

1 ***Sinorhizobium medicae* WSM419 genes that improve symbiosis between *Sinorhizobium***
2 ***meliloti* Rm1021 and *Medicago truncatula* Jemalong A17 and in other symbiotic systems**

3

4 Authors' names and affiliations

5 Prithwi Ghosh¹, Katie N. Adolphsen^{1,2}, Svetlana N. Yurgel^{1#}, Michael L. Kahn^{1,2}

6

7 ¹Institute of Biological Chemistry and ²School of Molecular Biosciences, Washington State
8 University, Pullman, WA 99164 USA

9

10 # Current Address: Department of Plant, Food and Environmental Sciences, Faculty of
11 Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, Canada B2N 5E3

12

13 Communicating Author: Michael Kahn, Institute of Biological Chemistry, Washington State
14 University, Pullman, WA 99164-6340 USA Phone: 1 509-335-8327 email: kahn@wsu.edu

15

16 Running Head:

17 *S. medicae* genes improve *S. meliloti* symbiosis

18

19

20

21 **KEY WORDS**

22 symbiosis, nitrogen fixation, root nodules, model legume, *Medicago truncatula*, *Sinorhizobium*
23 *meliloti* Rm1021, *Sinorhizobium medicae* WSM419, alfalfa, autoregulation of nodulation (AON)

24 **ABSTRACT**

25 Some soil bacteria called rhizobia can interact symbiotically with legumes in which they form
26 nodules on the plant roots where they can reduce atmospheric dinitrogen to ammonia, a form of
27 nitrogen that can be used by growing plants. Rhizobia/plant combinations can differ in how
28 successful this symbiosis is—*Sinorhizobium meliloti* Rm1021 forms a relatively ineffective
29 symbiosis with *Medicago truncatula* Jemalong A17 but *Sinorhizobium medicae* WSM419 is able
30 to support more vigorous plant growth. Using proteomic data from free-living and symbiotic *S.*
31 *medicae* WSM419, we previously identified a subset of proteins that were not closely related to
32 any *S. meliloti* Rm1021 proteins and speculated that adding one or more of these proteins to *S.*
33 *meliloti* Rm1021 would increase its effectiveness on *M. truncatula* A17. Three genes,
34 Smed_3503, Smed_5985, and Smed_6456, were cloned into *S. meliloti* Rm1021 downstream of
35 the *E. coli lacZ* promoter. Strains with these genes increased nodulation and improved plant
36 growth, individually and in combination with one another. Smed_3503, renamed *iseA* (increased
37 symbiotic effectiveness) had the largest impact, increasing *M. truncatula* biomass by 61%. *iseA*
38 homologs were present in all currently sequenced *S. medicae* strains but were infrequent in other
39 *Sinorhizobium* isolates. *Rhizobium leguminosarum* bv. *viciae* 3841 containing *iseA* led to more
40 nodules on pea and lentil. Split root experiments with *M. truncatula* A17 indicated that *S.*
41 *meliloti* Rm1021 carrying the *S. medicae* *iseA* is less sensitive to plant induced resistance to
42 rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation.

43 **IMPORTANCE**

44 The legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix
45 nitrogen on one legume species are often unable to associate with a different species. The
46 interaction can be more subtle—symbiotically enhanced growth of the host plant can differ

47 substantially when nodules are formed by different rhizobial isolates of a species, much like
48 disease severity can differ when conspecific isolates of pathogenic bacteria infect different
49 cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is
50 understood about genes that marginally improve performance. We used a proteomic strategy to
51 identify *Sinorhizobium* genes that contribute to plant growth differences that are seen when two
52 different strains nodulate *M. truncatula* A17. These genes could also alter the symbiosis between
53 *R. leguminosarum* bv. *viciae* 3841 and pea or lentil, suggesting that this approach may identify
54 new genes that may more generally contribute to symbiotic productivity.

55

56 INTRODUCTION

57 Nitrogen is an essential element for plant growth and production. Limited access to bioavailable
58 nitrogen restricts crop productivity and thus food production. However, nitrogen fertilizers are
59 expensive and their use causes additional environmental problems (1, 2). Many legume plants
60 can satisfy their need for nitrogen by establishing a symbiotic association with nitrogen-fixing
61 soil bacteria called rhizobia. In these symbiotic interactions, the rhizobia reduce (fix)
62 atmospheric nitrogen gas to ammonium and release this to the plant. Symbiotic nitrogen fixation
63 (SNF) is a major input of nitrogen into ecosystems. Most current SNF in agricultural ecosystems
64 involves legumes but there is significant interest in the possibility that associative bacterial
65 nitrogen fixation can be established for other crop plants (3).

66 Legume SNF takes place in nodules, novel organs formed on the roots after bacterial infection
67 that provide the specialized environment needed for nitrogen fixation. This environment includes
68 carbon compounds that are used to provide energy and reductant for nitrogen fixation and
69 microaerobic conditions compatible with nitrogenase activity and the active bacterial respiration

70 needed to generate ATP for the reaction. Forming nodules requires a developmental process
71 based on mutual recognition between the plant and the bacteria that depends on exchanging
72 specific signaling molecules (4–8).

73 A major goal of nitrogen-fixing symbiosis research is to understand how to increase plant
74 productivity. Increased bacterial ammonium production is clearly a major component of this.
75 However, developing a more productive symbiosis is not simply a matter of choosing a “best”
76 rhizobia and a “best” plant host—matching the bacteria with its host plays an important role in
77 the symbiosis and symbiotic productivity can be limited by sub-optimum interactions in nodule
78 formation, nodule development and the metabolism of nitrogen fixation.

79 The *Sinorhizobium meliloti* Rm1021 symbiosis with *Medicago truncatula* (barrel medic)
80 Jemalong A17 is one model system for studying symbiosis (6) because of the availability of the
81 genome sequences of the symbionts, transcriptomic and proteomic data of the *Sinorhizobium*
82 symbiont and its host under various conditions, a large-scale plant mutant collection and the
83 ability to manipulate the plant and bacterial genetics (6–8). However, *S. meliloti* Rm1021 was
84 originally studied in the context of its success in interacting with *Medicago sativa* (alfalfa) and it
85 does not form a very effective symbiosis with *M. truncatula* A17 (9–11). In contrast,
86 *Sinorhizobium medicae* WSM419 forms an effective symbiosis with *M. truncatula* A17 but is
87 less effective than *S. meliloti* Rm1021 on *M. sativa*. Thus, these reciprocal differences in
88 performance are not due to a general symbiotic defect in any of the four symbionts but results
89 from problems in a specific paired context. *S. medicae* WSM419 has also been reported to have
90 *M. truncatula* cultivar specific effectiveness—it is more effective with the *M. truncatula* A17
91 than it is on the *M. truncatula* subsp. *tricycla* cultivar R108 (10). There are physiological
92 differences between *M. truncatula* A17 nodules formed by *S. medicae* WSM419 and *S. meliloti*

93 Rm1021 (9), but little is known about the genes that make a difference in the higher symbiotic
94 production of *S. medicae* WSM419 on *M. truncatula* A17.

95 In previous work, a deep proteome of *S. medicae* WSM419 was generated by studying the
96 bacteria in free-living culture and symbiotic association with *M. truncatula* A17 [Yurgel SN, Qu
97 Y, Rice JT, Zink EM, Brown JN, Lipton MS, Kahn ML. Metabolic specialization in a nitrogen-
98 fixing symbiosis: proteome differences between *Sinorhizobium medicae* bacteria and bacteroids.
99 (submitted for publication)]. 1,872 *S. medicae* WSM419 proteins were identified using mass
100 spectrometry. *S. medicae* WSM419 proteins typically have a high level of similarity (>90%
101 identity) to their *S. meliloti* homologs (12) but a subset of 83 unique proteins were identified in
102 this *S. medicae* WSM419 proteome that did not have this high level of similarity with any *S.*
103 *meliloti* Rm1021 protein. 56 of these were detected only in free-living cells, 9 were nodule
104 specific and 18 were found under both conditions. We speculated that some of these proteins
105 might contribute to the higher symbiotic productivity of *S. medicae* WSM419 on *M. truncatula*
106 A17 and that, by moving the genes coding for these proteins into *S. meliloti* Rm1021, we might
107 improve *S. meliloti* Rm1021 symbiotic production with *M. truncatula* A17.

108 We selected three genes to test this idea based on their annotated functions potentially relevant to
109 symbiosis and the relative abundance of their proteins in the free-living and symbiotic
110 proteomes. All three of the proteins were found in free-living cells of *S. medicae* WSM419 and,
111 at a lower level, in nodules. These included an annotated ACC deaminase that had the potential
112 to interfere with the production of ethylene, an annotated 1-4- α -glucan glucosidase that might
113 interact with exopolysaccharide biosynthesis and processing, and a gene we call *iseA* that is
114 annotated as encoding a glyoxalase/dioxygenase/bleomycin resistance protein (12). The genes
115 were expressed individually in *S. meliloti* Rm1021 strains and all three strains increased the

116 growth of *M. truncatula* A17 when inoculated plants were compared to plants inoculated with
117 isogenic bacteria containing the empty expression vector. Using compatible plasmids to carry the
118 genes, we co-expressed them in combinations and, in some cases, strains having more than one
119 gene slightly increased dry weight in comparison to strains containing only one. The genes, and
120 especially *iseA*, also stimulated nodulation of *R. leguminosarum* bv. *viciae* 3841 on lentil or pea.

121 Nitrogen fixation is a highly energy demanding process and therefore tightly regulated by the
122 host plant to keep a balance between nitrogen acquisition and energy expenditure. Many legumes
123 control their nodule number after the initial infection by a negative regulatory long-distance
124 (systemic) pathway known as autoregulation of nodulation (AON) pathway (13). Nodulation in
125 split root systems was influenced by the presence of *iseA* in a pattern that suggests that *iseA*
126 might interfere with the AON response (13, 14). These results are consistent with *iseA*
127 overcoming or bypassing the AON response and we suggest that this leads to increased
128 nodulation.

129

130 **RESULTS**

131 **Adding genes from *S. medicae* WSM419 to *S. meliloti* Rm1021 increased symbiotic biomass 132 production on *M. truncatula* A17**

133 To analyze the role of *iseA*, Smed_5985, and Smed_6456 in symbiosis with *M. truncatula* A17,
134 each of the genes was cloned downstream of the *lacZ* promoter in two compatible broad host
135 range cloning vehicles, pCPP30 (Tc^R) and pSRKGm (Gm^R), that could be conjugated into *S.*
136 *meliloti* Rm1021 (Table 1). The *lacZ* promoter is considered to be a relatively strong promoter in
137 *Sinorhizobium* (15), although in pSRKGm the LacI repressor protein is also present. We used
138 these plasmids to construct strains carrying each gene and the genes in different pairwise

139 combinations to test whether there might be additive effects on symbiosis (Table S1). Plant tests
140 also included the strains carrying both of the parent plasmids, pCPP30 and pSRKGm, as vector
141 controls. Shoot dry weight and nodule number are often correlated with the benefit host plants
142 derive from the symbiosis in the field so we limited our analysis to these measures. At 28 days
143 post inoculation (dpi), the average increase in shoot dry weight of plants inoculated with strains
144 containing *iseA*, Smed_5985, and Smed_6456 had higher biomasses (~61%, 24% and ~35%,
145 respectively) when compared with plants inoculated with strains containing the vector lacking an
146 insert (Fig. 1, Fig. S1, Table S2). When both plasmids carried the same gene, growth was slightly
147 higher than when only one of the plasmids contained that gene. When the two plasmids carried
148 different genes, the pairwise combinations of *iseA* and Smed_6456 and of Smed_5985 and
149 Smed_6456 led to slightly higher plant biomass than these genes generated individually (Fig. 1,
150 Table S2). None of the recombinant strains led to growth that was equal to growth when *S.*
151 *medicae* WSM419 was used as an inoculant.

152 Nitrogen-fixing root nodules (Fix⁺) are pink because they contain leghemoglobin, a red protein
153 that becomes visible as the nodule matures and indicates that the microaerobic environment
154 necessary for nitrogen fixation is being established (16). White nodules are immature or aborted
155 (Fix⁻). White and pink nodules were counted at 28 dpi on the roots of plants. Plants inoculated
156 with *S. meliloti* Rm1021 expressing the candidate genes individually or co-expressed with each
157 other had significantly more pink nodules than those inoculated with the empty vector control
158 (Table 2). The proportion of white nodules on plants inoculated with *S. meliloti* Rm1021
159 (pCPP30-*iseA*) was lower than on plants inoculated with the vector control. The three candidate
160 genes (*iseA*, Smed_5985, and Smed_6456) caused an average increase in the number of pink
161 nodules on *M. truncatula* A17 by ~57%, ~36% and ~50%, respectively, when compared with

162 plants inoculated with the vector controls. We also observed an increase in the number of pink
163 nodules as a result of stacking the target genes in different combinations (Table 2).

