which is also bounded since is bounded in the disc of radius 1/2 centered at the

4
| sin(z)] 5
origin and [0 — w| > p (recall that p was given in the definition of D in Definition 3.1
and is the smallest distance between D and C, 35/4). Since we also have [V —w| > p

we see that (3.32) implies the second inequality in (3.26).
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Finally, we establish the bound on Aé"’ . The third inequality in (3.26) would follow if
we can show that for v € Cy 37/4, [V — | < €oaM13 and W € D we have

(exp(—MGa(u?a;‘M*‘/3 20

= 0 (exp(= (A1 + D[ — pl|log(1 + | — ) and
33)

]exp(MGm(ﬁa;'Ar‘/3 +20)| = O (exp(—(h1 + DT — pllog(1 + |5 — ).

We first consider the case when | — | < M'/371/19 In this case we have from
Lemma 3.5 that there exists cg > 0 such that

IMGo (o, 'M™V3 4 z0) + 03/3] < ceM ™13 i|* < ceM ™03,
In addition, since w € D we know that there are constants ¢7, cg > 0 such that
lexp(i°/3)| = exp(Re[w’/3]) < ¢7 exp(—cg| b)),

which in turn implies that

exp(—M Gy (o, ' M~ +2,)| = exp(—MReG, (o, ' M~ + 2,))

—1/10

< cexp((ceM —cp)|w]?).

The latter equation implies the first line of (3.33) when | — | < M'/371/10 and an
analogous argument shows the second line when |0 — pu| < M 1/3-1/10,

We next consider the case when M1/3-1/10 <|w—ul < eaaM1/3. Using that
€ < r/2 as in Lemma 3.5 by assumption we see that the lemma is applicable and so
we get

MReGo (0 — wog "M~ 4 z0) = (V2/2)% )i — pP/6.
Furthermore, by Lemma 3.9 we see that there is a constant cg > 0 such that
MIReG o (0 — )o; ' M™'3 4 2) — ReGy (o, 'M™'3 4 20)| < coM?/3.
Combining the last two statements we see that
exp(—M Gy (o, '\ M~13 + 2.)| < exp(coM®® — (v2/2)% 10 — ul?/6)
< exp(~(v2/2)° | — ul*/12),
where the last inequality holds for all large enough M and we used that |[w — wl® >
M7/19 by assumption. The last inequality clearly implies the first line in (3.33) when

M'37110 < 14 — u| < eouM'/3 and an analogous argument shows the second line
when M13=110 < |5 — u| < eou,M'/3.
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Finally, we consider the case |w — | > eog M 13 In view of Lemma 3.7 we know
that there is a cjg > 0 such that

MReG, (1 — wyo, 'M™V3 4 2.) > eloM*3 | — ullog(l 4+ o ' M~ 31 — p)).
Furthermore, by Lemma 3.9 we see that there is a constant c¢j; > 0 such that

M|ReGy (0 — oy 'M~13 4 2.) —ReGy (o, 'M~13 4 7))
<cuM*PA 4oy "Ml — p)).

Combining the last two statements we see that

exp(—M Gy (o, "M~ 4 2.)| < exp(—ciold — p|M*3 log(1
+o, 'MT P — u)) - explei M + oy M| — ).
which implies the first line of in (3.33) when | — | > €o, M '/3. This suffices for

the proof.
O

4 Proof of Theorems 1.2, 1.7 and 1.15

In this section we prove the three main results of the paper from Sect. 1.

4.1 Proof of Theorem 1.2

In this section we prove Theorem 1.2 by utilizing Theorem 3.2. We work under the

same assumptions as in the statement of Theorem 1.2. As discussed in Remark 1.3 it

suffices to prove the theorem when N /M € [§, 1], which we assume in the sequel.
We will use the following elementary probability lemma.

Lemma 4.1 [5, Lemma 4.1.39] Suppose that f, is a sequence of functions f, : R —
[0, 1], such that for eachn, f; (y) is strictly decreasing in y with a limitof 1 aty = —o0
and 0 at y = oo. Assume that for each § > 0 one has on R\[-6, 5], f, — 1{y<o
uniformly. Let X, be a sequence of random variables such that for each x € R

Elfn(Xn —x)] = p(x),

and assume that p(x) is a continuous probability distribution function. Then X, con-
verges in distribution to a random variable X, such that P(X < x) = p(x).

Lety e R, = N/M and o4, u(y, M, N) be as in Definition 3.1. Define

Fu(e) = e
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and observe that since by assumption we have M > N > 9 for all M sufficiently large
we can apply Theorem 2.12 to conclude

ELfu(FM,N) = )] =E ™" | = det (1 + K)o, -

On the other hand, by Theorem 3.2 we know that as M — oo the right-hand side
converges to det(/ + K{°) 2 (¢, 5, ). Where K7 is defined in terms of its integral
kernel

K, v') = L/ SxP(—V/3 +w/3 - yw M) g,
2wi Jp (v —w)(w —7)

The proof of [9, Lemma C.1] can now be repeated verbatim to show that

det(Z + K{®) 2o 30 p0) = FGUE®).

Combining the above statements we see that
lim E[fy(F(M,N) =)= Feue(y).
M— o0

Since fjr and Fy g satisfy the conditions of Lemma 4.1, we see that the last equation
and the lemma imply the statement of the theorem.

4.2 Proof of Theorem 1.7

In this section we prove Theorem 1.7 and we assume the same notation as in
the statement of the theorem. For clarity we split the proof into five steps. In
the first step we reduce the statement of the theorem to establishing a bound on

‘det I+ KM)LZ(CZC.3R/4) — 1‘ for all large enough M, see (4.1). The key idea here
is that by Theorem 2.12 we have that det (1 + Ku)12(c,, 5, ,) 1s €qual to the Laplace

M,N . . . .
transform |E | e %% ], which in turn for a suitable choice of u becomes a proxy

for the cumulative distribution function of F(M, N). Consequently, the bounds we
obtain for ‘det I+ Ky, L2(Cop3nya) — 1) in (4.1) translate into similar bounds for

P (F(M, N) > x), which is the quantity we seek to upper bound in this theorem.

In Steps 2 and 3, we truncate the contours C;, 374 in det (1 + K,,) L2(Csy 32/4) and
the D, contour in the definition of K, and show that it is enough to establish the
estimate in (4.1) for these truncated contours, see (4.8). The estimates we need to
show that the truncation of the contours produces only a small error come from a
careful application of Lemmas 3.5, 3.7, 3.13 and 3.14.

In Steps 4 and 5 we prove the remaining bound in (4.8), to which the statement of
the theorem has been reduced in the first three steps. The main argument is presented
in Step 5 and boils down to a careful analysis of the G, function near the critical point
Z¢, which in turn relies essentially only on Lemma 3.5.
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Step 1 Assume the same notation as in Theorem 2.12, where u is as in Definition 3.1,
ai=0fori =1,...,N,aj=0forj=1,...,M,a = z. and b, d are arbitrarily
chosen so as to satisfy the conditions of that theorem. Suppose further that N, M are
scaled as in Definition 3.1. We claim that there exist Cy, cg, €9, X0 > 0 and My € N
all depending on 6 and § such that if x € [xg, e¢gM 231 and M > My we have

det (I + KM)L2(CZC,3JT/4) -1 =< Coe_cox?’/z_ (41)

We prove (4.1) in the steps below. Here we assume its validity and conclude the proof
of the theorem.
We want to show that there exist Cy, C2, c1, ¢z > 0 such that for any x > 0

/2

M,N
IOgZ +WM,N 2)(:) SC167C1M+C267C2)C3 ,

ouM1/3

P (F(M, N) zx):]P’(

4.2)
where « = N/M, o, and Wy, y are as in Definition 3.1. Notice that if M is bounded
then (4.2) can be made to trivially hold by making C; sufficiently large for any x > 0.
Thus we only need to prove (4.2) for large enough M.

Let My, Cy, co, €9, xo be such that (4.1) holds and let u(x — 1, M, N) be as in

Definition 3.1. If we set fy(z) = exp(—e"‘*Ml/3Z), then by Theorem 2.12 we know
that for all large enough M

S M,N
E[fu(F(M,N)—x+ 1] =E [e uz ] =det (1 + Ki)p2(c, ) -
The latter and (4.1) imply that for all large enough M and x € [xo + 1, egM?/3]

E[l - fM(]:(M, N) —Xx+ 1)] < Coe_CO()‘_l)‘g/z.

Notice that 1 — fy(F(M,N) — x + 1) > 0 and on the event {F (M, N) > x} we
have

oa M3 (F(M,N)—x+1) _eoaM!/3

1— fu(FIM,N)y—x+1)=1—¢"°¢ >1—e¢ > 1/2,

where the last inequality holds for all M sufficiently large depending on § and 6 alone.
The latter two inequalities imply that

2C0e= D" S 2 R[] — £ (F(M,N) —x + )] >
2-E[H{FWM,N)>x}(1 - fu(FM,N) —x+1))] > P(F(M,N) > x),
(4.3)

which proves (4.2) when x € [xo + 1, egM 2/31and M is sufficiently large.
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Ifx > eoM2/3 we have

P(FM, N) = x) < P(F(M,N) = gM??) = 2Coe— @M =0,

where in the last inequality we used (4.3) at x = egM 2/3_ This proves (4.2) when
x > €oM?/3 and since we knew it for x € [xo + 1, egM?/3], we can conclude that
(4.2) holds for all x > xp + 1. By possibly making C; larger we get the result for
x € [0, xo + 1] as well, concluding the proof of the theorem.

Step 2 In the remaining steps we prove (4.1). Let & > O and 6 € (0, 1) be given. Let
r be as in Lemma 3.5 and fix € > 0 such that ¢ < min(r/2, 1/4). We let C;U’3ﬂ/4
denote the portion of C;_ 374 inside Be(z.)—the disc of radius €, centered at z.. We
claim that we can find Cy, cg, €9, xo > 0 and My € N such that if M > My and
X € [xo, 60M2/3] then

/2

det( + Ku) 2 (ce 1] < Coe 0", 4.4)

c,3n/4) -

We prove (4.4) in the next steps. Here we assume its validity and conclude the proof
of the theorem.

