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Abstract
We prove that the free energy of the log-gamma polymer between lattice points (1, 1)
and (M, N ) converges to the GUE Tracy–Widom distribution in the M1/3 scaling,
provided that N/M remains bounded away from zero and infinity. We prove this
result for the model with inverse gamma weights of any shape parameter θ > 0
and furthermore establish a moderate deviation estimate for the upper tail of the free
energy in this case. Finally, we consider a non i.i.d. setting where the weights on
finitely many rows and columns have different parameters, and we show that when
these parameters are critically scaled the limiting free energy fluctuations are governed
by a generalization of the Baik–Ben Arous–Péché distribution from spiked random
matrices with two sets of parameters.
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1 Introduction andmain results

1.1 The log-gamma polymer

The log-gamma polymer was introduced by Seppäläinen [36] and is the only vertex-
disorder 1+1dimensional directed polymermodel that is known to be exactly solvable,
in the sense that the distribution of its free energy can be computed explicitly. The
contribution of our present work is to establish asymptotics of this model’s free energy
fluctuations over a very wide range of parameters which control the dimensions of the
polymer as well as the nature of its disorder. Proving these general asymptotic results
require us to considerably rework the fundamental starting formula for this model, i.e.
the Fredholm determinant Laplace transform formula. Our asymptotic results have
applications that are being pursued in a number of contexts including showing tightness
of the log-gamma line ensemble [7], showing a phase transition for the maximum of
the log-gamma polymer free energy landscape [6,26] and showing that the log-gamma
polymer converges to the KPZ fixed point [43].

Definition 1.1 A continuous random variable X is said to have the inverse-gamma
distribution with parameter θ > 0 if its density is given by

fθ (x) = 1{x > 0}
�(θ)

· x−θ−1 · exp(−x−1). (1.1)

The log-gamma polymer model that we consider in this paper depends on two
integers M, N ≥ 1 and two sets of parameters �α = (α1, . . . , αM ) ∈ R

M
>0 and

�a = (a1, . . . , aN ) ∈ R
N such that θi, j = αi − a j > 0 for all i = 1, . . . , M and

j = 1, . . . , N .
We let w = (

wi, j : 1 ≤ i ≤ M, 1 ≤ j ≤ N
)
denote the random matrix such that

wi, j are independent random variables with density fθi, j as in (1.1). We denote by
(�,F , P) the probability space on which w is defined. A directed lattice path is a
sequence of vertices (x1, y1), . . . , (xk, yk) ∈ Z

2 such that x1 ≤ x2 ≤ · · · ≤ xk ,
y1 ≤ y2 ≤ · · · ≤ yk and (xi − xi−1) + (yi − yi−1) = 1 for i = 2, . . . , k. In words, a
directed lattice path is an up-right path onZ

2, which makes unit steps in the coordinate
directions (see Fig. 1). We let �M,N denote the set of directed paths π in Z

2 from
(1, 1) to (M, N ). Given a directed path π we define its weight

w(π) =
∏

(i, j)∈π
wi, j . (1.2)

We also define

ZM,N =
∑

π∈�M,N
w(π), (1.3)
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Fluctuations of the log-gamma polymer free energy with... 115

Fig. 1 A directed lattice path π ∈ �M,N in the log-gamma polymer model

to be the partition function of the model.

The main goal of this paper is to understand the asymptotic behavior of log ZM,N

as N , M → ∞ while N/M remains bounded away from 0 and ∞. We describe these
asymptotic results now.

1.2 GUE Tracy–Widom asymptotics

In this section we consider the log-gamma polymer with i.i.d. weights. Fix θ > 0 and
assume that a j = 0 for all j = 1, . . . , N and αi = θ for all i = 1, . . . , M . Before we
state the result we introduce some necessary notation. Define the function

g(z) =
∑∞

n=0
1

(n+θ−z)2
∑∞

n=0
1

(n+z)2
, (1.4)

and observe that g is a smooth, increasing bijection from (0, θ) to (0,∞). Clearly, the
inverse function g−1 : (0,∞) → (0, θ) is also a strictly increasing smooth bijection.
We now define for x ∈ (0,∞) the function

hθ (x) = x · �(g−1(x)) + �(θ − g−1(x)), (1.5)

where �(x) is the digamma function, i.e.

�(z) = �′(z)
�(z)

= −γE +
∞∑

n=0

[
1

n + 1
− 1

n + z

]
, (1.6)
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and γE is the Euler constant. One readily observes that hθ is a smooth function on
(0,∞). Finally, for any x > 0 we define

σθ (x) :=
[ ∞∑

n=0

x

(n + g−1(x))3
+

∞∑

n=0

1

(n + θ − g−1(x))3

]1/3
. (1.7)

For all N , M ≥ 1, we define the rescaled free energy

F(M, N ) = log ZM,N + Mhθ (pM )

M1/3σθ (pM )
, pM = N/M . (1.8)

We are now able to state the convergence to the Tracy–Widom distribution.

Theorem 1.2 Let θ > 0 and δ ∈ (0, 1). Let F(M, N ) be as in (1.8) and assume that
we let M, N go to infinity in such a way that the sequence pM = N/M ∈ [δ, δ−1] for
all sufficiently large M. Then for all y ∈ R we have

lim
M→∞ P (F(M, N ) ≤ y) = FGUE(y), (1.9)

where FGUE is the GUE Tracy–Widom distribution [42].

Remark 1.3 Note that ZM,N and ZN ,M are equal in distribution. Using the fact that
g−1(1/x) = θ − g−1(x), this implies that F(M, N ) and F(N , M) are also equal in
distribution. Owing to this symmetry, it suffices to prove Theorem 1.2 for pM ∈ [δ, 1].

Remark 1.4 Some special cases of Theorem 1.2 had been established in previous
works. First, it was proved in [11, Theorem 1] that the free energy log ZM,N has
Tracy–Widom GUE fluctuations with a restrictive assumption on the shape parame-
ters of the gamma distribution (θ was assumed to be sufficiently small), and only for
the free energy along the main diagonal M = N , i.e. pM ≡ 1. The result was then
extended in [25, Theorem 2.1] to cover all values θ > 0, still restricting to the diagonal
direction. Theorem 1.2 extends the result of [11,25] to any sequence of slopes pM that
is uniformly bounded away from 0 and ∞. We mention that the asymptotic analysis
becomes notably more involved once pM 
= 1—see Remark 1.18. For arbitrary slope
p, the expression for hθ (p) given in (1.5) is a consequence of the law of large num-
bers for the free energy proved in [36, Theorem 2.4]. In the physics literature, [40]
used a non-rigorous replica Bethe ansatz and critical point analysis to compute the
Tracy–Widom GUE limit (1.9) for general slopes.

Remark 1.5 Theorem 1.2 constitutes an important input of a work in preparation [7]
proving the tightness of the top curve of a discrete version of the Airy line ensemble
[14] naturally associated to the log-gamma polymer [22,44]. This top curve describes
the free energy of polymer paths of fixed length, seen as a function of the endpoint,
and is expected to converge to the Airy2 process as the length of polymer paths goes
to infinity.
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Fluctuations of the log-gamma polymer free energy with... 117

Remark 1.6 We mention that if N/M → 0, there are two cases that are understood:
if N remains bounded the fluctuations are of Gaussian type and described by the
O’Connell–Yor semi-discrete directed polymer [32]; if N = M1/α with 0 < α < 3/14
the fluctuations follow theGUETracy–Widomdistribution as follows from the notably
more general setup of [2].

Theorem 1.2 is proved in Sect. 4.1. The starting point of our analysis is a for-
mula, Theorem 2.12, for the Laplace transform of ZM,N . This formula expresses the
Laplace transform as a Fredholm determinant of a convolution kernel that depends
on the parameters �α and �a of the model. The proof of Theorem 1.2 is then based on
the asymptotic analysis of this Fredholm determinant formula via the steepest descent
method. The main challenges that we overcome in this pursuit are finding suitable
contours that allow us to perform a steepest descent argument and obtaining the nec-
essary estimates for the kernel in our Fredholm determinant along these contours.
The behavior of the integrand in the definition of the kernel along various contours is
studied in Sect. 5 and estimates on the kernel itself are given in Sect. 6.3.

Our starting formula in Theorem 2.12 leverages an earlier result of [10] (which in
turn built upon earlier work of [5,11,15]) which contain a similar Laplace transform
formula. Namely, the functions in [10] are the same, though the contours onwhich they
are integrated and on which the Fredholm determinant is defined are rather different
and unsuitable for the broad range of asymptotics that we investigate here. Reworking
that formula into one which is appropriate for asymptotics requires significant effort
and is the content of Sect. 2. The preface to Sect. 2 provide discussion on this point
and the relation of our work to previous literature.

1.3 Moderate deviation estimate

The careful asymptotic analysis of the Fredholm determinant carried out for the proof
of Theorem 1.2 also yields, as a byproduct, moderate deviation bounds for the one
point fluctuations of the free energy. These bounds hold uniformly in the slope. Such
tail bounds are of independent interest, and we will provide one application in a paper
in preparation [6]. That work considers the maximum of the free energy landscape
for the log-gamma polymer. In other words, we allow the starting and ending points
for the log-gamma polymer to vary within an N by M box and study maximum for
the logarithm of the associated partition functions. In [6], we prove a phase transition
for how this maximum is achieved as controlled by θ . This is partially motivated by
recent results of [26] which relates this question to the study of a singular values for
a random Schrödinger operator on the honeycomb lattice.

We continue with the same notation as in the previous section. In particular, θ > 0
is fixed and αi = θ for i = 1, . . . , M and a j = 0 for j = 1, . . . , N . The below result
is proved in Sect. 4.2.

Theorem 1.7 Let θ > 0 and δ ∈ (0, 1) be given. Then there exist constants
C1,C2, c1, c2 > 0 all depending on θ, δ such that the following holds for all M, N ∈ N

with N/M ∈ [δ, δ−1] and x ≥ 0

P (F(M, N ) ≥ x) ≤ C1e
−c1M + C2e

−c2x3/2 . (1.10)
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118 G. Barraquand et al.

Remark 1.8 Adifferent upper-tail estimate has been previously obtained in [21], which
proves a large deviation principle for log ZM,N with an explicit rate function. In the
present setting, this corresponds to scaling x as x = M2/3y. More precisely, for y > 0
fixed, [21, Theorem 2.2] shows

P

(
F(M, N ) ≥ yM2/3

)
≤ Ce−MI (y),

where I (·) is an explicit rate function. It was noted in [21, Remark 2.9] that I (ε) =
Cε3/2 + o(ε3/2) as ε goes to 0, which is consistent with Theorem 1.7. Here C > 0 is
a constant depending on θ and the ratio of N and M . The inequality in Theorem 1.7
becomes relevant (i.e. not implied by the results from [21]) in the moderate deviation
regime, that is when we consider deviations of F(M, N ) by x , whose size is smaller
than M2/3 and much larger than 0.

Remark 1.9 For very large M , the distribution of F(M, N ) is close to the Tracy–
Widom distribution by Theorem 1.2, and the right-hand side of (1.10) is dominated by
C2e−c2 y3/2 which, up to the values of C2 and c2 corresponds to the upper-tail behavior
of the Tracy–Widom distribution.

Remark 1.10 Some upper-tail estimates of one-point fluctuations have been obtained
for a variety of models in the KPZ universality class, such as the KPZ equation itself
[16,19], the asymmetric simple exclusion process [18], the semi-discrete O’Connell–
Yor polymer model [39], longest increasing subsequences of a random permutation
[28,35], or the Laguerre Unitary ensemble [29] (which relates directly to exponential
last passage percolation, i.e. the zero temperature limit of the log-gamma polymer).
In particular, [28] proves a moderate deviations principle with the optimal constant
c2 = 4/3.

1.4 Baik–Ben Arous–Péché asymptotics

In the following section we describe a different scaling limit for the free energy of the
log-gamma polymer model from Sect. 1.1, which is obtained when a finite number of
the parameters ai and α j are suitably scaled. As will be explained, one obtains another
limit, which is a finite rational (in terms of the determinantal kernel) perturbation of the
GUE Tracy–Widom distribution. We call the resulting distribution a Baik–Ben Arous–
Péché (BBP) distribution with two sets of parameters. We define this distribution in
the following section.

BBP asymptotics with one set of parameters were first defined in the study of expo-
nential last passage percolation in the original BBP paper [4] and their two parameter
deformation was then introduced by Borodin–Péché in [13]. This class of distribu-
tions have been shown to arise in some interacting particle systems [1,3,4] and in the
O’Connell–Yor semi-discrete directed polymer [8,41] when initial data or boundary
conditions are suitable perturbed (as presently). They should similarly arise in all
Kardar-Parisi-Zhang universality class models.

For the log-gamma polymer model, our results are the first instance of BBP asymp-
totics that have been obtained. In fact, one of our motivations for filling this gap now
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is that there is a significant interest recently in BBP type asymptotics due to the key
role that they play in the general convergence theorem announced in [43]. In a sense,
the results of [43] suggest that once the BBP asymptotics are established for the log-
gamma polymer, it should be possible to prove convergence of the model to the KPZ
fixed point. We state exactly those needed asymptotic result as Theorem 1.15 below.

1.4.1 Borodin–Péché’s extension of the BBP distribution with two sets of parameters

We introduce the following useful notation. For a ∈ C and φ ∈ (0, π) we define the
contour Ca,φ to be the union of {a + ye−iφ}y∈R+ and {a + yeiφ}y∈R+ oriented to have
increasing imaginary part. Throughout the paper we write i = √−1 and reserve the
usual letter i for indexing purposes.

Definition 1.11 Let r, c ∈ Z≥0 and fix �x = (x1, . . . , xr) ∈ R
r and �y = (y1, . . . , yc) ∈

R
c such that min(�y) > max(�x). In addition, suppose that a, b ∈ R are such that

min(�y) > b > a > max(�x) (by convention max(�x) = −∞ if r = 0 and min(�y) = ∞
if c = 0). With this data set for r ∈ C

FBBP;�x,�y(r) = det
(
I + KBBP

r

)

L2(Ca,3π/4)
, (1.11)

where KBBP
r is defined in terms of its integral kernel

KBBP
r (v, v′) = 1

2π i

∫

Cb,π/4

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)

· exp(−v3/3 + w3/3 − rw + rv)

(v − w)(w − v′)
dw.

(1.12)

In equation (1.11) the expression on the right-hand side is a Fredholm determinant;
we refer the reader to Sect. 2.1 for some basic definitions and facts about the latter.
Explicitly, we have

det
(
I + KBBP

r

)

L2(Ca,3π/4)
= 1 +

∞∑

n=1

1

n!
∫

Ca,3π/4

· · ·
∫

Ca,3π/4

det
[
KBBP
r (vi , v j )

]n

i, j=1

n∏

i=1

dvi

2π i
. (1.13)

The following result summarizes the basic propertieswewill require for FBBP;�x,�y—
its proof can be found in Sect. 4.3.

Lemma 1.12 The integral in (1.12) is absolutely convergent, each summand in (1.13)
is an absolutely convergent integral and the resulting series is absolutely convergent
for each r ∈ C; in particular, the function FBBP;�x,�y from Definition 1.11 is well-
defined. Moreover, FBBP;�x,�y(r) does not depend on the choice of a, b as long as
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120 G. Barraquand et al.

min(�y) > b > a > max(�x), is entire in r and defines a cumulative distribution
function, when restricted to R.

We call FBBP;�x,�y the Baik–Ben Arous–Péché distribution with two sets of parame-
ters. The name comes from the fact that when c = 0 we have that FBBP;�x,�y becomes
the usual Baik–Ben Arous–Péché distribution [4] as can be deduced from [9, Lemma
C.2]. When r = c = 0 then FBBP;�x,�y becomes the Tracy–Widom distribution. Note
that in its full generality, FBBP;�x,�y was first introduced in [13], hence we could call it
the Borodin–Péché distribution, though for shorthand we will refer to all one and two
parameter distributions as BBP.

Remark 1.13 In [13] the authors considered a generalization of the extended Airy
kernel, which they called the extended Airy kernel with two sets of parameters. If
one sets the time parameters t1 = t2 in [13, equation (4)] one precisely arrives at
FBBP;�x,�y . In particular, FBBP;�x,�y arises from the extended Airy kernel with two sets
of parameters the same way the GUE Tracy–Widom distribution arises from the usual
extended Airy kernel.

Remark 1.14 There are other asymptotic problems which one could pursue for the
log-gamma polymer based on our preasymptotic formula. This includes studying the
modelwhere inhomogeneity parameters are decaying or growing according to a certain
profile (see related work in [12,23]), or taken random under some distribution (see
related work in [20,24]).

1.4.2 Asymptotic result

Going back to the log-gamma polymer from Sect. 1.1 we consider a different scaling
regime of the model. Let us first state the scalings and asymptotic result, and we will
provide some explanations for this specific choice of scalings in Sect. 1.5 below.

We fix r, c ∈ Z≥0 and assume M, N ≥ 1. We fix �x = (x1, . . . , xr) ∈ R
r and

�y = (y1, . . . , yc) ∈ R
c such that min(�y) > max(�x) (if r = 0 or c = 0 this condition is

void). We also fix θ > 0, pM = N/M and g, hθ , σθ as in Sect. 1.2. With this choice
of parameters we consider the following scaling

a j (M, N ) = g−1(pM ) + x jσ
−1
θ (pM )M−1/3 + o(M−1/3) for j = 1, . . . , r,

αi (M, N ) = g−1(pM ) + yiσ
−1
θ (pM )M−1/3 + o(M−1/3) fori = 1, . . . , c,

a j (M, N ) = 0 for j = r + 1, . . . , N + r αi (M, N ) = θ for i = c + 1, . . . , M + c,

(1.14)

where we always assume that M is sufficiently large so that αi − a j > 0 for j =
1, . . . , N + r and i = 1, . . . , M + c (this is possible by our assumption that min(�y) >

max(�x) and pM is bounded away from 0 and ∞).
In this section we consider the one-point asymptotics of the rescaled free energy

F(M + c, N + r) = log ZM+c,N+r + Mhθ (pM )

M1/3σθ (pM )
. (1.15)
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when N , M → ∞ and pM = N/M remains bounded away from0 and∞.Wemention
here that the distribution of ZM+c,N+r is invariant under separate permutations of
the parameters (α1, . . . , αM+c) and (a1, . . . , aN+r). This can be deduced from [15],
which relates the distribution of the partition function ZM+c,N+r to class-one gln(R)-
Whittaker functions or alternatively from Theorem 2.12. Thus in (1.14) we could
have rescaled any r (resp. c) of the a j (resp. αi ) parameters, and not necessarily those
of lowest index, without affecting the distribution of ZM+c,N+r and correspondingly
F(M + c, N + r).

The below result about this scaling regime is proved in Sect. 4.3.

Theorem 1.15 Let θ > 0 and δ ∈ (0, 1) and assume the same notation as in the
beginning of the section. Let F(M + c, N + r) be as in (1.15) and assume that we let
M, N go to infinity in such a way that the sequence pM = N/M ∈ [δ, δ−1] for all
sufficiently large M. Then for all r ∈ R

lim
M→∞ P (F(M + c, N + r) ≤ r) = FBBP;�x,�y(r), (1.16)

where FBBP;�x,�y is as in Definition 1.11.

Remark 1.16 The distribution ofF(M, N ) andF(N , M) are equal, up to changing the
parameters (�x, �y) into (−�y,−�x). Furthermore, the BBP distribution is left invariant
by such an exchange of parameters, as can be seen by performing the change of
variables (v,w) → (−w,−v) in (1.13). Hence, as in Remark 1.3, it suffices to prove
Theorem 1.15 for pM ∈ [δ, 1].
Remark 1.17 Convergence to the one parameter BBP distribution (i.e. FBBP;�x,�y with
c = 0) has been previously established for the O’Connell–Yor semi-discrete polymer
in [9]. In addition, the O’Connell–Yor semi-discrete polymer with vertical and hor-
izontal boundaries is considered in [10,41], and [41] established convergence to the
two parameter BBP distribution FBBP;�x,�y . The starting Laplace transform Fredholm
determinant formulas that are used in [10,41] are of a similar form as those that we
use here. For the O’Connell–Yor polymer, the core of the asymptotic analysis is based
on understanding the behavior of the real part of Fκ(z) = log�(z) − κz2/2 + fκ z
along various contours, where κ > 0 is a slope parameter and fκ is some appropriate
constant. In contrast, the core of our paper’s asymptotic analysis is based on under-
standing the behavior of the real part of Gκ,θ (z) = κ�(z) − �(θ − z) − gθ,κ z, where
� is the digamma function of (1.6), κ > 0 is a slope parameter, θ > 0 is the param-
eter of the inverse gamma variables, and gθ,κ is some appropriately chosen constant.
Unlike Fκ(z), the function Gκ,θ (z) involves two parameters (κ, θ) and two digamma
functions, which makes the study of its real part along different contours in Sect. 5
quite involved.

Remark 1.18 The result in [25] corresponds to setting M = N and r = c = 0 in
Theorem 1.15. In [25] the authors dealt with the case κ = 1 of our formulas, which
also significantly simplifies the analysis and they manage to use the same contours
as in [10] since one gets nice cancellations coming from the fact that the coefficients
in front of �(z) and −�(θ − z) are the same in Gκ,θ (z). When κ 
= 1 a completely
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122 G. Barraquand et al.

different choice of contours and analysis becomes necessary to obtain useful estimates
on the real part of Gκ,θ (z).

1.5 Heuristic explanation for the scalings

Let us now explain why we have scaled the parameters a j and αi as in (1.14) and
provide some heuristic interpretations. For simplicity of the discussion, assume that
only one column has a different shape parameter, that is, we assume that r = 0, c = 1
and α1 ∈ (0, θ), such that the shape parameters of weights are θ1, j = α1 < θ along the
fist column, and for all i ≥ 2, j ≥ 1, θi, j = θ . This means that the polymer weights
wi, j will be typically larger on the first column, and polymer paths may spend more
time there.

Using the law of large numbers for the free energy of the i.i.d. model (see [36]
or Theorem 1.9 in our present work), and the fact that E

[
logw1, j

] = −�(α1), one
expects that for N = �pM
 the contribution to the partition function of paths which
exit the first column near the location (1, xM) to be approximately

exp
(

− Mx�(α1) − Mhθ (p − x)
)
.

Thus, we expect the law of large numbers for the free energy will be given by

lim
M→∞

log ZM+1,N

M
= max

x∈(0,p)

{
− x�(α1) − hθ (p − x)

}
. (1.17)

When α1 is large enough, the maximum in (1.17) is achieved at x = 0, but when
α1 < θc for a certain critical value θc, the maximum is attained at some x > 0. The
critical value θc is such that

−�(θc) = −h′
θ (p), or equivalently θc = g−1(p).

This argument can be extended to several rows and columns being perturbed, and leads
to the scalings considered in (1.14).

When α1 < θc, we expect that polymer paths yielding the main contribution to the
free energy will stay on the first column for a length xM , where x is the maximizer
in (1.17). The fluctuations of weights on the first column would dominate and this
would result in Gaussian asymptotics. This could be proved through an asymptotic
analysis of the Fredholm determinant as in the proof of Theorem 1.15, or via more
probabilistic methods, but we leave this out of the scope of the paper.

When, however, α1 > θc, the first column being different will have no effect at
large scale in the scalings and statistics (this can be rigorously deduced from our
Theorems 1.2 and 1.15 ).

Consider now the critical case and let α1 = g−1(p)+ y1σ
−1
θ (pM )M−1/3 as in 1.14.

It is expected that paths yielding themain contribution to the partition functionwill exit
the first column at a random vertical coordinate of order M2/3 (this heuristic claim
is partly justified by the results of [36] on the transversal exponent of paths under
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the quenched polymer measure). This M2/3 is precisely the scale which balances the
energy/entropy competition: the contribution to the free energy of the weights on the
first column will have roughly the same variance as the contribution of bulk weights,
the relative proportion being controlled by the parameter y1. This results in BBP
asymptotics interpolating between Gaussian and GUE Tracy–Widom statistics.

Remark 1.19 Using results from [21] on the i.i.dmodel, there is anotherway to interpret
the value of the critical point. Denote by Z(m, n; M, N ) the partition function between
points (m, n) and (M, N ) of the i.i.d. log-gamma polymer model as in Sect. 1.2. It
is proved in [21, Theorem 4.1] that for any n,m ≥ 1, the vertical increments ratios
Z(m, n; M, N )/Z(m, n + 1; M, N ) almost surely converge, as M and N = �pM

go to infinity, to an inverse gamma random variable of parameter g−1(p) (while the
horizontal increments ratios Z(m, n; M, N )/Z(m + 1, n; M, N ) converge to inverse
gamma random variables of parameter θ − g−1(p)). Hence, the critical value of α1 is
precisely such that the weights on the first column have the same size as the vertical
increments ratios in the i.i.d model.

1.6 Outline

Section 2 establishes the Fredholm determinant Laplace transform formula stated as
Theorem2.12. Section 3 contains the asymptotic analysis of this Fredholmdeterminant
formula. Section 4 concludes with proofs of Theorems 1.2, 1.7, 1.15 and Lemma 1.12.
“Appendix 5” records properties of the digamma function� and proves some technical
lemmas about the function GM,N arising in Sect. 3. Finally, “Appendix 6” contains
classic estimates for the gamma function and uses them to prove a number of estimates
used in Sects. 2 and 3.

2 Laplace transform formula

The goal of this section is to obtain a formula for the Laplace transform
E
[
exp(−uZM,N )

]
of the partition function for the log-gamma polymer which is suit-

able for asymptotic analysis. This result is given as Theorem 2.12 and expresses
E
[
exp(−uZM,N )

]
in terms of a Fredholm determinant (see Sect. 2.1 for a definition

and basic properties of the latter). To be suitable for asymptotic analysis means that
the contour for the L2 space of the Fredholm determinant, as well as the contour used
in defining the kernel (via a contour integral) should be steep descent contours for the
integrand functions in the scaling N , M → ∞ that we eventually perform.