164 **Expression pattern of *S. medicae* WSM419 genes**

165 To study expression of the three candidate genes, their potential promoter regions were cloned
166 upstream of the *uidA* gene, which codes for a β -glucuronidase (GUS). Similar fusions were also
167 constructed with the promoter from the *hrrP* gene (*PhrrP*), which has nodule-specific expression
168 (17) and with the promoter (*Pfla*) from the *S. medicae* WSM419 Smed_0266 flagellin gene,
169 which was expected to be downregulated within nodules (17). The promoter fusion clones were
170 transformed into *S. meliloti* Rm1021 and tested for *in vitro* and *in vivo* promoter activity. Visible
171 GUS activity was observed in 10 dpi *M. truncatula* A17 root nodules for each of the promoters
172 (*iseA*, Smed_5985 and Smed_6456) (Fig. 2A). In controls, *PhrrP* had prominent GUS expression
173 whereas *Pfla* had a very low level of GUS expression that was localized in a small part of the
174 root nodules. In free-living cells, *Pfla* was strongly expressed as was the *Salmonella trp* (*Ptrp*)
175 promoter, which is constitutive in *S. meliloti* Rm1021 (18). The *iseA* promoter (*PiseA*) was
176 expressed at low levels in free-living cells but its expression was higher in minimal media than in
177 complex (LB) media. Expression from the Smed_5985 and Smed_6456 promoters was almost
178 undetectable in the free-living cells (Fig. 2B), a somewhat surprising result because the
179 corresponding proteins were present at a higher level than IseA in the proteomic experiments
180 with free-living *S. medicae* cells.

181 **None of the *S. medicae* WSM419 genes made a major difference in the *S. meliloti* Rm1021
182 symbiosis with *M. sativa***

183 *M. sativa* (alfalfa) has an effective relationship with *S. meliloti* Rm1021 but is only partially
184 effective with *S. medicae* WSM419 (11). We tested whether adding the *S. medicae* WSM419

185 genes to *S. meliloti* Rm1021, expressed in either pCPP30 or pSRKGm, would increase the
186 growth of alfalfa. Compared to the vector control, plant dry weight and the number of nodules
187 per plant did not change significantly when *S. meliloti* Rm1021 carried any of the three candidate
188 genes (Fig. 3A, B). This may mean that these genes do not contribute to the symbiotic interaction
189 of *S. meliloti* Rm1021 with alfalfa, but it may also be that the symbiosis was already very
190 effective and a marginal contribution to growth was not observable. We note that Ma et al. (18)
191 had previously reported that adding an ACC deaminase to Sm1021 improved the nodulation and
192 biomass in the alfalfa symbiosis.

193 ***iseA* from *S. medicae* WSM419 is important for nodulation in *M. truncatula* A17**

194 The previous experiments show that *iseA* improved plant biomass production in the *S. meliloti*
195 Rm1021 interaction with *M. truncatula* A17 but had little effect on the interaction of *S. meliloti*
196 Rm1021 with *M. sativa*. To examine whether *iseA* is important in the interaction of *S. medicae*
197 WSM419 with *M. truncatula* A17, a *S. medicae* WSM419 *iseA* deletion mutation was
198 constructed using a double recombination marker exchange protocol. *S. medicae* WSM419Δ*iseA*
199 formed a significantly lower number of nodules than *S. medicae* WSM419 wild type on *M.*
200 *truncatula* A17 and the nodulated plants did not grow as well (Fig. 4). WSM419Δ*iseA* (pCPP30-
201 *iseA*), a strain in which *S. medicae* WSM419Δ*iseA* was complemented with a constitutively
202 expressed version of *iseA* carried on pCPP30, generated a normal number of nodules and
203 restored the plant dry weight to the wildtype level (Fig. 4). These results show that *iseA*
204 contributes to an effective symbiosis between *S. medicae* WSM419 and *M. truncatula* A17.

205 **Homologs of the three genes are not distributed evenly in *Sinorhizobium* strains.**

206 Deploying ACC decarboxylase to increase nodulation is a fairly widespread strategy in rhizobia.
207 We investigated whether homologs to the three genes described here are present in species of

208 *Sinorhizobium* using DNA sequence information in the Joint Genome Initiative database (19).

209 The results are shown in Table 3. All 31 isolates of *S. medicae* had genes with very high

210 similarity to the *S. medicae* WSM419 *iseA* gene but only 11 of the other 112 *Sinorhizobium*

211 isolates in the database had *iseA* homologs with sequence identity over 80%. However, 95 of

212 these had some gene with sequence similarity that generated an E value lower than -5, the

213 threshold for our search. Interestingly, seven of the unclassified species isolates had two genes

214 with this lower level of homology, a pattern that was also seen in one of the *S. fredii* isolates.

215 Thus, *iseA* is characteristic of *S. medicae* and found much less frequently elsewhere in

216 *Sinorhizobium*.

217 Genes with a high degree of similarity to the Smed_5985 glycanase are common in *S. medicae*,

218 occurring in 27 of the 31 strains, and less common in *S. meliloti*, occurring in 12 of the 73

219 strains. The search for genes similar to the Smed_5985 glycanase also identified several genes

220 with E-values between -07 and -20 that were annotated as thiamine pyrophosphate-dependent

221 enzymes or indolepyruvate decarboxylases in 14 and 7 of the *S. medicae* strains, respectively. In

222 several cases, two adjacent annotated genes had significant similarity to adjacent domains of

223 Smed_5985, suggesting either frameshift mutations or sequencing errors in the original

224 determination. The “break points” in the predicted frameshift sequences were similarly placed in

225 the Smed_5985 alignments, suggesting that these two differences are due to frameshift mutations

226 and were not random errors. Only one of the *S. meliloti* sequences had a similar arrangement and

227 only one strain had an annotated gene with the lower E-value. We again conclude that

228 Smed_5985 is very common in *S. medicae* and less common in *S. meliloti*. One match (E~47)

229 was found in the single *S. saheli* isolate in the database, but no similar genes were found in the

230 other *Sinorhizobium* strains.

231 The distribution of genes with similarity to the Smed_6456 ACC deaminase (ACCdA) was
232 interesting. In some species, nearly all of the identified genes had very high similarity to
233 Smed_6456, while in other species genes with significant similarity were found that appear to
234 belong to variant groups and were annotated as D-cysteine desulfhydratases (CysD) or
235 tryptophan synthases (beta chain) (TrpSb). These two groups were distinct in their degree of
236 similarity. As shown in Table 3, the proportion of these annotated groups was distinct by
237 species, even though the same BLAST operation was carried out on each isolate. So, for
238 example, of the 31 *S. medicae* isolates, 10 have genes annotated as ACCdA and 15 have genes
239 annotated as CysD. Some strains, like *S. medicae* WSM419, have both of these genes and some
240 have one or the other. In contrast, 47 of the 71 *S. meliloti* isolates have ACCdA and the 2 that
241 have CysD do not have ACCdA. We have no explanation for these patterns, but the distribution
242 was clearly not random with respect to species.

243 ***iseA* and Smed_6456 alter the *Rhizobium leguminosarum* bv. *viciae* 3841 symbiosis with
244 *Pisum sativa* (pea) and *Lens culinaris* (lentil)**

245 To investigate whether the *S. medicae* WSM419 genes could affect efficiency of another
246 symbiotic system, *iseA*, Smed_5985, and Smed_6456 were expressed in *R. leguminosarum*
247 bv. *viciae* 3841 (20) and used to inoculate pea and lentil under greenhouse conditions. There are
248 no close matches in *R. leguminosarum* 3841 to *iseA* or Smed_5985, although we found genes in
249 other *R. leguminosarum* species that have up to 86% identity using search parameters like those
250 above. Smed_6456 has a very close match (98% identity) in *R. leguminosarum* 3841. Growth
251 and nodulation of pea plants were evaluated at 5 weeks post inoculation. *iseA* and Smed_6456
252 significantly increased the number of nodules on the pea plants, by 45% and ~33% when

253 compared with vector control (Fig. 5A). However, only *iseA* increased pea plant biomass in
254 comparison to the vector control (Fig. 5B).

255 The WSM419 genes were also tested on two lentil cultivars, Pardina and Avondale, by
256 inoculating them with *R. leguminosarum* bv. *viciae* 3841 carrying *iseA*, Smed_5985, or
257 Smed_6456 expressed in pCPP30. Plant dry weight and number of nodules were determined at 5
258 weeks post inoculation. *iseA* increased both the nodule and dry weight of Avondale (Fig. 5C, D)
259 but, while there was some stimulation, the other two genes did not significantly ($p \leq 0.05$)
260 increase these parameters under the statistical tests used. None of the three candidate genes
261 increased yield or nodulation on Pardina by a statistically significant amount ($p \leq 0.05$), although
262 the number of nodules formed when the genes were present was somewhat higher (Fig. S2). The
263 interaction of *iseA* with both pea and lentil nodulation shows *iseA* can have an effect that is not
264 specific to *Medicago* or to *Sinorhizobium*. This implies that their effect is likely to be on some
265 underlying process common to nodulation of these plants, in contrast to highly host specific
266 determinants like lipochitooligosaccharides.

267 ***S. meliloti* Rm1021 containing *iseA* was less sensitive to autoregulation of nodulation (AON)**

268 After the initial infection, many legumes limit the number of nodules that are formed on their
269 roots by inducing a systemic AON response (13). To explore the idea of whether *iseA* might
270 increase the nodule number by decreasing the impact of AON, we tested whether *iseA* affected
271 the response of *S. meliloti* Rm1021 to AON by setting up a split root experiment with *M.*
272 *truncatula* A17. In this type of assay, infecting one side of a divided root system decreases the
273 number of nodules formed on the other side when the second side is infected after a delay long
274 enough for signals from the first side to reach it (21). The data (Fig. 6) showed that when the first
275 roots were inoculated with *S. meliloti* Rm1021 (pCPP30), fewer nodules were formed on the

276 roots inoculated with Rm1021 (pCPP30) after a delay of 3 days. However, when the second root
277 was inoculated with *S. meliloti* Rm1021 (pCPP30-*iseA*) at the delayed time point, the number of
278 nodules formed was still almost as high as a normal infection by a strain that contained *iseA*.
279 These results suggest strains containing *iseA* may partially overcome AON or be less sensitive to
280 it. We also performed both the early and delayed inoculation with *S. meliloti* Rm1021 (pCPP30-
281 *iseA*), where we observed a reduced number of nodules formed after the delayed infection.
282 Suppression of nodulation on the second root inoculated with *S. meliloti* Rm1021 (pCPP30)
283 during the delayed infection after the first set was infected with *S. meliloti* Rm1021 (pCPP30-
284 *iseA*) suggests that *iseA* can also induce AON. When both the early and delayed inoculation used
285 *S. meliloti* Rm1021 (pCPP30-*iseA*), there was a reduced number of nodules formed after the
286 delayed inoculation, but the number of nodules was significantly higher than the nodules formed
287 after delayed infection with *S. meliloti* Rm1021 (pCPP30).

288 **DISCUSSION**

289 Forming a successful nitrogen-fixing symbiosis between rhizobia and a legume requires the
290 two symbiotic partners to be compatible with each other throughout the process of infection and
291 nodule development. This is particularly obvious for interactions where both the plant and
292 bacteria are capable, in the sense that each can form a productive symbiosis with some partner,
293 but have difficulty forming a productive symbiosis with other, closely related partners. We took
294 advantage of the known interactions between two *Sinorhizobium* species and two *Medicago*
295 species in which one set of interactions [{*S. medicae*/ *M. truncatula*} and {*S. meliloti*/ *M.*
296 *sativa*}] is very effective but the reciprocal set [{*S. meliloti*/ *M. truncatula*} and {*S. medicae*/ *M.*
297 *sativa*}] is only partially effective (10, 11). Nitrogen fixation still occurs in the partially effective
298 pairings but the nodulated plants show clear signs of nitrogen stress. Because each symbiont can

299 do well in one relationship, the lower effectiveness with the other partner is clearly due to some
300 mismatch in the host-symbiont interaction. The availability of genetic resources for all the four
301 organisms makes this an appropriate model system to study host-symbiont interactions and to
302 investigate the implications of effectiveness on the evolutionary and ecological development of
303 this type of symbiosis.