Repeating verbatim the argument in Step 1 of the proof of Theorem 3.2 (when we
apply Proposition 3.11 we do it with r| = r, = A = 0) we get that for all large M

det(I + Ku)r2(c,, 4,4 — det( + Ku)LZ(c; M2, “5)

<
)| =

where ¢’ = (¢/2) log(1 + €). Combining (4.5) with (4.4) we conclude (4.1).

Step 3 From the definition of Fredholm determinants, see Sect. 2.1, we know that

9]
H,
det(Z + Ku)p2ce , p— 1= —» where (4.6)

n=1

Hn = ;/
Qri)" Je

We thus can reduce the proof of (4.4) to showing that there exist Cy, cgp, €9, xo > 0
and My € N such that if M > Mg and x € [xg, eoM?/3]

z¢.3m/4

n
det [ K, (v;, vj)]?,j:1 H dv;.
i=1

€
z¢.3m/4

oo
H .

> < oo™, 4.7
n:

n=1

Let Dy be as Definition 3.4. We write Dy = D;,’IO U D;’Il, where D;’IO is the

portion of Dy inside B¢ (z.) and D;,’,l is the portion outside. Define for 8 € {0, 1} and
v,V € C§6,3n/4 the kernel
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1 F
KP(,v) = — @, w)dw where F (v, w)
! 2ri Jpeb w — v
M
- T LeOMNW=CGunw) M

" sin(r (v — w))

1/3(w—v)0ax

We claim that we can find C», ¢2, €9, xo > 0 and My € N such that if M > M,
and x € [xq, eoM?/3]

1
Zn_ (Zm)” /c

We prove (4.8) in the next steps. Here we assume its validity and conclude the proof
of (4.7).
Let us fix n € N, and note that by the linearity of the determinant function we have

32

S Cze_CZX

n
n
.. dt[KO ; ] dv:
/ce ot Kulor-vp) ,-,,-=1,»13 !

z¢.3m/4

€
z¢.3m/4

4.8)

Hy

1 1
nl o onl 2 (2ni)"/c

(Br,rsB) €10, 1)1 S/

n
) /; det [K2 (v;, Uﬂ]?,j:l Hdv,-.
i=1

€
z¢,3m/4

(4.9)

In deriving the last equality we used that by Cauchy’s theorem we can deform the
D, (b, d, 7 /4) contour in the definition of K, (v, v') to Dy; without affecting the value
of the kernel as long as M is sufficiently large. In particular, K,, (v, v') = KMO(U, V) +
K ,i (v, v"). We mention that the deformation of D, (b, d, w/4) to Dy was justified in
Step 2 of the proof of Theorem 3.2.

We also note that by Lemma 3.7, with §; = €, we have that there exists a constant
ce > 0 such that for any v, v’ € C;C’3ﬂ/4

o0
< oM / exp (—e(M + N)ylog(1 + ) dy < =M. (4.10)
€

In deriving the above inequality we also used that ‘eM B w—v)oex ‘ < 1 as the real part

of the exponent is negative and we used Lemma 3.13 to bound the sine function.
In addition, by Lemmas 3.5, 3.7 and 3.13 we know that for any v, v’ € C§w3ﬂ/4

’K,? <cM', 4.11)

Equations (4.10), (4.11) and Hadamard’s inequality imply that

J-

z¢,3m/4

/ det[Kﬂ’(v,,vj) l_[dvl <(C"n n/2 /3, —ceM Y] =1Bi
C

€
z¢,3m/4

(4.12)
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Finally, combining (4.8), (4.9) and (4.12) we conclude that

e ¢]

C"n n/ZMn/S 32
—ceM Z +C26—czx

which together with Lemma 3.14 implies (4.7).

Step 4 The first three steps above reduce the proof of the theorem to establishing the
existence of €y, xo > 0 such that if x € [xo, egM?/3] and M is sufficiently large we
have that (4.8) holds for some ¢, C, > 0. We will establish this statement in the next
step. In this step we specify our choice of €y and x( and introduce some useful notation
for later.

Let € > 0 be as in Step 2. Then from Lemma 3.5 we know that for some C4 > 0
we have

1Ga(2) + (z — 26)°02 /3] < Calz — zc|*

as long as |z — z.| < €. We fix this choice of C4. Let D= aaM1/3(DM —zc) beasin
Deﬁmtlon 3.1. We also write D° = o, M'/3(DY, —z.) and D* = o, M1/3(D —z0),
where D and Dg,[ are as in Definition 3.4. We define the constants

D) = / ¢ dz| < 0o and Dy = f e 1P |dz] < 0, (4.13)
Co,37/4 D

where |dz| denotes integration with respect to arc-length.
We now let g > 0 be sufficiently small so that

€0 < €/2 and 4Cyel + 02€0(2V2)/3 — 0y < —304/4, (4.14)

where we observe that this can be done uniformly in § when o € [§, 1], see Defini-
tion 3.1. This fixes our choice of €y. We next let xo be sufficiently large so that the
following inequalities hold:

cox P /4> 2v2,  02(v2/2)%*x? /6 > 1, and

0 a € %o
x 3 . (4.15)
> (€D exp (—(n = D(/eo/2)xy 0 ) < 2CD1 D,

n=1

where C is the universal constant afforded by Lemma 3.13. This fixes our choices of
€o and xg.

Step 5 In this step we prove (4.8). Let €g and xg be asin Step4 and let x € [xg, eoM 2/3].
We also let pg = ﬁM‘lﬂxl/z and note that pg € (0, €g] by definition. We let Cp,
denote the portion of the contour pg - D+ zc that is contained in the disc of radius €
centered at z.. Explicitly, C,, consists of three segments connecting the points
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Ze+e 272 —ie 27V — 2o 4 po —ipo — ze + po
+ipg > zc + € 2712 e 2712,
Notice that since €y < €/2 and € < 1/4 by definition, see (4.14), we can deform the
contour D;’IO in the definition of K¥ to C,, without affecting the value of the integral

by Cauchy’s theorem, since we do not cross any poles in the deformation. Here we
remind the reader that D;;,O consists of three segments connecting the points

ze+e 272 e 27V 5 gt o MY g MY
Ze +0071M*1/3 + iUOle*]/3 - ze+e- 2712 pie. 2712,

Fix n € N and notice that by expanding the determinant det [K ,9 (vi, v j)]? i1 and

performing the change of variables v = pgv + z, and w = pow + z. we get
. 1
0 n _
det [Ku(vi’vj)]ivjzlilzlldvi = W E

1
A, = 7/ /
@ri Je c forch

n n n n

e e M’x ~> ~A ~.

/ / / /.le,-\swg‘lm,-\smg‘ [Teas,, @ [Tdwi [ Tdo.
Co3m/4 Co3nja /D Dig i=1 i=1 i=1

(4.16)

€ €
z¢,3m/4 z¢.3m/4

where

7 poeM1Ga(poi+20)=Galpoibtze)] o /eox™ 00 (=)

sin(mrpo (0 — w)) (W — v')

If C > 0 denotes the constant from Lemma 3.13 we see that if U,0" € Co3z /4 and
weD satisfy |v] < epo_l < 4_1/r)0_1 and |w| < e,oo_l < 4_1,00_l then

700 <
sin(zpo(v — w))(w — )|

(4.17)

We next have that if w € D° (this contour was defined in Step 4) and ¥ € Co 35,4
with 7] < epo_l then

g2k @) = € exp(—~Mag (V212 o i1/6
+MCapgli|* + Moy py |0 /3 — \Jéox?0q) <
C exp(—(fs (ﬁ/2)3eg/2x3/2|17|3/6 + 4C4p068/2x3/2
tode) V223 — JegxPay) <
Cexp(—|o)® + 4C463/2x3/2 + 0363/2(2\/5))63/2/3 - \/axwzoa) <

Cexp(—[3]} — (3/4) - Jeoxoq) < Cexp(—|0° — [0]? — (Veo,/2)xY 04).
(4.18)
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Let us elaborate on the last tower of inequalities briefly. The first inequality used (4.17)
and Lemma 3.5. The second inequality used the definition of pg = ./eo M —1/3x1/2 and
that || < +/2 (as @ € D). The third inequality used the fact that x € [xg, egM 2/3]
and the definition of x¢, see the second inequality in (4.15), as well as pg € (0, €g]. In
the fourth inequality we used the definition of €¢, see the second inequality in (4.14).
The last inequality used that |w| < V2 (as w € D) and the definition of xg, see the
first inequality in (4.15).

On the other hand, we have thatif w € DY U D~ and ¥ € Co,37/4 are chosen to
satisfy |v] < 6,061 and || < epal then

g ()] = € exp(— Mo (V2127 o3l /6 — Mo (+/2/2)° 315 /6):

exp(—v/eox> 20 (V2/2) (|5 + [0])) = C exp(—ey >0 (v2/2)° >[5 /6)-
exp(—€ 202 (V2/2)3 52|10 16 — \Jeox o (V2/2) (5] + D)) <

exp(—[3]° — 0]} — eox*?oq).
(4.19)

Let us again elaborate on the latter tower of inequalities. The first inequality fol-
lows from (4.17), Lemma 3.5 and the fact that Re(v) = (\/_/2)|v| while Re(w) =
—(«/_/2)|w| (here we used 0 € DY U D™ and ¥ € Co,37/4)- The equality on the
second line used the definition of pg = /eoM ™~ 135172 The last inequality used that
X € [x0, eoM?*/3], the definition of x, see the second inequality in (4.15), and the fact
that |@| > V2 forw € DT UD™.

Combining (4.18) and (4.19) with (4.16) we see that

|An| < nlexp(—n(y/€o/2)x>264)C" /
C037r/4 Co,37/4
/~ f Hexp(—wiﬁ — [y |*)|db; ||d ;]
b Doy
= nlexp(—ny/egx*0,)(C D1 Dy)",

where D; are as (4.13). We conclude that

00
A
2w

n=1

o
< > exp(—n(/e0/2)xY204)(C D1 Dy)" < 2C D1 Dy - exp(—(/eg/2)x> 2 04).
n=1

where in the last inequality we used that x € [xo, egM 2/3] and our definition of xg,
see the third inequality in (4.15). This proves (4.8) with C, = 2C DiDy;andcp; > 0
sufficiently small so that c; < (/€p/2)0y, which can be done uniformly in & if
o € [8, 1], see Definition 3.1.
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4.3 Proof of Theorem 1.15

We first turn to the proof of Lemma 1.12.