There are two instances prior to this paper of Fredholm determinant formulas for
E
[
exp(−uZM,N )

]
, which have yielded asymptotics. The first is in [11] where a small

contour integral formulawas derived under the assumption that ai are sufficiently small
and positive. The asymptotic analysis in [11] was performed when αi are all equal to
a fixed θ > 0 and ai = 0, under the assumption that θ is sufficiently close to zero.
The second is in [25], where starting from the formulas in [10] the authors were able
to derive a large contour integral formula that allows one to perform the asymptotic
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analysis when αi = θ and ai = 0 without any restriction on θ . We mention that the
asymptotic analysis in both [11] and [25] has only been performed when M = N .

It turns out that neither of the formulas in [11] and [25] are very good for asymp-
totics when M 
= N and θ > 0 is arbitrary. The small contour formulas of [11] are
immediately inapplicable as the contours only exist under the assumption that θ is
small enough, which leaves the large contour formulas from [10,25]. When M = N
the integrand functions in these formulas enjoy a certain symmetry, that dramatically
simplifies their analysis and allows one to establish that they behave nicely along
certain vertical contours, which are suitable for asymptotics. The approach in [25] is
to work with these vertical contours. When M 
= N the behavior of the integrand
functions along vertical contours becomes unclear—we believe (although we haven’t
proved this) that the vertical lines are no longer descent contours. On this account,
for the general M 
= N case we needed to develop a formula with different contour
choices.

We discovered that the kernel in the Fredholm determinant formula for
E
[
exp(−uZM,N )

]
behaves nicely along lines of slope ±1 and this works for any

M, N ≥ 1. The necessary estimates of the kernel along these contours will be intro-
duced later in Sect. 3 as Lemmas 3.5, 3.7, 3.9 and Proposition 3.11, whose proofs take
up the majority of Sects. 5 and 6.3.
Once we have discovered a suitable choice of contours for our asymptotic analysis we
face the immediate obstacle of ensuring that E

[
exp(−uZM,N )

]
can be written as a

Fredholm determinant involving precisely these contours—there are several problems
in doing this and the purpose of this section is to overcome them all. We elaborate on
these problems below.

Firstly, there is no generic formula for E
[
exp(−uZM,N )

]
and instead one is forced

to start with the formulas in [10] that are for a certain polymer model that mixes
Seppäläinen’s log-gammapolymer [36] and theO’Connell–Yor semi-discrete polymer
[33]. Thismixed polymer is a one-parameter generalization of the log-gammapolymer,
which in addition to the αi ’s and a j ’s depends on a positive parameter τ . This model
is recalled in Sect. 2.2, where it is also established that its partition function ZM,N (τ )

converges weakly in the τ → 0+ limit to the partition function ZM,N of the log-
gamma polymer. The benefit of working with ZM,N (τ ) is that in [10] the authors
established a general formula for its Laplace transform E

[
exp(−uZM,N (τ ))

]
. The

idea then is to start from the formula for E
[
exp(−uZM,N (τ ))

]
, deform the contours

in that formula to the suitable contours we want in our case and send τ to 0+. Since
the functions that are being integrated over these contours are meromorphic, one has a
certain level of flexibility in deforming one set of contours to another that is suitable;
however, as we are dealing with infinite contours, this necessitates that we justify the
deformation near infinity. In addition, sending τ to 0+ requires certain estimates near
infinity that would allow the appropriate application of the dominated convergence
theorem. Obtaining estimates near infinity is a second problem we face, which is
resolved with the technical Propositions 2.15, 2.17 and 2.19.

A third problem we face is that the formula for E
[
exp(−uZM,N (τ ))

]
in [10] is

only correct under the additional assumption that min(�α) −max(�a) > 1 while we are
interested in the fully general case of min(�α) − max(�a) > 0. We recall the formula
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from [10] for the correct parameter range in Proposition 2.8 and explain the issues with
this formula for general parameters in Remark 2.9. In order to fix the third problem
we derive a new formula for E

[
exp(−uZM,N (τ ))

]
in Theorem 2.13, which holds in

the general case min(�α) − max(�a) > 0. The way Theorem 2.13 is proved is fairly
involved and takes up the majority of Sect. 2.4. The basic idea of the proof, which
will be elaborated significantly later, is to start from Proposition 2.8, which works
when min(�α) − max(�a) > 1 and do the deformation of the contours for that range.
Then one performs an analytic continuation argument to extend the validity of the
result to the full range of min(�α) − max(�a) > 0. As part of the proof, we required a
statement detailing when a Fredholm determinant depending on a complex parameter
z is analytic in that parameter—see Lemma 2.3.

The above few paragraphs give a sketch of the approach we will be taking in this
section. The argument is fairly involved, but the guiding principle is that we want
to start from the formulas for E

[
exp(−uZM,N (τ ))

]
in Proposition 2.8, deform the

contours in that formula, perform an analytic continuation in a suitable parameter and
then send τ → 0+. Although simple in appearance, this sequence of steps requires
one to obtain fairly detailed estimates of the integrand functions in our formulas and
constantly be careful in avoiding the large number of poles coming from gamma and
sine functions that are part of these functions.

2.1 Background on Fredholm determinants

We present a brief background on Fredholm determinants and state and prove a few
key technical lemmas that we will use throughout this section. A reader may skip
this background material and refer back to it when we begin to manipulate Fredholm
determinants in the later parts of this section. For a general overview of the theory of
Fredholm determinants, the reader is referred to [37] and [27]. For our purposes the
definition below is sufficient and we will not require additional properties.

Definition 2.1 Fix a Hilbert space L2(X , μ), where X is a measure space and μ is a
measure on X . When X = �, a simple (oriented) piecewise smooth contour in C, we
write L2(�) where for z ∈ �, dμ(z) is understood to be dz

2π i . Here and throughout
the paper, we denote the imaginary unit i = √−1, to distinguish it from i which will
often be used as an index parameter.

Let K be an integral operator acting on f ∈ L2(X , μ) by K f (x) = ∫
X K (x, y) f (y)

dμ(y). K (x, y) is called the kernel of K and we will usually assume that K (x, y)
is continuous in both x and y. If K is a trace-class operator then one defines the
Fredholm determinant of I + K , where I is the identity operator, via

det(I + K )L2(X) := 1 +
∞∑

n=1

1

n!
∫

X
· · ·
∫

X
det

[
K (xi , x j )

]n
i, j=1

n∏

i=1

dμ(xi ), (2.1)

where the latter sum can be shown to be absolutely convergent (see [37]).
The expression appearing on the RHS of (2.1) can be absolutely convergent even if

K is not trace-class. Whenever X and K are such that the RHS in (2.1) is absolutely
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convergent, we will still call it det(I + K )L2(X). The latter is no longer a Fredholm
determinant, but some numeric quantity we attach to the kernel K . Of course, if K
is the kernel of a trace-class operator on L2(X) this numeric quantity agrees with
the Fredholm determinant. Doing this allows us to work on the level of numbers
throughout most of the paper, and avoid constantly checking if the kernels we use
represent a trace-class operator.

In some of our applications wewill have that the kernel K (x, y) depends in addition
on a complex parameter z, and then we write Kz(x, y) to reflect this dependence. A
basic question which will be important in our analysis is when can one deduce that
det(I + Kz)L2(X) is not just well-defined (meaning that each summand in (2.1) is
well-defined and the sum is absolutely convergent) but also analytic in z. We provide
sufficient conditions for this to hold in Lemma 2.3 below. Our proof of that lemma
uses the following result.

Proposition 2.2 [31, Theorem 1]. Let (�,A, μ) be a measure space, G ⊂ C an
open set and B(G) the σ -algebra generated by all open subsets of G. Suppose that
f : G × � → C is a function that satisfies the following assumptions:

(1) f (z, ·) is A-measurable for every z ∈ G;
(2) f (·, ω) is holomorphic in G for every ω ∈ �;
(3)

∫
�

| f (·, w)|dμ(ω) is locally bounded, that is, for all z0 ∈ G there exists δ > 0
such that

sup
z∈G,|z−z0|≤δ

∫

�

| f (z, w)|dμ(ω) < ∞.

Then
∫
�

f (z, ω)dμ(ω) is holomorphic in G and may be differentiated under the
integral. More precisely, we have for any n ≥ 0 the following conclusions:

(1) ∂nz f is B(G) ⊗ A-measurable and, for every A ⊂ G, supz∈A |∂nz f (z, ·)| is A-
measurable;

(2) for all compact K ⊂ G

∫

�

sup
z∈K

∣∣∂nz f (z, ω)
∣∣ dμ(ω) < ∞;

(3)
∫
�

f (z, ω)dμ(ω) is holomorphic in G and for each z ∈ G,

∂nz

∫

�

f (z, ω)dμ(ω) =
∫

�

∂nz f (z, ω)dμ(ω).

Lemma 2.3 Suppose that � is a piecewise smooth contour in C and G ⊂ C is open.
Suppose that Kz(x, y) is a function such that

(1) Kz(·, ·) is a measurable function on � × � for each z ∈ G;
(2) for each x, y ∈ � the function Kz(x, y) is analytic in z on G.
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In addition, suppose that for every z0 ∈ G there exist a δ > 0 and a measurable
function F(x) on � (depending on z0 and δ) such that

sup
z∈G,|z−z0|<δ

sup
y∈�

|Kz(x, y)| ≤ F(x) and
∫

�

F(x)|dμ(x)| = M < ∞. (2.2)

Then for each z ∈ G one has that det
[
Kz(xi , x j )

]n
i, j=1 is integrable on �n, so that

in particular
∫
�

· · · ∫
�
det

[
Kz(xi , x j )

]n
i, j=1

∏n
i=1 dμ(xi ) is well defined. Moreover,

for z ∈ G the series det(I + Kz)L2(�) in (2.1) is absolutely convergent and defines a
holomorphic function of z in G.

Proof Let z0 ∈ G and δ > 0 be sufficiently small so that Nδ(z0) := {z ∈ C :
|z− z0| < δ} is contained in G and the condition in (2.2) is satisfied for some function
F . In particular, we have by Hadamard’s inequality that if x1, . . . , xn ∈ �, then

sup
z∈G,|z−z0|<δ

∣∣∣det
[
Kz(xi , x j )

]n
i, j=1

∣∣∣ ≤ nn/2
n∏

i=1

F(xi ),

and the latter is integrable by assumption. It follows from Theorem 2.2 that

Bn(z) :=
∫

�

· · ·
∫

�

det
[
Kz(xi , x j )

]n
i, j=1

n∏

i=1

dμ(xi )

is holomrphic in Nδ(z0) and by (2.2) |Bn(z)| ≤ nn/2 ·Mn for z ∈ Nδ(z0). We conclude
that

det(I + Kz)L2(�) = 1 +
∞∑

n=1

Bn(z)

n!

is absolutely convergent, and hence also holomorphic in Nδ(z0) as the uniform limit of
holomorphic functions, cf. [38, Chapter 2, Theorem 5.2]. Since z0 ∈ G was arbitrary
we conclude that det(I + Kz)L2(�) is holomorphic in G. ��

The following lemmas provide a framework for proving convergence of Fredholm
determinants, based on pointwise convergence of their defining kernels and estimates
on those kernels. The proofs can be found in [17, Section 2.5].

Lemma 2.4 Suppose that � is a piecewise smooth contour in C and K N (x, y), for
N ∈ N ∪ {∞}, are measurable kernels on � × � such that limN→∞ K N (x, y) =
K∞(x, y) for all x, y ∈ �. In addition, suppose that there exists a non-negative,
measurable function F(x) on � such that

sup
N∈N

sup
y∈�

|K N (x, y)| ≤ F(x) and
∫

�

F(x)|dμ(x)| = M < ∞.

123



128 G. Barraquand et al.

Then, for each n ≥ 1 and N ∈ N ∪ {∞}, one has that det
[
K N (xi , x j )

]n
i, j=1 is

integrable on �n, so that in particular
∫
�

· · · ∫
�
det

[
K N (xi , x j )

]n
i, j=1

∏n
i=1 dμ(xi )

is well defined. Moreover, for each N ∈ N∪{∞} the series det(I + K N )L2(�) in (2.1)
is absolutely convergent and limN→∞ det(I + K N )L2(�) = det(I + K∞)L2(�).

Lemma 2.5 Suppose that �1, �2 are piecewise smooth contours and the function
(x, y, z) �→ gNx,y(z) is measurable for (x, y, z) ∈ �1 × �1 × �2 for all N ∈ N ∪ {∞}
and satisfies limN→∞ gNx,y(z) = g∞

x,y(z) for all (x, y, z) ∈ �1 ×�1 ×�2. In addition,
suppose that there exist bounded non-negative measurable functions F1 and F2 on �1
and �2 respectively such that

sup
N∈N

sup
y∈�1

|gNx,y(z)| ≤ F1(x)F2(z), and
∫

�i

Fi (u)|dμ(u)| = Mi < ∞ for i = 1, 2.

Then for each N ∈ N ∪ {∞} one has
∫
�2

|gNx,y(z)||dμ(z)| < ∞ and in particu-

lar K N (x, y) := ∫
�2

gNx,y(z)dμ(z) are well-defined. Moreover, K N (x, y) satisfy the
conditions of Lemma 2.4 with � = �1 and F = F1M2.

2.2 Mixed polymermodel

In [10] the authors considered a polymer model that mixes Seppäläinen’s log-gamma
polymer [36] and the O’Connell–Yor semi-discrete polymer [33]. In the language of
Whittaker processes [5], which we will not use or rely directly upon, this model arises
as a mixture of the Plancherel and pure alpha specializations. The model depends on
a parameter τ > 0 as well as two sets of real parameters {ai }i≥1 and {αi }i≥1, which
satisfy αm > 0 and αm − an > 0 for all m, n ∈ N.

Before we go into the definition let us briefly explain our interest in this model.
As mentioned above, the model depends on parameters {ai }i≥1, {αi }i≥1 and τ > 0
and for each M, N ∈ N gives rise to a random quantity ZM,N (τ ), called the partition
function, which depends only on {ai }Ni=1, {αi }Mi=1 and τ . As we explain around (2.8),
this partition function converges weakly as τ → 0+ to the partition function ZM,N for
the log-gamma polymer with parameters {ai }Ni=1, {αi }Mi=1 (recall from Sect. 1.1 or see
below). In [10] the authors were able to find a formula for the Laplace transform for
ZM,N (τ ), recalled below as Theorem 2.8. We are ultimately interested in obtaining a
formula for the Laplace transform for ZM,N which is suitable for asymptotic analysis
as N and M grow. The way we go about this is by rewriting the known formula
the Laplace transform of ZM,N (τ ) in a manner which is then amenable to the limit
τ → 0+. This rewriting and τ → 0+ limit transition are performed in Sects. 2.3 and
2.4 below.

Definition 2.6 Themixed polymermodel is a probability distribution on up-right paths
connecting points (−M, 1) and (τ, N ). These paths consist of two parts: a discrete
portion φd and an adjoined semi-discrete portion φsd . A discrete up-right path φd

from (i1, j1) to (i�, j�) (written as φd : (i1, j1) ↗ (i�, j�)) is an ordered set of
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points ((i1, j1), (i2, j2), . . . , (i�, j�)) with each (ik, jk) ∈ Z
2 and each increment

(ik, jk)−(ik−1, jk−1) ∈ {(1, 0), (0, 1)}. A semi-discrete up-right path φsd from (0, n)

to (τ, N ) (written as φsd : (0, n) ↗ (τ, N )) is a union of horizontal line segments
((0, n) → (sn, n)) ∪ ((sn, n + 1) → (sn+1, n + 1)) ∪ · · · ∪ ((sN−1, N ) → (τ, N ))

where 0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ .
The state space of the model consists of pairs φ = (φd , φsd) such that φd is a

discrete up-right path and φsd is a semi-discrete up-right path, which are adjoined to
each other in such a way that for some 1 ≤ n ≤ N we have φd : (−M, 1) ↗ (−1, n)

and φsd : (0, n) ↗ (τ, N ).
We turn to defining the polymer probability measure on this space, along with

its partition function. Assume that wi, j for −M ≤ i ≤ −1 and 1 ≤ j ≤ N are
independent random variables such that wi, j have the same distribution as log Xi, j

with Xi, j inverse-gamma distributed as in (1.1) with parameter θ = αM+i+1−a j > 0.
Asbeforewehave �α = (α1, . . . , αM ) ∈ R

M
>0 and �a = (a1, . . . , aN ) ∈ R

N . In addition,
assume that Bn(t) = ant + Wn(t) for n = 1, . . . , N , where Wn(t) are i.i.d. Brownian
motions, which are independent of the wi, j . To each path φ = (φd , φsd) we associate
the energy

E(φ) :=
∑

(i, j)∈φd

wi, j + Bn(sn) +
N∑

k=n+1

(
Bk(sk) − Bk(sk−1)

)
. (2.3)

This energy is random, as it is a function ofwi, j and the Bk’s.We associate aBoltzmann
weight eE(φ) to each path φ. The polymer measure on φ is then proportional to this
weight. The normalizing constant, or polymer partition function, iswritten as ZM,N (τ )

and is equal to

ZM,N (τ ) =
N∑

n=1

∑

φd :(−M,1)↗(−1,n)

∫

φsd :(0,n)↗(τ,N )

eE(φ)dφsd , (2.4)

where dφsd is Lebesgue measure on the simplex 0 ≤ sn < · · · < sN−1 ≤ τ , identified
with φsd .

We remark that in [10] the partition function was denoted by ZN ,M (τ ), and we
have opted to swap the roles of M and N to make the notation closer to the one from
Sect. 1.1—apart from this change we follow the same notation as in [10] (Fig. 2).

We next recall [10, Theorem 2.1], which is the main ingredient we need in deriv-
ing our Laplace transform formula for ZM,N . In order to state the theorem we
need a few definitions. Below we write max(�x) = max(x1, . . . , xn) and min(�x) =
min(x1, . . . , xn) for �x = (x1, . . . , xn) ∈ R

n .

Definition 2.7 Let �a = (a1, . . . , aN ) ∈ R
N , �α = (α1, . . . , αM ) ∈ R

M
>0 and suppose

that min(�α) − max(�a) > 0. Set μ = 1
2 max(�a) + 1

2 min(�α) and η = 1
4 max(�a) +

3
4 min(�α) and fix φ ∈ [0, π/4). With the latter data we let we let C�a;�α;φ denote the
union of the contour {μ + yei(π+φ)}y∈R+ and {μ + yei(π−φ)}y∈R+ oriented so as to
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Fig. 2 An example of a mixed polymer path

Fig. 3 The left part depicts the contours C�a;�α;φ and v + Dv for v ∈ C�a;�α;φ . The black dots denote the
points v, v + 1, v + 2, . . . , the light gray ones denote {αi +m : i = 1, . . . , M,m ∈ Z≥0} and the dark gray
ones {ai − m : i = 1, . . . , N ,m ∈ Z≥0}. The right part depicts the contour Dv

have increasing imaginary part. For any v ∈ Ca;α;φ we choose R = −Re(v) + η,
d > 0 and define a contour Dv as follows: Dv goes by straight lines from R − i∞ to
R − id, to 1/2− id, to 1/2+ id, to R + id, to R + i∞. The parameter d is sufficiently
small so that v + Dv does not intersect C�a;�α;φ . If φ ∈ [π/6, π/4] we may take any
d ∈ (0, 1/4]. See Fig. 3.

Proposition 2.8 [10, Theorem 2.1] Fix integers N ≥ 9, M ≥ 1, a real number τ > 0
and �a = (a1, . . . , aN ) ∈ R

N , �α = (α1, . . . , αM ) ∈ R
M
>0. Assume that min(�α) −

max(�a) > 1. For all u ∈ C with Re(u) > 0 we have

E

[
e−uZM,N (τ )

]
= det (I + Ku)L2(C�a;�α;φ) , (2.5)
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where the operator Ku is defined in terms of its integral kernel

Ku(v, v′) = 1

2π i

∫

Dv

�(−s)�(1 + s)
N∏

n=1

�(v − an)

�(s + v − an)

M∏

m=1

�(αm − v − s)

�(αm − v)

usevτ s+τ s2/2ds

v + s − v′ . (2.6)

The contours C�a;�α;φ and Dv are as in Definition 2.7 with φ = π/6 and d = 1/4.

Remark 2.9 Proposition 2.8 is formulated precisely as [10, Theorem 2.1], except that
in [10, Theorem 2.1] the authors assumed that min(�α) − max(�a) > 0, whereas we
have assumed min(�α) − max(�a) > 1. This strengthened assumption is necessary in
order for the result to be valid with the prescribed choice of contours. Specifically, in
order for the result to hold one needs to pick contours in such a way that the poles of
the functions �(αi − v − s) lie strictly to the right of the contour Dv . If v = μ the
latter function has a pole at min(�α) − μ and by the definition of Dv we must have
that min(�α) − μ > 1

2 , which upon replacing μ = 1
2 max(�a) + 1

2 min(�α) implies we
must have min(�α) −max(�a) > 1. We believe that the authors of [10] overlooked this
point when making their choice of contours and the issue remained unnoticed in [41];
however the results of the two papers hold if one assumes min(�α) −max(�a) > 1. We
further remark that this problemwas previously observed in [25, TheoremA.1], where
the authors proposed a different choice of contours in order to fix the issue. The authors
of [25] worked exclusively in the homogeneous case when αi are all equal to the same
number θ > 0 and ai = 0. In this case the restriction becomes θ > 1. It is worth
mentioning that the choice of contours in [25, Theorem A.1] fixes the problem for
θ ∈ (0, 1] but creates a new problem when θ ≥ 8. In particular, the choice of contours
in [25, Theorem A.1] only works when θ ∈ (0, 8) since unfortunately the authours
failed to take into account the poles coming from �(−s)�(1 + s) at s = 1, 2, . . . ,
which all need to be to the right of Dv .

We end this section by showing that the partition function ZM,N (τ ) converges
weakly to ZM,N from Sect. 1.1 as τ → 0+. Let us define ZM,n(0) by

ZM,n(0) =
∑

φd :(−M,1)↗(−1,n)

eE(φd ), (2.7)

and observe that this random variable has the same distribution as the log-gamma
partition function ZM,n with parameters {ai }ni=1, {αi }Mi=1 from (1.3). We claim that

lim
τ→0+ ZM,N (τ ) = ZM,N (0) almost surely. (2.8)

To see this let EK denote the event

EK =
{
|Bk(s)| ≤ K for s ∈ [0, 1], k ∈ {1, . . . , N } and lim

s→0+ BN (s) = 0
}
.
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Fig. 4 The figure depicts the
contour Ca,φ for φ = 3π/4 and
Dv(b, π/4, d) with a, b ∈ R and
b > a. The black dots denote the
points v, v + 1, v + 2, . . .

Then on EK , as the volume of the simplex 0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ is at
most τ N−n ,

lim sup
τ→0+

ZM,N (τ ) ≤ lim sup
τ→0+

N−1∑

n=1

ZM,n(0) · τ N−ne(2N+1)K + ZM,N (0) = ZM,N (0),

lim inf
τ→0+ ZM,N (τ ) ≥ lim inf

τ→0+ ZM,N (0)eBN (τ ) = ZM,N (0).

Since ∪K∈NEK is a set of full probability we conclude (2.8).

2.3 Laplace transform for the log-gamma polymer

In this sectionwe derive as Theorem 2.12 a formula for the Laplace transform of ZM,N

from (1.3), which is suitable for asymptotic analysis in the sense we described earlier.
We continue with the same notation as in Sect. 2.2 and also introduce the following
notation, see also Fig. 4.

Definition 2.10 For a ∈ C and φ ∈ (0, π) we define the contour Ca,φ to be the union
of {a + ye−iφ)}y∈R+ and {a + yeiφ}y∈R+ oriented to have increasing imaginary part.

Definition 2.11 Suppose that a ∈ C, φ ∈ (0, π), d > 0 and v ∈ C. From this data
we construct a contour that consists of two parts. The first, called D1

v , is Ca,φ\{z :
Im(z) ∈ [Im(v)−d, Im(v)+d]}. Let z−, z+ be the points onCa,φ that have imaginary
parts Im(v)−d and Im(v)+d respectively. The second part of the contour, called D2

v ,
consists of straight oriented segments that connect z− to v + 2d − id to v + 2d + id
to z+. We will denote the resulting contour by Dv(a, φ, d) or just Dv when the other
parameters are clear from context.

The goal of this section is to establish the following result.
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Theorem 2.12 Fix integers N ≥ 9, M ≥ 1 and �a = (a1, . . . , aN ) ∈ R
N , �α =

(α1, . . . , αM ) ∈ R
M
>0 such that min(�α) − max(�a) > 0. Let a, b, d ∈ R and u ∈ C be

such that min(�α) > b > a > max(�a), d ∈ (0,min (1/4, (b − a)/4)) and Re(u) > 0.
Then

E

[
e−uZM,N

]
= det (I + Ku)L2(Ca,3π/4)

, (2.9)

where the operator Ku is defined in terms of its integral kernel

Ku(v, v′) = 1

2π i

∫

Dv

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(αm − w)

�(αm − v)

uw−vdw

w − v′ ,

(2.10)

where Ca,3π/4 and Dv = Dv(b, π/4, d) are as in Definitions 2.10 and 2.11.

To prove Theorem 2.12 we need the following result, whose proof is postponed to
Sect. 2.4.

Theorem 2.13 Fix integers N ≥ 9, M ≥ 1, a real number τ > 0 and �a =
(a1, . . . , aN ) ∈ R

N , �α = (α1, . . . , αM ) ∈ R
M
>0 such that min(�α) − max(�a) > 0.

Let min(�α) > b > a > max(�a), d ∈ (0,min (1/4, (b − a)/4)) and u ∈ C with
Re(u) > 0. Then

E

[
e−uZM,N (τ )

]
= det

(
I + K τ

u

)
L2(Ca,3π/4)

, (2.11)

where the operator K τ
u is defined in terms of its integral kernel

K τ
u (v, v′) = 1

2π i

∫

Dv

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(αm − w)

�(αm − v)

uw−veτ(w2−v2)/2dw

w − v′ , (2.12)

with Ca,3π/4 and Dv = Dv(b, π/4, d) as in Definitions 2.10 and 2.11.