304 We had previously shown [Yurgel SN, Qu Y, Rice JT, Zink EM, Brown JN, Lipton MS, Kahn
305 ML. Metabolic specialization in a nitrogen-fixing symbiosis: proteome differences between
306 *Sinorhizobium medicae* bacteria and bacteroids. (submitted)] that 83 *S. medicae* WSM419
307 proteins expressed in *S. medicae* WSM419 did not have close homologs in *S. meliloti* Rm1021.
308 We tested three candidate *S. medicae* WSM419 genes—*iseA*, Smed_5985, and Smed_6456—for
309 their effect on the less productive *S. meliloti* Rm1021/*M. truncatula* A17 interaction by
310 expressing them in *S. meliloti* Rm1021 individually and in combination and found that all three
311 stimulated nodulation and growth. The genes significantly increased the dry weight and the
312 number of pink (Fix⁺) nodules *S. meliloti* Rm1021 formed on *M. truncatula* A17. Learning the
313 exact mechanism by which these genes function when expressed in *S. meliloti* Rm1021 is
314 beyond the scope of this study. However, hypothetical connections can be made between two of
315 these three genes, annotated as coding for a 1-aminocyclopropane-1-carboxylate (ACC)
316 deaminase (Smed_6456) and coding for a glucan-1-4- α -glucosidase (Smed_5985), since
317 ethylene suppression and polysaccharide production and modification are two known elements in
318 nodule formation. There does not appear to be a precedent in the literature for an *iseA*-like gene,
319 which is annotated in *S. medicae* WSM419 as coding for glyoxalase/bleomycin resistance
320 protein/dioxygenase protein, influencing the symbiosis. *iseA* is especially interesting since it is

321 present in all 31 of the *S. medicae* sequences in the Joint Genome Initiative (JGI) database but in
322 few other sinorhizobia.

323 ACC deaminases can degrade ACC, the immediate precursor of ethylene. In legumes, the
324 phytohormone ethylene mediates an induced defense response and induction of ethylene inhibits
325 nodule formation (22–24). Many rhizobia have developed ways of interfering with ethylene
326 signaling as a way of increasing their nodulation ability, such as making ACC deaminase, which
327 cleaves ACC (25). *S. meliloti* Rm1021 does not make an ACC deaminase but adding the *R.*
328 *leguminosarum* bv. *viciae* 3841 ACC deaminase increases *S. meliloti* Rm1021 nodulation in
329 alfalfa (25). Thus, it was not surprising that expressing Smed_6456 in *S. meliloti* Rm1021
330 increased its symbiotic productivity with *M. truncatula* A17.

331 Smed_5985 was a candidate for improving *S. meliloti* Rm1021 productivity on *M. truncatula*
332 A17 because of its predicted involvement in breaking down polysaccharides. Glucosidases play a
333 role in making sugars available to rhizobia (26). Processing succinoglycan is important for
334 symbiotic function of this polysaccharide during nodulation of alfalfa (27, 28).

335 *iseA*, which is a member of a class of genes not previously described as being involved in
336 nodulation, gave the strongest response in increasing the nodule number and plant biomass of *M.*
337 *truncatula* A17 (Fig. 1, Table 2). IseA is one of 27 predicted proteins in *S. medicae* WSM419
338 that is classified at EMBL-BL (<https://www.ebi.ac.uk>) as belonging to the vicinal oxygen chelate
339 (VOC) protein superfamily (29). *S. meliloti* Rm1021 has 33 VOC proteins, according to EMBL-
340 BL (<https://www.ebi.ac.uk>). The VOC family is characterized by a motif in which several sites
341 that can bind a metal are brought together in the folded protein structure and then interact with
342 O₂ or with molecules that contain oxygen atoms, often on adjacent carbons. The level of overall
343 homology between these proteins in *S. meliloti* Rm1021 is low, but the binding sites are fairly

344 well conserved. None of these are closely related to IseA (Fig. S3 A). Homology searches using
345 NCBI BLASTP program and other tools indicate that IseA is most closely related to the extradiol
346 dioxygenase group within the VOC family (30). Extradiol dioxygenases cleave aromatic rings
347 containing adjacent hydroxyl groups at a position external to the OH groups. When the 132
348 amino acids of *iseA* were used to do a BLASTP search with *S. meliloti* Rm1021, the only
349 significant homology was ~30% amino acid identity with a region near the carboxyl terminus of
350 SMA0723, a hypothetical 262 amino acid VOC protein on the pSymA megaplasmid (Fig. S3 B).
351 The classification of *iseA* suggests it is involved in the metabolism of small molecules, either in
352 the rearrangement of structures that contain oxygen or in oxidizing these compounds using
353 molecular oxygen but the range of activities of these proteins precludes a more specific
354 assignment.

355 Although these VOC proteins in *S. medicae* WSM419 have conserved substructures, they
356 presumably differ in their functions. Only four of these belong to the same diol dioxygenase
357 subgroup as *iseA*. To test whether *iseA* has a unique role in nodulation in comparison with the
358 other genes sharing the same annotation, the *iseA* gene was disrupted in *S. medicae* WSM419
359 genome and the resulting mutant formed fewer nodules on *M. truncatula* A17 and the nodulated
360 plants had a lower dry weight. Complementation of the *S. medicae* WSM419Δ*iseA* strain with
361 pCPP30 *iseA* restored the nodule number and dry weight (Fig. 4). These results indicate that *iseA*
362 participates in normal nodule formation and nitrogen fixation and, significantly, that other *S.*
363 *medicae* VOC proteins are not able to substitute for it in order to complement its activity. *iseA*
364 might plausibly have been identified in a screen for WSM419 mutants with impaired symbiosis.
365 The versatility of VOC proteins and the lack of a close and functionally characterized homolog
366 make it difficult to speculate about *iseA* function. It might degrade diol-containing compounds of

367 interest in symbiosis like caffeic acid, quercetin, or luteolin. Caffeic acid is a precursor of G-and
368 S-lignin subunits. Luteolin is the prototypical flavonoid inducer of Nod factor synthesis in *S.*
369 *meliloti* (31). Another diol-containing flavonoid, quercetin, inhibits nodulation in pea by
370 interfering with Nod factor synthesis (32). IseA might also be involved in catabolism of diol-
371 containing molecules like catechol, an intermediate in breakdown of many aromatic compounds.

372 To gain some insight into whether the three *S. medicae* WSM419 genes might be significant
373 for nodulation in other systems, we constructed derivatives of *R. leguminosarum* bv. *viciae* 3841
374 expressing the three candidate genes separately and tested the effect in pea and lentil. *iseA*
375 increased both nodule number and dry weight in the lentil cultivar Avondale under greenhouse
376 conditions but had no significant effect on Pardina. Both *iseA* and Smed_6456 increased
377 nodulation in pea plants but only *iseA* led to increased pea plant biomass. These results suggest
378 that if *iseA* and Smed_6456 interact with signaling during nodule formation, they do not have the
379 high level of specificity that are characteristic of flavonoid or EPS signals and they may be
380 acting more like ethylene in interacting with more general aspects of nodulation control. For the
381 lentil cultivar Avondale, the biomass accumulated under greenhouse conditions also increased.
382 We interpret the symbiotic growth stimulation conferred by adding the three *S. medicae*
383 WSM419 genes to *S. meliloti* Rm1021 as at least partially due to the relatively ineffective nature
384 of the interaction between *S. meliloti* Rm1021 and *M. truncatula* A17. However, if the results
385 with Avondale can be translated to the field, it may be that *iseA*, or *iseA* homologs in other
386 *R. leguminosarum* strains (Table 3), could be useful in increasing productivity in less
387 compromised situations and that *iseA* might be useful in rhizobial inoculants.

388 Interestingly, none of the three genes had a substantial symbiotic phenotype when the *S.*
389 *meliloti* Rm1021 strains containing them were tested on *M. sativa*. Possible explanations are that

390 alfalfa does not respond to the activities they generate or that *S. meliloti* Rm1021 is able to
391 trigger a comparable response in alfalfa through some other mechanism. It is also possible that
392 any potential growth response is masked by the already productive interaction in this symbiosis.

393 We also analyzed the expression level and spatial expression pattern of the *iseA*, Smed_5985,
394 and Smed_6456 promoters by creating promoter-GUS fusion constructs. All three genes were
395 expressed well in the nodules and *iseA* was also expressed in free-living bacteria. These results
396 are consistent with the original *S. medicae* WSM419 proteome data that prompted us to examine
397 these proteins (Yurgel et al. (submitted)]. In this study, *iseA* was also found in both free-living
398 and symbiotic conditions with higher abundance in the nodule and ACC deaminase produced
399 from Smed_6456 was found in higher amounts in symbiotic than in free-living bacteria.

400 Nodule formation for nitrogen fixation is a highly energy-demanding process and therefore
401 tightly regulated by the host plant to keep a balance between nitrogen acquisition and energy
402 expenditure. Many legumes control their nodule number after the initial infection by AON (13),
403 a negatively acting regulatory systemic response that represses nodule formation by producing
404 mobile peptides in the root that are mobilized to the shoot and then generate an unknown
405 inhibitory signal that is perceived by the root. While there may be other explanations, our current
406 thinking is that *iseA* can partially overcome or bypass the AON response and that this leads to
407 increased nodulation. This idea is consistent with the results of split root experiments that show
408 *S. meliloti* 1021 with *iseA* is relatively unaffected by AON (Fig. 6). If *iseA* interferes with the
409 SDI, this could explain both the increase in nodulation and partial resistance to AON. Whether
410 this is accomplished by affecting local interactions at a single root hair or by modulating the
411 receptiveness of the entire root system is unknown. The AON response has some mechanistic
412 similarity to environmental interactions that modify nodulation, such as sensitivity to nitrate and

413 acidity (33). It would be interesting to determine if *iseA* affects these other plant-mediated
414 pathways for controlling rhizobial nodulation since its presence might allow nodulation to occur
415 under otherwise unfavorable conditions.

416 In this paper, we showed that transferring into *S. meliloti* Rm1021 three *S. medicae* WSM419
417 genes that do not have close relatives in *S. meliloti* Rm1021 improved the strain's symbiotic
418 productivity with *M. truncatula* A17. One of these genes, *iseA*, was present in all *S. medicae*
419 genomes that are available, and it may be especially useful for symbionts of *M. truncatula*. *S.*
420 *meliloti* WSM1022, which does well on *M. truncatula* (11), is one of a few *S. meliloti* strains that
421 contains an *iseA*. *iseA* promoted nodulation in two different grain legumes, pea and lentil.
422 Moreover, *iseA* allows the bacteria to promote nodule formation even when the AON regulatory
423 circuit is operating, suggesting that it can bypass or overcome this regulation in some way. In
424 legume species, nodulation is hampered by several external factors such as low pH, the presence
425 of nitrate, and salt stress (13, 33, 34). There are general similarities between the circuitry that
426 controls systemic plant responses to these challenges, and it might be that *iseA* can influence
427 nodulation under stress conditions. Understanding how field conditions limit nodulation is
428 becoming more important, both because of changing conditions in cultivated fields and because
429 agriculture is moving into more marginal environments. The identification and expression of
430 genes that confer improvements to nodule formation or symbiotic productivity may be able to
431 allow legumes to take more advantage of symbiotic nitrogen fixation in the field.

432 **MATERIALS AND METHODS**

433 **Strains, media, and culture conditions**

434 The bacterial strains and plasmids used are listed in Table 1. Rhizobia were grown at 30°C in
435 liquid YMB or minimal medium supplemented with mannitol (1% wt/vol) (MMNH₄) with

436 antibiotics when appropriate (35). *Escherichia coli* strains were grown at 37 °C in LB or LB agar
437 with the indicated antibiotics (36). Antibiotics used as needed were: 10 µg/mL tetracycline,
438 12.5 µg/mL gentamicin for *E. coli*, 100 µg/mL gentamicin for *S. meliloti*, 75 µg/mL gentamicin
439 for *R. leguminosarum*, 40 µg/mL kanamycin for *E. coli*, and 40 µg/mL neomycin for *S. meliloti*.