Proof of Lemma 1.12 We continue with the same notation as in the statement of the
lemma. For clarity we split the proof of the lemma into several steps. In the first step,
we show that Fggp.z 5 is well-defined and does not depend on the choice of a, b € R
as long as min(y) > b > a > max(x). In the second step we prove that FgRp;7,5 18
entire. In the third step we prove that the restriction of Fggp,z,; to R is real-valued,
increasing and that the limit near oo is 1. In the fourth step we prove that the limit of
FBBP;)?,} near —oo is 0.

Step 1 In this step we prove that Fggp.3 7 is well-defined and does not depend on the
choice of a, b € R as long as min(y) > b > a > max(X). Let

r C

_ (w — xp) (Ym — V) exp(—v3/3 + w3/3 —rw +rv)
g =] (v —xp) [1 Om —w) (v —w)(w—v) '

n=1 m=1

Observe that

r C

1 (w — x,) Om = | rwltir
sup gy, v (w)] < (b—a)2 : 1_[ 1_[ elrwitirvl

V'€Cq3n/4 (v —xn) (Ym — w)

exp(—Re[v?1/3 + Re[w?]/3).

n=lI m=1

It follows from Lemma 2.5 applied to I'y = Cy 3574, I'2 = Cp /4,

C
1 [Tt lym — vl [rv|—Re[v3]/3
F] (v) - : r e )
b—a [, lv—xul

!
Fy(w) = r H?:1 lw — x’l|e\rw|+Re[w3]/3’
b—a Hn:1 |ym — w|

that the integral

1
KBBP (v, v)) = 3 / g (2)dz.
Tl I,

is well-defined and moreover, that Lemma 2.4 is applicable from which we conclude
that the series det (I + K PBP) L2(Cazn/s) in (1.13) is absolutely convergent. Here we
used that F; is integrable on I'; as follows from the cube in the exponential and the
definition of the contours. This proves that Fggp,z 5(r) is well-defined. In addition,
by expanding the determinants we have

C

© N i =) 1 O — )
FBBP;)?,?(r): 1+Zﬁ Z /CN /CN 1_[1_[ (1;)1_));) 1_[ Yy v
N=1

! — Wj
oeSy Y Casn/a Y Con/ai=1 n=1 m=1 Om i)
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N N
<[] xot v3/3 w37 rwi o) dws du (4.20)

Pl — wi) (Wi — Vo(i)) Pl 27 27i’
from which we immediately conclude that Fggp,z 5(r) does not depend on a, b as
long as min(y) > b > a > max(X). Indeed, if a’, b’ also satisfy min(y) > b’ >
a’ > max(x) then we can deform Ca,37/4 10 Cy 3774 and Cp 74 t0 Cpr 74 in each
summand in (4.20) without crossing any poles and thus without affecting the value of
the integral by Cauchy’s theorem. The decay necessary to deform the contours near
infinity come from the cubes in the exponential.

Step 2 In this step we show that Fgpp, 3 7 is entire. Fix v, V' € Cg 37 /4. It follows from
[38, Chapter 2, Theorem 5.4] that for each N € N the function

KrN(U, U/) =/; 1—[ (w — xy,) 1—[ (Ym —v)

b/4 p—1 (U - Xn) m=1 (ym - w)

exp(—v3/3 + w3/3 — rw + rv)
' (v —w)(w —) .

I{jw| < N}dw

is entire in 7. Consequently, as the uniform over compacts limit of entire functions we
have that

/ (w—x ﬁ m — V) exp(—v3/3+w3/3—rw—|—rv)d
Consa py (v — foliet m— W) (v —w)(w—17)

is also entire in r, cf. [38, Chapter 2, Theorem 5.2]. Let us fix g € C and observe that

! (w — x,) < (ym — ) ' exp(—v3/3+w3/3 —rw +rv)
W =2xu) o5 Om —w) v —w)(w—v")

l[dw| <

sup /
rifr=rol<1JCpasa |, 1

H:l 11 ym — vl

1|v_ nl

c- exp(—Re[v’1/3 + (Irol + DIv])

where |dw| is integration with respect to arc-length and C is a constant that depends
on ry.

Since the the function on the second line is integrable over Cy 37 /4 (by the cube in
the exponential) we conclude by Lemma 2.3 that Fppp, 3 7(r) is entire.

Step 3 In this step we show that when restricted to R the function Fggp.z,5 is real-
valued, non-negative, increasing and converging to 1 at co. Arguing as in Step 1, we
have that we can deform C, 37/4 to Cy 3774 and Cp 74 tO D as in Definition 3.1 in
(4.20) without affecting the values of the integrals. Once we perform this deformation
we see that for r € R we have Fgpp.3 j(r) = det (I + K’?O)LZ(CM )’ where K is
as in Theorem 3.2. If we perform the same scaling as in Definition 3.1 we see from
Theorem 3.2 and Theorem 2.12 that

Fapp5(r) = lim E[e™#" "], 421
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where we recall from Definition 3.1 that u(r, M, N) = eWnn—M ogr . In particular,
since we have ZM+<N+1 - () we see that Fggp;z,5(r) is the pointwise limit of a
sequence of real-valued, non-negative, increasing functions and is thus itself real-
valued, non-negative and increasing.

We next show that

lim FBBp;j’y(k) =1. (422)
k— 00

Notice that if g’; (W) is as in Step 1 for r = k we have

r C

. L e e emn
|gv,v’(w)| = (b—a)2 1_[ (U—xn) 1—[ (ym _w) ‘

n=1 m=1

exp(—Re[v®]/3 + Re[w?]/3),

where we used the fact that |ekz| < 1 if Re[z] < 0. We see that the conditions of
Lemma 2.5 are satisfied with I'y = Cy 374, ['2 = Cp 7/4,

.
=1 w0 — nl Refw?)/3

C
Fi(v) = L [t m = U'e_Re[U3]/3 c
b—a nn:] |.Vm_w|

r
b—a m=1 1V — Xl

, P(w) =

and g7 ,(w) = 0. We thus conclude (4.22) from Lemmas 2.5 and 2.4.

Step 4 In this final step we prove that
lim Fggp,z,5(—k) = 0. (4.23)
k— 00

Let us first briefly explain the main idea of the proof. We start by assuming the same
scaling as in Definition 3.1, and following the notation from Sect. 1.1 define

Z(p,q; P,Q) = Z w(m), where w(r) = H w;,j,

et (i,j)en

and I'If,)ij is the collection of all up-right paths from (p, ¢) to (P, Q). Here we assumed
that 1 < p <P <M+4cand1l < g < Q < N +r. In view of (4.21) applied to
r = ¢ = 0 we know that for any » € R

A/Ili—l>nooE [67”2(C+1’r+1;M+C’N+r)] = Foye(). (4.24)

Furthermore, by the same equation for general fixed r, c, we know that

fim B [e7t20EMEND ] = Fpp c50r). (4.25)

M—o00
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The idea now is to show that with high probability
logZ(1,1; M +¢c,N+r)>logZ(c+ 1, r+1;M+c,N+r)+ Ry,
where Ry, < 0is a sequence such that Ry, = o(M/3)_1f true the latter would imply

Feep.x,5(r) < FGuEe(r). (4.26)

Since lim,— oo Fgue(r) = 0, we would conclude (4.23) by domination. In
the remainder we focus on establishing (4.26) by performing the comparison of
logZ(,1; M +c¢,N +r)andlog Z(c+ 1,r+ 1; M 4+ ¢, N + r) that we described
above.

Let E )y denote the event {minj <j<c 1<j<r Wi, j < M1 }. Note that by Definition 3.1
we have that the weights w; ; have distribution

1{x > 0} R

. -1
T@.) exp(—x),

f()i’j(x) =

where cM~1/3 < 0;,; < C for some constants C, ¢ > 0. In particular, we see that

1 o0
/ xlii e dx < e™M/2, 4.27)
C:,;) Jm

P(w; j < M) =

1,—x/2

where in the last inequality we used that T'(6; ;)™ x%.~ < 1 for all large

enough M as long as x > M. In particular, we see from (4.27) that
P(Ey) < 1—[1—e M2 = 0@ M. (4.28)

On the event Ej, we have that

r+1 c+1
ZA, ;M 4+¢c,N+r1) > ]‘[wi,l : ]_[w,+1,,-.2(c+ Lr+1;M+c¢,N+r) >
i=1 j=2
Ml Ze+1,r+1; M +¢, N +r). (4.29)

We now observe that if x € R and € > 0 are fixed and u = u(x, M, N) we have

.. _ . el
Fapp:z.5(x — €) < lim me[e uZ(1,1; M+c,N+r)-M"*¢ ]
" M— o0

— IIIWHE(I)IEE I:e—uZ(l,1;M+c,N+r)~M'+C+1 . I{E]CV[}:I

(4.30)

< llm ]nf]E [e—uZ(c+l,r+l;M+c,N+r) . 1{EC }:I
T M—oo M

_ I}WHEEEE [e—uz<c+1,r+1;,M+c,N+r)] = Foup(x).
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In the first equality we used (4.25) for r = x — € and the fact that

1/3

1/3
u(x — e, M, N) = "Vmn—M Bog(x—e€) > WuN—MPoox prretl _ o g Ny

for all large enough M. In the second and next to last equality we used (4.28), and
in the last equality we used (4.24). In the middle inequality we used (4.29). Letting
€ — 0+ in (4.30) and using the continuity of Fggp.;z ;7 from Step 2 we conclude
(4.26). As explained earlier (4.26) implies (4.23) and this concludes the proof of the
lemma. O

Proof of Theorem 1.15 As discussed in Remark 1.16 it suffices to prove the theorem
when N/M e [§, 1], which we assume in the sequel.
Letr e R, = N/M and o4, u(r, M, N) be as in Definition 3.1. Define

fM(Z) _ e_e(raMl/3Z

and observe that since by assumption we have M > N > 9 for all M sufficiently large
we can apply Theorem 2.12 to conclude

]E[fM(f(M—FC, N + r) _r)] — ]El:efuZM’N:I = det (1 + K“)LZ(CH,3H/4) .

On the other hand, by Theorem 3.2 we know that as M — oo the right-hand
side converges to det( + K SO) L2(Cp3n/) which as shown in Step 3 of the proof of
Lemma 1.12 equals Fpgp. 3 5(r).