Remark 2.14 TheFredholmdeterminants in Theorems 2.12 and 2.13 are as in Sect. 2.1.
In particular, part of the statement of these theorems is that the kernels arewell-defined,
each term in the series (2.1) is finite and the series converges for the given choice of
parameters.

In addition, we require the following two results, whose proofs are given in Sect. 6.

Proposition 2.15 Fix M, N ≥ 1, �a = (a1, . . . , aN ) ∈ R
N , �α = (α1, . . . , αM ) ∈ R

M,
T ≥ 0, a compact set K ⊂ C and v, u ∈ C with Re(u) > 0. Then there exist positive
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constants L0,C0, c0, depending on M, N , �a, �α, T , v, u and K , such that if τ ∈ [0, T ],
x, a ∈ K, w = a + z, arg(z) ∈ [π/4, π/3] ∪ [−π/3,−π/4], |w| ≥ L0

∣∣
∣∣∣

π

sin(π(v − w))

∏M
m=1 �(x + αm − w)
∏N

n=1 �(w − an)
uw−veτ(w2−v2)/2

∣∣
∣∣∣

≤ C0e
−c0|w| log |w|. (2.13)

Remark 2.16 The proof of Proposition 2.15 can be found in Sect. 6.1, see Proposi-
tion 6.1, and boils down to analyzing the real parts of the functions

M∑

m=1

log�(x + αm − w) −
N∑

n=1

log�(w − an) and τw2

along lines of slope φ ∈ [π/4, π/3] ∪ [−π/3,−π/4]. The most common way we
apply Proposition 2.15 in the text is in applications of Cauchy’s theorem, where we
seek to deform infinite w-contours near infinity. Specifically, the estimate in (2.13)
allows us to justify deforming one infinite w-contour to another one as long as both
contours are contained in a region covered by order one translates of the sectors
arg(z) ∈ [π/4, π/3] ∪ [−π/3,−π/4] in C, and the deformation does not cross any
poles of the integrand.

Proposition 2.17 Fix M, N ≥ 1, T ≥ 0, τ ∈ [0, T ], �a = (a1, . . . , aN ) ∈ R
N ,

�α = (α1, . . . , αM ) ∈ R
M
>0 and u ∈ C with Re(u) > 0. Put θ0 = min(�α)−max(�a) and

assume that θ0 > 0 and δ0 ∈ (0,min(1/4, θ0/16)). Suppose that v, v′ ∈ Ca,φ as in
Definition 2.10 with a ∈ [max(�a)+ δ0,min(�α)−5δ0] and φ ∈ [3π/4, 5π/6]. Finally,
fix b ∈ [a+2δ0,min(�α)−3δ0] and denote by Dv the contour Dv(b, π/4, δ0) as inDefi-
nition 2.11. Then there exists a positive constant C0 depending on �a, �α, δ0, u, N , M, T
(and not τ ) such that if x ∈ C with d(x, [0, 1]) ≤ δ0 then we have

∣∣∣
∣∣

∫

Dv

πdμ(w)

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(x + αm − w)

�(x + αm − v)

uw−veτ(w2−v2)/2

w − v′

∣∣∣
∣∣

≤ C0

1 + |v|2 . (2.14)

Remark 2.18 The proof of Proposition 2.17 can be found in Sect. 6.1, see Proposi-
tion 6.3, and boils down to analyzing the real parts of the functions

M∑

m=1

log�(x + αm − v) −
N∑

n=1

log�(v − an) and τv2

along lines of slope φ ∈ [3π/4, 5π/6]∪ [7π/6, 5π/4]. Obtaining good bounds on the
last expression and combining the latter with (2.13) allows us to control the integral
in (2.14) over D1

v , as in Definition 2.11. The integral over D2
v , as in Definition 2.11,
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is estimated by deforming D2
v to a short contour connecting z−, z+ and estimating

the integral over this new contour and the sum of the residues at the simple poles
v = w+k for k ∈ N that are being crossed in the process of the deformation. The way
we apply Proposition 2.17 in the text is to obtain kernel estimates that are necessary
for the application of Lemmas 2.3 and 2.4.

Proof of Theorem 2.12 From (2.8) we know that ZM,N (τ ) converges almost surely to
ZM,N (0) as τ → 0+. By the bounded convergence theorem (here we use Re(u) > 0)
and the distributional equality of ZM,N (0) and ZM,N we conclude

E

[
e−uZM,N

]
= lim

τ→0+ E

[
e−uZM,N (τ )

]
. (2.15)

In view of Theorem 2.13 it suffices to show that

lim
τ→0+ det

(
I + K τ

u

)
L2(Ca,3π/4)

= det (I + Ku)L2(Ca,3π/4)
. (2.16)

From Proposition 2.15 we have that K τ
u (v, v′) and Ku(v, v′) are well-defined. Let

us denote

Fτ (w, v′, v) = πeτ(w2−v2)/2uw−v

sin(π(w − v))(w − v′)

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(αm − w)

�(αm − v)
.

It is clear that pointwise for fixed v, v′, w we have limτ→0 Fτ (w, v′, v) =
F0(w, v′, v). By the Dominated convergence theorem with dominating function
C0 exp(−c0|w| log |w|) (hereweuseProposition2.15with K = {0}∪[max(�a),min(�α)],
T = 1, and M, N , �a, �α, u, v as above) we conclude for v, v′ ∈ Ca,3π/4

lim
τ→0+ K τ

u (v, v′) = lim
τ→0+

1

2π i

∫

Dv

Fτ (w, v′, v)dw

= 1

2π i

∫

Dv

F0(w, v′, v)dw = Ku(v, v′). (2.17)

Let δ0 = min(d/4, a − max(�a), (min(�α) − b)/4). By Cauchy’s theorem we can
deform Dv(b, π/4, d) in the definition of K τ

u (v, v′) and Ku(v, v′) to Dv(b, π/4, δ0)
without affecting the value of the integrals. Here the poles we need to avoid during the
deformation are the points v+n for n ∈ Z coming from sin(π(w−v)) in Fτ (w, v′, v)

and the points αm + n for n ∈ Z, n ≥ 0 coming from the functions �(αm − w) in
Fτ (w, v′, v) and by the definition of δ0 and d we know that none of these poles are
crossed in the process of the deformation.We continue towrite Dv for this new contour.
FromProposition 2.17 (applied to T = 1, a, b, M, N , u, �a, �α as in the statement of this
theorem, δ0 = min(d/4, a − max(�a), (min(�α) − b)/4), x = 0, φ = 3π/4) we know
that if τ ∈ [0, 1] there is a τ -independent constant C0 such that for v, v′ ∈ Ca,3π/4 we
have

|K τ
u (v, v′)| ≤ C0

1 + |v|2 . (2.18)
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Using (2.17) and (2.18) we apply Lemma 2.4 with � = Ca,3π/4, F(v) = C0
1+|v|2 to

conclude (2.16). In particular, observe that Lemma 2.4 implies that the series defining
the determinants on both sides of (2.16) are absolutely convergent. ��

2.4 Proof of Theorem 2.13

In this section we give the proof of Theorem 2.13, which we needed to prove The-
orem 2.12. We require the following proposition, whose proof is deferred to Sect. 6.

Proposition 2.19 Fix M, N ≥ 1, �a = (a1, . . . , aN ) ∈ R
N , �α = (α1, . . . , αM ) ∈ R

M,
τ > 0, a compact set K ⊂ C and v, u ∈ C with Re(u) > 0. Then there exist positive
constants L0,C0, c0, depending on M, N , �a, �α, τ, v, u and K , such that if w = a + z
with a ∈ K, arg(z) ∈ [π/4, π/2] ∪ [−π/2,−π/4], |w| ≥ L0 we have

∣∣
∣∣∣

π

sin(π(v − w))

∏M
m=1 �(αm − w)

∏N
n=1 �(w − an)

uw−veτ(w2−v2)/2

∣∣
∣∣∣
≤ C0e

−c0|w| log |w|. (2.19)

Remark 2.20 Let us briefly explain the difference between Proposition 2.15 from the
previous section and Proposition 2.19. Proposition 2.15 is formulated slightly more
generally in that (2.13) holds for all x in a compact set K , while in (2.19)we have
set x = 0. In the second part of the proof of Theorem 2.13 one of the arguments
will require an analytic continuation in x , which demands we get estimates not just
at x = 0 but in a neighborhood of it. In the first part of the proof of Theorem 2.13
we will not need the same type of generality for the estimate and Proposition 2.19
will suffice for our purposes. A more important difference is that in Proposition 2.15
we assumed arg(z) ∈ [π/4, π/3] ∪ [−π/3,−π/4], while in Proposition 2.19 we
assume arg(z) ∈ [π/4, π/2] ∪ [−π/2,−π/4]. The reason behind this difference is
that in Theorem 2.8 the contour Dv extends vertically up near infinity, and we need
estimates when |arg(z)| = π/2. Yet another difference is that the constantsC0, c0, L0
in Proposition 2.15 only depended on T as long as τ ∈ [0, T ]—here it is important that
we get uniform estimates near 0 since in the proof of Theorem 2.12 we performed the
limit τ → 0+. In the proof of Theorem2.13 τ > 0 is fixed and the constantsC0, c0, L0
in Proposition 2.15 are only proved to exist for the range of arg(z), provided τ > 0.
In plain words, there is a difficulty in showing that C0, c0 in the two propositions exist
either if τ is close to 0 or when |arg(z)| is close to π/2. If one of these quantities is
bounded away from its problematic value, the constants exist. Then Proposition 2.15
assumes |arg(z)| is bounded away from π/2, while Proposition 2.19 assumes τ is
bounded away from 0.

Proof of Theorem 2.13 The proof is split into two parts. In the first part we prove the
theorem under the assumption that min(�α) − max(�a) > 1 and in the second part we
extend the result to the case when min(�α)−max(�a) > 0. Each part of the proof is split
into several steps, and begins with a brief description of the argument for the reader’s
convenience. Throughout we work with the same notation as in Theorem 2.13.
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Part I In this part we prove the theorem under the assumption that min(�α)−max(�a) >

1. Before we go into the details let us sketch our approach. In Step 1 we apply
Proposition 2.8 and reduce the proof of the theorem to the establishment of a cer-
tain integral identity. This identity essentially states that the n-fold contour integral
of det

[
K τ
u (vi , v j )

]n
i, j=1 over Cn�a;�α;π/6 equals the one over C

n
a,3π/4. One would like to

argue that the two integrals are equal by Cauchy’s theorem. In order to implement this
approach one needs to fix the w-contour somehow and deform the v-contours from
C�a;�α;π/6 toCa,3π/4, but the problem is that no fixedw contour works. Presumably, one
can simultaneously deform the v and w contours without crossing any poles of the
integrand and then argue that by Cauchy’s theorem the value of the integral does not
change. This type of deformation is somewhat delicate because we are dealing with
infinite contours and also because thew-contours depends on v’s. The way around this
issue is to first truncate the C�a;�α;π/6 and Ca,3π/4 contours. For the truncated contours,
one can fix the w-contour and perform the deformation. The challenge is in showing
that the truncation and deformation steps produce a small error. The exact nature of
the truncation is explained in Step 2. Step 3 shows that the truncation and deformation
of the contours produces only a small error, and in Step 4 the application of Cauchy’s
theorem is justified for the truncated contours.

Remark 2.21 We point out that in [25] a similar strategy was carried out with two
crucial differences. Firstly, [10, Theorem 2.1] is only formulated for φ ∈ (0, π/4), but
when the theorem is recalled in [25, Theorem A.1] it is formulated for φ ∈ (0, π/4].
We point out that the authors in [25] provide the necessary decay estimates that would
enable them to deform the contours to φ = π/4 and all the arguments in that paper
go through. Part of our proof of Theorem 2.13 is actually justifying this deformation
carefully. Secondly, their contour is Dv withφ = π/2, and one reason itworks for them
is that they have nice estimates for the integral that come from elegant cancellations
coming from the fact that they work with M = N . If M 
= N the estimates they get
no longer hold and one is better off working with φ = π/4.

We now turn to the proof. For clarity we split the proof into several steps.
Step 1 In this step we reduce the proof of the theorem to establishing the following
equality for every n ≥ 1

∫

C�a;�α;π/6

· · ·
∫

C�a;�α;π/6

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

−
∫

Ca,3π/4

· · ·
∫

Ca,3π/4

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi = 0, (2.20)

where K̃ (v, v′) is defined in terms of its integral kernel

K̃ (v, v′) = 1

2πι

∫

D̃v

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)
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M∏

m=1

�(αm − w)

�(αm − v)

usevτ(w−v)+τ(w−v)2/2dw

w − v′ , (2.21)

where D̃v = Dv(b̃, π/4, d̃) as in Definition 2.11 with min(�α) > b̃ > max(μ, a)

and d̃ ∈ (0,min(1/4, a −max(�a), (b̃ −max(μ, a))/8, (min(�α) − b̃)/8). Recall μ =
(max(�a) + min(�α))/2 from Definition 2.7.

As explained in the proof of Theorem 2.12 we have that K τ
u (v, v′) in Theorem 2.13

is a well-defined measurable function on � × � where � = Ca,3π/4. In addition,
det

(
I + K τ

u

)
L2(Ca,3π/4)

is a well-defined absolutely convergent series as in (2.1) for
any τ ≥ 0.

As shown in the proof of Proposition 2.8 (see [10, Theorem 2.1]) the right side of
(2.5) is given by an absolutely convergent series as in (2.1) for any τ > 0—here we
use the fact that min(�α)−max(�a) > 1, which is the case under which Proposition 2.8
holds. Consequently, to prove the theorem it suffices to show that these sums are
termwise equal, i.e. for each n ∈ N we have

∫

C�a;�α;π/6

· · ·
∫

C�a;�α;π/6

det
[Ku(vi , v j )

]n
i, j=1

n∏

i=1

dvi

=
∫

Ca,3π/4

· · ·
∫

Ca,3π/4

det
[
K τ
u (vi , v j )

]n
i, j=1

n∏

i=1

dvi (2.22)

Notice that we can apply a change of variables w = s + v in (2.6) and by Cauchy’s
theorem deform the resulting contour v +Dv to D̃v , without affecting the value of the
kernel. The decay estimates necessary to deform the contour near infinity come from
Proposition 2.19 applied to K = {0} ∪ [max(�a),min(�α)], and M, N , �a, �α, τ, u as in
the statement of the theorem. Here we implicitly used the functional equation

�(s)�(1 − s) = π

sin(πs)
, (2.23)

which can be found in [38, Chapter 6, Theorem 1.4]. This proves that the left side
of (2.22) is equal to the first term in (2.20). Analogously, by Cauchy’s theorem we
can deform the contour Dv in the definition of K τ

u (v, v′) to the contour D̃v without
affecting the value of the kernel. The decay estimates necessary to deform the contour
near infinity come from Proposition 2.15 applied to K = {0} ∪ [max(�a),min(�α)],
T = τ and M, N , �a, �α, u as in the statement of the theorem. The conclusion is that
the right side of (2.22) is equal to the second term in (2.20). Thus we have reduced
the proof of the theorem to establishing (2.20).
Step 2 For L > θ we let v+ and v− be the points on C�a;�α;π/6 such that |v+| = |v−| = L
and v± lie in the upper and lower complex half-planes respectively. By taking L
sufficiently large we can ensure that v± are well defined and have negative real part.
We similarly denote by w± the points on Ca,3π/4 such that |w±| = L and for large
enough L we have w± are well-defined with negative real part and that the angle the
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Fig. 5 The left part depicts the contours C�a;�α;π/6 and Ca,3π/4 as well as the points w± and v± given by
the intersection of these contours with the circle of radius L centered at the origin. The right part depicts
the contours CL

0 , CL
1 and CL

line joining w+ with v+ makes with the x-axis is at least π/4, see the left side of
Fig. 5.

We also introduce the following contours. We let CL
0 denote the part of C�a;�α;π/6

contained in the set BL = {z ∈ C : |z| ≤ L},CL denotes the part ofCa,3π/4 contained
in BL , CL

1 denotes the two straight segments connecting w− to v− and w+ to v+,
CL = CL

0 ∪ CL
1 and CL denotes the part of Ca,3π/4 contained in BL . All of these

contours are oriented to have increasing imaginary part. See the right side of Fig. 5.
Let ε > 0 be given.We claim that we can find L1 sufficiently large so that if L ≥ L1

we have the following statements

∣∣∣
∣∣

∫

C�a;�α;π/6

· · ·
∫

C�a;�α;π/6

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

−
∫

CL
0

· · ·
∫

CL
0

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

∣∣∣∣
∣
< ε; (2.24)

∣∣∣∣
∣

∫

Ca,3π/4

· · ·
∫

Ca,3π/4

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

−
∫

CL
· · ·
∫

CL
det

[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

∣∣∣∣∣
< ε; (2.25)

∣∣∣∣∣

∫

CL
0

· · ·
∫

CL
0

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

−
∫

CL
· · ·
∫

CL
det

[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

∣
∣∣∣∣
< ε; (2.26)
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∫

CL
· · ·
∫

CL
det

[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

=
∫

CL
· · ·
∫

CL
det

[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi . (2.27)

If the above are true, we conclude that the left side of (2.20) is bounded in absolute
value by 3ε, which would imply (2.20) as ε > 0 is arbitrary. We establish the above
statements in the steps below.
Step 3 In this step we prove (2.24), (2.25) and (2.26). We prove (2.27) in the next step.

If we apply Proposition 2.17 to T = τ , δ0 = d̃, b = b̃, x = 0, φ = 3π/4 and
a, u, �a, �α, M, N as in the statement of the theorem we see that we can find a constant
C0 > 0 such that

∣∣
∣K̃ (v, v′)

∣∣
∣ ≤ C0

1 + |v|2 , (2.28)

as long as v, v′ ∈ Ca,3π/4. Analogously, we can apply Proposition 2.17 to T = τ ,
δ0 = d̃, b = b̃, x = 0, φ = 5π/6, a = μ and M, N , �a, �α, u as in the statement of
the theorem to show that (2.28) also holds (with a possibly bigger constant C0) for

v, v′ ∈ C�a;�α;π/6. In particular, by Lemma 2.4 we know that det
[
K̃ (vi , v j )

]n

i, j=1
is

integrable on �n if � = Ca,3π/4 or � = C�a;�α;π/6, which implies that we can make L
sufficiently large so that (2.24) and (2.25) both hold.

Notice that we can rewrite the expression in the absolute value of (2.26) as

∑

ε1,...,εn∈{0,1}:∑i εi>0

∫

CL
ε1

· · ·
∫

CL
ε1

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi . (2.29)

By Hadamard’s inequality and (2.28) we have

∣∣∣
∣det

[
K̃ (vi , v j )

]n

i, j=1

∣∣∣
∣ ≤ nn/2

n∏

i=1

C0

1 + |vi |2 . (2.30)

Also we observe that there is a constant A that depends on C0 such that for all L
sufficiently large

∫

CL
0

C0|dμ(v)|
1 + |v|2 ≤ A and

∫

CL
1

C0|dμ(v)|
1 + |v|2 ≤ A

1 + L
. (2.31)

The first inequality in (2.31) follows from the integrability of 1
1+|v|2 and the second

from the fact that for large L the contour CL
1 is typical distance L away from the origin,

and has length less than 2L . Combining (2.29), (2.30) and (2.31) we conclude that the
right side of (2.26) is bounded by

123



Fluctuations of the log-gamma polymer free energy with... 141

Fig. 6 The left part illustrates the contours CL and CL as well as one of the interpolating contours Ck+1.
As k varies from 0 to K the contours Ck traverse a collection of contours so that C0 = CL and CK = CL

and the contours Ck and Ck+1 have maximal horizontal separation�/K . The right part depicts the contours
Ck and Ck+1 schematically (some distances have been exaggerated to make the picture comprehensible) as
well as the contour Dk . The contour Dk is a translate by d̃/20 of Ck in the strip Im(z) ∈ [Im(w−), Im(w+)]
and departs at angles ±π/4 at w± + d̃/20 to infinity. The point 1 + w− is drawn to indicate that 1 + Ck
and 1 + Ck+1 are both to the right of Dk

∑

ε1,...,εn∈{0,1}:∑i εi>0

nn/2
n∏

i=1

A

(1 + L)εi
≤ nn/2(2A)n

L + 1
,

where we used that the sum is over εi not all equal to 0. The above implies that (2.26)
holds as long as L is taken large enough.
Step 4 In this step we prove (2.27). In principle, one would like to argue that the
integrands are analytic in the v variables and that in deforming CL to CL we do not
pass any poles. Formalizing this idea is intricate, since the D̃v contours depend on the
v’s. This is why we introduce a sequence of contours Ck , which interpolates between
the contours CL and CL , and for each Ck we define a corresponding contour Dk for
the w variables. For these new contours we show that the deformation of Ck to Ck+1
is possible without affecting the value of the integral, which ultimately yields (2.27).

For each s ∈ [Im(w−), Im(w+)] we let (x1(s), s) and (x2(s), s) denote the unique
points on CL and CL that have y-coordinate equal to s. Let |�| = max |x1(s)− x2(s)|
and suppose that K is a sufficiently large positive integer such that �/K < d̃/40,
where we call that d̃ was defined in Step 1. For each k = 0, 1, . . . , K we let Ck denote
the contour

Ck :=
{
(x(s), s) : x(s) = K − k

K
x1(s) + k

K
x2(s), s ∈ [Im(w−), Im(w+)]

}
,

whose orientation is of increasing imaginary part. See the left part of Fig. 6.
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We claim that for each k = 0, . . . , K − 1 we have

∫

Ck
· · ·
∫

Ck
det

[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi

=
∫

Ck+1

· · ·
∫

Ck+1

det
[
K̃ (vi , v j )

]n

i, j=1

n∏

i=1

dvi . (2.32)

When k = 0 the left side of (2.32) equals the left side of (2.27), while at k = K − 1
the right side of (2.32) equals the right side of (2.27). Consequently, (2.32) implies
(2.27) and we focus on establishing (2.32).

By expanding the determinants and substituting the definition of K̃ (v, v′) we see
that it suffices to show that for each k ∈ {1, . . . , K − 1} and σ ∈ Sn we have

∫

Ck

· · ·
∫

Ck

∫

D̃v1

· · ·
∫

D̃vn

n∏

j=1

F(v j , w j )dw j

w j − vσ( j)

n∏

i=1

dvi

=
∫

Ck+1

· · ·
∫

Ck+1

∫

D̃v1

· · ·
∫

D̃vn

n∏

j=1

F(v j , w j )dw j

w j − vσ( j)

n∏

i=1

dvi , where

F(v,w) = π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(αm − w)

�(αm − v)
uw−veτv(w−v)+τ(w−v)2/2.

(2.33)

We deform all D̃vi contours to the contour Dk , which consists of the following three
pieces:

(1) It equals Ck + d̃/20 for z : Im(z) ∈ [Im(w−), Im(w+)];
(2) It is given by z(s) = w+ + d̃/20+(s− Im(w+))+ i(s− Im(w+)) for s > Im(w+);
(3) It is given by z(s) = w− + d̃/20+|s− Im(w−)|+ i(s− Im(w−)) for s < Im(w−).

In words, Dk closely follows Ck a small distance away to the right and departs at angle
±π/4 once it reaches the end of Ck + d̃/20, see the right part of Fig. 6.

Notice that by construction Ck+1 is at most a distance d̃/40 away from Ck (hor-
izontally) and so when deforming D̃vi to Dk for vi ∈ Ck or Ck+1 we do not cross
any poles of the integrand. Indeed, the poles are located at αm, 1 + αm, 2 + αm, . . . ,
as well as vi + Z. We do not cross any of the poles αm, 1 + αm, 2 + αm, . . . since
by construction b̃, μ, a ∈ (max(a),min(α)). On the other hand, we do not cross any
of the poles vi + Z since Dk is to the right by at least d̃/40 and at most d̃/20 from
both Ck and Ck+1—this ensures that vi are to the left of Dk and vi + 1 to the right.
By Cauchy’s theorem the value of the integrals does not change and the estimates
necessary to deform the contours near infinity come from Proposition 2.15 applied to
K = {0} ∪ [max(�a),min(�α)], T = τ and M, N , �a, �α, u as in the statement of the
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theorem. We have thus reduced (2.33) to

∫

Ck
· · ·
∫

Ck

∫

Dk

· · ·
∫

Dk

n∏

j=1

F(v j , w j )dw j

w j − vσ( j)

n∏

i=1

dvi

=
∫

Ck+1

· · ·
∫

Ck+1

∫

Dk

· · ·
∫

Dk

n∏

j=1

F(v j , w j )dw j

w j − vσ( j)

n∏

i=1

dvi ,

and in particular, our use of Proposition 2.15 also implies that the integrals above are
absolutely convergent. The latter, by Fubini’s theorem, allows us to exchange the order
of the integrals, reducing the proof of (2.33) to showing that

∫

Dk

· · ·
∫

Dk

[ ∫

Ck
· · ·
∫

Ck

n∏

j=1

F(v j , w j )

w j − vσ( j)

n∏

i=1

dμ(vi )

−
∫

Ck+1

· · ·
∫

Ck+1

n∏

j=1

F(v j , w j )

w j − vσ( j)

n∏

i=1

dμ(vi )

] n∏

j=1

dw j = 0.