440 **Plasmid and strain construction**

441 Standard techniques were used for PCR amplification of DNA, DNA isolation, restriction
442 enzyme digestion, ligations, and transformations (36). All enzymes used for cloning were
443 obtained from New England BioLabs (Ipswich, MA, USA). Custom oligonucleotides used in this
444 paper are listed in Table 4. Plasmid DNA was conjugated into rhizobia by biparental mating
445 using *E. coli* host S17-1 (35, 37) as a donor strain. All the plasmid integrations and genomic
446 deletions were screened and confirmed by PCR and DNA sequencing. Briefly, the ORF of the
447 three candidate genes were amplified from the *S. medicae* WSM419 (12) genome using gene
448 specific primers. The PCR products were digested, purified, and cloned downstream of the *lacZ*
449 promoter in the pSRKGm or pCPP30 plasmids, which are Gm^R and Tc^R, respectively (38, 39). *S.*
450 *meliloti* Rm1021 strains co-expressing two genes in two different plasmids were constructed by
451 biparental mating, selecting for dual antibiotic resistance. Individual genes cloned in both
452 pSRKGm and pCPP30 were also transformed into *R. leguminosarum* bv. *viciae* 3841 (20) to test
453 the effect of these genes in pea and lentil. The *iseA* deletion mutants were constructed using an
454 insertion/excision strategy (35). Briefly, 0.5-kb and 0.6-kb chromosomal regions flanking the
455 target gene (*iseA*) were amplified, digested, and ligated together. The resulting composite
456 flanking regions were then amplified and ligated into pK19 *mob sacB* (40). The plasmid was
457 named pK19 *mob sacB*- Δ *iseA* and introduced to *E. coli* S17-1, then conjugated into *S. medicae*
458 WSM419. Since pK19 *mob sacB*- Δ *iseA* cannot replicate in *S. medicae* WSM419, it must

459 integrate by recombination into one of the regions flanking *iseA* to yield neomycin resistant
460 colonies. Single recombinants were subcultured on MMNH₄ agar supplemented with 5% sucrose
461 to select for a second recombination event that eliminated the *sacB* gene. When this second
462 recombination occurs in the other flanking region, an allele with Δ *iseA* remains. Neomycin
463 sensitive colonies were identified and the Δ *iseA* mutation was confirmed by sequencing.

464 To construct promoter-GUS fusions, ~150 bp from the regions upstream of the start codon of
465 each of the three candidate genes was amplified from the *S. medicae* WSM419 genome (Table 1)
466 and fused with the *E. coli* β -glucuronidase gene (GUS) in the replicative plasmid pPG012,
467 Km^R/Nm^R. The plasmid pPG012 was built by joining different fragments, pVS1 *repA*, *staA*, and
468 *oriV*, followed by *km^R* and p15A *oriV*, and RK2 *oriT*. Finally, a multiple cloning site was added,
469 and the plasmid was sequence verified [Benedict A, Ghosh P, Scott S, Griffitts JS. A conserved
470 rhizobial peptidase that interacts with host-derived symbiotic peptides. (under review)].

471 Similar fusions also were made with the *hrrP* promoter (PhrrP), which is normally up regulated
472 in the nodule (17); the flagellin promoter from *S. medicae* WSM419 Smed_0266, which was
473 expected to be down-regulated in the nodule; and the tryptophan promoter (P_{trp}) from
474 *Salmonella*, which is a constitutive promoter in *S. meliloti* (17). These reporter plasmids were
475 transformed into *S. meliloti* Rm1021 and GUS expression was monitored in liquid media
476 (MMNH₄, LB) and *in planta*.

477 **Plant growth, inoculation and nodulation**

478 Plants and their sources are listed in Table 5. *M. truncatula* A17 seeds were surface sterilized by
479 using concentrated sulfuric acid, rinsed several times with sterile water and soaked briefly in
480 bleach (5% sodium hypochlorite). The seeds were again rinsed thoroughly with sterile water and
481 kept in water at 4 °C for 2 days then allowed to germinate in Petri plates at room temperature.

482 The germinated 2-day old seedlings were planted in Magenta boxes (Sigma GA-7 vessel) filled
483 with a 4:1 mixture of Turface and Vermiculite (Turface Athletics; Thermo-O-Rock West Inc.).
484 The plants were grown for 4 days before inoculation and maintained in a growth chamber with a
485 16h/8h light/dark cycle at 20°C. Alfalfa (*M. sativa* cv Ladak) seeds were sterilized, germinated
486 and planted in sand filled Magenta boxes (Sigma GA-7 vessel) as described previously (35).
487 Plants were grown in a growth chamber with 24 h of light at 20°C. At 28 dpi, nodule number and
488 plant shoot dry weight were determined for both *M. truncatula* A17 and *M. sativa*. Sterilization
489 of pea (*P. sativum* cv. Green Arrow) seeds, plant inoculation, and growth conditions were done
490 as described previously (41). Plant shoot dry weight and nodule numbers were quantified at 5
491 weeks post inoculation.

492 Seeds of two lentil (*Lens culinaris*) cultivars, Pardina and Avondale, were sterilized by
493 washing with 100% ethanol for 1 min followed by washing with sterile water. The seeds were
494 then soaked in bleach (5% sodium hypochlorite) for 5 min, washed with sterile water, dried in a
495 laminar flow hood, and scarified mechanically before germination. For germination, seeds were
496 soaked in sterile water for 5 h and incubated in moist filter paper in the dark at room
497 temperature. After 3 days, the germinated seedlings with radicle length greater than 2 cm were
498 selected and transplanted into Turface. The plants were maintained in a greenhouse with 16 h
499 light/8 h dark cycle at 20°C. Data were collected after 5 weeks post inoculation.

500 Rhizobia strains used for inoculation were grown on solid LB agar with appropriate
501 antibiotics for 48 h then resuspended in sterile water to a final OD₆₀₀ of 0.5. Each plant in the
502 growth box was inoculated with the tested strains by applying 0.5 ml of the cell suspension. All
503 plant boxes were supplemented with standard nitrogen-free nutrient solution (35)(42). To
504 determine shoot dry weight of plants, plant materials were dried at 60°C for 48 h in an oven and

505 weighed. Shoot dry weight and nodule number are often correlated with the benefit host plants
506 derive from the symbiosis in the field so we have limited our analysis to these measures. All the
507 experiments were replicated at least three times with similar conditions and data point from one
508 representative experiment was presented.

509 **Histochemical GUS staining and quantification**

510 For colorimetric quantification of GUS reporter activity, *S. meliloti* Rm1021 cultures were grown
511 to log phase in MMNH₄ media or LB (OD₆₀₀ 0.6 – 1.1). β -glucuronidase reactions were carried
512 out in a GUS master mix buffer (15 mM Na₂HPO₄, 10 mM NaH₂PO₄, 5 mM KCl, 1 mg/mL p-
513 nitrophenyl- β -D-glucuronide (PNPG), 0.01% Triton X-100, and 0.5% β -mercaptoethanol, pH
514 7.0) at 37 °C (17). The reactions were stopped using an equal volume of 1M Na₂CO₃ stop buffer.
515 Miller units were calculated [(1000*OD₄₁₀)/ (OD₆₀₀*volume in milliliters*time in minutes)].

516 Bacterial culture used to measure GUS activity were performed in three biological replicates. To
517 stain for β -glucuronidase in nodules, 10 dpi whole nodules of *M. truncatula* A17 were incubated
518 in GUS reaction buffer [100 mM sodium phosphate (pH 7.0), 2 mM potassium ferricyanide, 2
519 mM potassium ferrocyanide, 10 mM EDTA, 0.1% Triton X-100 and 1 mM X-Gluc (5-bromo-4-
520 chloro-3-indolyl β -D-glucuronide) (Gold Biotechnology Inc., St. Louis, MO)] for 8 h at 37°C in
521 the dark (17). After staining, the nodules were washed with 75% ethanol and photographed.

522 Images were captured under a Leica EZ4D dissecting microscope (Leica Microsystems, Inc.).

523 **Split root development and inoculation**

524 *M. truncatula* A17 split root experiments were performed as described previously (21). *M.*
525 *truncatula* A17 seeds were prepared as described above. Five one-day old seedlings were placed
526 on 9 cm Petri dishes containing Harrison Modified Farhaeus (HMF) media inserted between two
527 Whatman filter papers (Whatman, catalog # 1001090) and stored vertically for 4 days in a

528 growth chamber (25°C and a 16h/8h light/dark cycle). On the 6th day, the tip of the main root
529 was cut to induce lateral root development. The plants were again placed in the HMF media
530 between two sheets of Whatman filter paper. After 3-5 days, those plants with split roots of
531 approximately equal length were selected. Lateral roots from the same plantlet were directed to
532 grow into two independent compartments made by adjacent Perlite-filled Magenta boxes. When
533 inoculation was staged, the delayed inoculation of the second root was performed 3 days after the
534 first inoculation. After 4 weeks from the delayed inoculation total number of nodules per root
535 was counted. The plants were maintained in a growth chamber with 16h/8h light/dark cycle at
536 20°C.

537 **Statistical analyses**

538 Statistical analysis was performed using Student's t-test. P values < 0.05 was considered to be
539 statistically significant. All experiments were done at least three times and data points in the
540 figures are from one representative experiment, with the number of plants used in each treatment
541 represented there.

542 **ACKNOWLEDGEMENTS**

543 This research was supported by the Agriculture Research Center at Washington State University
544 and grants DE-FG03-96ER20225 from the US Department of Energy–Basic Energy Sciences–
545 Physical Biosciences Program, IOS-1645590 from the US National Science Foundation, and
546 seed grants from the Washington State University BioAg Program and the USA Dry Pea &
547 Lentil Council. We thank Steve Farrand, Philip Poole, and Jason Terpolilli for strains and
548 especially Trang Uyen Pham in our laboratory and Rebecca McGee and her crew with USDA-
549 ARS in Pullman for help with the pea and lentil experiments. We also acknowledge
550 contributions made by the anonymous reviewers of this paper.

552 **Table 1** Bacterial strains and plasmids used in this study

553

Bacterial strains or plasmids	Relevant features ^a	Reference
Plasmids		
pCPP30	incP1 replicative plasmid derived from pRK2/pRP4, Tc ^R	(39)
pCPP30- <i>iseA</i>	pCPP30 <i>PlacZ-iseA</i> , Tc ^R	This work
pCPP30-Smed_5985	pCPP30 <i>PlacZ-Smed_5985</i> , Tc ^R	This work
pCPP30-Smed_6456	pCPP30 <i>PlacZ-Smed_6456</i> , Tc ^R	This work
pSRKGm	pSRKGm, derived from pBBR1 Gm ^R	(38)
pSRKGm- <i>iseA</i>	pSRKGm- <i>PlacZ-iseA</i> , Gm ^R	This work
pSRKGm-5985	pSRKGm- <i>PlacZ-Smed_5985</i> , Gm ^R	This work
pSRKGm-6456	pSRKGm- <i>PlacZ-Smed_6456</i> , Gm ^R	This work
pPG012	A broad host range plasmid, p15A and pVS1 origins, Km ^R /Nm ^R	Benedict A, Ghosh P, Scott S, Griffitts JS.
pK19 <i>mob sacB</i>	pUC19 derivative, <i>lacZ_mob sacB</i> , Km ^R	(37)
Strains		
<i>S. meliloti</i> Rm1021	Wild type rhizobial strain	(43)4/11/22 1:13 PM
<i>S. medicae</i> WSM419	Wild type	(12)
<i>R. leguminosarum</i> bv. <i>viciae</i> 3841	Wild type	(20)
<i>E. coli</i> (S17-1)	pro hsdR recA [RP4-2(Tc::Mu) (Km::Tn7)]	(40)
Rm1021 (pPG012::GUS)	pPG012 carrying <i>gus</i> gene, Km ^R /Nm ^R	Benedict A, Ghosh P, Scott S, Griffitts JS.
Rm1021 (P <i>iseA</i> ::GUS)	pPG012 carrying <i>iseA</i> promoter (158bp)- <i>gus</i> , Km ^R /Nm ^R	This work
Rm1021 (P <i>Smed_5985</i> ::GUS)	pPG012 carrying <i>Smed_5985</i>	This work

	promoter (360 bp)- <i>gus</i> , Km ^R /Nm ^R	
Rm1021 (PSmed_6456::GUS)	pPG012 carrying Smed_6456 promoter (360 bp)- <i>gus</i> , Km ^R /Nm ^R	This work
Rm1021 (PSmed_0266::GUS)	pPG012 carrying Smed_0266 (flagellin) promoter (337 bp)- <i>gus</i> , Km ^R /Nm ^R	This work
Rm1021 (Phrrp::GUS)	pPG012 carrying hrrP promoter (474 bp)- <i>gus</i> , Km ^R /Nm ^R	Benedict A, Ghosh P, Scott S, Griffitts JS.
Rm1021 (Ptrp:: GUS)	pPG012 carrying <i>trp</i> promoter (474 bp)- <i>gus</i> , Km ^R /Nm ^R	Benedict A, Ghosh P, Scott S, Griffitts JS.
Rm1021 (pCPP30) (pSRKGm)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- <i>iseA</i>) (pSRKGm)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30) (pSRKGm- <i>iseA</i>)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_5985) (pSRKGm)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30) (pSRKGm- Smed_5985)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_6456) (pSRKGm)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30) (pSRKGm- Smed_6456)	Tc ^R ; Gm ^R	This work
Rm1021 (pCPP30- <i>iseA</i>) (pSRKGm- <i>iseA</i>)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_5985) (pSRKGm- Smed_5985)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_6456) (pSRKGm- Smed_6456)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- <i>iseA</i>) (pSRKGm- Smed_5985)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- <i>iseA</i>) (pSRKGm- Smed_6456)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_5985) (pSRKGm- Smed_ <i>iseA</i>)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_6456) (pSRKGm- <i>iseA</i>)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_6456) (pSRKGm- Smed_5985)	Tc ^R , Gm ^R	This work
Rm1021 (pCPP30- Smed_5985) (pSRKGm- Smed_6456)	Tc ^R , Gm ^R	This work
<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (pCPP30- <i>iseA</i>)	Tc ^R	This work
<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (pCPP30- Smed_5985)	Tc ^R	This work
<i>R. leguminosarum</i> bv. <i>Viciae</i> 3841 (pCPP30- Smed_6456)	Tc ^R	This work
<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (pSRKGm- <i>iseA</i>)	Gm ^R	This work
<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (pSRKGm- Smed_5985)	Gm ^R	This work