Combining the above statements we see that

Mli_r)nooE[fM(}"(M +¢, N +r1) —r)] = Fgpp.z 5(r).

Since f) and Fgpp, 3,5 satisfy the conditions of Lemma 4.1 (here we used the conti-
nuity of Fppp.z,3) we see that the last equation and Lemma 1.12 imply the statement
of the theorem. O
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out the need to prove BBP asymptotics for the log-gamma polymer. E.D. was partially supported by
a Minerva Foundation Fellowship. I. C. was partially supported by the NSF Grants DMS:1811143 and
DMS: 1664650 and the Packard Foundation through a Packard Fellowship for Science and Engineering.

5 Appendix A

In Sects. 2 and 3 we needed several results, whose proofs require a careful analysis of
the properties of the function Gy y, recalled in this section in equation (5.3). In this
section we study some of these properties, focusing on the way the real part of Gy, n
varies along different contours.
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5.1 Definition and basic properties

Let W (x) denote the digamma function, i.e.

T —( 1 1
\If(x)—m)— yﬁ%(wl nH), (5.1)

where y is the Euler constant. Suppose that M, N > 1 and 6 > 0 are given. We let
ze(M, N, 0) denote the maximizer of

Wy n(x) =NV (x)+MP@6 —x)
on the interval (0, ). As mentioned in Sect. 3.1 the above expression converges to

—ooasx — 0+ orx — 60— and also the function Wy n (x) is strictly concave, hence
the maximum exists and is unique. Since z. is the maximizer we have

> 1 > 1
0=Ww, =N — M _— 5.2
m.y (@) ,ZZ‘) (n+z.)? ,12:;; (n+6—z.)? 62

The main object of interest in this section is the following function
Gun(Ez) =Nlogl'(z) —Mlogl'(0 —z2) — Wy N (ze)z — Cu N, (5.3)

where the constant Cyy y is such that G y(z.) = 0. We also define « = N/M and
G () through the equation

—1
Gu(@) =M - Gu N ().
In the remainder of this section we derive a few basic properties for the function

G um .,y or equivalently G,. From (5.2) we know that z.(cr) is the unique number in
(0, 0) that satisfies

> 1 > 1
0o=ay — -y —
r;(n'FZc)z g(ﬂ+9—10)2

In particular, for z € (0, 0) the function

00 1
2n=0 G997
8@ = =1
2n=0 o

satisfies g(z.) = «. The numerator of g(z) is clearly increasing, while the denominator
is decreasing, so that function g(z) is a continuous strictly increasing bijection between

(0, 0) and (0, oo). Consequently, g~ ! is also a strictly increasing continuous bijection
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between (0, oo) and (0, 8). We conclude that g~ ([8, 1]) = [a, b] where a = g1 (8)
and b = g~ (1).

One directly computes Go(zc) = 3,Gq(zc) = 97Go(zc) = 0, while 33 Go(z0) =
207 with

00 o0 1/3
o 1
Oy ‘= (Z (n + ZC)3 + Z (n + 9 — ZC)3> .

n=0 n=0

From the discussion above we see that

00 0 1/3 0 oS 1/3
1) 1 1 1
(Z(n+b)3+z(n+0—a)3) faaf(z(nﬂ)s +Z(,,+9_b)s) G4

n=0 n=0 n=0 n=0

We end this section with a formula for the derivative of G y along a generic
contour. Denote z(r) = z. + x(r) + iy(r). Then we have

d
7, Omn ) = () +1y'(r) - (NW(2(r) + MW (O = 2(r) = Wi v (z0))

, o, > 1 1 > 1 1
oo (N,;)(Hzc _n+z(r))+MZ<”+9—Zc _n+9—z(r)>)

n=0

74 z2(r) > — (1 + z0)(n +Z(r))
(n+zo)n +z(n|?

=@ +iyOIN Y
n=0
In+6—z(? = (n+6 —zo)(n+ 0 —Z(r)

HEOHYOM ) (n+6 -zl +6— 2P

n=0

Taking the real part of the above equation we obtain

d e X)) + yA() X () + 1)
e [EGM‘N(Z(”)} RRP s e Sy e e T
o XX () =y (1) o X ()X (1) = y ()Y ()
+<N;) In+z(r)? M; n+6 —z(r)? ) 62

5.2 Estimates along C;_

In this section we obtain estimates on Re [G M, N(z)] when arg(z) is bounded away
from 0, /2, , 37 /2. The main result we prove is the following.

Lemma 5.1 Suppose that M, N > 1, 6 > 0 and é; € (0, 7/4). Then we can find
constants C, R > 0 that depend on M, N, 0 and 81 such that if z = re'® withr > R
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we have

Re [GM,N(re”f’)] < —Crlog(r) if ¢ € [/2 + 81,7 — 811U [ + 81, 37/2 — 811;

Re [GM,N(re"¢)] > Crlog(r) if ¢ € [81,7/2 — 811U [=7/2 + 81, —81].
(5.6)

Proof Our approach is to study Re [G y v (zc + re'?)]. Let us fix & > 0 and §; > 0
as in the statement of the lemma. Setting z(r) = z. + re'® and applying (5.5) we get

d > r2 cos(¢) . r(sin?(¢) — cos?(¢))
Re| — =Ny — Y N
) [erM’”(Z(’))] Z (n + 20l + 2P ;0 n+ 2P
2 cos(¢) > r(sin?(¢) — cos(¢))
M
+M ”ZO(n+0—Zc)|n+9—z(r)|2 ,;:(:) n+6—z(r)?

5.7

We study the large positive r behavior of the right side above for different ranges of
@.

Suppose first that ¢ € [7/2+61/2, 7 — 81/2]U [7 + 81/2,37/2 — §1/2]. Below
C will stand for a positive constant, which depends on 6 and 8, and whose value may
change from line to line.

oo oo

Y= -
= In+z(M|> mtzetr cos(¢))2 + r2sin®(¢)

o
’

a 2_: (n+2¢)? + 2r(n + z¢) cos(¢) + r?

=0 (5.8)

= r
=2

= (n +20)2 +2r(n + zo) cos(mr + 81/2) +r?
<i Cr __Cr +/°° Crdx __Cr _ Cx
Ttz T 24 o 2t 2402 20

Analogously, one shows that
> Cr Cm
(5.9)

> ’ < + =
40—z T O —z)+rr 2
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Furthermore we have

i r2 cos(¢) _ i cos(/2 + 81/2)r?
L ntzoln+ (P T (2 (0 +20)? + 2(n + 2)r cos(¢) +r?)
> cos(n/2~|—81/2)r2 5 [ dx
Z <—Cr /
— (n+2)((n+20)* +12) w 0z +7r2)
- S (5.10)
_ —Cr Ze (T 1 Vit +r
= m (7 (5 — tan (zc/r)) + log (T>)
-C 2 / g+ 2
=3 +ng log( Zzzc ! ) < —Clog(r),

where the last inequality holds for all » > r(, where ro depends on 6 alone. Analogous
considerations show that

e¢]

2 cos(¢)
Z(n+9_zc)|n+9_z( e = —Clog(r), (5.11)

where the last inequality holds for all » > rg, where ry depends on 6 alone. Com-
bining (5.8), (5.9), (5.10) and (5.11) with (5.7) we conclude that there exist ry and cg
depending on 6 and §; suchif ¢ € [7/2461/2, 7 —61/2]1U [ +61/2,37m/2 —81/2]
and r > ro we have

Re [%GM,N(ZC + re‘¢)] < —co(M + N)log(r). (5.12)

The first equation in (5.6) is now an immediate consequence of (5.12) since
Gu.n(ze) =0.

A similar argument for ¢ € [81/2, /2 — §1/2]U [—7/2 + 81/2, —51/2] reveals
that there exists ro and ¢ depending on 6 and §; such that if r > r( then

Re [diGM,N(ZC + rew)} > co(M + N) log(r). (5.13)
;

The second equation in (5.6) is now an immediate consequence of (5.13) since
Gu,n(ze) =0. m]

5.3 Estimates along vertical contours
In this section we study the properties of Re [G MmN (z (r))] along contours of the form

C;..n/2, 1.e. when we move vertically up or down from the point z.. The main result
we prove is as follows.

@ Springer



174 G. Barraquand et al.

Lemma 5.2 Suppose that M > N > 1. If we set z(r) = z. + ir we claim

d d
Re [—d Gu.n(ze +ir)] > 0 whenr > 0 and Re |:—d Gu.n(ze + ir)] <O0whenr <0.
r r

(5.14)

Proof Notice that since M > N we have 6 > 2z.. In view of (5.5) we can reduce
(5.14) to establishing

N;m_M;mSO (5.15)
for r > 0. Recall from (5.2) that
Yl e M L e

and so it suffices to show that

1 1 1 1
DB s TR A D) Dy e e

m=>0n=>0 m=>0n=>0

(5.16)

If m = n the above reads

1 1 1 1
60—z (427 +17 (420> 46—z +12
—r2(0 — 2z.)(2n + 0)

(n+6 = 20X (1 + 207 + )0 + 22 (0 +6 = 2> + 1)

which is non-positive as 6 > 2z..
We split the remaining sum as follows

Z 1 1 _ Z 1 1
(m+0 —z:)% |n+ z(r)|? (m+2z.)% n+6 —z(r)?

m,n>0,m#n m,n>0,m#n

2 1 1 1 1
= +
2 2 (m+0 =22 (n+z)* +r2 (n+0 =202 (m+20)* + 12

n=0m=n+1
1 1 1 1
T mFz)? A0 -2+ 12 (422 (m A0 —z)? 472
:i i —r2n+m+0)m—n+6—2z) n
(m+0—20)>(n +z20)>((n +20)> +r)((m + 0 — 20)> +r?)

n=0m=n+1
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Pn+m+60)m—n+2z, —0)
(m+2z)*(n+60 —20)2((m +20)> +r2)((n+ 6 — 20)> +r?)