The above is now immediate since by Cauchy’s theorem we may deform the contour
Ck to Ck+1 without crossing any poles. Thus, we have established (2.24), (2.25), (2.26)
and (2.27), which concludes the proof of the first part of the theorem.
Part IIWe let as before θ0 = min(�α) −max(�a) > 0, and note that in Part I we proved
the statement of the theorem when θ0 > 1. In this part we prove the theorem in the
case when θ0 ∈ (0, 1]. For θ > −θ0 we let Pθ denote the probability measure of
the mixed polymer model where the Xi, j (as in Definition 2.6) have inverse-gamma
distribution with parameters αi − a j + θ . We also write Eθ for the expectation with
respect to this measure. With the notation as in the statement of the theorem we have
from the first part of the proof the following statement for θ > 1 − θ0

Eθ

[
e−uZM,N (τ )

]
= det

(
I + K τ

u,θ

)
L2(Ca,3π/4)

, (2.34)

where

K τ
u,θ (v, v′) = 1

2π i

∫

Dv

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(αm + θ − w)

�(αm + θ − v)

uw−veτ(w2−v2)/2dw

w − v′ . (2.35)

The goal is then to show that (2.34) holds when θ = 0 and we accomplish this in three
steps. In the first step we show that the left side of (2.34) has an analytic continuation
in θ in the right half-plane {z ∈ C : Re(z) > −θ0}. In the second step we construct an
auxiliary function G̃u(z) and show that the latter is analytic in an open neighborhood
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of [0, 1]. Finally, in Step 3 we prove that both the left and right sides of (2.34) are
equal to G̃u(θ), which concludes the proof of the theorem.
Step 1 We define

Fu(θ) = Eθ

[
e−uZM,N

]
,

and note that the function Fu(θ) makes sense for any θ > −θ0. In this step we show
that Fu(θ) has an analytic continuation to V = {z ∈ C : Re(z) > −θ0}. To see this,
notice that from (2.3) and (2.4) we have

Fu(θ) =
∫
R
NM+ Hu(�x, �B)

∏N
i=1

∏M
j=1 x

−α j+ai−θ−1
i j exp

(
−x−1

i j

)
dxi j

∏N
i=1 P(dBi )

∏N
i=1

∏M
j=1 �(α j − ai + θ)

,

where Hu(�x, �B) = exp

⎛

⎝−u
N∑

n=1

∑

φd :(−M,1)↗(−1,n)

∫

φsd :(0,n)↗(τ,N )

eE(φ)dφsd

⎞

⎠ , and

E(φ) :=
∑

(i, j)∈φd

xi, j + Bn(sn) +
N∑

k=n+1

(
Bk(sk) − Bk(sk−1)

)
.

(2.36)

In the top line (2.36) we recall that B1, . . . , BN are independent Brownian motions
with drifts {an}Nn=1. Next if z0 ∈ V and Re(z0) > −θ0 + 2δ for some δ > 0 we have

sup
z:|z−z0|≤δ

∫

R
NM+

∣
∣∣Hu(�x, �B)

∣
∣∣

N∏

i=1

M∏

j=1

∣
∣∣x

−α j+ai−z−1
i j

∣
∣∣ exp

(
−x−1

i j

)
dxi j

N∏

i=1

P(dBi ) ≤ sup
z:|z−z0|≤δ

∫

R
NM+

N∏

i=1

M∏

j=1

x
−Re(z)−α j+ai−1
i j exp

(
−x−1

i j

)
dxi j =

N∏

i=1

M∏

j=1

sup
z:|z−z0|≤δ

�(Re(z) + α j − ai )
NM < ∞.

(2.37)

The last statement and Theorem 2.2 imply that the numerator in the first line of (2.36)
is analytic in V and so is

∏N
i=1

∏M
j=1 �−1(α j − ai + z). This proves the claim.

Step 2 In this step we construct an auxiliary function G̃u(z) for z in a neighborhood of
[0, 1] as follows. Let δ0 = min(d/4, a −max(�a), (min(�α) − b)/4), where a, b are as
in the statement of the theorem. For z ∈ U := {z ∈ C : d(z, [0, 1]) < δ0} we define

G̃u(z) = det
(
I + K̃u,z

)

L2(Ca,3π/4)
, (2.38)

where the operator K̃u,z is defined in terms of its integral kernel

K̃u,z(v, v′) = 1

2π i

∫

D̃v

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)
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M∏

m=1

�(z + αm − w)

�(z + αm − v)

uw−veτ(w2−v2)/2dw

w − v′ , (2.39)

where D̃v = Dv(b, π/4, δ0) is as inDefinition 2.11.To show that G̃u(z) iswell-defined
we start by applying Proposition 2.15 with T = τ , K = U , and a, u, M, N , �a, �α as
above to conclude that for v, v′ ∈ Ca,3π/4 we have

sup
z∈U

∫

D̃v

∣
∣∣∣∣

π

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(z + αm − w)

�(z + αm − v)

uw−veτ(w2−v2)/2dw

w − v′

∣∣∣
∣∣
|dw| < ∞, (2.40)

where |dw| denotes integration with respect to arc-length and we also used that |�(z)|
is uniformly bounded over compact sets that are disjoint from Z. Equation (2.40)
implies that K̃u,z(v, v′) is well-defined for each v, v′ ∈ Ca,3π/4 and moreover, by
Theorem 2.2, we know that K̃u,z(v, v′) is analytic inU for each fixed v, v′ ∈ Ca,3π/4.

We next apply Proposition 2.17 for T = τ , a, b, δ0 as above, φ = 3π/4,
M, N , �a, �α, u as in the statement of the theorem. The conclusion is that we can find a
constant C0 > 0 such that for all v, v′ ∈ Ca,3π/4 we have

sup
z∈U

|K̃u,z(v, v′)| ≤ C0

1 + |v|2 . (2.41)

Equation (2.41) andLemma2.3 imply that G̃u(z) iswell-defined and analytic in z ∈ U .
Step 3 In this step we show that both the left and right sides of (2.34) are equal to
G̃u(θ) for all θ ∈ [0, 1]. In particular, setting θ = 0 concludes the second part of the
proof of the theorem.

We observe that if x ∈ (1 − θ0, 1] we know that G̃u(x) equals the right side of
(2.34) with θ replaced with x and Dv = Dv(a, b, δ0). In view of (2.34) we conclude
that G̃u(x) = Fu(x) for x ∈ (1 − θ0, 1] and since both functions are analytic in
a neighborhood of [0, 1] we conclude that the left side of (2.34) equals G̃u(θ) for
θ ∈ [0, 1], cf. [38, Chapter 2, Corollary 4.9].

By Cauchy’s theorem we can deform the Dv(b, π/4, d) contour in (2.35) to
Dv(b, π/4, δ0) (here δ0 was defined in Step 2) without affecting the value of the inte-

gral, at which point we recognize that det
(
I + K τ

u,θ

)

L2(Ca,3π/4)
= G̃u(θ). In other

words, the right side of (2.34) equals G̃u(θ) for all θ ∈ [0, 1]. This suffices for the
proof.

3 Asymptotic analysis of Fredholm determinants

In this section we investigate the limit of the Fredholm determinant det(I +
Ku)L2(Ca ,3π/4) from Theorem 2.12 when the parameters are appropriately scaled (the
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precise scaling is given in Definition 3.1). The exact convergence statement, which
is the main technical result of the paper, is given in Theorem 3.2 and is proved in
Sect. 3.3 after some preliminary results are presented in Sect. 3.2. Theorem 3.2 is used
later in Sect. 4 to establish Theorems 1.2 and 1.15.

3.1 Limit of det(I+ Ku)L2(Ca,3�/4)

In this section we show that when the parameters in the definition of det(I +
Ku)L2(Ca ,3π/4) from Theorem 2.12 are scaled appropriately the Fredholm determi-
nant converges to a limiting one. We first turn to specifying how we scale parameters.

Definition 3.1 Let �(x) denote the digamma function, i.e.

�(x) = �′(x)
�(x)

= −γE +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
, (3.1)

where γE is the Euler constant.
Suppose that M, N ≥ 1 and θ > 0 are given. We let zc(M, N ) denote the maximizer
of

WM,N (x) := N�(x) + M�(θ − x)

on the interval (0, θ). Notice that the above expression converges to −∞ as x → 0+
or x → θ− and also the function WM,N (x) is strictly concave, hence the maximum
exists and is unique. We let WM,N denote WM,N (zc).

For any α > 0 we define

σα :=
( ∞∑

n=0

α

(n + zc)3
+

∞∑

n=0

1

(n + θ − zc)3

)1/3

.

The way we scale the parameters is as follows. We will let M, N → ∞ while
M ≥ N and α = N/M ≥ δ, where δ > 0 is fixed. We set α = α(M, N ) = N/M and
for a given x ∈ R we set

u = u(x, M, N ) := eWM,N−M1/3σαx .

Notice that if α ∈ [δ, 1] and θ > 0 is fixed then σα is positive and bounded away from
0 and ∞, see e.g. (5.4). Finally, we fix r, c ∈ Z≥0 and vectors �x = (x1, . . . , xr) ∈ R

r,
�y = (y1, . . . , yc) ∈ R

c such that min(�y) > max(�x). If r = 0 we set max(�x) = −∞
and if c = 0 we set min(�y) = ∞. We also let �a ∈ R

N+r and �α ∈ R
M+c be such that

ai (M, N )= zc + xiσ
−1
α M−1/3 + o(M−1/3) for i = 1, . . . , r,

ai (M, N ) = 0 for i = r + 1, . . . , r + N ,

αi (M, N )= zc + yiσ
−1
α M−1/3 + o(M−1/3) for i = 1, . . . , c,
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αi (M, N ) = θ for i = c + 1, . . . , c + M .

We also let μ = (max(�x) + min(�y))/2 with the convention that μ = 0 if r = c = 0,
μ = max(�x) + 1 if c = 0 and r > 0, μ = min(�y) − 1 if r = 0 and c > 0. We always
assume that M is sufficiently large so that so that min(�α) > zc + μσ−1

α M−1/3 >

max(�a) and min(�α) > 0.
We further let Ku be as in Theorem 2.12 for the vectors �α, �a and parameter u as

above, a = zc+μσ−1
α M−1/3 and b, d arbitrarily chosen so as to satisfy the conditions

of that theorem. We also define the contour D̃ to be the contour that consists of the
vertical segment connecting μ + ρ − iρ and μ + ρ + iρ and for |Im(z)| ≥ ρ it agrees
with Cμ,π/4 from Definition 2.10, where ρ > 0 is chosen sufficiently small so that
min(�y) > μ + ρ, see Fig. 7. The contour D̃ is oriented to have increasing imaginary
part. If c = 0 we let ρ = 1.

The main result of the section is as follows.

Theorem 3.2 Fix x ∈ R and assume the same notation and scaling as inDefinition 3.1.
Then

lim
M→∞ det (I + Ku)L2(Ca,3π/4)

= det
(
I + K∞

x

)
L2(Cμ,3π/4)

, (3.2)

where the operator K∞
x is defined in terms of its integral kernel

K∞
x (v, v′) = 1

2π i

∫

D̃
g∞,x
v,v′ (w)dw, with

g∞,x
v,v′ (w) =

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)
· exp(−v3/3 + w3/3 − xw + xv)

(v − w)(w − v′)
,

(3.3)

where Cμ,3π/4 is as in Definition 2.10 and D̃ is as in Definition 3.1.

Remark 3.3 The Fredholm determinant on the right side of (3.2) is as in Sect. 2.1. In
particular, part of the statement of the theorem is that the kernel K∞

x (v, v′) is well-
defined, each term in the series (2.1) is finite and the series converges for the given
choice of parameters.

3.2 Relevant estimates

In this section we introduce some notation and establish a few results that will be
useful for the proof of Theorem 3.2, which is given in the next section.

Definition 3.4 Define

GM,N (z) := N log�(z) − M log�(θ − z) − WM,N z − CM,N , (3.4)
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Fig. 7 The left part depicts the contour D̃ from Definition 3.1 and the contour Cμ,3π/4. The dark gray dots
are x1 . . . , xr and the light gray ones are y1, . . . , yc. The right part depicts the contour C

ε
a,3π/4 as defined

in Step 1 of the proof of Theorem 3.2 in Sect. 3.3 and the contour DM = D−
M ∪ D0

M ∪ D+
M . The dark gray

dot represents ai for i = 1, . . . , r and the light gray ones the points m + αi for m ≥ 0 and i = 1, . . . , c.
Some of the distances are exaggerated

where CM,N = N log�(zc) − M log�(θ − zc) − WM,N zc, and zc,WM,N are as in
Definition 3.1. We also define

Gα(z) = M−1GM,N (z) = α log�(z) − log�(θ − z) − M−1WM,N z − M−1CM,N ,

where we recall that α = N/M ∈ [δ, 1] as in Definition 3.1. Continuing with the nota-
tion fromDefinition 3.1we define the contours DM through DM = zc+σ−1

α M−1/3 · D̃,
see Fig. 7. The contours DM are oriented to have increasing imaginary part and we
write D±

M for the slope ±1 pieces of DM and D0
M for the vertical part of the contour.

We next state several results for future use. The first three are proved in Sect. 5.4
and the third one is proved in Sect. 6.3

Lemma 3.5 Fix θ > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1]. There
exist constants C > 0 and r > 0 depending on θ and δ such that Gα is analytic in the
disc |z − zc| < r and the following hold for |z − zc| ≤ r:

∣∣∣Gα(z) + (z − zc)
3σ 3

α/3
∣∣∣ ≤ C |z − zc|4;

Re[Gα(z)] ≥ (
√
2/2)3|z − zc|3σ 3

α/6 when z ∈ Czc,φ with φ = π/4;
Re[Gα(z)] ≤ −(

√
2/2)3|z − zc|3σ 3

α/6 when z ∈ Czc,φ with φ = 3π/4.

(3.5)

In the above equations zc, σα are as in Definition 3.1 and Ca,φ is as in Definition 2.10.

Remark 3.6 The first line in (3.5) describes the Taylor expansion ofGα near the critical
point zc. The second and third line in (3.5) provide quantified estimates of the real part
of Gα along the rays departing from zc at angles ±π/4 and ±3π/4. In particular, the
rays departing from zc at angles ±π/4 are locally ascent contours and those departing
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at angles ±3π/4 are locally descent contours for Gα . These estimates will be useful
in our steepest descent analysis once we truncate the contours in the definition of our
kernels so that only the behavior near zc becomes important.

Lemma 3.7 Fix θ > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1]. Let
z(r) = zc + reiφ with zc as in Definition 3.1. Then we have

Re

[
d

dr
GM,N (z(r))

]
≤ 0, provided that φ = 3π/4 or φ = 5π/4,

Re

[
d

dr
GM,N (z(r))

]
≥ 0, provided that φ = π/4 or φ = −π/4.

(3.6)

In addition, if δ1 > 0 is given then there is a constant c > 0 depending on δ1, δ, θ

such that

Re
[
GM,N (z(r))

] ≤ −c(M + N )r log(1 + r) for any r ≥ δ1

provided φ = 3π/4 or φ = 5π/4,

Re
[
GM,N (z(r))

] ≥ c(M + N )r log(1 + r) for any r ≥ δ1

provided φ = π/4 or φ = −π/4,

(3.7)

Remark 3.8 Equation (3.6) shows that the rays departing from zc at angles ±π/4
are ascent contours and those departing at angles ±3π/4 are descent contours for
GM,N . Equation (3.7) provides quantified estimates on how quickly the real part of
GM,N decreases along these contours. The function Gα in Lemma 3.5 and GM,N in
Lemma 3.7 are related by Gα(z) = M−1GM,N (z), see Definition 3.4. Then equation
(3.5) provides us with decay estimates near zc, while (3.7) provides us with decay
estimates away from zc for Gα(z). The estimates in (3.6) and (3.7) will be useful in
our steepest descent analysis to justify that truncating the contours in the definition of
our kernels produces only a small error.

Lemma 3.9 Fix θ, A > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1].
There exist constants M0,C0 > 0 depending on δ, θ, A such that if M ≥ M0,
x ∈ [−A, A] and z(r) = zc + reiφ with zc as in Definition 3.1, r ≥ 0 and
φ ∈ {π/4, 3π/4, 5π/4, 7π/4} we have

∣∣∣Re[GM,N (z(r) + xM−1/3) − GM,N (z(r))]
∣∣∣ ≤ C0M

2/3 · (1 + r). (3.8)

Remark 3.10 In the course of our steepest descent analysis, we would prefer to work
with the contours Czc,φ with φ = π/4 and φ = 3π/4 and use the estimates in
Lemmas 3.5 and 3.7. Unfortunately, in order to avoid the poles at xn and ym , that
appear in (3.3) when r + c > 0, we might need to work instead with slightly shifted
contours Czc+xM−1/3,φ that avoid these poles. Equation (3.8) allows us to compare
how much the real part of GM,N changes when we do this slight horizontal shift, and
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allows us to use our good estimates of the real part of GM,N on Czc,φ and find slightly
worse, but still good enough for our purposes, estimates of GM,N on Czc+xM−1/3,φ .

Proposition 3.11 Let A ≥ 0 and x ≥ −A be given and let M, N , a, u(x, M, N ) be
as in Definition 3.1. Then for any ε > 0 there exist positive constants M0, c,C > 0
depending on A, ε and the parameters in Definition 3.1 such that if M ≥ M0, v, v′ ∈
Ca,3π/4 we have

∣∣Ku(v, v′)
∣∣ ≤ CM1/3 and if |v − a| ≥ ε we further have

∣∣Ku(v, v′)
∣∣ ≤ Ce−c0M log(1+|v|). (3.9)

If r = c = 0 then M0, c,C > 0 depend only on θ , δ, A and ε.

Remark 3.12 When we prove Theorem 3.2 in Sect. 3.3 and Theorem 1.7 in
Sect. 4.2 we will need to truncate the v-contours in the Fredholm determinant
det (I + Ku)L2(Ca,3π/4)

, and equation (3.9) will be used to show that such a truncation
produces only a small error for large M .

Lemma 3.13 There exists a universal constant C̃ > 0 such that if s ∈ Cwith d(s, Z) =
δ > 0

∣
∣∣∣

π

sin(πs)

∣
∣∣∣ ≤ C̃

δ
. (3.10)

Proof Let s = x+ iy and observe that by the periodicity of the sine function it suffices
to prove the lemma for x ∈ [−1/2, 1/2]. Notice that by the triangle inequality we
have

| sin(πs)| =
∣∣∣∣∣
eis − e−is

2i

∣∣∣∣∣
≥ e|y| − e−|y|

2
≥ e|y| − 1

2
≥ |y|/2.

If |y| ≥ 1 and x ∈ [−1/2, 1/2] the latter implies that

| sin(πs)|δ−1 ≥ (|y|/2)(
√
x2 + y2)−1 ≥ (|y|/2)(2|y|)−1 = 1/4,

which implies that (3.10) holds for all such s with C̃ = 4π . On the other hand, if
−1 ≤ y ≤ 1 and x ∈ [−1/2, 1/2] we have that

| sin(πs)|δ−1 =
∣
∣∣∣
sin(πs)

s

∣
∣∣∣ ,

and since s−1 sin(πs) is a non-vanishing analytic function in the region (x, y) ∈
[−1/2, 1/2]×[−1, 1]we know that there exists C1 > 0 such that |s−1 sin(πs)| ≥ C1
on this region. We may thus take C̃ = π · max(C−1

1 , 4) and then (3.10) would hold
for all s ∈ C. ��
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Lemma 3.14 For any δ > 0 and � > 0 there exists M0 > 0 such that if M ≥ M0 we
have

∞∑

n=1

nn/2�nMn/3

n! ≤ eδM . (3.11)

Proof From [34, (1) and (2)] we have for each n ≥ 1 that

n! = √
2πnn+1/2e−nern , where (12n + 1)−1 < rn < (12n)−1 (3.12)

and so

nn/2�nMn/3

n! ≤ en/2�nMn/3(2πn)−1/4

√
n! ≤ (2�)nMn/3

√
n! =: An .

We also see that

An+1

An
= 2�M1/3

√
n + 1

,

which implies that

An+1 ≥ An if
√
n + 1 ≤ 2�M1/3 and An+1 ≤ An if

√
n + 1 ≥ 2�M1/3.

The above inequalities imply that for m = �4�2M2/3
 we have Am ≥ An for all
n ∈ N. On the other hand, (3.12) implies

Am ≤ (4�2M2/3)m/2em/2

e(m/2) logm

≤
(
1 + m−1

)m/2 · em/2 ≤ 2em/2,

where the latter inequality holds provided M0 is sufficiently large and M ≥ M0.
Combining all of the above estimates we conclude that for all large M

∞∑

n=1

nn/2�nMn/3

n! ≤
∞∑

n=1

An ≤ M · Am +
∞∑

n=M+1

An ≤ 2Mem/2 + 1.

The latter clearly implies (3.11) for all large M , as the right side is O(exp(M2/3

logM)). ��

3.3 Proof of Theorem 3.2

We assume the same notation as in Theorem 3.2 as well as Sect. 3.2 above. For
the sake of clarity we split the proof into four steps. In the first step we truncate the
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contourCa,3π/4 and show that it suffices to prove the theorem for the truncated contour
using Proposition 3.11 and Lemma 3.14. In the second step we rewrite the Fredholm
determinant for the truncated contour in a way that is suitable for the application of
Lemma 2.5. In the third step we state several estimates, which show that the conditions
of Lemma 2.5 are satisfied, and the application of the latter and Lemma 2.4 concludes
the proof of theorem. The estimates from step three are then established in the fourth
and final step by appealing to Lemmas 3.5, 3.7,3.9 and 3.13.

Step 1 For ε > 0 we let Cε
a,3π/4 denote the portion of Ca,3π/4 inside Bε(a)—the disk

of radius ε, centered at a. We claim that there exists ε ∈ (0, 1/2) such that

lim
M→∞ det(I + Ku)L2(Cε

a,3π/4)
= det

(
I + K∞

x

)
L2(Cμ,3π/4)

. (3.13)

We prove (3.13) in the next steps. Here we assume its validity and conclude the proof
of the theorem.
Let us write Ca,3π/4 = C0 ∪ C1 where C0 = Cε

a,3π/4 is the portion contained inside
Bε(a) and C1 is the portion outside Bε(a). From the definition of Fredholm determi-
nants, see Sect. 2.1, we know that

det(I + Ku)L2(Ca,3π/4)
− det(I + Ku)L2(Cε

a,3π/4)
=

∞∑

n=1

Bn

n! , where (3.14)

Bn =
∑

ε1,...,εn∈{0,1}:∑i εi>0

1

(2π i)n

∫

Cε1

· · ·
∫

Cεn

det
[
Ku(vi , v j )

]n
i, j=1

n∏

i=1

dvi .

(3.15)

By Hadamard’s inequality and Proposition 3.11 we have that if vi ∈ Cεi for i =
1, . . . , n and M ≥ M0

∣∣∣det
[
Ku(vi , v j )

]n
i, j=1

∣∣∣ ≤ nn/2Mn/3
n∏

i=1

Ce−cεi M log(1+|vi |), (3.16)

where the constants c,C and M0 are as in Proposition 3.11. Consequently, for all large
M we have

|Bn| ≤
∑

ε1,...,εn∈{0,1}:∑i εi>0

nn/2CnMn/3e−c′M
∑n

i=1 εi ≤ e−c′M · nn/2(2C)nMn/3,

(3.17)

where we used that the sum is over εi not all equal to 0 and c′ = (c/2) log(1 + ε).
From (3.17) and Lemma 3.14 applied to δ = c′/2 and � = 2C we deduce

∞∑

n=1

|Bn|
n! ≤ e−c′M

∞∑

n=1

nn/2(2C)nMn/3

n! ≤ e−c′M/2. (3.18)
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Combining (3.13) with (3.14) and (3.18) we conclude the statement of the theorem.

Step 2 In this step we rewrite det(I + Ku)L2(Cε
a,3π/4)

in a way that is more suitable

for the application of Lemma 2.5. Let r be as in Lemma 3.5 and fix ε > 0 such that
ε < min(r/2, 1/2). We will prove (3.13) for this choice of ε, which is fixed in the rest
of the proof.

By Cauchy’s theoremwemay deform the Dv(b, d, π/4) contour in the definition of
Ku(v, v′) to DM from Definition 3.4 without affecting the value of the kernel as long
as M is sufficiently large. Indeed, notice that by our choice of ε ≤ 1/2 we have that
Cε
a,3π/4 + 1 lies to the right of DM and so we do not cross any poles while deforming

Dv(b, d, π/4) to DM , see Fig. 7. The decay estimates necessary to deform the contour
near infinity come from Proposition 2.15 applied to K = {0} ∪ [max(�a),min(�α)],
T = 0 and �a, �α, u as in the statement of this theorem.

Utilizing the above contour, we may perform a change of variables vi =
σ−1

α M−1/3ṽi + zc and w = σ−1
α M−1/3w̃ + zc to rewrite

det(I + Ku)L2(Cε
a,3π/4)

= det(I + KM
x )L2(Cμ,3π/4)

, (3.19)

where

KM
x (ṽ, ṽ′) = 1|ṽ−μ|≤εσαM1/3 · 1|ṽ′−μ|≤εσαM1/3

1

2π i

∫

D̃
gM,x
ṽ,ṽ′ (w̃)dw̃,

where D̃ = σαM1/3(DM − zc) is as in Definition 3.1 and g
M,x
ṽ,ṽ′ (w̃) = AM

1 · AM
2 · AM

3 ,
where

AM
1 =

r∏

n=1

�(σ−1
α M−1/3ṽ + zc − an)

�(σ−1
α M−1/3w̃ + zc − an)

c∏

m=1

�(αm − σ−1
α M−1/3w̃ − zc)

�(αm − σ−1
α M−1/3ṽ − zc)

,

AM
2 = πM−1/3σ−1

α

sin(πM−1/3σ−1
α (ṽ − w̃))(w̃ − ṽ′)

, and

AM
3 = eM[Gα(ṽσ−1

α M−1/3+zc)−Gα(w̃σ−1
α M−1/3+zc)]ex(ṽ−w̃).