<i>R. leguminosarum</i> bv. <i>viciae</i> 3841 (pSRKGm-Smed_6456)	Gm ^R	This work
<i>S. medicae</i> WSM419Δ <i>iseA</i>		This work
<i>S. medicae</i> WSM419Δ <i>iseA</i> (pCPP30)	Tc ^R	This work
<i>S. medicae</i> WSM419Δ <i>iseA</i> (pCPP30- <i>iseA</i>)	Tc ^R	This work

554

555 ^a Tc^R, tetracycline resistance; Gm^R, gentamycin resistance; Km^R, kanamycin resistance; Nm^R, neomycin
556 resistance

557

558

559

560

561

562 **Table 2** Numerical values for *M. truncatula* A17 nodule numbers in symbiosis infected with *S.*
 563 *meliloti* Rm1021 strains containing the indicated plasmids
 564

Combination of genes ^a	Pink nODULES (avg)	White nODULES (avg)	Pink nODULES (SEM)	White nODULES (SEM)
<i>S. meliloti</i> Rm1021				
Vector control [(pCPP30, Tc ^R) (pSRKGm, Gm ^R)]	17.9	8.4	1.6	1.0
(pCPP30- <i>iseA</i> , Tc ^R) (pSRKGm, Gm ^R)	28.7 ***	5.3	1.8	0.5
(pCPP30, Tc ^R) (pSRKGm- <i>iseA</i> , Gm ^R)	27.5 ***	5.7	1.9	0.8
(pCPP30- <i>iseA</i> , Tc ^R) (pSRKGm- <i>iseA</i> , Gm ^R)	30.1 ***	6.3	1.6	0.7
(pCPP30-Smed_5985, Tc ^R) (pSRKGm, Gm ^R)	25.4 **	5.9	1.7	1.1
(pCPP30, Tc ^R) (pSRKGm-Smed_5985, Gm ^R)	23.2 **	6.4	0.9	1.0
(pCPP30-Smed_5985, Tc ^R) (pSRKGm-Smed_5985, Gm ^R)	22.6 **	4.7	1.4	0.7
(pCPP30-Smed_6456, Tc ^R) (pSRKGm, Gm ^R)	26.7 ***	6.7	1.6	0.8
(pCPP30, Tc ^R) (pSRKGm-Smed_6456, Gm ^R)	27.2 ***	6.4	2.8	1.0
(pCPP30-Smed_6456, Tc ^R) (pSRKGm-Smed_6456, Gm ^R)	23.9 **	2.9	1.2	0.4
(pCPP30- <i>iseA</i> , Tc ^R) (pSRKGm-Smed_5985, Gm ^R)	30.5 ***	5.8	1.6	0.6
(pCPP30-Smed_5985, Tc ^R) (pSRKGm- <i>iseA</i> , Gm ^R)	31.8 ***	6.3	2.0	0.8
(pCPP30- <i>iseA</i> , Tc ^R) (pSRKGm-Smed_6456, Gm ^R)	29.6 ***	5.7	2.3	0.5
(pCPP30-Smed_6456, Tc ^R) (pSRKGm- <i>iseA</i> , Gm ^R)	31.4 ***	4.6	2.2	0.7
(pCPP30-Smed_6456, Tc ^R) (pSRKGm-Smed_5985, Gm ^R)	28.2 ***	4.9	2.3	0.5
(pCPP30-Smed_5985, Tc ^R) (pSRKGm-Smed_6456, Gm ^R)	27.7 ***	5.7	2.4	0.9
<i>S. medicae</i> WSM419	32.4 ***	5.4	2.3	0.8

565
 566 ^a Each of the genes was cloned in two different plasmids, pCPP30; Tc^R and pSRKGm; Gm^R
 567 were expressed in *S. meliloti* Rm1021 in various combinations. The *S. medicae* WSM419 control
 568 shows that more productive associations are possible. The experiments were performed in
 569 triplicate and the values present here are from one experiment. All data were collected at 28 dpi

570 (n = 18). Significant differences (*p < 0.05, **p < 0.01, ***p < 0.001) for Student's t test vs.

571 vector control. The vector control contains comprises of pCPP30, Tc^R and pSRKGm, Gm^R.

572

573

574 **Table 3** Distribution of *iseA*, Smed_5985 and Smed_6456 by species^a

		<i>iseA</i> (Smed_3503)		Smed_5985		Smed_6456		
<i>Sinorhizobium</i>	Number of genomes	High	Low	High	Low	High ACCdA	Med CysdS	Low TrypSb
<i>Sinorhizobium americanum</i>	4	0	4	0	0	4	5	4
<i>Sinorhizobium arboris</i>	1	1	2	0	0	1	0	0
<i>Sinorhizobium fredii</i>	17	0	6	0	0	2	0	14
<i>Sinorhizobium kostiensis</i>	1	0	0	0	0	0	0	0
<i>Sinorhizobium medicae</i>	31	31	0	27	38	10	15	0
<i>Sinorhizobium meliloti</i>	73	6	67	11	1	47	2	0
<i>Sinorhizobium saheli</i>	1	0	0	0	0	1	0	0
<i>Sinorhizobium sp</i>	14	4	17*	0	0	9	0	8
<i>Sinorhizobium terangae</i>	1	0	0	0	0	1	0	0
<i>Rhizobium leguminosarum</i>	69	0	62	38	12	20	19	67

575
576

577 ^aThe distribution of DNA sequences with some similarity to *iseA* (Smed_3503), Smed_5985, and
 578 Smed_6456 was examined in *Sinorhizobium* species and *Rhizobium leguminosarum* biovars
 579 listed in the JGI database by using the *S. medicae* WSM419 protein sequences to search for
 580 homologs using BLAST-P, with a maximum cutoff of E>-05 (19). The number of Finished,
 581 Permanent Draft, and Draft Genome DNA sequences is shown in the second column. For each of
 582 the three genes, the number of matches within the indicated genomes that had a value of E<-80
 583 is shown in the high similarity columns. These are speculated to be homologs. The low
 584 similarity column contains matches of much poorer quality, typically E>-15. As explained in the
 585 text, the sequences found using the Smed_6456 protein sequence were in three groups: proteins

586 with very high similarity to ACC deaminase (ACCdA), proteins that had been annotated as
587 resembling cysteine desulphydrase proteins (CysdS), which typically had $-55 < E < -35$, and
588 proteins that had been annotated as tryptophan synthase, beta chain, with $-15 < E < -05$. The 69
589 *Rhizobium leguminosarum* genomes studied comprised all of the sequences listed on March 8,
590 2021 and included several species biovars.

591

592

593

594

595

596

597

598

599

600

601

602 **Table 4** Primers used in this study

Primer	Sequence ^a	Usage
oMK01	F: <u>GCGTCTAGAGGAGGTACTGAATGCTATCTAAAACA</u>	Clone <i>iseA</i> gene into pCPP30
oMK02	R: <u>GCGGATCCTCAACCCTGGCTGCCCT</u>	Clone <i>iseA</i> gene into pCPP30
oMK03	F: <u>GCGTCTAGAGGAGGTACTGAATGACAGTTGCATTCGC</u>	Clone Smed_5985 gene into pCPP30
oMK04	R: <u>GCGGAGCTCTCACGAACCTCGGCTGCG</u>	Clone Smed_5985 gene into pCPP30
oMK05	F: <u>GC GGAGCTCGGAGGTACTGAATGTCACTGTTGGAAAAG</u>	Clone Smed_6456 gene into pCPP30
oMK06	R: <u>GC GGAAATTCTCAACCGTCCCTGTAGTA</u>	Clone Smed_6456 gene into pCPP30
oMK07	F: <u>GC GGAGCTCGGAGGTACTGAATGCTATCTAAAACA</u>	Clone <i>iseA</i> gene into pSRKGm
oMK08	R: <u>GC GGATCCTCAACCCTGGCTGCCCT</u>	Clone <i>iseA</i> gene into pSRKGm
oMK09	F: <u>GC GGAGCTCGGAGGTACTGAATGACAGTTGCATTCGC</u>	Clone Smed_5985 gene into pSRKGm
oMK10	R: <u>GCGTCTAGATCACGAACCTCGGCTGCG</u>	Clone Smed_5985 gene into pSRKGm
oMK11	F: <u>GC GGAGCTCGGAGGTACTGAATGTCACTGTTGGAAAAG</u>	Clone Smed_6456 gene into pSRKGm
oMK12	R: <u>GC GGATCCTCAACCGTCCCTGTAGTA</u>	Clone Smed_6456 gene into pSRKGm
oMK13	F: <u>GC GGATCCGGAGGTACTGAATGGTCGTCCTGTAGAA</u>	Clone <i>gus</i> gene into pPG012
oMK14	R: <u>GCGTCTAGATTATTGTTGCCTCCCTG</u>	Clone <i>gus</i> gene into pPG012
oMK15	F: <u>GC GGAGCTCGGATACGGCACCG</u>	Clone <i>iseA</i> promoter in pPG012-gus
oMK16	R: <u>GC GGAAATTCGAAGGGCAGTGCTT</u>	Clone <i>iseA</i> promoter in pPG012-gus
oMK17	F: <u>GC GGAGCTTTGCGAAGCTCTACAAC</u>	Clone Smed_5985 promoter in pPG012-gus
oMK18	R: <u>GC GGAAATTCTGGCTGACTCCAAATCG</u>	Clone Smed_5985 promoter in pPG012-gus
oPG19	F: <u>GC GGAGCTCCCATCGCGCGAGGCCTA</u>	Clone Smed_6456 promoter in pPG012-gus
oMK20	R: <u>GC GGAAATTCCGATCAGGGCCTCCGTGC</u>	Clone Smed_6456 promoter in pPG012-gus
oMK21	F: <u>CG CGAGCTCTCCATGAGCCGTCGGCAT</u>	Clone Smed_0266 promoter in pPG012-gus
oMK22	R: <u>CG CGAATTGGTTAGTGCCCCTTGG</u>	Clone Smed_0266 promoter in pPG012-gus
oMK23	F: <u>CG CGAGCTCGGGATGTGCTGCAAGGCG</u>	Clone <i>trp</i> promoter in pPG012-gus
oMK24	R: <u>CG CGAATTCTATCAGGAAGTGCGCCACC</u>	Clone <i>trp</i> promoter in pPG012-gus
oMK25	F: <u>CG CGAGCTCTCGTCGAGAACGT</u>	Clone <i>hrrP</i> promoter in pPG012-gus
oMK26	R: <u>CG CGAATTCGACGGAATATCCGCG</u>	Clone <i>hrrP</i> promoter in pPG012-gus
oMK27	F: <u>CG GAAGCTCTGGTTTCGCGGGCGTC</u>	Clone right border (500bp) of <i>iseA</i>
oMK28	R: <u>GCGTCTAGATGATTGCTCCCTCTG</u>	Clone right border (500bp) of <i>iseA</i>
oMK29	F: <u>GCGTCTAGATCGGGCTGGAGCACT</u>	Clone right border (600bp) of <i>iseA</i>
oMK30	R: <u>CG GAAGCTTCCGCACGCGCTGCGCG</u>	Clone right border (600bp) of <i>iseA</i>

603 ^a Restriction sites used for cloning are underlined.