We want to show that each summand above is negative. We see that the first term is
always negative and so if we increase its denominator we will make the summand
larger. Notice that

(m 40 — z20)*(n + 20)2 (0 + 20)* + 1) (M + 60 — 20)* +17)
—m4z) 40 —z) (M4 20> +r)((n+60 — 2% +r%)  (5.17)
= —(0 —2z.)(m — n)(ar* + br* + o),

where

a=2mn+6(m+n)+20z. —2z2 > 0,b = 2n +6)(m — n)*
4+ 20)(n+ 6 — z0)(m — n)? +
(2n +0)(2n* + 216 4 6% — 207, + 2z2)(m — n)
+2(n +z.)(n + 0 — z0)(n* + nb + 6% — 30z, + 223) > 0,
¢ = Qmn +mb + nb + 20z, — 222)((2n% 4 2n0 + 6% — 207, + 222)(m — n)* +
21+ 2)2n +0)(n + 60 — z0) +2(n + 20)*(n + 0 — z.)* > 0.

We conclude that the second denominator is larger than the first and so by replacing
it we make the summands larger. But then the summand becomes

r2(n +m + 60)(dz. — 26)
(M +20)2(n+60 — 2)*((m + 20> + 1) (0 + 60 — 20)* +712)’

which is clearly non-positive. We conclude that the sum is negative (unless M = N
in which case it is 0) and this proves (5.16). O

As an immediate corollary we have the following result.

Lemma 5.3 Suppose that M > N > 1 and 6 > 0. Then for any x > O and y € R
with |y| > x

Re[Gm N (ze +x +iy)] = 0. (5.18)
Proof Let us briefly explain the idea of the proof. We will construct yo € R and a

contour connecting the points z. +iyp to z. +x + iy such that Re[G ys x (z)] increases
along this contour. This would imply through (5.14) that

Re[Gu n(ze +x +iy)] = Re[Gu n(ze +iyo)] = Re[Gu v (ze)] = 0.(5.19)
LetC = y2—x2 > 0andset yg = v/Cif y > Oand yo = —/C if y < 0. Consider
the curve z(r) = z. +r £ iv/C + r2, where the positive sign is taken when y > 0 and

the negative is taken otherwise; here r varies in [0, x]. The curve z(r) connects yg to
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(x, y) as r ranges from O to x. In addition, writing z(r) = z. + x(r) + iy(r) we see
that x'(r)x(r) — y'(r)y(r) = 0, which in view of (5.5) shows that Re [G y n (z(r))]
increases on [0, x]. From this we conclude (5.19) where the second inequality follows
from (5.14) and last equality is true by the definition of z.. O

5.4 Proof of Lemmas 3.5 and 3.7

In this section we give the proof of Lemmas 3.5 and 3.7 , whose statements are recalled
here for the reader’s convenience. We follow the same notation as in Sect. 3.2.

Lemma5.4 Fix0 > 0,6 € (0, 1) and assume that M > N > 1, N/M € [8, 1]. There
exist constants C > 0 and r > 0 depending on 6 and § such that G is analytic in the
disc |z — z¢| < r and the following hold for |z — z;| < r:

Gu(2) + (z — Zc)30'5/3 < Clz — z¢|* whenever |z — z¢| < r;
Re[Gy(2)] > (v2/2)3 |z — zc|30’ /6 when z € C., 4 with ¢ = m/4;  (5:20)
Re[Go(2)] < —(v2/2)%|z — 2c|202 /6 when z € C.,_ 4 with ¢ = 37 /4.

In the above equations z., 0 are as in Definition 3.1 and C ¢ is as in Definition 2.10.

Proof As explained in the beginning of this section z. () defines an increasing con-
tinuous between (0, oo) and (0, 8). We let [a, b] denote the preimage of [, 1] under
this bijection.

Let ro > 0 be sufficiently small, depending on 6 and §, such that & — b > 2ry and
a > 2rg. The singularities of G, come from the gamma functions in its definition, and
areatz =0,—1,-2,... andz = 6,0 4+ 1,0 + 2, .... In particular, by our choice
of ro we know that the closure of B,,(z;) := {z € C: |z — z¢| < ro} is disjoint from
those sets. By Hadamard theorem, see [38, Theorem 4.4, Chapter 2], we can expand
G, in absolutely convergent power series inside By, (z.). From the definition of G,
we have that Go(z¢) = 9;Go(zc) = 32Gq(zc) = 0, while 33Go(zc) = 203. The
latter implies that

Ga(z) = % o (=2 Y an(@) (@ —z0)"
n=4

Define K = {z € C : d(z, [a, b]) < ro}. Since G4(z) is jointly continuous on
(z,¢) € K x [§, 1], which is compact, we know that we can find a constant A > 0,
depending on § and 6 such that

sup  [Gq(2)| = A.
aeld, 1],zeK

Using the Cauchy inequalities, see [38, Corollary 4.3, Chapter 2], we know that

|an ()| < Ary™.
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The above inequalities show that if |z — z.| < rp/2, then

Ga(z>—§- Joz—2z)?

o0
<Y lan@)] - |z = zel"
n=4

o0
< Alz = zel'rg* Y (172" =240z — zel g,
n=4

which proves the first line in (5.20) for any r € (0,79/2) and C = 2Ar, 4,
Next we pick r < rq sufficiently small so that Cr < W = (2«/5)03 /48 for all
o € [8, 1]. Then

RelGa() + (z = 2)%03 /31| = |Gald) + (2 = 20702 /3

<Clz—z|* < Crlz — ze]? < W)z — z.]°.

The above implies for z € C,,_ 4 with ¢ = /4 that

Re[Gy(2)] = —Rel(z — z0)3102 /3 — Wiz — 2.
o=zl ((2\/5)0"?/24 a W) = (vV2/2)%|z = zc|*0; /6.

Similarly if z € C;, ¢ with ¢ = 37 /4 we get
Re[Ga(2)] < —Rel(z — 20)*102 /3 + Wiz — zc|* = —=(v/2/2)} |z — z.[Pa /6.

The latter two inequalities imply the remainder of (5.20). O

Lemma 5.5 Fixﬂ > 0,6 € (0,1) and assume that M > N > 1, N/M € [§, 1]. Let
2(r) = z¢ + re’®. Then we have

d
Re |:—d GM.N(z(r))i| <0, provided that ¢ = 3w /4 or ¢ = S /4,
r

d
Re [[TGM.N(Z(r))] > 0, provided that ¢ = /4 or ¢ = —m /4.
r

(5.21)

In addition, if §1 > 0 is given then there is a constant ¢ > 0 depending on é1, 6, 0
such that

Re [GM,N(z(r))] < —c(M + N)rlog(l + r) for any r > & provided
¢ =3n/4or¢p =5m/4,

Re [GM,N(z(r))] > c(M + N)rlog(l +r) for any r > 81 provided
¢p=n/dor¢p =—m/4,

(5.22)
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Proof From (5.7) we get whenever ¢ = /4 or 37 /4 or St /4 or 7r /4 that

d > Nr2cos(¢) i Mr? cos(¢)
Re| —G = ,
) [dr M’N(Z(r))] 20 (n + z0)ln + 2() 2 20 (46— z0)ln+0 — 2()2

(5.23)

which automatically proves (5.21).
Below C stands for a positive constant, whose value depends on 6 and § alone,

and whose value may change from line to line. By repeating the same arguments as
in (5.10) we see that if ¢ = 37/4 or 57 /4 we have

Re [j—rGM,mz(r))] < —C(M + N)log(r), (-24)

where the last inequality holds for all » > ry, where ry depends on 6 alone. Further-
more, from (5.23) we have for any » > 0 that

d —N(/2/2)r?
Re [EGM,N(ZM)] < %
Zelle (5.25)

—Mr*(v2/2) i
O —z)((O — z)% +712) <—-CM + N)r-.

Let Ry > rg be sufficiently large so that for any » > R we have

-
/ logxdx = (rlogr —r) — (rologrg — ro) > (1/2)r logr.
,

0

Then, using (5.21) we see that if r € [§1, Ro] we have

Re [Gu,n (z(r)] =f0 Re[%GM,N(z(x))} dngo —C(M + N)x2dx

—(C/3)(M + N)83,

IA

while if » > R we have

r d r d
Re [Gar v ()] = /O Re [EGM,N@@»} dx < f Re [EGM,N(z(x»} dx <

0

< fr —C(M + N)log(x)dx = —(C/2)(M 4+ N)rlogr.

0

The last two inequalities imply the first line in (5.22). The second one is derived
analogously. O
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5.5 Proof of Lemma 3.9

In this section we give the proof of Lemma 3.9, whose statement is recalled here for
the reader’s convenience. We follow the same notation as in Sect. 3.2.

Lemma5.6 Fix0,A > 0,6 € (0, 1) and assume that M > N > 1, N/M € [§, 1].
There exist constants My, Co > 0 depending on §,0, A such that if M > M,
x € [—A, Al and z(r) = z. + re'® with z. as in Definition 3.1, r > 0 and
¢ € {n/4,3n /4,57 /4, T /4} we have

‘Re[GM,N(z(r)erM—W) —GunG@EDI| < CoM*? . (1+7r).  (5.26)

Proof Letus denote z(r, w) = zc+re® +w = x(w)+iy(w) forwM!/? e [—A, A]l
From equation (5.5) we have

d - (ze +w)* +2r cos(@) (zc + w) + r?
Re | — =N
¢ [dw Gun w))} 2:(:) (n+20) (0 + 2+ w)? 4 2r(n + 2¢ + w) cos(@) +12)
o0 2 2
M Z (ze +w)” + 2r2008(¢)(zc +w)+r .
S0 =21+ — 2o —w)? = 2r(n+ 6 — ze — w)cos(@) +17)
(5.27)

+N§: Ze +w + rcos(¢)
= (ntze +w) +2r(n + 2 + w) cos(e) + 12

B i Ze + w + 7 cos(p)
S+ 0 —ze—w)? = 2r(n+60 —zc —w)cos(¢) + 12

Below C will stand for a positive constant, which depends on 6, A, §. We first note
that for M large enough

oo

= 1 C
2 =2
(n+ze + w)2 +2r(n + z + w) cos(¢p) + r2 n+ze +w)2+r2

n=0 n=0
C C /OO Cdx C

< + ——— < :

Ge+w)? 4712 @e+w+1D)2+r2 ) 2427 147
(5.28)

Analogously, one shows that

i 1 < 5.29
= n+60—z.—w)?2—=2rn+60—z.—w)cos(p) +r2 ~ 1+r (5.29)

Combining (5.27) with (5.28) and (5.29) we conclude that for all large enough M

=C(+r),

Re [iGM,N(Z(Vs w))]
dw
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and then (5.26) follows by the mean value theorem. O

6 Appendix B

In this section we provide the proofs of various results we used in Sects. 2 and 3.