In view of (3.19), we see that to show (3.13) it suffices to prove that

lim
M→∞ det(I + KM

x )L2(Cμ,3π/4)
= det

(
I + K∞

x

)
L2(Cμ,3π/4)

. (3.20)

Step 3 In this step we prove (3.20). Notice that for fixed ṽ, ṽ′ ∈ Cμ,3π/4 and w̃ ∈ D̃
we have

lim
M→∞ gM,x

ṽ,ṽ′ (w̃) = g∞,x
ṽ,ṽ′ (w̃), (3.21)
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where g∞,x
ṽ,ṽ′ is as in the statement of the theorem. Indeed, we have for fixed ṽ, ṽ′ ∈

Cμ,3π/4 and w̃ ∈ D̃ that

lim
M→∞ AM

2 = 1

(ṽ − w̃)(w̃ − ṽ′)
, (3.22)

and also using Lemma 3.5 we see that

lim
M→∞ AM

3 = exp(−ṽ3/3 + w̃3/3 + x(ṽ − w̃)). (3.23)

Finally, using the functional equation �(z + 1) = z�(z) and the scaling of an for
n = 1, . . . , r and αm for m = 1, . . . , c from Definition 3.1 we get

AM
1 = AM

1,1 · AM
1,2 · AM

1,3, where AM
1,1 =

r∏

n=1

(w̃ − xn + o(1))

(ṽ − xn + o(1))

c∏

m=1

(ym − ṽ + o(1))

(ym − w̃ + o(1))
,

AM
1,2 =

∏c
m=1 �(σ−1

α M−1/3ym − σ−1
α M−1/3w̃ + 1 + o(1))

∏r
n=1 �(σ−1

α M−1/3w̃ − σ−1
α M−1/3xn + 1 + o(1))

,

AM
1,3 =

∏r
n=1 �(σ−1

α M−1/3ṽ − σ−1
α M−1/3xn + 1 + o(1))

∏c
m=1 �(σ−1

α M−1/3ym − σ−1
α M−1/3ṽ + 1 + o(1))

.

(3.24)

From the last equation we conclude

lim
M→∞ AM

1 =
r∏

n=1

(w̃ − xn)

(ṽ − xn)

c∏

m=1

(ym − ṽ)

(ym − w̃)
. (3.25)

Equations (3.22), (3.23) and (3.25) imply (3.21).
We claim that we can find positive constants �i , λi > 0 for i = 1, 2, 3 such that for
all large enough M we have

|AM
1 | ≤ �1 · exp (λ1(|w̃ − μ| log(1 + |w̃ − μ|) + |ṽ − μ| log(1 + |ṽ − μ|))) , |AM

2 | ≤ �2

|AM
3 | ≤ �3 · exp (−(λ1 + λ3)(|w̃ − μ| log(1 + |w̃ − μ|) + |ṽ − μ| log(1 + |ṽ − μ|))) ,

(3.26)

provided that ṽ, ṽ′ ∈ Cμ,3π/4, |ṽ − μ| ≤ εσαM1/3, |ṽ′ − μ| ≤ εσαM1/3 and w̃ ∈ D̃.
We will prove (3.26) in the next step. Here we assume its validity and conclude the
proof of (3.20).

We may now apply Lemma 2.5 to the functions gM,x
ṽ,ṽ′ (w̃) with F1(ṽ) =√

�1�2�3 exp(−λ3|ṽ − μ| log(1 + |ṽ − μ|) + |x ||w̃|) = F2(ṽ) and �1 = Cμ,3π/4,
�2 = D̃. Notice that the functions Fi are integrable on �i . As a consequence we see
that KM

x and K∞
x satisfy the conditions of Lemma 2.4, fromwhich we conclude (3.20)

and in particular that the right side is well-defined.
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Step 4 In this step we establish (3.26). We first deal with the bound on AM
1 . Since the

denominators in AM
1,1 are uniformly bounded away from 0 we conclude that

|AM
1,1| = O (exp(r log(1 + |w̃|) + c log(1 + |ṽ|))) . (3.27)

In addition, since by assumption |ṽ − μ| ≤ εσαM1/3 and ε ≤ 1/2 we see that both
the numeror and denominator of AM

1,3 are uniformly bounded away from 0 and ∞ so
that

|AM
1,3| = O (1) . (3.28)

It follows from [30, (2), pp. 32] that if z ∈ C and |arg(z)| ≤ π −ε for some ε ∈ (0, π)

then

�(z) = e−z zz−1/2(2π)1/2 ·
(
1 + O(z−1)

)
, (3.29)

where the constant in the big O notation depends on ε and we take the principal branch
of the logarithm. Also by [38, Theorem 1.6, Chapter 6] there are positive constants
c1, c2 such that

∣
∣∣∣

1

�(z)

∣
∣∣∣ ≤ c1e

c2|z| log |z|. (3.30)

Equations (3.29) and (3.30) imply that we can find constants c3, c4 > 0 such that

|AM
1,2| ≤ c3 · exp

(
c4σ

−1
α M−1/3|w̃| log(1 + σ−1

α M−1/3|w̃|)
)

. (3.31)

Equations (3.27), (3.28) and (3.31) together imply the first inequality in (3.26).
We next deal with the bound on AM

2 . We observe that for ṽ ∈ Cμ,3π/4, |ṽ − μ| ≤
σαM1/3 and, w̃ ∈ D̃ we have

∣∣∣∣
πM−1/3σ−1

α

sin(πM−1/3σ−1
α (ṽ − w̃))

∣∣∣∣ = O(1). (3.32)

Indeed, if |πM−1/3σ−1
α (ṽ − w̃))| ≥ 1/2 the above follows from Lemma 3.13 and if

|πM−1/3σ−1
α (ṽ − w̃))| ≤ 1/2 we have

∣
∣∣∣

πM−1/3σ−1
α

sin(πM−1/3σ−1
α (ṽ − w̃))

∣
∣∣∣ =

∣
∣∣∣

πM−1/3σ−1
α (ṽ − w̃)

sin(πM−1/3σ−1
α (ṽ − w̃))

∣
∣∣∣ ·

1

|ṽ − w̃| ,

which is also bounded since z
| sin(z)| is bounded in the disc of radius 1/2 centered at the

origin and |ṽ − w̃| ≥ ρ (recall that ρ was given in the definition of D̃ in Definition 3.1
and is the smallest distance between D̃ and Cμ,3π/4). Since we also have |ṽ′ − w̃| ≥ ρ

we see that (3.32) implies the second inequality in (3.26).

123



156 G. Barraquand et al.

Finally, we establish the bound on AM
3 . The third inequality in (3.26) would follow if

we can show that for ṽ ∈ Cμ,3π/4, |ṽ − μ| ≤ εσαM1/3 and w̃ ∈ D̃ we have

∣
∣∣exp(−MGα(w̃σ−1

α M−1/3 + zc)
∣
∣∣ = O (exp(−(λ1 + 1)|w̃ − μ| log(1 + |w̃ − μ|)) and

∣∣
∣exp(MGα(ṽσ−1

α M−1/3 + zc)
∣∣
∣ = O (exp(−(λ1 + 1)|ṽ − μ| log(1 + |ṽ − μ|)) .

(3.33)

We first consider the case when |w̃ − μ| ≤ M1/3−1/10. In this case we have from
Lemma 3.5 that there exists c6 > 0 such that

|MGα(w̃σ−1
α M−1/3 + zc) + w̃3/3| ≤ c6M

−1/3|w̃|4 ≤ c6M
−1/10|w̃|3.

In addition, since w̃ ∈ D̃ we know that there are constants c7, c8 > 0 such that

| exp(w̃3/3)| = exp(Re[w3/3]) ≤ c7 exp(−c8|w̃|3),

which in turn implies that

∣∣∣exp(−MGα(w̃σ−1
α M−1/3 + zc)

∣∣∣ = exp(−MReGα(w̃σ−1
α M−1/3 + zc))

≤ c7 exp((c6M
−1/10 − c8)|w̃|3).

The latter equation implies the first line of (3.33) when |w̃ − μ| ≤ M1/3−1/10 and an
analogous argument shows the second line when |ṽ − μ| ≤ M1/3−1/10.

We next consider the case when M1/3−1/10 ≤ |w̃ − μ| ≤ εσαM1/3. Using that
ε ≤ r/2 as in Lemma 3.5 by assumption we see that the lemma is applicable and so
we get

MReGα((w̃ − μ)σ−1
α M−1/3 + zc) ≥ (

√
2/2)3|w̃ − μ|3/6.

Furthermore, by Lemma 3.9 we see that there is a constant c9 > 0 such that

M |ReGα((w̃ − μ)σ−1
α M−1/3 + zc) − ReGα(w̃σ−1

α M−1/3 + zc)| ≤ c9M
2/3.

Combining the last two statements we see that

∣∣∣exp(−MGα(w̃σ−1
α M−1/3 + zc)

∣∣∣ ≤ exp(c9M
2/3 − (

√
2/2)3|w̃ − μ|3/6)

≤ exp(−(
√
2/2)3|w̃ − μ|3/12),

where the last inequality holds for all large enough M and we used that |w − μ|3 ≥
M7/10 by assumption. The last inequality clearly implies the first line in (3.33) when
M1/3−1/10 ≤ |w̃ − μ| ≤ εσαM1/3 and an analogous argument shows the second line
when M1/3−1/10 ≤ |ṽ − μ| ≤ εσαM1/3.
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Finally, we consider the case |w̃ −μ| ≥ εσαM1/3. In view of Lemma 3.7 we know
that there is a c10 > 0 such that

MReGα((w̃ − μ)σ−1
α M−1/3 + zc) ≥ c10M

2/3|w̃ − μ| log(1 + σ−1
α M−1/3|w̃ − μ|).

Furthermore, by Lemma 3.9 we see that there is a constant c11 > 0 such that

M |ReGα((w̃ − μ)σ−1
α M−1/3 + zc) − ReGα(w̃σ−1

α M−1/3 + zc)|
≤ c11M

2/3(1 + σ−1
α M−1/3|w̃ − μ|).

Combining the last two statements we see that

∣∣∣exp(−MGα(w̃σ−1
α M−1/3 + zc)

∣∣∣ ≤ exp(−c10|w̃ − μ|M2/3 log(1

+σ−1
α M−1/3|w̃ − μ|)) · exp(c11M2/3 + c11σ

−1
α M1/3|w̃ − μ|).

which implies the first line of in (3.33) when |w̃ − μ| ≥ εσαM1/3. This suffices for
the proof.

��

4 Proof of Theorems 1.2, 1.7 and 1.15

In this section we prove the three main results of the paper from Sect. 1.

4.1 Proof of Theorem 1.2

In this section we prove Theorem 1.2 by utilizing Theorem 3.2. We work under the
same assumptions as in the statement of Theorem 1.2. As discussed in Remark 1.3 it
suffices to prove the theorem when N/M ∈ [δ, 1], which we assume in the sequel.

We will use the following elementary probability lemma.

Lemma 4.1 [5, Lemma 4.1.39] Suppose that fn is a sequence of functions fn : R →
[0, 1], such that for each n, fn(y) is strictly decreasing in y with a limit of 1 at y = −∞
and 0 at y = ∞. Assume that for each δ > 0 one has on R\[−δ, δ], fn → 1{y≤0}
uniformly. Let Xn be a sequence of random variables such that for each x ∈ R

E[ fn(Xn − x)] → p(x),

and assume that p(x) is a continuous probability distribution function. Then Xn con-
verges in distribution to a random variable X, such that P(X ≤ x) = p(x).

Let y ∈ R, α = N/M and σα, u(y, M, N ) be as in Definition 3.1. Define

fM (z) = e−eσαM1/3z
,
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and observe that since by assumption we have M ≥ N ≥ 9 for all M sufficiently large
we can apply Theorem 2.12 to conclude

E [ fM (F(M, N ) − y)] = E

[
e−uZM,N

]
= det (I + Ku)L2(Czc ,3π/4)

.

On the other hand, by Theorem 3.2 we know that as M → ∞ the right-hand side
converges to det(I + K∞

y )L2(C0,3π/4)
, where K∞

y is defined in terms of its integral
kernel

K∞
y (v, v′) = 1

2π i

∫

D̃

exp(−v3/3 + w3/3 − yw + yv)

(v − w)(w − v′)
dw.

The proof of [9, Lemma C.1] can now be repeated verbatim to show that

det(I + K∞
y )L2(C0,3π/4)

= FGUE (y).

Combining the above statements we see that

lim
M→∞ E [ fM (F(M, N ) − y)] = FGUE (y).

Since fM and FGUE satisfy the conditions of Lemma 4.1, we see that the last equation
and the lemma imply the statement of the theorem.

4.2 Proof of Theorem 1.7

In this section we prove Theorem 1.7 and we assume the same notation as in
the statement of the theorem. For clarity we split the proof into five steps. In
the first step we reduce the statement of the theorem to establishing a bound on∣∣∣det (I + Ku)L2(Czc ,3π/4)

− 1
∣∣∣ for all large enough M , see (4.1). The key idea here

is that by Theorem 2.12 we have that det (I + Ku)L2(Czc ,3π/4)
is equal to the Laplace

transform E

[
e−uZM,N

]
, which in turn for a suitable choice of u becomes a proxy

for the cumulative distribution function of F(M, N ). Consequently, the bounds we

obtain for
∣∣∣det (I + Ku)L2(Czc ,3π/4)

− 1
∣∣∣ in (4.1) translate into similar bounds for

P (F(M, N ) ≥ x), which is the quantity we seek to upper bound in this theorem.
In Steps 2 and 3, we truncate the contours Czc,3π/4 in det (I + Ku)L2(Czc ,3π/4)

and
the Dv contour in the definition of Ku and show that it is enough to establish the
estimate in (4.1) for these truncated contours, see (4.8). The estimates we need to
show that the truncation of the contours produces only a small error come from a
careful application of Lemmas 3.5, 3.7, 3.13 and 3.14.

In Steps 4 and 5 we prove the remaining bound in (4.8), to which the statement of
the theorem has been reduced in the first three steps. The main argument is presented
in Step 5 and boils down to a careful analysis of the Gα function near the critical point
zc, which in turn relies essentially only on Lemma 3.5.
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Step 1 Assume the same notation as in Theorem 2.12, where u is as in Definition 3.1,
ai = 0 for i = 1, . . . , N , α j = θ for j = 1, . . . , M , a = zc and b, d are arbitrarily
chosen so as to satisfy the conditions of that theorem. Suppose further that N , M are
scaled as in Definition 3.1. We claim that there exist C0, c0, ε0, x0 > 0 and M0 ∈ N

all depending on θ and δ such that if x ∈ [x0, ε0M2/3] and M ≥ M0 we have

∣∣∣det (I + Ku)L2(Czc ,3π/4)
− 1

∣∣∣ ≤ C0e
−c0x3/2 . (4.1)

We prove (4.1) in the steps below. Here we assume its validity and conclude the proof
of the theorem.

We want to show that there exist C1,C2, c1, c2 > 0 such that for any x ≥ 0

P (F(M, N ) ≥ x) = P

(
log ZM,N + WM,N

σαM1/3 ≥ x

)
≤ C1e

−c1M + C2e
−c2x3/2 ,

(4.2)

where α = N/M , σα and WM,N are as in Definition 3.1. Notice that if M is bounded
then (4.2) can be made to trivially hold by making C1 sufficiently large for any x ≥ 0.
Thus we only need to prove (4.2) for large enough M .

Let M0,C0, c0, ε0, x0 be such that (4.1) holds and let u(x − 1, M, N ) be as in
Definition 3.1. If we set fM (z) = exp(−eσαM1/3z), then by Theorem 2.12 we know
that for all large enough M

E [ fM (F(M, N ) − x + 1)] = E

[
e−uZM,N

]
= det (I + Ku)L2(Czc ,3π/4)

.

The latter and (4.1) imply that for all large enough M and x ∈ [x0 + 1, ε0M2/3]

E [1 − fM (F(M, N ) − x + 1)] ≤ C0e
−c0(x−1)3/2 .

Notice that 1 − fM (F(M, N ) − x + 1) ≥ 0 and on the event {F(M, N ) ≥ x} we
have

1 − fM (F(M, N ) − x + 1) = 1 − e−eσαM1/3(F(M,N )−x+1) ≥ 1 − e−eσαM1/3 ≥ 1/2,

where the last inequality holds for all M sufficiently large depending on δ and θ alone.
The latter two inequalities imply that

2C0e
−c0(x−1)3/2 ≥ 2 · E [1 − fM (F(M, N ) − x + 1)] ≥

2 · E [1{F(M, N ) ≥ x}(1 − fM (F(M, N ) − x + 1))] ≥ P(F(M, N ) ≥ x),

(4.3)

which proves (4.2) when x ∈ [x0 + 1, ε0M2/3] and M is sufficiently large.
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If x ≥ ε0M2/3 we have

P (F(M, N ) ≥ x) ≤ P

(
F(M, N ) ≥ ε0M

2/3
)

≤ 2C0e
−c0(ε0M2/3−1)3/2 ,

where in the last inequality we used (4.3) at x = ε0M2/3. This proves (4.2) when
x ≥ ε0M2/3 and since we knew it for x ∈ [x0 + 1, ε0M2/3], we can conclude that
(4.2) holds for all x ≥ x0 + 1. By possibly making C2 larger we get the result for
x ∈ [0, x0 + 1] as well, concluding the proof of the theorem.

Step 2 In the remaining steps we prove (4.1). Let θ > 0 and δ ∈ (0, 1) be given. Let
r be as in Lemma 3.5 and fix ε > 0 such that ε < min(r/2, 1/4). We let Cε

zc,3π/4
denote the portion of Czc,3π/4 inside Bε(zc)—the disc of radius ε, centered at zc. We
claim that we can find C0, c0, ε0, x0 > 0 and M0 ∈ N such that if M ≥ M0 and
x ∈ [x0, ε0M2/3] then

∣∣∣det(I + Ku)L2(Cε
zc ,3π/4)

− 1
∣∣∣ ≤ C0e

−c0x3/2 . (4.4)

We prove (4.4) in the next steps. Here we assume its validity and conclude the proof
of the theorem.

Repeating verbatim the argument in Step 1 of the proof of Theorem 3.2 (when we
apply Proposition 3.11 we do it with r1 = r2 = A = 0) we get that for all large M

∣
∣∣det(I + Ku)L2(Czc ,3π/4)

− det(I + Ku)L2(Cε
zc ,3π/4)

∣
∣∣ ≤ e−c′M/2, (4.5)

where c′ = (c/2) log(1 + ε). Combining (4.5) with (4.4) we conclude (4.1).

Step 3 From the definition of Fredholm determinants, see Sect. 2.1, we know that

det(I + Ku)L2(Cε
zc ,3π/4)

− 1 =
∞∑

n=1

Hn

n! , where (4.6)

Hn = 1

(2π i)n

∫

Cε
zc ,3π/4

· · ·
∫

Cε
zc ,3π/4

det
[
Ku(vi , v j )

]n
i, j=1

n∏

i=1

dvi .

We thus can reduce the proof of (4.4) to showing that there exist C0, c0, ε0, x0 > 0
and M0 ∈ N such that if M ≥ M0 and x ∈ [x0, ε0M2/3]

∞∑

n=1

|Hn|
n! ≤ C0e

−c0x3/2 . (4.7)

Let DM be as Definition 3.4. We write DM = Dε,0
M ∪ Dε,1

M , where Dε,0
M is the

portion of DM inside Bε(zc) and Dε,1
M is the portion outside. Define for β ∈ {0, 1} and

v, v′ ∈ Cε
zc,3π/4 the kernel
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K β
u (v, v′) = 1

2π i

∫

Dε,β
M

F(v,w)

w − v′ dw, where F(v,w)

= π

sin(π(v − w))
· eGM,N (v)−GM,N (w) · eM1/3(w−v)σαx .

We claim that we can find C2, c2, ε0, x0 > 0 and M0 ∈ N such that if M ≥ M0
and x ∈ [x0, ε0M2/3]

∞∑

n=1

1

n!

∣
∣∣∣∣

1

(2π i)n

∫

Cε
zc ,3π/4

· · ·
∫

Cε
zc ,3π/4

det
[
K 0
u (vi , v j )

]n

i, j=1

n∏

i=1

dvi

∣
∣∣∣∣
≤ C2e

−c2x3/2 .

(4.8)

We prove (4.8) in the next steps. Here we assume its validity and conclude the proof
of (4.7).
Let us fix n ∈ N, and note that by the linearity of the determinant function we have

Hn

n! = 1

n!
∑

(β1,...,βn)∈{0,1}n
1

(2π i)n

∫

Cε
zc ,3π/4

· · ·
∫

Cε
zc ,3π/4

det
[
K βi
u (vi , v j )

]n
i, j=1

n∏

i=1

dvi .

(4.9)

In deriving the last equality we used that by Cauchy’s theorem we can deform the
Dv(b, d, π/4) contour in the definition of Ku(v, v′) to DM without affecting the value
of the kernel as long as M is sufficiently large. In particular, Ku(v, v′) = K 0

u (v, v′) +
K 1
u (v, v′). We mention that the deformation of Dv(b, d, π/4) to DM was justified in

Step 2 of the proof of Theorem 3.2.
We also note that by Lemma 3.7, with δ1 = ε, we have that there exists a constant

cε > 0 such that for any v, v′ ∈ Cε
zc,3π/4

∣
∣∣K 1

u (v, v′)
∣
∣∣ ≤ 2M1/3

∫ ∞

ε

exp (−c(M + N )y log(1 + y)) dy ≤ e−cεM . (4.10)

In deriving the above inequality we also used that
∣∣
∣eM

1/3(w−v)σαx
∣∣
∣ ≤ 1 as the real part

of the exponent is negative and we used Lemma 3.13 to bound the sine function.
In addition, by Lemmas 3.5, 3.7 and 3.13 we know that for any v, v′ ∈ Cε

zc,3π/4

∣
∣∣K 0

u (v, v′)
∣
∣∣ ≤ CM1/3. (4.11)

Equations (4.10), (4.11) and Hadamard’s inequality imply that

∣
∣∣∣∣

∫

Cε
zc ,3π/4

· · ·
∫

Cε
zc ,3π/4

det
[
K βi
u (vi , v j )

]n
i, j=1

n∏

i=1

dvi

∣
∣∣∣∣
≤ Cnnn/2Mn/3e−cεM

∑n
i=1 βi .

(4.12)
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Finally, combining (4.8), (4.9) and (4.12) we conclude that

∞∑

n=1

|Hn|
n! ≤ e−cεM ·

∞∑

n=1

Cnnn/2Mn/3

n! + C2e
−c2x3/2 ,

which together with Lemma 3.14 implies (4.7).

Step 4 The first three steps above reduce the proof of the theorem to establishing the
existence of ε0, x0 > 0 such that if x ∈ [x0, ε0M2/3] and M is sufficiently large we
have that (4.8) holds for some c2,C2 > 0. We will establish this statement in the next
step. In this step we specify our choice of ε0 and x0 and introduce some useful notation
for later.

Let ε > 0 be as in Step 2. Then from Lemma 3.5 we know that for some C4 > 0
we have

|Gα(z) + (z − zc)
3σ 3

α/3| ≤ C4|z − zc|4

as long as |z − zc| ≤ ε. We fix this choice of C4. Let D̃ = σαM1/3(DM − zc) be as in
Definition 3.1. We also write D̃0 = σαM1/3(D0

M − zc) and D̃± = σαM1/3(D±
M − zc),

where D±
M and D0

M are as in Definition 3.4. We define the constants

D1 :=
∫

C0,3π/4

e−|z|3 |dz| < ∞ and D2 :=
∫

D̃
e−|z|3 |dz| < ∞, (4.13)

where |dz| denotes integration with respect to arc-length.
We now let ε0 > 0 be sufficiently small so that

ε0 ≤ ε/2 and 4C4ε
2
0 + σ 3

αε0(2
√
2)/3 − σα ≤ −3σα/4, (4.14)

where we observe that this can be done uniformly in δ when α ∈ [δ, 1], see Defini-
tion 3.1. This fixes our choice of ε0. We next let x0 be sufficiently large so that the
following inequalities hold:

√
ε0x

3/2
0 σα/4 ≥ 2

√
2, σ 3

α (
√
2/2)3ε3/20 x3/20 /6 ≥ 1, and

∞∑

n=1

(C̃ D1D2)
n exp

(
−(n − 1)(

√
ε0/2)x

3/2
0 σα

)
≤ 2C̃ D1D2,

(4.15)

where C̃ is the universal constant afforded by Lemma 3.13. This fixes our choices of
ε0 and x0.
Step 5 In this stepwe prove (4.8). Let ε0 and x0 be as in Step 4 and let x ∈ [x0, ε0M2/3].
We also let ρ0 = √

ε0M−1/3x1/2 and note that ρ0 ∈ (0, ε0] by definition. We let Cρ0

denote the portion of the contour ρ0 · D̃ + zc that is contained in the disc of radius ε

centered at zc. Explicitly, Cρ0 consists of three segments connecting the points
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zc + ε · 2−1/2 − iε · 2−1/2 → zc + ρ0 − iρ0 → zc + ρ0

+iρ0 → zc + ε · 2−1/2 + iε · 2−1/2.

Notice that since ε0 ≤ ε/2 and ε < 1/4 by definition, see (4.14), we can deform the
contour Dε,0

M in the definition of K 0
u to Cρ0 without affecting the value of the integral

by Cauchy’s theorem, since we do not cross any poles in the deformation. Here we
remind the reader that Dε,0

M consists of three segments connecting the points

zc + ε · 2−1/2 − iε · 2−1/2 → zc + σ−1
α M−1/3 − iσ−1

α M−1/3 →
zc + σ−1

α M−1/3 + iσ−1
α M−1/3 → zc + ε · 2−1/2 + iε · 2−1/2.

Fix n ∈ N and notice that by expanding the determinant det
[
K 0
u (vi , v j )

]n
i, j=1 and

performing the change of variables v = ρ0ṽ + zc and w = ρ0w̃ + zc we get

An := 1

(2π i)n

∫

Cε
zc ,3π/4

· · ·
∫

Cε
zc ,3π/4

det
[
K 0
u (vi , v j )

]n
i, j=1

n∏

i=1

dvi = 1

(2π i)n
∑

σ∈Sn
∫

C0,3π/4

· · ·
∫

C0,3π/4

∫

D̃
· · ·
∫

D̃

n∏

i=1

1|ṽi |≤ερ−1
0
1|w̃i |≤ερ−1

0

n∏

i=1

gM,x
ṽi ,ṽσ (i)

(w̃i )

n∏

i=1

dw̃i

n∏

i=1

d ṽi ,

(4.16)

where

gM,x
ṽ,ṽ′ (w̃) = πρ0eM[Gα(ρ0ṽ+zc)−Gα(ρ0w̃+zc)]e

√
ε0x3/2σα(ṽ−w̃)

sin(πρ0(ṽ − w̃))(w̃ − ṽ′)
.