604 **Table 5** Legume plants used in this study

605

Plants	Cultivar	Source
<i>Medicago truncatula</i> (Barrel medic)	Jemalong A17	USDA-ARS Washington State University
<i>Medicago sativa</i> (Alfalfa)	Ladak	Bruce Seed Farm, Inc., Townsend, MT
<i>Pisum sativum</i> (Pea)	Green Arrow	USDA-ARS Washington State University
<i>Lens culinaris</i> (Lentil)	Pardina	Dr. Rebecca McGee, USDA-ARS
<i>Lens culinaris</i> (Lentil)	Avondale	Dr. Rebecca McGee, USDA-ARS

606

607

608

609

610

611 **FIGURE LEGENDS**

612 **FIG 1. Genes from *S. medicae* WSM419 increase the symbiotic productivity of *S. meliloti***
613 **Rm1021 with *M. truncatula* A17.** The shoot dry weight of *M. truncatula* A17 inoculated with *S.*
614 *meliloti* Rm1021 expressing the candidate genes (*iseA*, Smed_5985, and Smed_6456)
615 independently and in different combinations. All data were collected at 28 dpi, the time of
616 harvest ($n = 18$). Error bars indicate SEM. Significant differences (* $p < 0.05$, ** $p < 0.01$, *** $p <$
617 0.001) for Student's t test vs. vector control (pCPP30, Tc^R and pSRK, Gm^R) The plasmids
618 pCPP30 (Tc^R) and pSRKGm (Gm^R) are represented as pC and pS respectively.

619 **FIG 2. Expression pattern of *iseA*, Smed_5985 and Smed_6456 promoters**

620 (A) Histochemical β -glucuronidase (GUS) staining of *M. truncatula* A17 root nodules from 10
621 dpi. The GUS staining of nodules induced by *S. meliloti* Rm1021 carrying no promoter-GUS,
622 Pfla (flagellin)-GUS, PhrrP-GUS, PiseA-GUS, PSmed_5985-GUS, and PSmed_6456-GUS,
623 respectively. Scale bar 100 μ m. (B) GUS expression levels in free living *S. meliloti* Rm1021
624 cells after grown to log phase in MMNH₄ and LB. The constitutive *Salmonella*-derived *trp*
625 promoter (P*trp*) was used as a positive control. Error bars represent standard errors of the mean
626 of three biological replicates.

627 **FIG 3. These *S. medicae* WSM419 genes do not significantly improve the *S. meliloti***
628 **Rm1021 symbiosis with *M. sativa*.** (A) Nodule number (B) and plant shoot dry weight data 28
629 dpi for *M. sativa* inoculated with *S. meliloti* Rm1021 containing the pCPP30 vector control,
630 pCPP30-*iseA*, pCPP30-Smed_5985, and pCPP30-Smed_6456, respectively ($n = 16$). Error bars
631 indicate SEM. No significant differences were observed between transgenic strains and vector
632 control (pCPP30, Tc^R) using Student's t test. Similar results were obtained with the pSRKGm,
633 Gm^R plasmid carrying the genes (data not shown).

634 **FIG 4. Deleting the *iseA* gene from *S. medicae* WSM419 lowers symbiotic productivity with**
635 ***M. truncatula* A17** (A) Nodule number (B) and plant shoot dry weight data at 28 dpi for *M.*
636 *truncatula* A17 plants infected with *S. medicae* WSM419, WS419 Δ *iseA*, WS419 Δ *iseA* (pCPP30)
637 and WS419 Δ *iseA* (pCPP30-*iseA*) (n = 16). Error bars indicate SEM. Significant differences (*p
638 < 0.05, **p < 0.01, ***p < 0.001) for Student's t test.

639

640 **FIG 5. *S. medicae* WSM419 genes increased pea and lentil performance when expressed in**
641 ***R. leguminosarum* bv. *viciae* 3841**

642 Number of nodules(A) and plant shoot dry weight (B) at 5 weeks post inoculation for pea (*P.*
643 *sativum* cv Green Arrow) inoculated with *R. leguminosarum* bv. *viciae* 3841 containing the
644 pCPP30 vector control, pCPP30-*iseA*, pCPP30-Smed_5985 and pCPP30-Smed_6456,
645 respectively (n = 16).
646 Number of nodules (C) and plant shoot dry weight (D) at 5 weeks post inoculation for lentil
647 (*Lens culinaris* cv Avondale) inoculated with *R. leguminosarum* bv. *viciae* 3841 containing the
648 pCPP30 vector control, pCPP30-*iseA*, pCPP30-Smed_5985 and pCPP30-Smed_6456,
649 respectively (n = 16). Error bars indicate SEM. Significant differences (*p < 0.05, **p < 0.01,
650 ***p < 0.001) for Student's t test vs. vector control (pCPP30, Tc^R). Similar results were obtained
651 with the pSRKGm, Gm^R plasmid carrying the genes (data not shown).

652

653 **FIG 6. *iseA* altered nodulation in a *M. truncatula* A17 split root system**

654 *M. truncatula* A17 roots were manipulated to produce equal lateral roots partitioned in two
655 sections, represented by two bar graphs. The early infected roots (represented by red) were
656 inoculated 3 days earlier than the delayed infected roots (represented by blue). The split roots

657 were inoculated with *S. meliloti* Rm1021 expressing pCPP30 and pCPP30-*iseA* in different
658 combinations ($n = 16$). The number of nodules per root from both the early and delayed
659 inoculated roots were counted 4 weeks after the delayed inoculation. Error bars indicate SEM.
660 Significant differences ($*p < 0.05$, $**p < 0.01$, $***p < 0.001$) for Student's t test.

661

662

663

664

665

666

667

668 **REFERENCES**

669 1. Smil V. 2002. Nitrogen and food production: Proteins for human diets. *AMBIO: A Journal*
670 of the Human Environment 31:126–131.

671 2. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W. 2011. Too
672 much of a good thing. *Nature*. 472:159–161.

673 3. Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ,
674 Martínez-Romero JC, Reddy PM, Martínez-Romero E. 2018. Nitrogen fixation in cereals.
675 *Front Microbiol*. 9:1-13.

676 4. Oldroyd GED, Murray JD, Poole PS, Downie JA. 2011. The rules of engagement in the
677 legume-rhizobial symbiosis. *Annu Rev Genet*. 45:119–144.

678 5. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial
679 symbionts invade plants: the *Sinorhizobium–Medicago* model. *Nat Rev Microbiol*. 5:619–
680 633.

681 6. Rose RJ. 2008. *Medicago truncatula* as a model for understanding plant interactions with
682 other organisms, plant development and stress biology: past, present and future. *Funct Plant
683 Biol*. 35:253–264.

684 7. Cañas, LA, Beltrán, JP. 2018. Functional genomics in *Medicago truncatula*: Methods and
685 protocols. Humana Press, New York, NY.

686 8. Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA,
687 Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl

688 M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK,
689 Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX,
690 Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S,
691 Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez A-M,
692 Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ,
693 Hallab A, Hartog M, Hua A, Humphray SJ, Jeong D-H, Jing Y, Jöcker A, Kenton SM, Kim
694 D-J, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J,
695 Monaghan EL, Mun J-H, Najar FZ, Nicholson C, Noirot C, O’Blennes M, Paule CR,
696 Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N,
697 Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R,
698 Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang B-B, Wang K, Wang M, Wang
699 X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y,
700 Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz
701 DC, Rogers J, Quétier F, Town CD, Roe BA. 2011. The *Medicago* genome provides insight
702 into the evolution of rhizobial symbioses. *Nature*. 480:520–524.

703 9. Larrainzar E, Gil-Quintana E, Seminario A, Arrese-Igor C, González EM. 2014. Nodule
704 carbohydrate catabolism is enhanced in the *Medicago truncatula* A17-*Sinorhizobium*
705 *medicae* WSM419 symbiosis. *Front Microbiol*. 5:447

706 10. Kazmierczak T, Nagymihály M, Lamouche F, Barrière Q, Guefrachi I, Alunni B, Ouadghiri
707 M, Ibijbjen J, Kondorosi É, Mergaert P, Gruber V. 2017. Specific host-responsive
708 associations between *Medicago truncatula* accessions and *Sinorhizobium strains*. *Mol Plant*
709 *Microbe Interact*. 30:399–409.

710 11. Terpolilli JJ, O'Hara GW, Tiwari RP, Dilworth MJ, Howieson JG. 2008. The model legume
711 *Medicago truncatula* A17 is poorly matched for N₂ fixation with the sequenced
712 microsymbiont *Sinorhizobium meliloti* 1021. *New Phytol.* 179:62–66.

713 12. Reeve W, Chain P, O'Hara G, Ardley J, Nandesena K, Bräu L, Tiwari R, Malfatti S, Kiss
714 H, Lapidus A, Copeland A, Nolan M, Land M, Hauser L, Chang Y-J, Ivanova N,
715 Mavromatis K, Markowitz V, Kyrpides N, Gollagher M, Yates R, Dilworth M, Howieson J.
716 2010. Complete genome sequence of the *Medicago* microsymbiont *Ensifer* (*Sinorhizobium*)
717 *medicae* strain WSM419. *Stand Genomic Sci.* 2:77–86.

718 13. Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM.
719 2019. Legume nodulation: The host controls the party. *Plant Cell Environ.* 42:41–51.

720 14. Suzuki T, Yoro E, Kawaguchi M. 2015. Leguminous plants: inventors of root nodules to
721 accommodate symbiotic bacteria. *Int Rev Cell Mol Biol.* 316:111–158.

722 15. Kahn ML, Timblin CR. 1984. Gene fusion vehicles for the analysis of gene expression in
723 *Rhizobium meliloti*. *J Bacteriol.* 158:1070–1077.

724 16. Long SR, Kahn ML, Seefeldt L, Tsay Y-F, Kopriva S. 2015. Nitrogen and sulfur, Chapter
725 16, p. 711–768. *In* Buchanan, B, Gruissem, W, Jones, R (eds.), *Biochemistry and Molecular*
726 *Biology of Plants*, 2nd ed. Am Soc Plant Biol., Rockville MD.

727 17. Price PA, Tanner HR, Dillon BA, Shabab M, Walker GC, Griffitts JS. 2015. Rhizobial
728 peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic
729 compatibility. *Proc Natl Acad Sci U S A.* 112:15244–15249.

730 18. Ma W, Charles TC, Glick BR. 2004. Expression of an exogenous 1-aminocyclopropane-1-
731 carboxylate deaminase gene in *Sinorhizobium meliloti* increases its ability to nodulate
732 alfalfa. *Appl Environ Microbiol*. 70:5891–5897.

733 19. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, Hajek P, Ritter S,
734 Varghese N, Seshadri R, Roux S, Woyke T, Eloe-Fadrosch EA, Ivanova NN, Kyrpides NC. 2021.
735 The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities.
736 *Nucleic Acids Res*. 49:D751–D763.

737 20. Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M,
738 Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C,
739 Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A,
740 Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabinowitsch E,
741 Sanders M, Simmonds M, Whitehead S, Parkhill J. 2006. The genome of *Rhizobium*
742 *leguminosarum* has recognizable core and accessory components. *Genome Biol*. 7:R34.
743

744 21. Kassaw TK, Frugoli JA. 2012. Simple and efficient methods to generate split roots and
745 grafted plants useful for long-distance signaling studies in *Medicago truncatula* and other small
746 plants. *Plant Methods*. 8:38–49.

747 22. Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish J-C, Nam YW, Engstrom E, Xu
748 K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB,
749 Kiss GB, Cook DR. 2008. The *Medicago truncatula* ortholog of *Arabidopsis* EIN2, *sickle*,
750 is a negative regulator of symbiotic and pathogenic microbial associations. *Plant J*. 55:580–
751 595.

752 23. Okazaki S, Nukui N, Sugawara M, Minamisawa K. 2004. Rhizobial strategies to enhance
753 symbiotic interactions: Rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase.
754 *Microbes Environ.* 19:99–111.

755 24. Glick BR, Penrose DM, Li J. 1998. A model for the lowering of plant ethylene
756 concentrations by plant growth-promoting bacteria. *J Theor Biol.* 190:63–68.

757 25. Ma W, Penrose DM, Glick BR. 2002. Strategies used by rhizobia to lower plant ethylene
758 levels and increase nodulation. *Can J Microbiol.* 48:947–954.