We summarize several estimates about special functions that will be required in the
proofs below. Note that if dist(s, Z) > c for some fixed constantc > Oand s = x +iy
then there exists a constant ¢’ > 0 such that

<cle M, (6.1)

IT(=s)I'(1 +9)| =

sin(7 s)

It follows from [30, (2), pp. 32] thatif z € C and |arg(z)| < w —e€ forsome € € (0, )
then

T(z) = e 22512012 . (1 n 0(z—1)) , (6.2)

where the constant in the big O notation depends on € and we take the principal branch
of the logarithm. Also by [38, Theorem 1.6, Chapter 6] there are positive constants
c1, ¢a such that

‘ 1

< elzlloglz| 6.3
ra| =< (6.3)

6.1 Proof of Propositions 2.15 and 2.19

In this section we give the proofs of Propositions 2.15 and 2.19 , whose statements
are recalled here for the reader’s convenience.

Proposition 6.1 Fix M,N > 1,d = (aj,...,any) € RN, & = (a1, ..., o) € RM,
T >0, a compact set K C C and v, u € C with Re(u) > 0. Then there exist positive
constants L, Cy, co, dependingon M, N, a,a, T, v, u and K, such thatift € [0, T},
x,ae€ K, w=a+zarg(z) € [r/4, /31U [—n/3, —7 /4], lw| > Lo

M
: T Hm:l I'(x +am — w)uw—ver(wz—vz)ﬁ < Coe—co|w|log|w|'
sinf(r(v —w) [TV, T(w — ay) -
(6.4)
Proposition 6.2 Fix M,N > 1,a = (ai,...,any) € RN, & = (a1, ..., o) € RM,

T > 0, a compact set K C C and v, u € C with Re(u) > 0. Then there exist positive
constants Ly, Cy, co, depending on M, N, a, a, t, v, u and K, such thatif w = a +z
witha € K, arg(z) € [x/4, 7 /21U[—n/2, —m /4], |w| > Lo we have

M
T Hm:l Iy — w) uw—ver(wz—vz)/Z

Cpe~Ccolwlloglwl g 5
sinGr —w) 1V, T(w — ap) = Coe )
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As the proofs of the above propositions are quite similar, we will combine them.

Proof We consider the two cases |arg(z)| € [r/4, /3] and |arg(z)| € [7/3, /2]
separately, with the second one only being relevant for Proposition 6.2. Below we fix
an arbitrary 8 > 0, say 6 = 1.

Assume first that |arg(z)| € [m/4, 7/3]. Below ¢; denote positive constants.
Observe that

re—wM

L exp (—GuN(w) + Wy nG@)w + Cy,n) -

In particular, by Lemma 5.1 we have for all |w| sufficiently large that

‘1"(9 —w)M

T'(w)N ' < exp (—cilw|log|w]) . (6.6)

Furthermore by (6.2) we have for all x € K and |w| sufficiently large that

= |w|>. (6.7)

[y T +am—w) TV
re—wM T, T (w — ay)

In addition, by (6.1) we have for all |w| sufficiently large that

T

e ©®

Finally, we have for all |w| sufficiently large and = € [0, T'] that

< cqets (6.9)

2_.2
uw—ver(w —v )/2’

where we used the fact that

1€72°72] = exp (rRe[zz]/2> <1

since Re[z2] < 0 by our assumption that |arg(z)| € [n/4, w/3]. Combining (6.6),
(6.7), (6.8) and (6.9) we conclude (6.4) and so Proposition 6.1 is proved. Also (6.6),
(6.8) and (6.9) prove Proposition 6.2 in the case |arg(z)| € [x/4, 7/3].

We next suppose that |arg(z)| € [/3, 7 /2] and finish the proof of Proposition 6.2 in
this case. Combining (6.1) and (6.3) we see that for all |w| sufficiently large

M
1" —
Uit Do =W _ 1 gl tog ) (6.10)
I—[nzl I'(w —an)
Also, since T > 0, we have
uw—vevr(w—v)+r(w—v)2/2‘ < C7ecglw|—r\w\2/4’ (611)
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where we used
179 12] = exp (rRe[z2]/2) < exp (—1:|z|2/4) ,

which in turn relies on our assumption that |arg(z)| € [ /3, 7/2]. Combining (6.8),
(6.10) and (6.11) we conclude that for all |w| sufficiently large we have

M
4 Hm:1 (o — w) uwfver(wzfvz)/Z

_ 2
sin(w (v —w) TV, M'(w — ay,) = cgexp(—ciolw|),

which certainly implies (6.5). This concludes the proof of Proposition 6.2. O

6.2 Proof of Proposition 2.17

In this section we give the proof of Proposition 2.17, whose statement is recalled here
for the reader’s convenience.

Proposition6.3 Fix M,N > I, T > 0,7t € [0,T], a = (ai,...,ay) € RV,
a=(ay,...,oy) € Ri”o and u € Cwith Re(u) > 0. Put §y = min() — max(a) and

assume that 6y > 0 and 8y € (0, min(1/4, 69/16)). Suppose that v, v' € Cq ¢ as in
Definition 2.10 with a € [max(a) + 8, min(&) — 58¢] and ¢ € [37 /4, 57/6]. Finally,
fixb € [a+28¢y, min(a)—380] and denote by D, the contour Dy (b, 7 /4, 8) as in Defi-
nition 2.11. Then there exists a positive constant Cy depending ona, a, 8o, u, N, M, T
(and not t) such that if x € C with d(x, [0, 1]) < §o then we have

/ mdp(w) ﬁ I'(v —ap) ﬁ Fx +oap —w) uw_uer(wz—vz)/Z < Co
p, sin(w (v — w)) il 'w —ay,) 'x +a,; —v) w— T4 ?

m=1

(6.12)

Proof In the arguments below, ¢; will denote positive constants that depend on the
parameters in the statement of the proposition. Let us put & = min(a). We notice that
we can rewrite the integrand as

H(w) mexp [GM’N(U) — GM,N(w)] uw—uef(uﬂ_vz)/z
H(v) sin(w (v — w)) w— v

F(w) = ,  (6.13)

where Gy n is as in (5.3) and

N

F(w) 2% T+ — w)
H(w) = exp(—Wy n(zo)w) - .
’!:[1 M'w —ay) 1:[

We split the integral over the two pieces Dll) and Dlz) (see Definition 2.11). If w € DJ
and |w| is sufficiently large we may apply Lemma 5.1 to get

lexp(—G p,n (w))| < exp (—ci|w|log [w]). (6.14)
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On the other hand, using (6.1), we have for all w € D,ﬂ and v,V € Cap

4

<c3. (6.15)

’fczand‘

sin(w (v — w)) w—1

Setting v = a + ry cos(¢) + iry sin(¢p) and w = b + ry, cos(w/4) £ iry, sin(w/4),
we get

Re[w? — v = (— cosz(qb) + sin2(¢))r§ — 2a cos(¢p)ry + b*—a’>+2b cos(r/A)ry,

where we used that cos(ir/4) = sin(r/4). In particular, by our assumption on ¢ we
have (— c0s2(¢) + sin? (¢)) < 0 and we conclude that

ef<w2—v2)/2} < ¢y - eSswlHD, (6.16)
Also, from (6.2) we have
H(w) < cg - eI, (6.17)
H®)

Combining (6.14), (6.15), (6.16) and (6.17) we conclude that
|F(w)| < c8669(|w|+\v|)—610(M+N)leloglwl - exp (Re [GM‘N(U)]) . (6.18)

From the above we conclude that

/ [F@)lldw] < ene® - exp (Re [Gu,n (v)]) < crzexp(—cisfvllog v]),
D

v

(6.19)

where the last inequality follows from Lemma 5.1.
We next focus our attention on D2. Recall that D? consists of straight oriented segments
that connect z_ to v 4 28¢p — i8p to v + 2380 + i8¢ to z+, where z_, z are the points on
Cp, /4 that have imaginary parts Im(v) — o and Im(v) + ¢ respectively. Explicitly,
we have z_ = b+1Im(v) — §p +ilm(v) —idg and z+ = b+1Im(v) + 5o + ilm(v) +idp.

If |v] is bounded, we observe that F(w) remains bounded on Df as it is bounded
away from all of its poles, so we only need to focus on large |v|. We assume that |v|
is sufficiently large so that D? is well separated from the real line and 5o z_, z lie in
the same complex half-plane. For simplicity we will assume that we are in the upper
complex half-plane (the other case is completely analogous).

We define a contour connecting z_ and z, denoted by C, as follows, see also Fig. 8.
It starts at z_ and goes horizontally to v+ k, + 1/2 — i8¢, thenup to v +k, + 1/2 +idg
and then horizontally to z . Here &, denotes the largest integer such that Re[v + &, ] <
—2a + Im(v). We assume that |v| is sufficiently large so that k, > 1. Notice that the
length of C,, does not exceed 3 + 25¢ + 4|a| + 2|b|.
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Fig.8 The figure depicts the
contour Cy ¢ and

Dy = Dy(b, /4, §p) with
min(@) > b > a > max(d). The
black dots denote the points
v,v+ 1,v+2,... and the grey
ones denote o, + X, oy +x +
Lopm+x+2,.... The contour
Cy is the filled contour that
connects z— and z

An application of the residue theorem gives

2i

L F()—kUR'() L F(w)d (6.20
_D%w—;jv—i—szcvww, .20)

where the residue at w = v + j is denoted by R;(v) and given by the formula

N
Rj(v)=—(-u)! H

M- ﬁ C(x + o — v — j) eTHT 2

I‘(v+]—an Fx+ay—v) v—uv +j
6.21)

m=1

From the functional equation for the gamma function I'(z+ 1) = zI'(z) we know that

‘ T'(v—ap) IL[ ‘ L
Frv+j—ay) bl v—an—i—k—l ~ Im(v)|/
‘F(x—l—am—v—j) :li[ 1 ‘< 1

F'(x +a, —v) x+a,—v—Fk| = (Im@w)] -8y’

k=1

where in the last inequality we used that Im(x) € [—60, do].
Next we observe that if v = a + r, cos(¢) + iry sin(¢) then

Re[vj + j*/2]

= j(a + rycos(¢)) + j2/2 < j(a + ry cos(¢)
+(ry sin(¢) — 2a — ry cos(¢))/2) <0,

where in the last inequality we used that r,, cos(¢) + r, sin(¢) < 0 by our choice of

¢ and the first inequality
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conclusion is that for all large enough |v| we have

. 2
erv]+r] /2‘ <1

forall j =1,...,k, and T > 0. Finally, if we assume that |v| is sufficiently large we

max(l,|ul)

1 P .
can ensure that T =30 <3 Combining all of the above estimates we see that

| lul/ 1
Z Ryl = Z (Im(@)] = 8)M+N) v — o' + |

=1 j=1
C &
< 14 < 15 ’
(IIm@)[ = 8)M+N = 1 + |v|?