If C̃ > 0 denotes the constant from Lemma 3.13 we see that if ṽ, ṽ′ ∈ C0,3π/4 and
w̃ ∈ D̃ satisfy |ṽ| ≤ ερ−1

0 ≤ 4−1ρ−1
0 and |w̃| ≤ ερ−1

0 ≤ 4−1ρ−1
0 then

∣∣∣∣
πρ0

sin(πρ0(ṽ − w̃))(w̃ − ṽ′)

∣∣∣∣ ≤ C̃ . (4.17)

We next have that if w̃ ∈ D̃0 (this contour was defined in Step 4) and ṽ ∈ C0,3π/4

with |ṽ| ≤ ερ−1
0 then

∣∣∣gM,x
ṽ,ṽ′ (w̃)

∣∣∣ ≤ C̃ exp(−Mσ 3
α (

√
2/2)3ρ3

0 |ṽ|3/6
+MC4ρ

4
0 |w̃|4 + Mσ 3

αρ3
0 |w̃|3/3 − √

ε0x
3/2σα) ≤

C̃ exp(−σ 3
α (

√
2/2)3ε3/20 x3/2|ṽ|3/6 + 4C4ρ0ε

3/2
0 x3/2

+σ 3
αε

3/2
0 (2

√
2)x3/2/3 − √

ε0x
3/2σα) ≤

C̃ exp(−|ṽ|3 + 4C4ε
5/2
0 x3/2 + σ 3

αε
3/2
0 (2

√
2)x3/2/3 − √

ε0x
3/2σα) ≤

C̃ exp(−|ṽ|3 − (3/4) · √ε0x
3/2σα) ≤ C̃ exp(−|ṽ|3 − |w̃|3 − (

√
ε0/2)x

3/2σα).

(4.18)
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Let us elaborate on the last tower of inequalities briefly. The first inequality used (4.17)
and Lemma 3.5. The second inequality used the definition of ρ0 = √

ε0M−1/3x1/2 and
that |w̃| ≤ √

2 (as w̃ ∈ D̃0). The third inequality used the fact that x ∈ [x0, ε0M2/3]
and the definition of x0, see the second inequality in (4.15), as well as ρ0 ∈ (0, ε0]. In
the fourth inequality we used the definition of ε0, see the second inequality in (4.14).
The last inequality used that |w̃| ≤ √

2 (as w̃ ∈ D̃0) and the definition of x0, see the
first inequality in (4.15).

On the other hand, we have that if w̃ ∈ D̃+ ∪ D̃− and ṽ ∈ C0,3π/4 are chosen to
satisfy |ṽ| ≤ ερ−1

0 and |w̃| ≤ ερ−1
0 then

∣∣∣gM,x
ṽ,ṽ′ (w̃)

∣∣∣ ≤ C̃ exp(−Mσ 3
α (

√
2/2)3ρ3

0 |w̃|3/6 − Mσ 3
α (

√
2/2)3ρ3

0 |ṽ|3/6)·
exp(−√

ε0x
3/2σα(

√
2/2)(|ṽ| + |w̃|)) = C̃ exp(−ε

3/2
0 σ 3

α (
√
2/2)3x3/2|ṽ|3/6)·

exp(−ε
3/2
0 σ 3

α (
√
2/2)3x3/2|w̃|3/6 − √

ε0x
3/2σα(

√
2/2)(|ṽ| + |w̃|)) ≤

exp(−|ṽ|3 − |w̃|3 − √
ε0x

3/2σα).

(4.19)

Let us again elaborate on the latter tower of inequalities. The first inequality fol-
lows from (4.17), Lemma 3.5 and the fact that Re(ṽ) = (

√
2/2)|ṽ|, while Re(w̃) =

−(
√
2/2)|w̃| (here we used w̃ ∈ D̃+ ∪ D̃− and ṽ ∈ C0,3π/4). The equality on the

second line used the definition of ρ0 = √
ε0M−1/3x1/2. The last inequality used that

x ∈ [x0, ε0M2/3], the definition of x0, see the second inequality in (4.15), and the fact
that |w̃| ≥ √

2 for w̃ ∈ D̃+ ∪ D̃−.
Combining (4.18) and (4.19) with (4.16) we see that

|An| ≤ n! exp(−n(
√

ε0/2)x
3/2σα)C̃n

∫

C0,3π/4

· · ·
∫

C0,3π/4

∫

D̃
· · ·
∫

D̃

n∏

i=1

exp(−|ṽi |3 − |w̃i |3)|dw̃i ||d ṽi |

= n! exp(−n
√

ε0x
3/2σα)(C̃ D1D2)

n,

where Di are as (4.13). We conclude that

∞∑

n=1

|An |
n! ≤

∞∑

n=1

exp(−n(
√

ε0/2)x
3/2σα)(C̃ D1D2)

n ≤ 2C̃ D1D2 · exp(−(
√

ε0/2)x
3/2σα),

where in the last inequality we used that x ∈ [x0, ε0M2/3] and our definition of x0,
see the third inequality in (4.15). This proves (4.8) with C2 = 2C̃ D1D2 and c2 > 0
sufficiently small so that c2 < (

√
ε0/2)σα , which can be done uniformly in δ if

α ∈ [δ, 1], see Definition 3.1.

123



Fluctuations of the log-gamma polymer free energy with... 165

4.3 Proof of Theorem 1.15

We first turn to the proof of Lemma 1.12.

Proof of Lemma 1.12 We continue with the same notation as in the statement of the
lemma. For clarity we split the proof of the lemma into several steps. In the first step,
we show that FBBP;�x,�y is well-defined and does not depend on the choice of a, b ∈ R

as long as min(�y) > b > a > max(�x). In the second step we prove that FBBP;�x,�y is
entire. In the third step we prove that the restriction of FBBP;�x,�y to R is real-valued,
increasing and that the limit near ∞ is 1. In the fourth step we prove that the limit of
FBBP;�x,�y near −∞ is 0.
Step 1 In this step we prove that FBBP;�x,�y is well-defined and does not depend on the
choice of a, b ∈ R as long as min(�y) > b > a > max(�x). Let

gv,v′(w) =
r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)
· exp(−v3/3 + w3/3 − rw + rv)

(v − w)(w − v′)
.

Observe that

sup
v′∈Ca,3π/4

|gv,v′(w)| ≤ 1

(b − a)2
·
∣∣∣∣
∣

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)

∣∣∣∣
∣
e|rw|+|rv|

exp(−Re[v3]/3 + Re[w3]/3).

It follows from Lemma 2.5 applied to �1 = Ca,3π/4, �2 = Cb,π/4,

F1(v) = 1

b − a
·
∏c

n=1 |ym − v|
∏r

m=1 |v − xn|e
|rv|−Re[v3]/3,

F2(w) = 1

b − a
·
∏r

m=1 |w − xn|∏c
n=1 |ym − w|e

|rw|+Re[w3]/3,

that the integral

KBBP
r (v, v′) = 1

2π i

∫

�2

gv,v′(z)dz.

is well-defined and moreover, that Lemma 2.4 is applicable from which we conclude
that the series det

(
I + KBBP

r

)
L2(Ca,3π/4)

in (1.13) is absolutely convergent. Here we

used that Fi is integrable on �i as follows from the cube in the exponential and the
definition of the contours. This proves that FBBP;�x,�y(r) is well-defined. In addition,
by expanding the determinants we have

FBBP;�x,�y(r) = 1 +
∞∑

N=1

1

N !
∑

σ∈SN

∫

CN
a,3π/4

∫

CN
b,π/4

N∏

i=1

r∏

n=1

(wi − xn)

(vi − xn)

c∏

m=1

(ym − vi )

(ym − wi )
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×
N∏

i=1

exp(−v3i /3 + w3
i /3 − rwi + rvi )

(vi − wi )(wi − vσ(i))

N∏

i=1

dwi

2π i
dvi

2π i
, (4.20)

from which we immediately conclude that FBBP;�x,�y(r) does not depend on a, b as
long as min(�y) > b > a > max(�x). Indeed, if a′, b′ also satisfy min(�y) > b′ >

a′ > max(�x) then we can deform Ca,3π/4 to Ca′,3π/4 and Cb,π/4 to Cb′,π/4 in each
summand in (4.20) without crossing any poles and thus without affecting the value of
the integral by Cauchy’s theorem. The decay necessary to deform the contours near
infinity come from the cubes in the exponential.

Step 2 In this step we show that FBBP;�x,�y is entire. Fix v, v′ ∈ Ca,3π/4. It follows from
[38, Chapter 2, Theorem 5.4] that for each N ∈ N the function

K N
r (v, v′) =

∫

Cb,π/4

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)

·exp(−v3/3 + w3/3 − rw + rv)

(v − w)(w − v′)
· 1{|w| ≤ N }dw

is entire in r . Consequently, as the uniform over compacts limit of entire functions we
have that

∫

Cb,π/4

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)
· exp(−v3/3 + w3/3 − rw + rv)

(v − w)(w − v′)
dw

is also entire in r , cf. [38, Chapter 2, Theorem 5.2]. Let us fix r0 ∈ C and observe that

sup
r :|r−r0|≤1

∫

Cb,π/4

∣∣
∣∣
∣

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)
· exp(−v3/3 + w3/3 − rw + rv)

(v − w)(w − v′)

∣∣
∣∣
∣
|dw| ≤

C ·
∏c

n=1 |ym − v|
∏r

m=1 |v − xn | exp(−Re[v3]/3 + (|r0| + 1)|v|)

where |dw| is integration with respect to arc-length and C is a constant that depends
on r0.

Since the the function on the second line is integrable over Ca,3π/4 (by the cube in
the exponential) we conclude by Lemma 2.3 that FBBP;�x,�y(r) is entire.

Step 3 In this step we show that when restricted to R the function FBBP;�x,�y is real-
valued, non-negative, increasing and converging to 1 at ∞. Arguing as in Step 1, we
have that we can deform Ca,3π/4 to Cμ,3π/4 and Cb,π/4 to D̃ as in Definition 3.1 in
(4.20) without affecting the values of the integrals. Once we perform this deformation
we see that for r ∈ R we have FBBP;�x,�y(r) = det

(
I + K∞

r

)
L2(Cμ,3π/4)

, where K∞
r is

as in Theorem 3.2. If we perform the same scaling as in Definition 3.1 we see from
Theorem 3.2 and Theorem 2.12 that

FBBP;�x,�y(r) = lim
M→∞ E

[
e−uZM+c,N+r

]
, (4.21)
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where we recall from Definition 3.1 that u(r , M, N ) = eWM,N−M1/3σαr . In particular,
since we have ZM+c,N+r > 0 we see that FBBP;�x,�y(r) is the pointwise limit of a
sequence of real-valued, non-negative, increasing functions and is thus itself real-
valued, non-negative and increasing.

We next show that

lim
k→∞ FBBP;�x,�y(k) = 1. (4.22)

Notice that if gk
v,v′(w) is as in Step 1 for r = k we have

|gkv,v′(w)| ≤ 1

(b − a)2
·
∣∣∣
∣∣

r∏

n=1

(w − xn)

(v − xn)

c∏

m=1

(ym − v)

(ym − w)

∣∣∣
∣∣
e−k(b−a)

exp(−Re[v3]/3 + Re[w3]/3),

where we used the fact that |ekz | ≤ 1 if Re[z] ≤ 0. We see that the conditions of
Lemma 2.5 are satisfied with �1 = Ca,3π/4, �2 = Cb,π/4,

F1(v) = 1

b − a
·
∏c

n=1 |ym − v|
∏r

m=1 |v − xn | e
−Re[v3]/3, F2(w) = 1

b − a
·
∏r

m=1 |w − xn |∏c
n=1 |ym − w| e

Re[w3]/3,

and g∞
v,v′(w) = 0. We thus conclude (4.22) from Lemmas 2.5 and 2.4.

Step 4 In this final step we prove that

lim
k→∞ FBBP;�x,�y(−k) = 0. (4.23)

Let us first briefly explain the main idea of the proof. We start by assuming the same
scaling as in Definition 3.1, and following the notation from Sect. 1.1 define

Z(p, q; P, Q) =
∑

π∈�
P,Q
p,q

w(π), where w(π) =
∏

(i, j)∈π

wi, j ,

and�
P,Q
p,q is the collection of all up-right paths from (p, q) to (P, Q).Herewe assumed

that 1 ≤ p ≤ P ≤ M + c and 1 ≤ q ≤ Q ≤ N + r. In view of (4.21) applied to
r = c = 0 we know that for any r ∈ R

lim
M→∞ E

[
e−uZ(c+1,r+1;M+c,N+r)

]
= FGUE (r). (4.24)

Furthermore, by the same equation for general fixed r, c, we know that

lim
M→∞ E

[
e−uZ(1,1;M+c,N+r)

]
= FBBP;�x,�y(r). (4.25)
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The idea now is to show that with high probability

log Z(1, 1; M + c, N + r) ≥ log Z(c + 1, r + 1; M + c, N + r) + RM ,

where RM < 0 is a sequence such that RM = o(M1/3). If true the latter would imply

FBBP;�x,�y(r) ≤ FGUE (r). (4.26)

Since limr→−∞ FGUE (r) = 0, we would conclude (4.23) by domination. In
the remainder we focus on establishing (4.26) by performing the comparison of
log Z(1, 1; M + c, N + r) and log Z(c + 1, r + 1; M + c, N + r) that we described
above.

Let EM denote the event {min1≤i≤c,1≤ j≤r wi, j ≤ M−1}. Note that byDefinition 3.1
we have that the weights wi, j have distribution

fθi, j (x) = 1{x > 0}
�(θi, j )

· x−θi, j−1 · exp(−x−1),

where cM−1/3 ≤ θi, j ≤ C for some constants C, c > 0. In particular, we see that

P(wi, j ≤ M−1) = 1

�(θi, j )

∫ ∞

M
xθi, j−1e−xdx ≤ e−M/2, (4.27)

where in the last inequality we used that �(θi, j )
−1xθi, j−1e−x/2 ≤ 1 for all large

enough M as long as x ≥ M . In particular, we see from (4.27) that

P(EM ) ≤ 1 − [1 − e−M/2]rc = O(e−M/2). (4.28)

On the event Ec
M we have that

Z(1, 1; M + c, N + r) ≥
r+1∏

i=1

wi,1 ·
c+1∏

j=2

wr+1, j · Z(c + 1, r + 1; M + c, N + r) ≥

M−r−c−1 · Z(c + 1, r + 1; M + c, N + r). (4.29)

We now observe that if x ∈ R and ε > 0 are fixed and u = u(x, M, N ) we have

FBBP;�x,�y(x − ε) ≤ lim inf
M→∞ E

[
e−uZ(1,1;M+c,N+r)·M r+c+1

]

= lim inf
M→∞ E

[
e−uZ(1,1;M+c,N+r)·M r+c+1 · 1{Ec

M }
]

≤ lim inf
M→∞ E

[
e−uZ(c+1,r+1;M+c,N+r) · 1{Ec

M }
]

= lim inf
M→∞ E

[
e−uZ(c+1,r+1;,M+c,N+r)

]
= FGUE (x).

(4.30)
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In the first equality we used (4.25) for r = x − ε and the fact that

u(x − ε, M, N ) = eWM,N−M1/3σα(x−ε) ≥ eWM,N−M1/3σαx M r+c+1 = u(x, M, N )M r+c+1

for all large enough M . In the second and next to last equality we used (4.28), and
in the last equality we used (4.24). In the middle inequality we used (4.29). Letting
ε → 0+ in (4.30) and using the continuity of FBBP;�x,�y from Step 2 we conclude
(4.26). As explained earlier (4.26) implies (4.23) and this concludes the proof of the
lemma. ��

Proof of Theorem 1.15 As discussed in Remark 1.16 it suffices to prove the theorem
when N/M ∈ [δ, 1], which we assume in the sequel.

Let r ∈ R, α = N/M and σα, u(r , M, N ) be as in Definition 3.1. Define

fM (z) = e−eσαM1/3z
,

and observe that since by assumption we have M ≥ N ≥ 9 for all M sufficiently large
we can apply Theorem 2.12 to conclude

E [ fM (F(M + c, N + r) − r)] = E

[
e−uZM,N

]
= det (I + Ku)L2(Ca,3π/4)

.

On the other hand, by Theorem 3.2 we know that as M → ∞ the right-hand
side converges to det(I + K∞

y )L2(Cμ,3π/4)
, which as shown in Step 3 of the proof of

Lemma 1.12 equals FBBP;�x,�y(r).
Combining the above statements we see that

lim
M→∞ E [ fM (F(M + c, N + r) − r)] = FBBP;�x,�y(r).

Since fM and FBBP;�x,�y satisfy the conditions of Lemma 4.1 (here we used the conti-
nuity of FBBP;�x,�y) we see that the last equation and Lemma 1.12 imply the statement
of the theorem. ��
Acknowledgements The authors wish to thank Bálint Virág for discussions related to [43] and for pointing
out the need to prove BBP asymptotics for the log-gamma polymer. E.D. was partially supported by
a Minerva Foundation Fellowship. I. C. was partially supported by the NSF Grants DMS:1811143 and
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5 Appendix A

In Sects. 2 and 3 we needed several results, whose proofs require a careful analysis of
the properties of the function GM,N , recalled in this section in equation (5.3). In this
section we study some of these properties, focusing on the way the real part of GM,N

varies along different contours.
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5.1 Definition and basic properties

Let �(x) denote the digamma function, i.e.

�(x) = �′(x)
�(x)

= −γE +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
, (5.1)

where γE is the Euler constant. Suppose that M, N ≥ 1 and θ > 0 are given. We let
zc(M, N , θ) denote the maximizer of

WM,N (x) := N�(x) + M�(θ − x)

on the interval (0, θ). As mentioned in Sect. 3.1 the above expression converges to
−∞ as x → 0+ or x → θ− and also the functionWM,N (x) is strictly concave, hence
the maximum exists and is unique. Since zc is the maximizer we have

0 = W ′
M,N (zc) = N

∞∑

n=0

1

(n + zc)2
− M

∞∑

n=0

1

(n + θ − zc)2
. (5.2)

The main object of interest in this section is the following function

GM,N (z) = N log�(z) − M log�(θ − z) − WM,N (zc)z − CM,N , (5.3)

where the constant CM,N is such that GM,N (zc) = 0. We also define α = N/M and
Gα(z) through the equation

Gα(z) = M−1 · GM,N (z).

In the remainder of this section we derive a few basic properties for the function
GM,N or equivalently Gα . From (5.2) we know that zc(α) is the unique number in
(0, θ) that satisfies

0 = α

∞∑

n=0

1

(n + zc)2
−

∞∑

n=0

1

(n + θ − zc)2
.

In particular, for z ∈ (0, θ) the function

g(z) =
∑∞

n=0
1

(n+θ−z)2
∑∞

n=0
1

(n+z)2

satisfies g(zc) = α. The numerator of g(z) is clearly increasing, while the denominator
is decreasing, so that function g(z) is a continuous strictly increasing bijection between
(0, θ) and (0,∞). Consequently, g−1 is also a strictly increasing continuous bijection
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between (0,∞) and (0, θ). We conclude that g−1([δ, 1]) = [a, b] where a = g−1(δ)

and b = g−1(1).
One directly computes Gα(zc) = ∂zGα(zc) = ∂2z Gα(zc) = 0, while ∂3z Gα(zc) =

2σ 3
α with

σα :=
( ∞∑

n=0

α

(n + zc)3
+

∞∑

n=0

1

(n + θ − zc)3

)1/3

.

From the discussion above we see that

( ∞∑

n=0

δ

(n + b)3
+

∞∑

n=0

1

(n + θ − a)3

)1/3

≤ σα ≤
( ∞∑

n=0

1

(n + a)3
+

∞∑

n=0

1

(n + θ − b)3

)1/3

(5.4)

We end this section with a formula for the derivative of GM,N along a generic
contour. Denote z(r) = zc + x(r) + iy(r). Then we have

d

dr
GM,N (z(r)) = (x ′(r) + iy′(r)) · (N�(z(r)) + M�(θ − z(r)) − WM,N (zc)

)

= (x ′(r) + iy′(r)) ·
(

N
∞∑

n=0

(
1

n + zc
− 1

n + z(r)

)
+ M

∞∑

n=0

(
1

n + θ − zc
− 1

n + θ − z(r)

))

= (x ′(r) + iy′(r))N
∞∑

n=0

|n + z(r)|2 − (n + zc)(n + z(r))

(n + zc)|n + z(r)|2

+ (x ′(r) + iy′(r))M
∞∑

n=0

|n + θ − z(r)|2 − (n + θ − zc)(n + θ − z(r))

(n + θ − zc)|n + θ − z(r)|2 .

Taking the real part of the above equation we obtain

Re
[
d

dr
GM,N (z(r))

]
= N

∞∑

n=0

x ′(r)(x2(r) + y2(r))

(n + zc)|n + z(r)|2 + M
∞∑

n=0

x ′(r)(x2(r) + y2(r))

(n + θ − zc)|n + θ − z(r)|2

+
(

N
∞∑

n=0

x(r)x ′(r) − y(r)y′(r)
|n + z(r)|2 − M

∞∑

n=0

x(r)x ′(r) − y(r)y′(r)
|n + θ − z(r)|2

)

. (5.5)

5.2 Estimates along Czc,�

In this section we obtain estimates on Re
[
GM,N (z)

]
when arg(z) is bounded away

from 0, π/2, π, 3π/2. The main result we prove is the following.

Lemma 5.1 Suppose that M, N ≥ 1, θ > 0 and δ1 ∈ (0, π/4). Then we can find
constants C, R > 0 that depend on M, N, θ and δ1 such that if z = reiφ with r ≥ R
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we have

Re
[
GM,N (reiφ)

]
≤ −Cr log(r) if φ ∈ [π/2 + δ1, π − δ1] ∪ [π + δ1, 3π/2 − δ1];

Re
[
GM,N (reiφ)

]
≥ Cr log(r) if φ ∈ [δ1, π/2 − δ1] ∪ [−π/2 + δ1,−δ1].

(5.6)

Proof Our approach is to study Re
[
GM,N (zc + reiφ)

]
. Let us fix θ > 0 and δ1 > 0

as in the statement of the lemma. Setting z(r) = zc + reiφ and applying (5.5) we get

Re
[
d

dr
GM,N (z(r))

]
=N

∞∑

n=0

r2 cos(φ)

(n + zc)|n + z(r)|2 − N
∞∑

n=0

r(sin2(φ) − cos2(φ))

|n + z(r)|2

+ M
∞∑

n=0

r2 cos(φ)

(n + θ − zc)|n + θ − z(r)|2 + M
∞∑

n=0

r(sin2(φ) − cos2(φ))

|n + θ − z(r)|2 .

(5.7)

We study the large positive r behavior of the right side above for different ranges of
φ.

Suppose first that φ ∈ [π/2 + δ1/2, π − δ1/2] ∪ [π + δ1/2, 3π/2 − δ1/2]. Below
C will stand for a positive constant, which depends on θ and δ1, and whose value may
change from line to line.

∞∑

n=0

r

|n + z(r)|2 =
∞∑

n=0

r

(n + zc + r cos(φ))2 + r2 sin2(φ)

=
∞∑

n=0

r

(n + zc)2 + 2r(n + zc) cos(φ) + r2

≤
∞∑

n=0

r

(n + zc)2 + 2r(n + zc) cos(π + δ1/2) + r2

≤
∞∑

n=0

Cr

(n + zc)2 + r2
≤ Cr

z2c + r2
+
∫ ∞

0

Crdx

x2 + r2
= Cr

z2c + r2
+ Cπ

2
.

(5.8)

Analogously, one shows that

∞∑

n=0

r

|n + θ − z(r)|2 ≤ Cr

(θ − zc)2 + r2
+ Cπ

2
. (5.9)
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Furthermore we have

∞∑

n=0

r2 cos(φ)

(n + zc)|n + z(r)|2 ≤
∞∑

n=0

cos(π/2 + δ1/2)r2

(n + zc)((n + zc)2 + 2(n + zc)r cos(φ) + r2)

≤
∞∑

n=0

cos(π/2 + δ1/2)r2

(n + zc)((n + zc)2 + r2)
≤ −Cr2

∫ ∞

zc

dx

(x + zc)(x2 + r2)

= −Cr2

r2 + z2c

(
zc
r

(π

2
− tan−1(zc/r)

)
+ log

(√
z2c + r2

2zc

))

≤ −Cr2

r2 + z2c
log

(√
z2c + r2

2zc

)

≤ −C log(r),

(5.10)

where the last inequality holds for all r ≥ r0, where r0 depends on θ alone. Analogous
considerations show that

∞∑

n=0

r2 cos(φ)

(n + θ − zc)|n + θ − z(r)|2 ≤ −C log(r), (5.11)

where the last inequality holds for all r ≥ r0, where r0 depends on θ alone. Com-
bining (5.8), (5.9), (5.10) and (5.11) with (5.7) we conclude that there exist r0 and c0
depending on θ and δ1 such if φ ∈ [π/2+ δ1/2, π − δ1/2]∪ [π + δ1/2, 3π/2− δ1/2]
and r ≥ r0 we have

Re
[
d

dr
GM,N (zc + reiφ)

]
≤ −c0(M + N ) log(r). (5.12)

The first equation in (5.6) is now an immediate consequence of (5.12) since
GM,N (zc) = 0.