759 26. Willis LB, Walker GC. 1999. A novel *Sinorhizobium meliloti* operon encodes an α -
760 glucosidase and a periplasmic-binding-protein-dependent transport system for α -glucosides.
761 *J Bacteriol.* 181:4176–4184.

762 27. Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM. 2013. The
763 succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of
764 *Sinorhizobium meliloti* 1021 with the host plants *Medicago truncatula* and *Medicago sativa*
765 (alfalfa). *Mol Plant Microbe Interact.* 26:1089–1105.

766 28. Rinaudi LV, González JE. 2009. The low-molecular-weight fraction of exopolysaccharide
767 II from *Sinorhizobium meliloti* is a crucial determinant of biofilm formation. *J Bacteriol.*
768 191:7216–7224.

769 29. Armstrong RN. 2000. Mechanistic diversity in a metalloenzyme superfamily. *Biochemistry.*
770 39:13625–13632.

771 30. Lipscomb JD. 2008. Mechanism of extradiol aromatic ring-cleaving dioxygenases. *Curr*
772 *Opin Struct Biol.* 18:644–649.

773 31. Peters NK, Long SR. 1988. Alfalfa root exudates and compounds which promote or inhibit
774 induction of *Rhizobium meliloti* nodulation genes. *Plant Physiol.* 88:396–400.

775 32. Novák K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M. 2002. Effect of
776 exogenous flavonoids on nodulation of pea (*Pisum sativum* L.). *J. Exp. Bot.* 53:1735–1745.

777 33. Ferguson B, Lin M-H, Gresshoff PM. 2013. Regulation of legume nodulation by acidic
778 growth conditions. *Plant Signal Behav.* 8:e23426.

779 34. Zahran HH. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe
780 conditions and in an arid climate. *Microbiol Mol Biol Rev.* 63:968–989.

781 35. Yurgel SN, Kahn ML. 2005. *Sinorhizobium meliloti* *dctA* mutants with partial ability to
782 transport dicarboxylic acids. *J Bacteriol.* 187:1161–1172.

783 36. Green MR, Sambrook J, Sambrook J. 2012. Molecular Cloning: A Laboratory Manual 4th
784 edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

785 37. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for *in vivo*
786 genetic engineering: transposon mutagenesis in gram negative bacteria. *Nature Biotechnol.*
787 1:784–791.

788 38. Khan SR, Gaines J, Roop RM, Farrand SK. 2008. Broad-host-range expression vectors with
789 tightly regulated promoters and their use to examine the influence of TraR and TraM expression
790 on Ti plasmid quorum sensing. *Appl Environ Microbiol.* 74:5053–5062.

791 39. Huang H-C, He SY, Bauer DW, Collmer A. 1992. The *Pseudomonas syringae* pv. *syringae*
792 61 *hrpH* product, an envelope protein required for elicitation of the hypersensitive response in
793 plants. *J Bacteriol.* 174:6878–6885.

794 40. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small
795 mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and
796 pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene.*
797 145:69–73.

798 41. Mitsch MJ, diCenzo GC, Cowie A, Finan TM. 2017. Succinate transport is not essential
799 for symbiotic nitrogen fixation by *Sinorhizobium meliloti* or *Rhizobium leguminosarum*. *Appl*
800 *Environ Microbiol.* 84:e01561–17.

801 42. McDermott TR, Kahn ML. 1992. Cloning and mutagenesis of the *Rhizobium meliloti*
802 isocitrate dehydrogenase gene. *J Bacteriol.* 174:4790–4797.

803 43. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ,
804 Becker A, Boistard P, et al. 2001. The composite genome of the legume symbiont
805 *Sinorhizobium meliloti*. *Science.* 293:668–672.

806

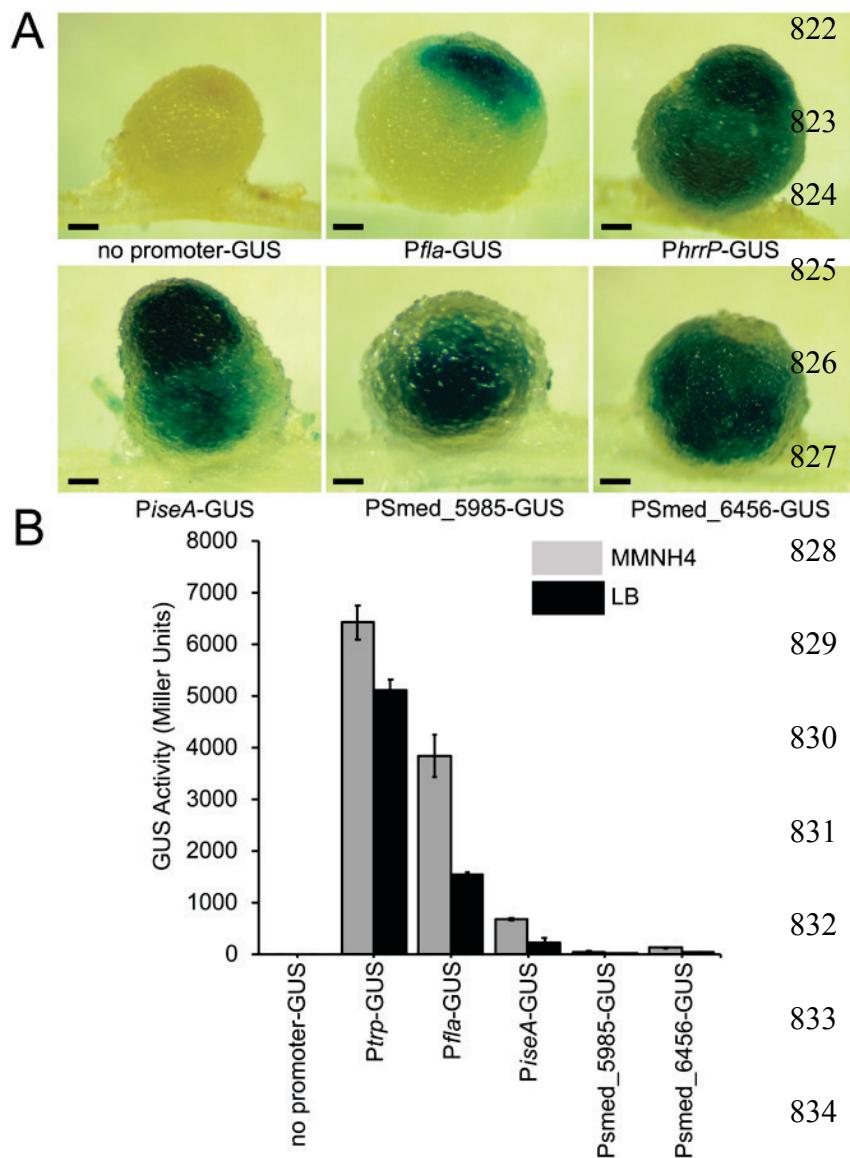
807

808

809

810

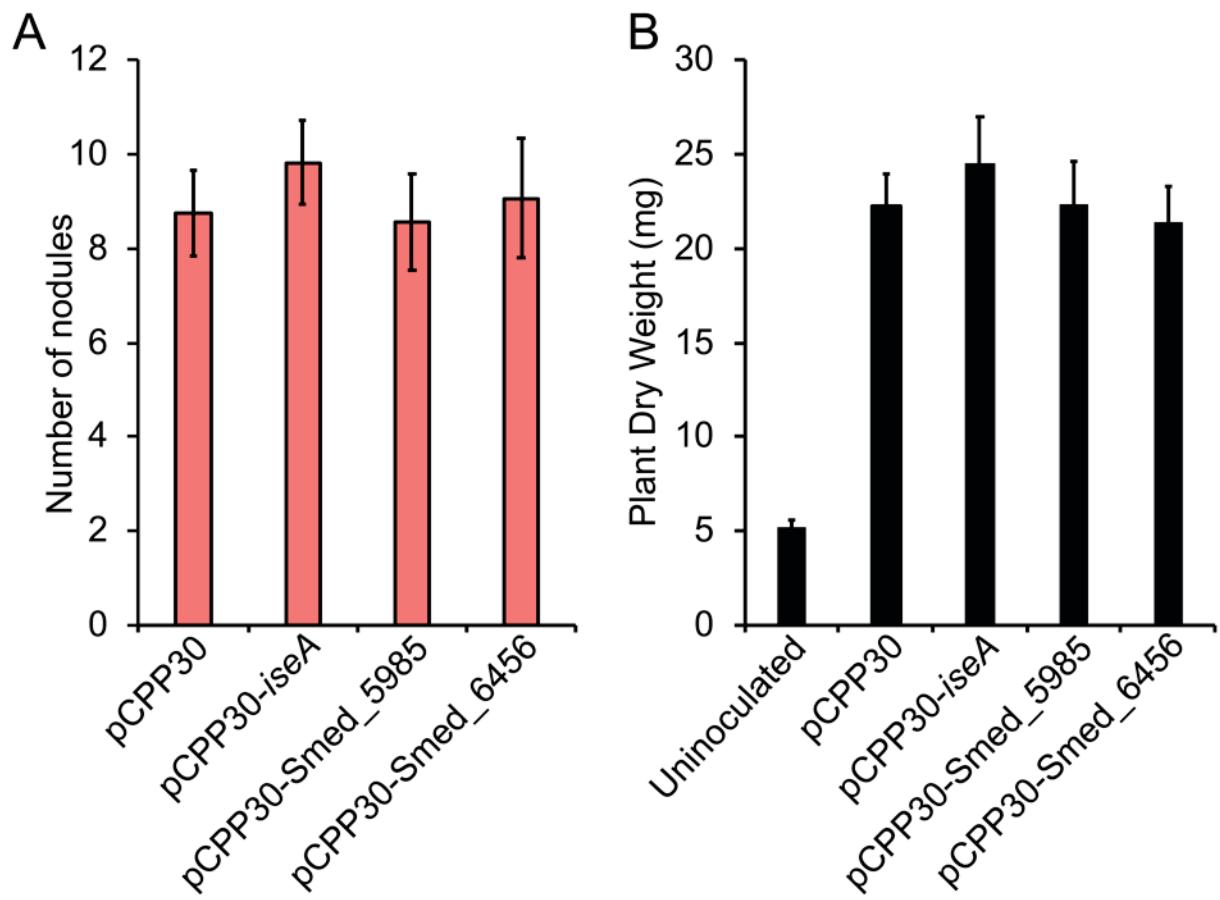
811 **FIGURES.**


812

813

814 **FIG 1. Genes from *S. medicae* WSM419 increase the symbiotic productivity of *S. meliloti***

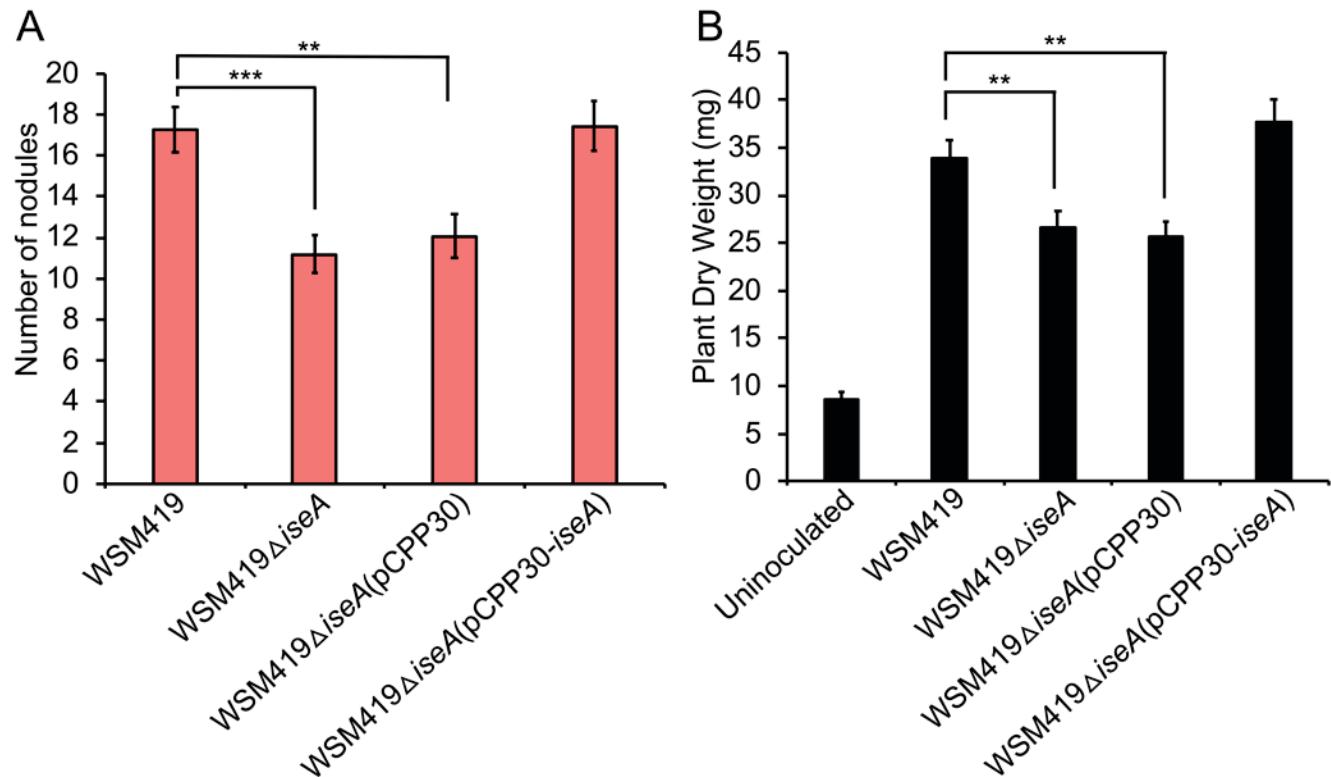
815 **Rm1021 with *M. truncatula* A17.** The shoot dry weight of *M. truncatula* A17 inoculated with *S.*
 816 *meliloti* Rm1021 expressing the candidate genes (*iseA*, *Smed_5985*, and *Smed_6456*)
 817 independently and in different combinations at the time of harvest. All data were collected at 28
 818 dpi ($n = 18$). Error bars indicate SEM. Significant differences (* $p < 0.05$, ** $p < 0.01$, *** $p <$
 819 0.001) for Student's t test vs. vector control (pCPP30, Tc^R and pSRK, Gm^R) The plasmids
 820 pCPP30 (Tc^R) and pSRKGm (Gm^R) are represented as pC and pS respectively.