(6.22)

where in the second inequality we used that v — v’ is uniformly bounded away from
Z and that the sum of the geometric series is controlled by its first term. The last
inequality used that M + N > 2 and holds for all |v| large enough.

Since the contour C, is (at least distance 8p) bounded away from v +Z the estimates
in (6.15) hold. Provided that |v| is sufficiently large and w € C, the estimates in (6.14)
and (6.17) also holds. We next wish to show that (6.16) also holds for w € C,,.

Suppose that w € C,, and write it as w = y + ry, cos(/4) + iry, sin(/4), where
y is a real number between —2|a| — 2|b| — §o — 3/2 and 2|a| + 2|b| 4+ 5o + 3/2 and
rw € [Im(v) — &g, Im(v) 4 8g]. As done before in (6.16) we have

Re[2v(w — v) + (w — v)?] = (— cos*(¢) + sinz(qb))rf
—2a cos(¢p)ry + y2 —a’+ 2y cos(m/4)ry.
In particular, by our assumption on ¢ we have (— cos2(¢) + sin’(¢)) < 0 and so
(6.16) also holds. Combining (6.14), (6.15), (6.16) and (6.17) we conclude that for all

large v and w € C, one has the estimate as in (6.18) and since C, has length at most
3+ 28g + 4|a| + 2|b|, we conclude from Lemma 5.1 that

1
—/ F(w)dw
2 Cy

The proposition now follows from combining (6.19), (6.20),(6.22) and (6.23).

< c17 exp(—ciglv| log |v)). (6.23)

6.3 Proof of Proposition 3.11

In this section we give the proof of Proposition 3.11, whose statement is recalled here
for the reader’s convenience. We follow the same notation as in Sects. 3.1 and 3.2.

Proposition6.4 Let A > 0 and x > —A be given and let M, N,u(x, M, N) be as
in Definition 3.1. Then for any € > 0 there exist positive constants My, co, Co > 0
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depending on A, € and the parameters in Definition 3.1 such that if M > My, v, v’ €
Ca 37/4 we have

|Ku(v, 0| < CoM'3 and if v — a| > € we further have |Ku(v, )|
< Coe*COMIOg(IHUl)' (6.24)

Ifr = c =0 then My, co, Co > 0 depend only on 6, §, A and €.

Proof Before we go to the main argument, we give a conceptual roadmap of the proof.
For clarity we split the proof into several steps. In the first four steps we prove (6.24)
when v is bounded away from a and in the last step we establish it when visclose toa. In
both cases we deform the contour D,, in the definition of K, (v, v’) to a suitable contour
where we can estimate the integrand in the definition of K, (v, v) using the results
from Sects. 5 and 6. In the case when v is close to a we can deform D, to a contour
that is a horizontal translation of C;, /4 by O(M ~1/3) (recall that this contour was
defined in Definition 2.10). Ideally, we would prefer to work with the contour C;, /4,
because Lemma 5.4 and Lemma 5.5 give us very good control of the absolute value of
the integrand on this contour. A mild translation of C_ /4 is, however, necessary to
ensure that the poles at o, and a,, are on the correct sides of the contour. The idea then
is to combine our good estimates on C;, /4 with Lemma 5.6, which ensures that slight
horizontal movements away from C;, /4 does not significantly damage our estimates.
This idea is also present in the case when v is bounded away from a. The new challenge
that arises in this case is that we need to deform D,, to a new contour, which avoids the
poles at v + Z coming from the sine function in the definition of K, (v, v). The idea
then is to work with a contour D, (b, 7 /4, d) as in in Definition 2.11. This contour
consists of two parts—D! and D?. Estimating the absolute value of the integrand on
D! is similar to the case we discussed above and relies only on Lemma 5.4, Lemma 5.5
and Lemma 5.6. The analysis of the integral over D? is more involved and requires
further deforming this contour to the half-plane {Re(z) > z.}. Once we are in the half-
plane {Re(z) > z.} we can utilize Lemma 5.3 and get the estimates we desire—this
is done in Step 3. Unfortunately, in the process of deforming D* we pick up a large
number of poles, whose residues need to be controlled as well—this is done in Step 4
and requires a fairly involved case-by-case analysis. We now turn to the proof.

Step 1 Let r be as in Lemma 5.4 for the choice of § and 6 as in the proposition. We also
set re = min(r/2, €, 1/2), and for y > 0 we write By(z¢) :=={z € C: |z — z¢| < y}.
We also define d¢ = min(r./10, 1/20, dy), where dy > 0 is sufficiently small so that

6_
4Z”, do < %C,and(l—s)\/(l—s)2+(9—zc—s)2

1+ s fors € [0, dol. (6.25)

do

IA

v

Notice that all of the above constants can be chosen uniformly in 6, € and § when
r=c=0.

We first suppose that |[v — a| > € and establish (6.24) in this and the next three
steps. In the sequel we will write G for G, o for oy, d for d. and r for r to ease
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the notation. Then we have by Cauchy’s theorem that if M is sufficiently large and
M > My that

1
Ku(v,0) = — / Fw. v vydw. with
27T| D

r C

) B F(U_an) F(Olm _w)
F(w,w',v) —L[l T(w—a,) [ T'(am —v)

TeMIGW)=G)] M Pxo(v=zc) p=M"Pxo(w—z)

(6.26)

m=1

X

El

sin(w(v — w))(w — V')

where D stands for the contour D, (b, w /4, d) in Definition 2.11 with d as above,
b =a+ po~"M~1/3 and p as in Definition 3.1. The decay estminates necessary to
deform the contour D, in the definition of K, (v, v’) to D near infinity come from
Proposition 6.1 applied to K = [0,0], T = 0 and a, &, u as in the statement of the
proposition. In order to ensure that the poles at 0,6 + 1,6 + 2, ... stay on the right
side of D (and hence are not crossed in the process of deformation) we need to ensure
that a + po "M ~13 = z. + (u + p)o "' M~'/3 < 0, which is possible by making
M sufficiently large depending on 6 and § alone. Also, by the definition of p, we
have that if ¢ > O then the poles at o; fori = 1, ..., c are also to the right of D for
large enough M in view of [v — a| > r and d < r/10. We denote by D! and D? the
portions of D that are part of Cj 5 /4 or not respectively, see Definition 2.10.

In the following steps C, ¢ stand for generic positive constants, depending on the
parameters in the statement of the proposition, whose value may change from line to
line.

Step 2 In this and the next step we assume that |[v — a| > r. Notice that if Re(z) < 0
we have

1/3 . 1/3 1/3
|eM %% < 1if x > 0 and so for x > —A we have |eM %97 < AM Ol

(6.27)
The latter equation together with Lemmas 5.5 and 5.6 imply for all large enough M
|eMG(v)eM1/3(r(vfzc)x| < Cefchv\ log(1+4|v])

iflv—al>r, andv € Cy 374

e MG =M Pow=207| < comeMwlloeH D if |y — p| > r/2 and w € Cpnys.

(6.28)

To see why the latter is true, note that Lemma 5.5 implies the above inequalities when
a, b are replaced with z. and then Lemma 5.6 allows us to replace z. with a, b since

such a change affects the right side of the inequalities by Ce“M R+ for the first line

and CeM** (41w for the second line. Of course, this effect is negligible compared
to the exponential in M decay.
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In addition, using (6.1) we have for all w € D! that

1

1/3
sin(mr(v — w))(w — v') =CMT (6:29)

The extra M '/3 is coming from the |w —v’| in the denominator, which is lower bounded
by M~135=1p as v’ is allowed to be close to a unlike v. We also observe that

r

'v—ay) ﬁ Mo — w)

IL[ Tw—an+1) l£[ T(am —w+ 1)
T(w—ap+ 1) T(am — v+ 1)
n=1 m=1

I'(w — ap) [(am —v)
n=1 m=1
C
w—a Om — U
< [1 “ 1] == < Cexp (c|v|log(1 + |v]) 4 c|w|log(1 4 |w]) + clog M),
nel VUV —dap mel oy — W

(6.30)

where we used (6.2) and (6.3) to upper bound the gamma functions, and the extra
log M term is coming from «,, — w in the denominator, whose absolute value is
bounded away from 0 by (1/2)(min(y) — u — p)M 1351 for all large enough M,
see Definition 3.1.

Combining (6.28), (6.29) and (6.30) we conclude that for all large enough M

/ F(w, v/, v)dw| < Ce~cMIvlog+v]) (6.31)
D'NB; ), (b)

Suppose next that w € D' N B, /2(D) (observe that this piece is separated from D?
by our assumption on v). Using (6.27), Lemma 5.4 and Lemma 5.6 we have

|efMG(w)efM1/3¢r(wfzc)x| < CecM2/3efMa3(«/§/2)3\wfzc|3/6eAM1/3o|w7zc|.

In deriving the above inequality we used that our r is smaller than the one in Lemma 5.4
so that the lemma is applicable. Combining the last inequality with the first line in
(6.28), (6.29), (6.30) we conclude that for all large enough M

< Ce~cMIvllog(1+v]) (6.32)

/ F(w, V', v)dw
D

'NBy /2 (b)

Equations (6.31) and (6.32) provide the desired estimates for the integral of F(w, v’, v)
on D'. We consider the integral over D? in the next step.
Step 3 In this step we establish the following inequality

< Cefchog(lJrlU\)' (6.33)

/ F(w, v, v)dw
D2
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Fig. 9 The left part depicts C, when Re(v + ky) € [z¢ — d, z¢ + d] and the right part depicts it when
Re(v +ky) ¢ [zc —d, zc +d].