A similar argument for φ ∈ [δ1/2, π/2 − δ1/2] ∪ [−π/2 + δ1/2,−δ1/2] reveals
that there exists r0 and c0 depending on θ and δ1 such that if r ≥ r0 then

Re
[
d

dr
GM,N (zc + reiφ)

]
≥ c0(M + N ) log(r). (5.13)

The second equation in (5.6) is now an immediate consequence of (5.13) since
GM,N (zc) = 0. ��

5.3 Estimates along vertical contours

In this section we study the properties of Re
[
GM,N (z(r))

]
along contours of the form

Czc,π/2, i.e. when we move vertically up or down from the point zc. The main result
we prove is as follows.
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Lemma 5.2 Suppose that M ≥ N ≥ 1. If we set z(r) = zc + ir we claim

Re

[
d

dr
GM,N (zc + ir)

]
≥ 0 when r ≥ 0 and Re

[
d

dr
GM,N (zc + ir)

]
≤ 0 when r ≤ 0.

(5.14)

Proof Notice that since M ≥ N we have θ ≥ 2zc. In view of (5.5) we can reduce
(5.14) to establishing

N
∞∑

n=0

1

|n + z(r)|2 − M
∞∑

n=0

1

|n + θ − z(r)|2 ≤ 0 (5.15)

for r ≥ 0. Recall from (5.2) that

N
∞∑

n=0

1

(n + zc)2
= M

∞∑

n=0

1

(n + θ − zc)2
,

and so it suffices to show that

∑

m≥0

∑

n≥0

1

(m + θ − zc)2
1

|n + z(r)|2 −
∑

m≥0

∑

n≥0

1

(m + zc)2
1

|n + θ − z(r)|2 ≤ 0.

(5.16)

If m = n the above reads

1

(n + θ − zc)2
1

(n + zc)2 + r2
− 1

(n + zc)2
1

(n + θ − zc)2 + r2
=

−r2(θ − 2zc)(2n + θ)

(n + θ − zc)2((n + zc)2 + r2)(n + zc)2((n + θ − zc)2 + r2)
,

which is non-positive as θ ≥ 2zc.
We split the remaining sum as follows

∑

m,n≥0,m 
=n

1

(m + θ − zc)2
1

|n + z(r)|2 −
∑

m,n≥0,m 
=n

1

(m + zc)2
1

|n + θ − z(r)|2

=
∞∑

n=0

∞∑

m=n+1

1

(m + θ − zc)2
1

(n + zc)2 + r2
+ 1

(n + θ − zc)2
1

(m + zc)2 + r2

− 1

(m + zc)2
1

(n + θ − zc)2 + r2
− 1

(n + zc)2
1

(m + θ − zc)2 + r2

=
∞∑

n=0

∞∑

m=n+1

−r2(n + m + θ)(m − n + θ − 2zc)

(m + θ − zc)2(n + zc)2((n + zc)2 + r2)((m + θ − zc)2 + r2)
+
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r2(n + m + θ)(m − n + 2zc − θ)

(m + zc)2(n + θ − zc)2((m + zc)2 + r2)((n + θ − zc)2 + r2)
.

We want to show that each summand above is negative. We see that the first term is
always negative and so if we increase its denominator we will make the summand
larger. Notice that

(m + θ − zc)
2(n + zc)

2((n + zc)
2 + r2)((m + θ − zc)

2 + r2)

− (m + zc)
2(n + θ − zc)

2((m + zc)
2 + r2)((n + θ − zc)

2 + r2)

= −(θ − 2zc)(m − n)(ar4 + br2 + c),

(5.17)

where

a = 2mn + θ(m + n) + 2θ zc − 2z2c > 0, b = (2n + θ)(m − n)3

+4(n + zc)(n + θ − zc)(m − n)2 +
(2n + θ)(2n2 + 2nθ + θ2 − 2θ zc + 2z2c)(m − n)

+2(n + zc)(n + θ − zc)(n
2 + nθ + θ2 − 3θ zc + 2z2c) > 0,

c = (2mn + mθ + nθ + 2θ zc − 2z2c)((2n
2 + 2nθ + θ2 − 2θ zc + 2z2c)(m − n)2 +

+2(n + zc)(2n + θ)(n + θ − zc) + 2(n + zc)
2(n + θ − zc)

2 > 0.

We conclude that the second denominator is larger than the first and so by replacing
it we make the summands larger. But then the summand becomes

r2(n + m + θ)(4zc − 2θ)

(m + zc)2(n + θ − zc)2((m + zc)2 + r2)((n + θ − zc)2 + r2)
,

which is clearly non-positive. We conclude that the sum is negative (unless M = N
in which case it is 0) and this proves (5.16). ��

As an immediate corollary we have the following result.

Lemma 5.3 Suppose that M ≥ N ≥ 1 and θ > 0. Then for any x > 0 and y ∈ R

with |y| ≥ x

Re
[
GM,N (zc + x + iy)

] ≥ 0. (5.18)

Proof Let us briefly explain the idea of the proof. We will construct y0 ∈ R and a
contour connecting the points zc + iy0 to zc + x + iy such that Re[GM,N (z)] increases
along this contour. This would imply through (5.14) that

Re
[
GM,N (zc + x + iy)

] ≥ Re
[
GM,N (zc + iy0)

] ≥ Re
[
GM,N (zc)

] = 0. (5.19)

LetC = y2− x2 ≥ 0 and set y0 = √
C if y ≥ 0 and y0 = −√

C if y < 0. Consider
the curve z(r) = zc + r ± i

√
C + r2, where the positive sign is taken when y ≥ 0 and

the negative is taken otherwise; here r varies in [0, x]. The curve z(r) connects y0 to
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(x, y) as r ranges from 0 to x . In addition, writing z(r) = zc + x(r) + iy(r) we see
that x ′(r)x(r) − y′(r)y(r) = 0, which in view of (5.5) shows that Re

[
GM,N (z(r))

]

increases on [0, x]. From this we conclude (5.19) where the second inequality follows
from (5.14) and last equality is true by the definition of zc. ��

5.4 Proof of Lemmas 3.5 and 3.7

In this section we give the proof of Lemmas 3.5 and 3.7 , whose statements are recalled
here for the reader’s convenience. We follow the same notation as in Sect. 3.2.

Lemma 5.4 Fix θ > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1]. There
exist constants C > 0 and r > 0 depending on θ and δ such that Gα is analytic in the
disc |z − zc| < r and the following hold for |z − zc| ≤ r:

∣∣∣Gα(z) + (z − zc)
3σ 3

α/3
∣∣∣ ≤ C |z − zc|4 whenever |z − zc| < r;

Re[Gα(z)] ≥ (
√
2/2)3|z − zc|3σ 3

α/6 when z ∈ Czc,φ with φ = π/4;
Re[Gα(z)] ≤ −(

√
2/2)3|z − zc|3σ 3

α/6 when z ∈ Czc,φ with φ = 3π/4.

(5.20)

In the above equations zc, σα are as in Definition 3.1 and Ca,φ is as in Definition 2.10.

Proof As explained in the beginning of this section zc(α) defines an increasing con-
tinuous between (0,∞) and (0, θ). We let [a, b] denote the preimage of [δ, 1] under
this bijection.

Let r0 > 0 be sufficiently small, depending on θ and δ, such that θ − b ≥ 2r0 and
a ≥ 2r0. The singularities of Gα come from the gamma functions in its definition, and
are at z = 0,−1,−2, . . . and z = θ, θ + 1, θ + 2, . . . . In particular, by our choice
of r0 we know that the closure of Br0(zc) := {z ∈ C : |z − zc| < r0} is disjoint from
those sets. By Hadamard theorem, see [38, Theorem 4.4, Chapter 2], we can expand
Gα in absolutely convergent power series inside Br0(zc). From the definition of Gα

we have that Gα(zc) = ∂zGα(zc) = ∂2z Gα(zc) = 0, while ∂3z Gα(zc) = 2σ 3
α . The

latter implies that

Gα(z) = 1

3
· σ 3

α · (z − zc)
3 +

∞∑

n=4

an(α)(z − zc)
n .

Define K = {z ∈ C : d(z, [a, b]) ≤ r0}. Since Gα(z) is jointly continuous on
(z, α) ∈ K × [δ, 1], which is compact, we know that we can find a constant A > 0,
depending on δ and θ such that

sup
α∈[δ,1],z∈K

|Gα(z)| ≤ A.

Using the Cauchy inequalities, see [38, Corollary 4.3, Chapter 2], we know that

|an(α)| ≤ Ar−n
0 .
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The above inequalities show that if |z − zc| ≤ r0/2, then

∣∣∣∣Gα(z) − 1

3
· σ 3

α · (z − zc)
3
∣∣∣∣ ≤

∞∑

n=4

|an(α)| · |z − zc|n

≤ A|z − zc|4r−4
0 ·

∞∑

n=4

(1/2)n−4 = 2A|z − zc|4r−4
0 ,

which proves the first line in (5.20) for any r ∈ (0, r0/2) and C = 2Ar−4
0 .

Next we pick r ≤ r0 sufficiently small so that Cr < W = (2
√
2)σ 3

α/48 for all
α ∈ [δ, 1]. Then

∣∣∣Re[Gα(z) + (z − zc)
3σ 3

α/3]
∣∣∣ ≤

∣∣∣Gα(z) + (z − zc)
3σ 3

α/3
∣∣∣

≤ C |z − zc|4 ≤ Cr |z − zc|3 ≤ W |z − zc|3.

The above implies for z ∈ Czc,φ with φ = π/4 that

Re[Gα(z)] ≥ −Re[(z − zc)
3]σ 3

α/3 − W |z − zc|3
= |z − zc|3 ·

(
(2

√
2)σ 3

α/24 − W
)

= (
√
2/2)3|z − zc|3σ 3

α/6.

Similarly if z ∈ Czc,φ with φ = 3π/4 we get

Re[Gα(z)] ≤ −Re[(z − zc)
3]σ 3

α/3 + W |z − zc|3 = −(
√
2/2)3|z − zc|3σ 3

α/6.

The latter two inequalities imply the remainder of (5.20). ��
Lemma 5.5 Fix θ > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1]. Let
z(r) = zc + reiφ . Then we have

Re

[
d

dr
GM,N (z(r))

]
≤ 0, provided that φ = 3π/4 or φ = 5π/4,

Re

[
d

dr
GM,N (z(r))

]
≥ 0, provided that φ = π/4 or φ = −π/4.

(5.21)

In addition, if δ1 > 0 is given then there is a constant c > 0 depending on δ1, δ, θ

such that

Re
[
GM,N (z(r))

] ≤ −c(M + N )r log(1 + r) for any r ≥ δ1 provided

φ = 3π/4 or φ = 5π/4,

Re
[
GM,N (z(r))

] ≥ c(M + N )r log(1 + r) for any r ≥ δ1 provided

φ = π/4 or φ = −π/4,

(5.22)
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Proof From (5.7) we get whenever φ = π/4 or 3π/4 or 5π/4 or 7π/4 that

Re
[
d

dr
GM,N (z(r))

]
=

∞∑

n=0

Nr2 cos(φ)

(n + zc)|n + z(r)|2 +
∞∑

n=0

Mr2 cos(φ)

(n + θ − zc)|n + θ − z(r)|2 ,

(5.23)

which automatically proves (5.21).
Below C stands for a positive constant, whose value depends on θ and δ alone,

and whose value may change from line to line. By repeating the same arguments as
in (5.10) we see that if φ = 3π/4 or 5π/4 we have

Re
[
d

dr
GM,N (z(r))

]
≤ −C(M + N ) log(r), (5.24)

where the last inequality holds for all r ≥ r0, where r0 depends on θ alone. Further-
more, from (5.23) we have for any r > 0 that

Re
[
d

dr
GM,N (z(r))

]
≤ −N (

√
2/2)r2

zc(z2c + r2)

+ −Mr2(
√
2/2)

(θ − zc)((θ − zc)2 + r2)
≤ −C(M + N )r2.

(5.25)

Let R0 ≥ r0 be sufficiently large so that for any r ≥ R0 we have

∫ r

r0
log xdx = (r log r − r) − (r0 log r0 − r0) ≥ (1/2)r log r .

Then, using (5.21) we see that if r ∈ [δ1, R0] we have

Re
[
GM,N (z(r))

] =
∫ r

0
Re
[
d

dx
GM,N (z(x))

]
dx ≤

∫ r

0
−C(M + N )x2dx

≤ −(C/3)(M + N )δ31,

while if r ≥ R0 we have

Re
[
GM,N (z(r))

] =
∫ r

0
Re
[
d

dx
GM,N (z(x))

]
dx ≤

∫ r

r0
Re
[
d

dx
GM,N (z(x))

]
dx ≤

≤
∫ r

r0
−C(M + N ) log(x)dx = −(C/2)(M + N )r log r .

The last two inequalities imply the first line in (5.22). The second one is derived
analogously. ��
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5.5 Proof of Lemma 3.9

In this section we give the proof of Lemma 3.9, whose statement is recalled here for
the reader’s convenience. We follow the same notation as in Sect. 3.2.

Lemma 5.6 Fix θ, A > 0, δ ∈ (0, 1) and assume that M ≥ N ≥ 1, N/M ∈ [δ, 1].
There exist constants M0,C0 > 0 depending on δ, θ, A such that if M ≥ M0,
x ∈ [−A, A] and z(r) = zc + reiφ with zc as in Definition 3.1, r ≥ 0 and
φ ∈ {π/4, 3π/4, 5π/4, 7π/4} we have

∣∣
∣Re[GM,N (z(r) + xM−1/3) − GM,N (z(r))]

∣∣
∣ ≤ C0M

2/3 · (1 + r). (5.26)

Proof Let us denote z(r , w) = zc+reiφ +w = x(w)+ iy(w) forwM1/3 ∈ [−A, A]].
From equation (5.5) we have

Re
[

d

dw
GM,N (z(r , w))

]
= N

∞∑

n=0

(zc + w)2 + 2r cos(φ)(zc + w) + r2

(n + zc)((n + zc + w)2 + 2r(n + zc + w) cos(φ) + r2)

+ M
∞∑

n=0

(zc + w)2 + 2r cos(φ)(zc + w) + r2

(n + θ − zc)((n + θ − zc − w)2 − 2r(n + θ − zc − w) cos(φ) + r2)

+ N
∞∑

n=0

zc + w + r cos(φ)

(n + zc + w)2 + 2r(n + zc + w) cos(φ) + r2

− M
∞∑

n=0

zc + w + r cos(φ)

(n + θ − zc − w)2 − 2r(n + θ − zc − w) cos(φ) + r2
.

(5.27)

Below C will stand for a positive constant, which depends on θ, A, δ. We first note
that for M large enough

∞∑

n=0

1

(n + zc + w)2 + 2r(n + zc + w) cos(φ) + r2
≤

∞∑

n=0

C

(n + zc + w)2 + r2

≤ C

(zc + w)2 + r2
+ C

(zc + w + 1)2 + r2
+
∫ ∞

1

Cdx

x2 + r2
≤ C

1 + r
.

(5.28)

Analogously, one shows that

∞∑

n=0

1

(n + θ − zc − w)2 − 2r(n + θ − zc − w) cos(φ) + r2
≤ C

1 + r
. (5.29)

Combining (5.27) with (5.28) and (5.29) we conclude that for all large enough M

∣∣∣∣Re
[

d

dw
GM,N (z(r , w))

]∣∣∣∣ ≤ C(1 + r),
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and then (5.26) follows by the mean value theorem. ��

6 Appendix B

In this section we provide the proofs of various results we used in Sects. 2 and 3.
We summarize several estimates about special functions that will be required in the

proofs below. Note that if dist(s, Z) ≥ c for some fixed constant c > 0 and s = x + iy
then there exists a constant c′ > 0 such that

|�(−s)�(1 + s)| =
∣∣∣∣

π

sin(πs)

∣∣∣∣ ≤ c′e−π |y|. (6.1)

It follows from [30, (2), pp. 32] that if z ∈ C and |arg(z)| ≤ π −ε for some ε ∈ (0, π)

then

�(z) = e−z zz−1/2(2π)1/2 ·
(
1 + O(z−1)

)
, (6.2)

where the constant in the big O notation depends on ε and we take the principal branch
of the logarithm. Also by [38, Theorem 1.6, Chapter 6] there are positive constants
c1, c2 such that

∣
∣∣∣

1

�(z)

∣
∣∣∣ ≤ c1e

c2|z| log |z|. (6.3)

6.1 Proof of Propositions 2.15 and 2.19

In this section we give the proofs of Propositions 2.15 and 2.19 , whose statements
are recalled here for the reader’s convenience.

Proposition 6.1 Fix M, N ≥ 1, �a = (a1, . . . , aN ) ∈ R
N , �α = (α1, . . . , αM ) ∈ R

M,
T ≥ 0, a compact set K ⊂ C and v, u ∈ C with Re(u) > 0. Then there exist positive
constants L0,C0, c0, depending on M, N , �a, �α, T , v, u and K , such that if τ ∈ [0, T ],
x, a ∈ K, w = a + z, arg(z) ∈ [π/4, π/3] ∪ [−π/3,−π/4], |w| ≥ L0

∣∣
∣∣∣

π

sin[(π(v − w))

∏M
m=1 �(x + αm − w)
∏N

n=1 �(w − an)
uw−veτ(w2−v2)/2

∣∣
∣∣∣
≤ C0e

−c0|w| log |w|.

(6.4)

Proposition 6.2 Fix M, N ≥ 1, �a = (a1, . . . , aN ) ∈ R
N , �α = (α1, . . . , αM ) ∈ R

M,
τ > 0, a compact set K ⊂ C and v, u ∈ C with Re(u) > 0. Then there exist positive
constants L0,C0, c0, depending on M, N , �a, �α, τ, v, u and K , such that if w = a + z
with a ∈ K, arg(z) ∈ [π/4, π/2] ∪ [−π/2,−π/4], |w| ≥ L0 we have

∣∣∣∣∣
π

sin(π(v − w))

∏M
m=1 �(αm − w)

∏N
n=1 �(w − an)

uw−veτ(w2−v2)/2

∣∣∣∣∣
≤ C0e

−c0|w| log |w|. (6.5)
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As the proofs of the above propositions are quite similar, we will combine them.

Proof We consider the two cases |arg(z)| ∈ [π/4, π/3] and |arg(z)| ∈ [π/3, π/2]
separately, with the second one only being relevant for Proposition 6.2. Below we fix
an arbitrary θ > 0, say θ = 1.

Assume first that |arg(z)| ∈ [π/4, π/3]. Below ci denote positive constants.
Observe that

�(θ − w)M

�(w)N
= exp

(−GM,N (w) + WM,N (zc)w + CM,N
)
.

In particular, by Lemma 5.1 we have for all |w| sufficiently large that

∣∣∣∣
�(θ − w)M

�(w)N

∣∣∣∣ ≤ exp (−c1|w| log |w|) . (6.6)

Furthermore by (6.2) we have for all x ∈ K and |w| sufficiently large that

∣
∣∣∣∣

∏M
m=1 �(x + αm − w)

�(θ − w)M
· �(w)N

∏N
n=1 �(w − an)

∣
∣∣∣∣
≤ |w|c2 . (6.7)

In addition, by (6.1) we have for all |w| sufficiently large that

∣∣
∣∣

π

sin(π(v − w))

∣∣
∣∣ ≤ c3. (6.8)

Finally, we have for all |w| sufficiently large and τ ∈ [0, T ] that
∣∣
∣uw−veτ(w2−v2)/2

∣∣
∣ ≤ c4e

c5|w|, (6.9)

where we used the fact that

|eτ z2/2| = exp
(
τRe[z2]/2

)
≤ 1,

since Re[z2] ≤ 0 by our assumption that |arg(z)| ∈ [π/4, π/3]. Combining (6.6),
(6.7), (6.8) and (6.9) we conclude (6.4) and so Proposition 6.1 is proved. Also (6.6),
(6.8) and (6.9) prove Proposition 6.2 in the case |arg(z)| ∈ [π/4, π/3].
We next suppose that |arg(z)| ∈ [π/3, π/2] and finish the proof of Proposition 6.2 in
this case. Combining (6.1) and (6.3) we see that for all |w| sufficiently large

∣∣∣∣
∣

∏M
m=1 �(αm − w)

∏N
n=1 �(w − an)

∣∣∣∣
∣
≤ exp (c6|w| log |w|) . (6.10)

Also, since τ > 0, we have
∣∣∣uw−vevτ(w−v)+τ(w−v)2/2

∣∣∣ ≤ c7e
c8|w|−τ |w|2/4, (6.11)
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where we used

|eτ z2/2| = exp
(
τRe[z2]/2

)
≤ exp

(
−τ |z|2/4

)
,

which in turn relies on our assumption that |arg(z)| ∈ [π/3, π/2]. Combining (6.8),
(6.10) and (6.11) we conclude that for all |w| sufficiently large we have

∣∣∣
∣∣

π

sin(π(v − w))

∏M
m=1 �(αm − w)

∏N
n=1 �(w − an)

uw−veτ(w2−v2)/2

∣∣∣
∣∣
≤ c9 exp(−c10|w|2),

which certainly implies (6.5). This concludes the proof of Proposition 6.2. ��

6.2 Proof of Proposition 2.17

In this section we give the proof of Proposition 2.17, whose statement is recalled here
for the reader’s convenience.

Proposition 6.3 Fix M, N ≥ 1, T ≥ 0, τ ∈ [0, T ], �a = (a1, . . . , aN ) ∈ R
N ,

�α = (α1, . . . , αM ) ∈ R
M
>0 and u ∈ C with Re(u) > 0. Put θ0 = min(�α)−max(�a) and

assume that θ0 > 0 and δ0 ∈ (0,min(1/4, θ0/16)). Suppose that v, v′ ∈ Ca,φ as in
Definition 2.10 with a ∈ [max(�a)+ δ0,min(�α)−5δ0] and φ ∈ [3π/4, 5π/6]. Finally,
fix b ∈ [a+2δ0,min(�α)−3δ0] and denote by Dv the contour Dv(b, π/4, δ0) as inDefi-
nition 2.11. Then there exists a positive constant C0 depending on �a, �α, δ0, u, N , M, T
(and not τ ) such that if x ∈ C with d(x, [0, 1]) ≤ δ0 then we have

∣∣
∣∣∣

∫

Dv

πdμ(w)

sin(π(v − w))

N∏

n=1

�(v − an)

�(w − an)

M∏

m=1

�(x + αm − w)

�(x + αm − v)

uw−veτ(w2−v2)/2

w − v′

∣∣
∣∣∣
≤ C0

1 + |v|2 .

(6.12)

Proof In the arguments below, ci will denote positive constants that depend on the
parameters in the statement of the proposition. Let us put θ = min(�α). We notice that
we can rewrite the integrand as

F(w) = H(w)

H(v)
· π exp

[
GM,N (v) − GM,N (w)

]

sin(π(v − w))

uw−veτ(w2−v2)/2

w − v′ , (6.13)

where GM,N is as in (5.3) and

H(w) = exp(−WM,N (zc)w) ·
N∏

n=1

�(w)

�(w − an)

M∏

m=1

�(x + αm − w)

�(θ − w)
.

We split the integral over the two pieces D1
v and D

2
v (see Definition 2.11). Ifw ∈ D1

v

and |w| is sufficiently large we may apply Lemma 5.1 to get

∣∣exp(−GM,N (w))
∣∣ ≤ exp (−c1|w| log |w|) . (6.14)
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On the other hand, using (6.1), we have for all w ∈ D1
v and v, v′ ∈ Ca,φ

∣∣
∣∣

π

sin(π(v − w))

∣∣
∣∣ ≤ c2 and

∣∣
∣∣

1

w − v′

∣∣
∣∣ ≤ c3. (6.15)

Setting v = a + rv cos(φ) + irv sin(φ) and w = b + rw cos(π/4) ± irw sin(π/4),
we get

Re[w2 − v2] = (− cos2(φ) + sin2(φ))r2v − 2a cos(φ)rv + b2 − a2 + 2b cos(π/4)rw,

where we used that cos(π/4) = sin(π/4). In particular, by our assumption on φ we
have (− cos2(φ) + sin2(φ)) ≤ 0 and we conclude that

∣∣∣eτ(w2−v2)/2
∣∣∣ ≤ c4 · ec5(|w|+|v|). (6.16)

Also, from (6.2) we have

∣∣
∣∣
H(w)

H(v)

∣∣
∣∣ ≤ c6 · ec7(|w|+|v|). (6.17)

Combining (6.14), (6.15), (6.16) and (6.17) we conclude that

|F(w)| ≤ c8e
c9(|w|+|v|)−c10(M+N )|w| log |w| · exp (Re [GM,N (v)

])
. (6.18)

From the above we conclude that
∫

D1
v

|F(w)||dw| ≤ c11e
c9|v| · exp (Re [GM,N (v)

]) ≤ c12 exp(−c13|v| log |v|),
(6.19)

where the last inequality follows from Lemma 5.1.
Wenext focus our attention on D2

v . Recall that D
2
v consists of straight oriented segments

that connect z− to v +2δ0 − iδ0 to v +2δ0 + iδ0 to z+, where z−, z+ are the points on
Cb,π/4 that have imaginary parts Im(v) − δ0 and Im(v) + δ0 respectively. Explicitly,
we have z− = b+ Im(v)− δ0 + iIm(v)− iδ0 and z+ = b+ Im(v)+ δ0 + iIm(v)+ iδ0.

If |v| is bounded, we observe that F(w) remains bounded on D2
v as it is bounded

away from all of its poles, so we only need to focus on large |v|. We assume that |v|
is sufficiently large so that D2

v is well separated from the real line and so z−, z+ lie in
the same complex half-plane. For simplicity we will assume that we are in the upper
complex half-plane (the other case is completely analogous).