821

835 **FIG 2. Expression pattern of *iseA*, *Smed_5985* and *Smed_6456* promoters**

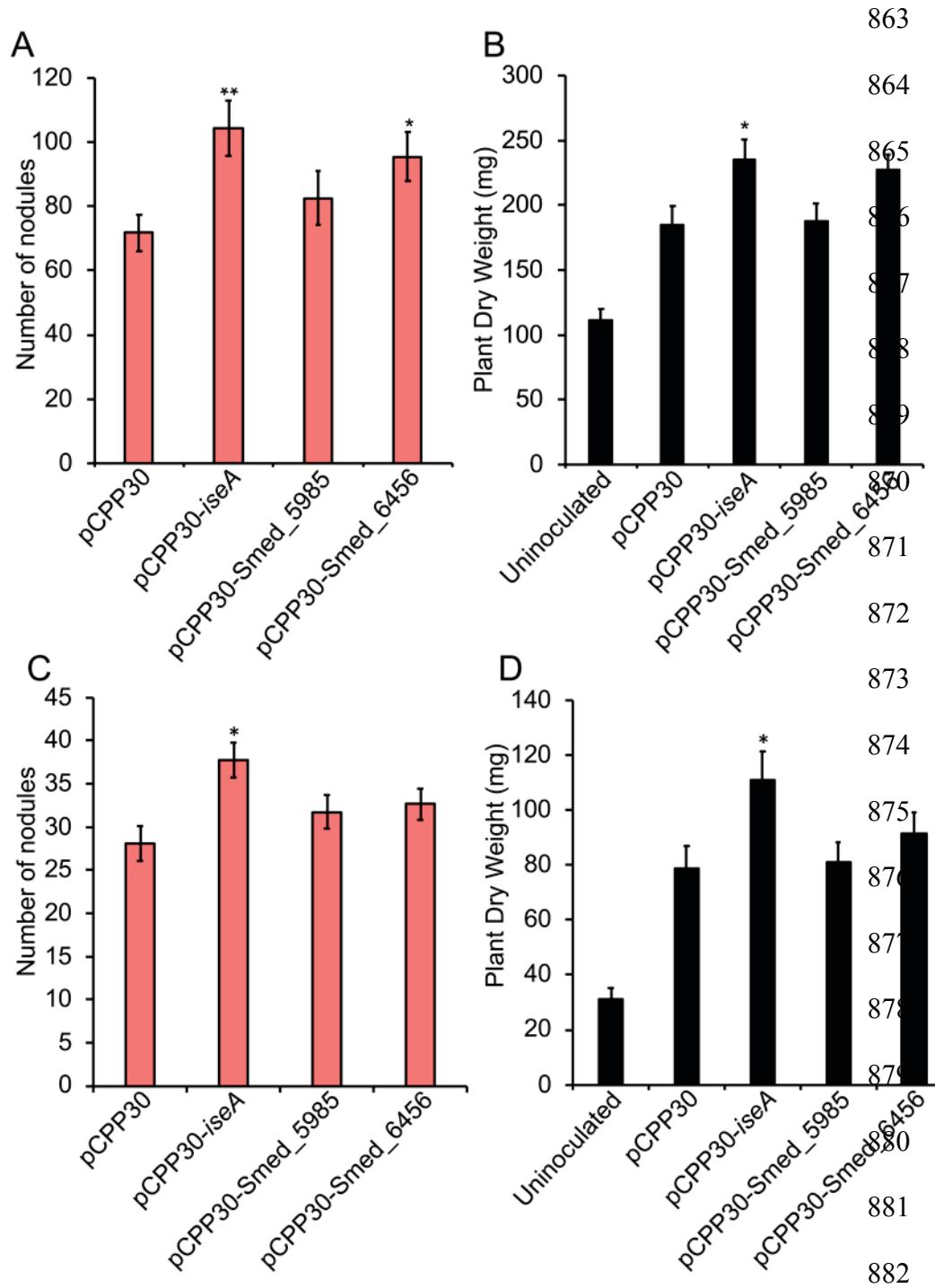
836 (A) Histochemical β -glucuronidase (GUS) staining of *M. truncatula* A17 root nodules from 10
 837 dpi. The GUS staining of nodules induced by *S. meliloti* Rm1021 carrying no promoter-GUS,
 838 *Pfla* (flagellin)-GUS, *PhrrP*-GUS, *PiseA*-GUS, *PSmed_5985*-GUS, and *PSmed_6456*-GUS,
 839 respectively. Scale bar 100 μ m. (B) GUS expression levels in free living *S. meliloti* Rm1021
 840 cells after grown to log phase in MMNH₄ and LB. The constitutive *Salmonella*-derived *trp*

841 promoter (*Ptrp*) was used as a positive control. Error bars represent standard errors of the mean
842 of three biological replicates.



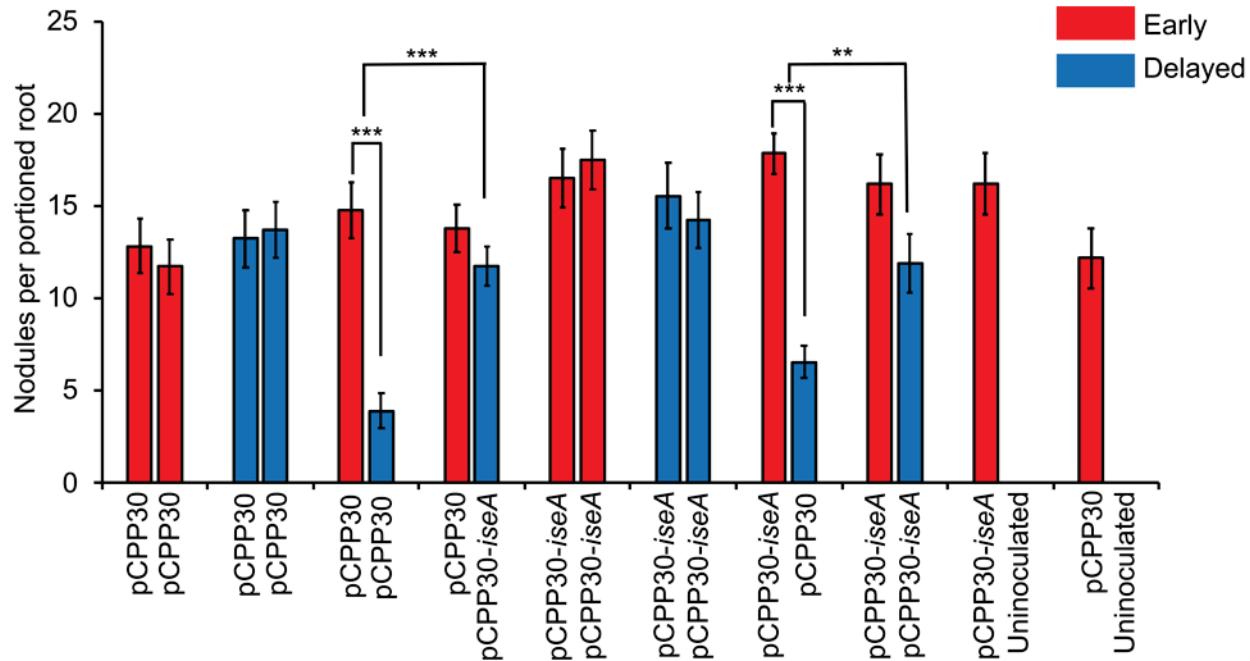
843

844 **FIG 3. *S. medicae* WSM419 genes do not significantly improve the *S. meliloti* Rm1021**
845 **symbiosis with *M. sativa*.** (A) Nodule number (B) and plant shoot dry weight data 28 dpi for *M.*
846 *sativa* inoculated with *S. meliloti* Rm1021 containing the pCPP30 vector control, pCPP30-*iseA*,
847 pCPP30-Smed_5985, and pCPP30-Smed_6456, respectively ($n = 16$). Error bars indicate SEM.
848 No significant differences were observed between transgenic strains and vector control (pCPP30,
849 Tc^R) using Student's t test. Similar results were obtained with the pSRKGm, Gm^R plasmid
850 carrying the genes (data not shown).


851

852
853
854

855
856 **FIG 4. Deleting iseA gene from *S. medicae* WSM419 lowers symbiotic productivity with *M.***
857 ***truncatula* A17 (A) Nodule number (B) and plant shoot dry weight data at 28 dpi for *M.***
858 ***truncatula* A17 plant infected with *S. medicae* WSM419, WSM419 Δ iseA, WSM419 Δ iseA (pCPP30)**
859 **and WSM419 Δ iseA (pCPP30-iseA) (n = 16). Error bars indicate SEM. Significant differences (*p**
860 **< 0.05, **p < 0.01, ***p < 0.001) for Student's t test.**


861
862

883

884 **FIG 5. *S. medicae* WSM419 genes increased pea and lentil performance when expressed in**
 885 ***R. leguminosarum* bv. *viciae* 3841**

886 (A) Number of nodules (B) and plant shoot dry weight at 5 weeks post inoculation for pea (*P.*
887 *sativum* cv Green Arrow) inoculated with *R. leguminosarum* bv. *viciae* 3841 containing the
888 pCPP30 vector control, pCPP30-*iseA*, pCPP30-Smed_5985 and pCPP30-Smed_6456,
889 respectively ($n = 16$).
890 (C) Number of nodules (D) and plant shoot dry weight data for lentil (*Lens culinaris* cv
891 Avondale) at 5 weeks post inoculation inoculated with *R. leguminosarum* bv. *viciae* 3841
892 containing the pCPP30 vector control, pCPP30-*iseA*, pCPP30-Smed_5985 and pCPP30-
893 Smed_6456, respectively ($n = 16$). Error bars indicate SEM. Significant differences (* $p < 0.05$,
894 ** $p < 0.01$, *** $p < 0.001$) for Student's t test vs. vector control (pCPP30, Tc^R). Similar results
895 were obtained with the pSRKGm, Gm^R plasmid carrying the genes (data not shown).
896

FIG 6. *iseA* altered nodulation in a *M. truncatula* A17 split root system

899 *M. truncatula* A17 roots were manipulated to produce equal lateral roots partitioned in two
900 sections, represented by two bar graphs. The early infected roots (represented by red) were
901 inoculated 3 days earlier than the delayed infected roots (represented by blue). The split roots
902 were inoculated with *S. meliloti* Rm1021 expressing pCPP30 and pCPP30-*iseA* in different
903 combinations ($n = 16$). The number of nodules per root from both the early and delayed
904 inoculated roots were counted 4 weeks after the delayed inoculation. Error bars indicate SEM.
905 Significant differences ($*p < 0.05$, $**p < 0.01$, $***p < 0.001$) for Student's t test.

906