Combining (6.31), (6.32) and (6.33) we conclude (6.24) in the case when |[v —a| > r,
which of course implies the statement when [v — a| > € as r < € by construction.

To prove (6.33) we define a new contour C,, as follows, see also Fig. 9. Letk, € Z>¢
be the unique integer such that Re(v+k,) € [z.—d, z.+d]if such an integer exists (the
uniqueness follows from our assumption that d < 1/20); if no such integer exits we
let k,, be the largest integer such that Re(v +k&,) < z..If Re(v+ky) € [zc —d, zc +d]
we let Cy, be the contour that horizontally connects the points z_ to z. + 1 /2 +ilm(z_)
to zc + 1/2 4+ ilm(z4) to z., where z+ are the two points shared by D! and D?, see
the left part of Fig. 9. If Re(v + ky) ¢ [z — d, z¢ + d] we let C, be the contour that
connects z_ to z. +ilm(z_) to z. +ilm(z4) to z4, see the right part of Fig. 9. Observe
that by construcion we have that if z = z. + (u + /o)o_lM_l/3 + f +ig € C, then
lgl = f>0,d(z,v+7Z) > dand d(z, Cy37/4) > d/2 for large enough M. Also the
length of C,, is at most 2|Im(v)| + 3d for large enough M.

An application of the residue theorem, see [38, Corollary 2.3, Chapter 3], gives

— F(w, v v):ZR'(v)-l-L/ F(w, v, v)dw (6.34)
27i Jpe T J 27i Je, T ’ '

where the residue at w = v + j is denoted by R;(v) and given by the formula

ey T@Y TO—v— M T T—an
Rj==(¢) T+ )N T@— o) v—v+11:[F(v+j—an)
li[r(am—v—n
oo Tlem—v)
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Observe that from (6.27), Lemma 5.3 and Lemma 5.6 we have for w € C, that

efMG(w)efMl/%(wfzc)x < CecM'/3A\v|+cM2/3|v|. (6.35)

Let us elaborate on equation (6.35) briefly. Equation (6.27) allows us to bound
|e_Ml/3"(w_z<')x| by eCM1/3A|”|, which in turn is controlled by ecM ALl 5q |w| is
upper and lower bounded by constant multiples of |v| for w € C,. Furthermore,
Lemma 5.3 bounds [e"™C®)| by 1 when |[Im[w — z.] > Re[w — z.] > 0. By
construction of C, we know that Re[w — z.] > 0 is satisfied for all points on C,.
The inequality |Im[w — z.]| > Re[w — z.] can fail for some points on C, but
only those that are at most distance (u + p)o*_lM —1/3 (if the latter is positive)
from the points z*. For these w we know from Lemma 5.6 that Re[-M G (w)] =
Re[-MG(w — (u + p)o " M~13)]+ 0(M?3(1 + |w])), and since by Lemma 5.3
the first term is negative, we see that Re[-G (w)] < cM?B | forall w € C,.

Since C, is bounded away from v + Z, and C, 354 we know that (6.29) holds,
and as it is bounded away from R we also know that (6.30) holds. Combining the first
line of (6.28), with (6.29), (6.30), (6.35) and the fact that the length of C, is at most
2|Im(v)| + 3d we conclude that for all large enough M

< Ce—cMllog(l+v) (6.36)

/ F(w, v, v)dw

v

We now claim that

ky
ST IRj ()] < CemeM e, (6.37)
j=1

If the latter is true, then (6.34), (6.36) and (6.37) would imply (6.33). We establish
(6.37) in the next step.
Step 4 We prove (6.37) by considering the cases when [Im(v)| < 1 —d, |[Im(v)| €
[1—d, 1+d], |Im(v)| € [1 —d, 3] and |Im(v)| > 3. The case when |Im(v)| < 1 —d is
trivial since then k, = 0 and the sum in (6.37) is empty. The focus is on the remaining
three cases.

From the functional equation for the gamma function I'(z + 1) = zI'(z) we know
that

J

I'(v) _li[ 1 re—v-jl| 1 and
C'(v+ j) _kzl +k—10"| T®O-v) L6 —v—k
L T —ay) 1—[ F(am—v—n
ATw+j—a) 14 Tl —v
rJ | c J |
=[111 Py S E. — _k’. (6.38)
e nl, gy 1Om =V
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If Im(v)| € [1 —d, 1 4+ d] we have that k, = 1 and so the left side of (6.37) becomes

C

|v—v’—|—1||11|N~|9—v—1|"”}_[l v —ap l_[

= n=1

1/3
|e—xr7M/ | 1 r 1

[Ri(v)| =

1
oy —v—1 ‘
- Cexp(Ao M'/3)

T Im@IN A =d)? + 0 —a+ [Im@)] — DHM

_ Cexp(Ao M1/3)

T (=Y A =)+ (0 —a— DM

where we used that [v| > 1 —d, M > N and (6.27). By our choice of d < dy with dy
as in (6.25), we get for all large enough M

exp(CM'/3)
[R1(v)| < W,

which implies (6.37) in the case |[Im(v)| € [1 —d, 1 4+ d] as long as M is sufficiently
large.
Next, suppose that [Im(v)| € [1 + d, 3]. Then from (6.38) we have

‘F(v) 1 ‘F(Q—v—j)< 1
T+~ Im@p | T@—v) |~ Im@p

L Tw—ay) 14 Dem—v—))
l_[[‘(v+j_an)l_[1 I'(ay —v)

n=1 m=

(6.39)
<C.

The above inequalities imply that (observe k, < 3)

i exp(CM'/3)

IR < W (6.40)

j=1

which implies (6.37) in the case [Im(v)| € [1+d, 3] as long as M is sufficiently large.
Finally, we suppose that [Im(v)| > 3. In this case (6.39) imply

ky ky 1/3 : ky

C-exp(AocM'/?j) i _
PINIIOIEDS (O = C Y lm@)[~M < Clim)| ™,
Jj=1 Jj=1 Jj=1

(6.41)
where in the next to last inequality we used that |Im(v)|N > exp(AoM'/3) for all
large enough M, and in the last inequality we bounded the sum by a geometric series.
Equation (6.41) implies (6.37) in the case |Im(v)| > 3 since

log(1 + [v]) = log(1 +2[Im(v)]) <log(3) +log|Im(v)| < 2log [Im(v)].
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Step 5 In this step we establish (6.24) when |[v — a| < r. Observe that by Cauchy’s
theorem we may deform the D, in the definition of K, (v, v’) to the contour Cj /4
without affecting the value of the integral. The latter is because v + 1 is strictly to
the right of Cp /4 whenever |v — z.| < r, by our choice of r. Thus we do not
cross any poles in the process of the deformation. The decay estminates necessary to
deform the contour D, in the definition of K, (v, v) to Cp /4 near infinity come from
Proposition 6.1 applied to K = [0,0], T = 0 and a, &, u as in the statement of the
proposition.

Consequently, we have

1
Ky(v,v') = —/ F(w, v, v)dw,
ZJTI Ch,n/4

where F(w, v/, v) is as in (6.26). Next, by Lemma 5.4, Lemma 5.6 and (6.27) we have

MO M Poxw=20| < exp(—(V2/2)|v — 2.0 M /6 + CM*3) < M
(6.42)

and also by Lemma 5.5, Lemma 5.6 and (6.27) provided that M is sufficiently large
we have

e MG@) =M Pow=z0)| < comeMwllog(+D if |y — p| > r/2 and w € Cpr/a.
(6.43)

One also observes that the inequalities in (6.29) and (6.30) are also satisfied if |[v —a| <
rand |w — b| > r/2, w € Cp /4, which together imply that for all large M

F(w, v, v)dw

2/3 e
/ < eCM / e chwllog(l—i—le)'dwl
Cb,rr/4me/2(h) Cb4n/4ﬂBrC/z(b)

< CeM. (6.44)

where |dw| denotes integration with respect to arc-length.

On the other hand, if v € B,(a) and w € B,;2(b) we can perform the change
of variables 7 = (v — z. )Mo, W = (w — z.)M'/3c and apply Lemma 5.4 and
Lemma 5.6 to obtain

/ F(w, v, v)dw
C

b.w/aNBy/2(b)

<c|
C}l+ﬂ,ﬂ/4

- exp (V2P 12— (VA/DIP 12+ [iD]A + [§14)
% M1Bg|sin(r M—130=1(1 — w))| il

1

eclog(l+|ﬁ|)+clog(l+\ﬁ)\)
wal/Safl + 70— v
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We remark that in deriving the last inequality we bounded the double product of
gamma functions in the definition of F(w, v', v) by Ce¢log(+lD+clog+w]) g gee
why such a bound holds we can use (6.30), and note that the right side of the top line
is O(1) forv € B,(a) and w € B,(b) since r < 1/2 by assumption, while the rational
functions on the second line can be controlled by Ce¢lg(+vh+clog(+wD e a150
mention that the bound on

lexp(M[G(zc + B0~ 'M™'7P) — G(ze + o' M3
via
Cexp (—~(V2/2)1°/12 = (V2/2) il /12)

can be obtained using only Lemma 5.4 in the case | — b| < M'/371/10 and |5 —qa| <
M1B3=110 When M1B3=110 <1 — b < (r/2)M'/3 and M/37V10 < |5 — | <
rM'/3 one needs to further invoke Lemma 5.6. The way this estimate is established is
very similar to what we earlier did in Step 4 of the proof of Theorem 3.2 in Sect. 3.3
so we omit the details.

From Lemma 3.13 we know that

7M1
. ~ ~ < C?
sin(rM~Y3¢-1Y(w —w))| ~
and also we know by definition of our contours that
! <cMm'3,
wM-1V3¢— 7. —v' |~

Combining the last few estimates we see that

/ Fw. v v)dw| < CM1/3/ oClog(1+[3 ) e log(1+i])
Cp,z/4NB;2(b) Crtp,/4

o~ (V22101 /12= V2 Dl 124 BIAHTIA | g | < €3, (6.45)

where the last inequality used the fact that C;,4 , /4 does not depend on M and the
integral is finite by the cube in the exponential. Equations (6.44) and (6.45) imply
(6.24) when |v — z.| < r. This suffices for the proof. O
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