We define a contour connecting z− and z+, denoted byCv as follows, see also Fig. 8.
It starts at z− and goes horizontally to v +kv +1/2− iδ0, then up to v +kv +1/2+ iδ0
and then horizontally to z+. Here kv denotes the largest integer such that Re[v+kv] <

−2a + Im(v). We assume that |v| is sufficiently large so that kv ≥ 1. Notice that the
length of Cv does not exceed 3 + 2δ0 + 4|a| + 2|b|.
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Fig. 8 The figure depicts the
contour Ca,φ and
Dv = Dv(b, π/4, δ0) with
min(�α) > b > a > max(�a). The
black dots denote the points
v, v + 1, v + 2, . . . and the grey
ones denote αm + x, αm + x +
1, αm + x + 2, . . . . The contour
Cv is the filled contour that
connects z− and z+

An application of the residue theorem gives

1

2π i

∫

D2
v

F(w) =
kv∑

j=1

R j (v) + 1

2π i

∫

Cv

F(w)dw, (6.20)

where the residue at w = v + j is denoted by R j (v) and given by the formula

R j (v)=−(−u) j
N∏

n=1

�(v − an)

�(v + j − an)

M∏

m=1

�(x + αm − v − j)

�(x + αm − v)

eτv j+τ j2/2

v − v′ + j
.

(6.21)

From the functional equation for the gamma function �(z+1) = z�(z)we know that

∣∣∣∣
�(v − an)

�(v + j − an)

∣∣∣∣ =
j∏

k=1

∣∣∣∣
1

v − an + k − 1

∣∣∣∣ ≤ 1

|Im(v)| j and
∣∣
∣∣
�(x + αm − v − j)

�(x + αm − v)

∣∣
∣∣ =

j∏

k=1

∣∣
∣∣

1

x + αm − v − k

∣∣
∣∣ ≤ 1

(|Im(v)| − δ0) j
,

where in the last inequality we used that Im(x) ∈ [−δ0, δ0].
Next we observe that if v = a + rv cos(φ) + irv sin(φ) then

Re[v j + j2/2] = j(a + rv cos(φ)) + j2/2 ≤ j(a + rv cos(φ)

+(rv sin(φ) − 2a − rv cos(φ))/2) ≤ 0,

where in the last inequality we used that rv cos(φ) + rv sin(φ) ≤ 0 by our choice of
φ and the first inequality used 1 ≤ j ≤ kv and Re[v + kv] < −2a + Im(v). The
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conclusion is that for all large enough |v| we have
∣∣∣eτv j+τ j2/2

∣∣∣ ≤ 1

for all j = 1, . . . , kv and τ ≥ 0. Finally, if we assume that |v| is sufficiently large we
can ensure that max(1,|u|)

(|Im(v)|−δ0)
≤ 1

2 . Combining all of the above estimates we see that

kv∑

j=1

|R j (v)| ≤
kv∑

j=1

|u| j
(|Im(v)| − δ0) j(M+N )

1

|v − v′ + j |

≤ c14
(|Im(v)| − δ0)M+N

≤ c15
1 + |v|2 , (6.22)

where in the second inequality we used that v − v′ is uniformly bounded away from
Z and that the sum of the geometric series is controlled by its first term. The last
inequality used that M + N ≥ 2 and holds for all |v| large enough.

Since the contourCv is (at least distance δ0) bounded away from v+Z the estimates
in (6.15) hold. Provided that |v| is sufficiently large andw ∈ Cv the estimates in (6.14)
and (6.17) also holds. We next wish to show that (6.16) also holds for w ∈ Cv .

Suppose that w ∈ Cv , and write it as w = y + rw cos(π/4) + irw sin(π/4), where
y is a real number between −2|a| − 2|b| − δ0 − 3/2 and 2|a| + 2|b| + δ0 + 3/2 and
rw ∈ [Im(v) − δ0, Im(v) + δ0]. As done before in (6.16) we have

Re[2v(w − v) + (w − v)2] = (− cos2(φ) + sin2(φ))r2v
−2a cos(φ)rv + y2 − a2 + 2y cos(π/4)rw.

In particular, by our assumption on φ we have (− cos2(φ) + sin2(φ)) ≤ 0 and so
(6.16) also holds. Combining (6.14), (6.15), (6.16) and (6.17) we conclude that for all
large v and w ∈ Cv one has the estimate as in (6.18) and since Cv has length at most
3 + 2δ0 + 4|a| + 2|b|, we conclude from Lemma 5.1 that

∣
∣∣∣
1

2π i

∫

Cv

F(w)dw

∣
∣∣∣ ≤ c17 exp(−c18|v| log |v|). (6.23)

The proposition now follows from combining (6.19), (6.20),(6.22) and (6.23).
��

6.3 Proof of Proposition 3.11

In this section we give the proof of Proposition 3.11, whose statement is recalled here
for the reader’s convenience. We follow the same notation as in Sects. 3.1 and 3.2.

Proposition 6.4 Let A ≥ 0 and x ≥ −A be given and let M, N , u(x, M, N ) be as
in Definition 3.1. Then for any ε > 0 there exist positive constants M0, c0,C0 > 0
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depending on A, ε and the parameters in Definition 3.1 such that if M ≥ M0, v, v′ ∈
Ca,3π/4 we have

∣∣Ku(v, v′)
∣∣ ≤ C0M

1/3 and if |v − a| ≥ ε we further have
∣∣Ku(v, v′)

∣∣

≤ C0e
−c0M log(1+|v|). (6.24)

If r = c = 0 then M0, c0,C0 > 0 depend only on θ , δ, A and ε.

Proof Before we go to the main argument, we give a conceptual roadmap of the proof.
For clarity we split the proof into several steps. In the first four steps we prove (6.24)
whenv is bounded away froma and in the last stepweestablish itwhenv is close toa. In
both cases we deform the contour Dv in the definition of Ku(v, v′) to a suitable contour
where we can estimate the integrand in the definition of Ku(v, v′) using the results
from Sects. 5 and 6. In the case when v is close to a we can deform Dv to a contour
that is a horizontal translation of Czc,π/4 by O(M−1/3) (recall that this contour was
defined in Definition 2.10). Ideally, we would prefer to work with the contour Czc,π/4,
because Lemma 5.4 and Lemma 5.5 give us very good control of the absolute value of
the integrand on this contour. A mild translation of Czc,π/4 is, however, necessary to
ensure that the poles at αm and an are on the correct sides of the contour. The idea then
is to combine our good estimates onCzc,π/4 with Lemma 5.6, which ensures that slight
horizontal movements away fromCzc,π/4 does not significantly damage our estimates.
This idea is also present in the casewhen v is bounded away from a. The new challenge
that arises in this case is that we need to deform Dv to a new contour, which avoids the
poles at v + Z coming from the sine function in the definition of Ku(v, v′). The idea
then is to work with a contour Dv(b, π/4, d) as in in Definition 2.11. This contour
consists of two parts—D1 and D2. Estimating the absolute value of the integrand on
D1 is similar to the case we discussed above and relies only on Lemma 5.4, Lemma 5.5
and Lemma 5.6. The analysis of the integral over D2 is more involved and requires
further deforming this contour to the half-plane {Re(z) ≥ zc}. Once we are in the half-
plane {Re(z) ≥ zc} we can utilize Lemma 5.3 and get the estimates we desire—this
is done in Step 3. Unfortunately, in the process of deforming D2 we pick up a large
number of poles, whose residues need to be controlled as well—this is done in Step 4
and requires a fairly involved case-by-case analysis. We now turn to the proof.

Step 1 Let r be as in Lemma 5.4 for the choice of δ and θ as in the proposition. We also
set rε = min(r/2, ε, 1/2), and for y > 0 we write By(zc) := {z ∈ C : |z − zc| < y}.
We also define dε = min(rε/10, 1/20, d0), where d0 > 0 is sufficiently small so that

d0 ≤ θ − zc
4

, d0 ≤ zc
4
, and (1 − s)

√
(1 − s)2 + (θ − zc − s)2

≥ 1 + s for s ∈ [0, d0]. (6.25)

Notice that all of the above constants can be chosen uniformly in θ, ε and δ when
r = c = 0.

We first suppose that |v − a| ≥ ε and establish (6.24) in this and the next three
steps. In the sequel we will write G for Gα , σ for σα , d for dε and r for rε to ease
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the notation. Then we have by Cauchy’s theorem that if M0 is sufficiently large and
M ≥ M0 that

Ku(v, v′) = 1

2π i

∫

D
F(w, v′, v)dw, with

F(w,w′, v) =
r∏

n=1

�(v − an)

�(w − an)

c∏

m=1

�(αm − w)

�(αm − v)

× πeM[G(v)−G(w)]eM1/3xσ(v−zc)e−M1/3xσ(w−zc)

sin(π(v − w))(w − v′)
,

(6.26)

where D stands for the contour Dv(b, π/4, d) in Definition 2.11 with d as above,
b = a + ρσ−1M−1/3 and ρ as in Definition 3.1. The decay estminates necessary to
deform the contour Dv in the definition of Ku(v, v′) to D near infinity come from
Proposition 6.1 applied to K = [0, θ ], T = 0 and �a, �α, u as in the statement of the
proposition. In order to ensure that the poles at θ, θ + 1, θ + 2, . . . stay on the right
side of D (and hence are not crossed in the process of deformation) we need to ensure
that a + ρσ−1M−1/3 = zc + (μ + ρ)σ−1M−1/3 < θ , which is possible by making
M0 sufficiently large depending on θ and δ alone. Also, by the definition of ρ, we
have that if c > 0 then the poles at αi for i = 1, . . . , c are also to the right of D for
large enough M in view of |v − a| ≥ r and d ≤ r/10. We denote by D1 and D2 the
portions of D that are part of Cb,π/4 or not respectively, see Definition 2.10.

In the following steps C, c stand for generic positive constants, depending on the
parameters in the statement of the proposition, whose value may change from line to
line.

Step 2 In this and the next step we assume that |v − a| ≥ r . Notice that if Re(z) ≤ 0
we have

|eM1/3xσ z | ≤ 1 if x ≥ 0 and so for x ≥ −A we have |eM1/3xσ z | ≤ eAM
1/3σ |z|.

(6.27)

The latter equation together with Lemmas 5.5 and 5.6 imply for all large enough M

|eMG(v)eM
1/3σ(v−zc)x | ≤ Ce−cM|v| log(1+|v|) if |v − a| ≥ r , and v ∈ Ca,3π/4

|e−MG(w)e−M1/3σ(w−zc)x | ≤ Ce−cM|w| log(1+|w|) if |w − b| ≥ r/2 and w ∈ Cb,π/4.

(6.28)

To see why the latter is true, note that Lemma 5.5 implies the above inequalities when
a, b are replaced with zc and then Lemma 5.6 allows us to replace zc with a, b since
such a change affects the right side of the inequalities byCecM

2/3(1+|v|) for the first line
and CecM

2/3(1+|w|) for the second line. Of course, this effect is negligible compared
to the exponential in M decay.
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In addition, using (6.1) we have for all w ∈ D1 that

∣∣∣∣
1

sin(π(v − w))(w − v′)

∣∣∣∣ ≤ CM1/3. (6.29)

The extraM1/3 is coming from the |w−v′| in the denominator, which is lower bounded
by M−1/3σ−1ρ as v′ is allowed to be close to a unlike v. We also observe that

∣
∣∣
∣
∣

r∏

n=1

�(v − an)

�(w − an)

c∏

m=1

�(αm − w)

�(αm − v)

∣
∣∣
∣
∣
=
∣
∣∣
∣
∣

r∏

n=1

�(v − an + 1)

�(w − an + 1)

c∏

m=1

�(αm − w + 1)

�(αm − v + 1)

∣
∣∣
∣
∣

×
∣
∣
∣∣
∣

r∏

n=1

w − an
v − an

c∏

m=1

αm − v

αm − w

∣
∣
∣∣
∣
≤ C exp (c|v| log(1 + |v|) + c|w| log(1 + |w|) + c logM) ,

(6.30)

where we used (6.2) and (6.3) to upper bound the gamma functions, and the extra
logM term is coming from αm − w in the denominator, whose absolute value is
bounded away from 0 by (1/2)(min(�y) − μ − ρ)M−1/3σ−1 for all large enough M ,
see Definition 3.1.

Combining (6.28), (6.29) and (6.30) we conclude that for all large enough M

∣∣∣∣∣

∫

D1∩Bc
r/2(b)

F(w, v′, v)dw

∣∣∣∣∣
≤ Ce−cM|v| log(1+|v|). (6.31)

Suppose next that w ∈ D1 ∩ Br/2(b) (observe that this piece is separated from D2

by our assumption on v). Using (6.27), Lemma 5.4 and Lemma 5.6 we have

|e−MG(w)e−M1/3σ(w−zc)x | ≤ CecM
2/3
e−Mσ 3(

√
2/2)3|w−zc|3/6eAM1/3σ |w−zc|.

In deriving the above inequalitywe used that our r is smaller than the one in Lemma5.4
so that the lemma is applicable. Combining the last inequality with the first line in
(6.28), (6.29), (6.30) we conclude that for all large enough M

∣∣
∣∣∣

∫

D1∩Br/2(b)
F(w, v′, v)dw

∣∣
∣∣∣
≤ Ce−cM|v| log(1+|v|). (6.32)

Equations (6.31) and (6.32) provide the desired estimates for the integral of F(w, v′, v)

on D1. We consider the integral over D2 in the next step.
Step 3 In this step we establish the following inequality

∣∣∣∣

∫

D2
F(w, v′, v)dw

∣∣∣∣ ≤ Ce−cM log(1+|v|). (6.33)
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Fig. 9 The left part depicts Cv when Re(v + kv) ∈ [zc − d, zc + d] and the right part depicts it when
Re(v + kv) /∈ [zc − d, zc + d].

Combining (6.31), (6.32) and (6.33) we conclude (6.24) in the case when |v −a| ≥ r ,
which of course implies the statement when |v − a| ≥ ε as r ≤ ε by construction.

To prove (6.33) we define a new contourCv as follows, see also Fig. 9. Let kv ∈ Z≥0
be the unique integer such thatRe(v+kv) ∈ [zc−d, zc+d] if such an integer exists (the
uniqueness follows from our assumption that d ≤ 1/20); if no such integer exits we
let kv be the largest integer such that Re(v + kv) ≤ zc. If Re(v + kv) ∈ [zc −d, zc +d]
we letCv be the contour that horizontally connects the points z− to zc+1/2+ iIm(z−)

to zc + 1/2 + iIm(z+) to z+, where z± are the two points shared by D1 and D2, see
the left part of Fig. 9. If Re(v + kv) /∈ [zc − d, zc + d] we let Cv be the contour that
connects z− to zc + iIm(z−) to zc + iIm(z+) to z+, see the right part of Fig. 9. Observe
that by construcion we have that if z = zc + (μ + ρ)σ−1M−1/3 + f + ig ∈ Cv then
|g| ≥ f ≥ 0, d(z, v + Z) ≥ d and d(z,Ca,3π/4) ≥ d/2 for large enough M . Also the
length of Cv is at most 2|Im(v)| + 3d for large enough M .

An application of the residue theorem, see [38, Corollary 2.3, Chapter 3], gives

1

2π i

∫

D2
F(w, v′, v) =

kv∑

j=1

R j (v) + 1

2π i

∫

Cv

F(w, v′, v)dw, (6.34)

where the residue at w = v + j is denoted by R j (v) and given by the formula

R j (v) = −(−e)−xσM1/3· j �(v)N

�(v + j)N
�(θ − v − j)M

�(θ − v)M

1

v − v′ + j

r∏

n=1

�(v − an)

�(v + j − an)

c∏

m=1

�(αm − v − j)

�(αm − v)
.
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Observe that from (6.27), Lemma 5.3 and Lemma 5.6 we have for w ∈ Cv that

∣∣
∣e−MG(w)e−M1/3σ(w−zc)x

∣∣
∣ ≤ CecM

1/3A|v|+cM2/3|v|. (6.35)

Let us elaborate on equation (6.35) briefly. Equation (6.27) allows us to bound
|e−M1/3σ(w−zc)x | by ecM

1/3A|v|, which in turn is controlled by ecM
1/3A|w| as |w| is

upper and lower bounded by constant multiples of |v| for w ∈ Cv . Furthermore,
Lemma 5.3 bounds |e−MG(w)| by 1 when |Im[w − zc] ≥ Re[w − zc] ≥ 0. By
construction of Cv we know that Re[w − zc] ≥ 0 is satisfied for all points on Cv .
The inequality |Im[w − zc]| ≥ Re[w − zc] can fail for some points on Cv but
only those that are at most distance (μ + ρ)σ−1M−1/3 (if the latter is positive)
from the points z±. For these w we know from Lemma 5.6 that Re[−MG(w)] =
Re[−MG(w − (μ + ρ)σ−1M−1/3)] + O(M2/3(1 + |w|)), and since by Lemma 5.3
the first term is negative, we see that Re[−G(w)] ≤ cM2/3|v| for all w ∈ Cv .

Since Cv is bounded away from v + Z, and Ca,3π/4 we know that (6.29) holds,
and as it is bounded away from R we also know that (6.30) holds. Combining the first
line of (6.28), with (6.29), (6.30), (6.35) and the fact that the length of Cv is at most
2|Im(v)| + 3d we conclude that for all large enough M

∣∣∣∣

∫

Cv

F(w, v′, v)dw

∣∣∣∣ ≤ Ce−cM|v| log(1+|v|). (6.36)

We now claim that

kv∑

j=1

|R j (v)| ≤ Ce−cM log(1+|v|). (6.37)

If the latter is true, then (6.34), (6.36) and (6.37) would imply (6.33). We establish
(6.37) in the next step.
Step 4 We prove (6.37) by considering the cases when |Im(v)| ≤ 1 − d, |Im(v)| ∈
[1−d, 1+d], |Im(v)| ∈ [1−d, 3] and |Im(v)| ≥ 3. The case when |Im(v)| ≤ 1−d is
trivial since then kv = 0 and the sum in (6.37) is empty. The focus is on the remaining
three cases.

From the functional equation for the gamma function �(z + 1) = z�(z) we know
that

∣∣∣∣
�(v)

�(v + j)

∣∣∣∣ =
j∏

k=1

∣∣∣∣
1

v + k − 1

∣∣∣∣ ,
∣∣∣∣
�(θ − v − j)

�(θ − v)

∣∣∣∣ =
j∏

k=1

∣∣∣∣
1

θ − v − k

∣∣∣∣ and

∣
∣∣∣∣

r∏

n=1

�(v − an)

�(v + j − an)

c∏

m=1

�(αm − v − j)

�(αm − v)

∣
∣∣∣∣

=
r∏

n=1

j∏

k=1

∣
∣∣∣

1

v + k − 1 − an

∣
∣∣∣

c∏

n=1

j∏

k=1

∣
∣∣∣

1

αm − v − k

∣
∣∣∣ . (6.38)
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If |Im(v)| ∈ [1− d, 1+ d] we have that kv = 1 and so the left side of (6.37) becomes

|R1(v)| = |e−xσM1/3 |
|v − v′ + 1|

1

|v|N · |θ − v − 1|M
r∏

n=1

∣∣∣
∣

1

v − an

∣∣∣
∣

c∏

n=1

∣∣∣
∣

1

αm − v − 1

∣∣∣
∣

≤ C exp(AσM1/3)

|Im(v)|N (
√

(1 − d)2 + (θ − a + |Im(v)| − 1)2)M

≤ C exp(AσM1/3)

((1 − d)
√

(1 − d)2 + (θ − a − d)2)M

where we used that |v| ≥ 1− d, M ≥ N and (6.27). By our choice of d ≤ d0 with d0
as in (6.25), we get for all large enough M

|R1(v)| ≤ exp(CM1/3)

(1 + d/2)M
,

which implies (6.37) in the case |Im(v)| ∈ [1 − d, 1 + d] as long as M is sufficiently
large.

Next, suppose that |Im(v)| ∈ [1 + d, 3]. Then from (6.38) we have

∣∣
∣∣

�(v)

�(v + j)

∣∣
∣∣ ≤ 1

|Im(v)| j and
∣∣
∣∣
�(θ − v − j)

�(θ − v)

∣∣
∣∣ ≤ 1

|Im(v)| j
∣∣∣∣∣

r∏

n=1

�(v − an)

�(v + j − an)

c∏

m=1

�(αm − v − j)

�(αm − v)

∣∣∣∣∣
≤ C .

(6.39)

The above inequalities imply that (observe kv ≤ 3)

kv∑

j=1

|R j (v)| ≤ exp(CM1/3)

(1 + d)N+M
, (6.40)

which implies (6.37) in the case |Im(v)| ∈ [1+d, 3] as long as M is sufficiently large.
Finally, we suppose that |Im(v)| ≥ 3. In this case (6.39) imply

kv∑

j=1

|R j (v)| ≤
kv∑

j=1

C · exp(AσM1/3 j)

|Im(v)| j(M+N )
≤ C

kv∑

j=1

|Im(v)|− jM ≤ C |Im(v)|−M ,

(6.41)

where in the next to last inequality we used that |Im(v)|N ≥ exp(AσM1/3) for all
large enough M , and in the last inequality we bounded the sum by a geometric series.
Equation (6.41) implies (6.37) in the case |Im(v)| ≥ 3 since

log(1 + |v|) ≤ log(1 + 2|Im(v)|) ≤ log(3) + log |Im(v)| ≤ 2 log |Im(v)|.
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Step 5 In this step we establish (6.24) when |v − a| ≤ r . Observe that by Cauchy’s
theorem we may deform the Dv in the definition of Ku(v, v′) to the contour Cb,π/4
without affecting the value of the integral. The latter is because v + 1 is strictly to
the right of Cb,π/4 whenever |v − zc| ≤ r , by our choice of r . Thus we do not
cross any poles in the process of the deformation. The decay estminates necessary to
deform the contour Dv in the definition of Ku(v, v′) toCb,π/4 near infinity come from
Proposition 6.1 applied to K = [0, θ ], T = 0 and �a, �α, u as in the statement of the
proposition.

Consequently, we have

Ku(v, v′) = 1

2π i

∫

Cb,π/4

F(w, v′, v)dw,

where F(w, v′, v) is as in (6.26). Next, by Lemma 5.4, Lemma 5.6 and (6.27) we have

|eMG(v)eM
1/3σ x(v−zc)| ≤ exp(−(

√
2/2)|v − zc|3σ 3M/6 + CM2/3) ≤ eCM2/3

,

(6.42)

and also by Lemma 5.5, Lemma 5.6 and (6.27) provided that M is sufficiently large
we have

|e−MG(w)e−M1/3σ(w−zc)| ≤ Ce−cM|w| log(1+|w|) if |w − b| ≥ r/2 and w ∈ Cb,π/4.

(6.43)

One also observes that the inequalities in (6.29) and (6.30) are also satisfied if |v−a| ≤
r and |w − b| ≥ r/2, w ∈ Cb,π/4, which together imply that for all large M

∣∣∣
∣∣

∫

Cb,π/4∩Bc
r/2(b)

F(w, v′, v)dw

∣∣∣
∣∣
≤ eCM2/3

∫

Cb,π/4∩Bc
r/2(b)

e−cM|w| log(1+|w|)|dw|

≤ Ce−cM , (6.44)

where |dw| denotes integration with respect to arc-length.
On the other hand, if v ∈ Br (a) and w ∈ Br/2(b) we can perform the change

of variables ṽ = (v − zc)M1/3σ , w̃ = (w − zc)M1/3σ and apply Lemma 5.4 and
Lemma 5.6 to obtain

∣∣∣∣∣

∫

Cb,π/4∩Br/2(b)
F(w, v′, v)dw

∣∣∣∣∣

≤ C
∫

Cμ+ρ,π/4

∣
∣∣∣

1

w̃M−1/3σ−1 + zc − v′

∣
∣∣∣ e

c log(1+|ṽ|)+c log(1+|w̃|)

×
π · exp

(
−(

√
2/2)3|ṽ|3/12 − (

√
2/2)3|w̃|3/12 + |w̃|A + |ṽ|A

)

M1/3σ | sin(πM−1/3σ−1(ṽ − w̃))| |dw|.
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We remark that in deriving the last inequality we bounded the double product of
gamma functions in the definition of F(w, v′, v) by Cec log(1+|ṽ|)+c log(1+|w̃|). To see
why such a bound holds we can use (6.30), and note that the right side of the top line
is O(1) for v ∈ Br (a) andw ∈ Br (b) since r ≤ 1/2 by assumption, while the rational
functions on the second line can be controlled by Cec log(1+|ṽ|)+c log(1+|w̃|). We also
mention that the bound on

| exp(M[G(zc + ṽσ−1M−1/3) − G(zc + w̃σ−1M−1/3)])|

via

C exp
(
−(

√
2/2)3|ṽ|3/12 − (

√
2/2)3|w̃|3/12

)

can be obtained using only Lemma 5.4 in the case |w̃−b| ≤ M1/3−1/10 and |ṽ −a| ≤
M1/3−1/10. When M1/3−1/10 ≤ |w̃ − b| ≤ (r/2)M1/3 and M1/3−1/10 ≤ |ṽ − a| ≤
rM1/3 one needs to further invoke Lemma 5.6. The way this estimate is established is
very similar to what we earlier did in Step 4 of the proof of Theorem 3.2 in Sect. 3.3
so we omit the details.

From Lemma 3.13 we know that

∣∣
∣∣

πM−1/3σ−1

sin(πM−1/3σ−1(ṽ − w̃))

∣∣
∣∣ ≤ C,

and also we know by definition of our contours that

∣∣
∣∣

1

w̃M−1/3σ−1 + zc − v′

∣∣
∣∣ ≤ CM1/3.

Combining the last few estimates we see that

∣
∣∣∣∣

∫

Cb,π/4∩Br/2(b)
F(w, v′, v)dw

∣
∣∣∣∣
≤ CM1/3

∫

Cμ+ρ,π/4

ec log(1+|ṽ|)+c log(1+|w̃|) ·

e−(
√
2/2)3|ṽ|3/12−(

√
2/2)3|w̃|3/12+|w̃|A+|ṽ|A|dw̃| ≤ CM1/3, (6.45)

where the last inequality used the fact that Cμ+ρ,π/4 does not depend on M and the
integral is finite by the cube in the exponential. Equations (6.44) and (6.45) imply
(6.24) when |v − zc| ≤ r . This suffices for the proof. ��
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