®

Check for
updates

DNNYV: A Framework for Deep Neural
Network Verification

David Shriver®) @, Sebastian Elbaum®,
and Matthew B. Dwyer

University of Virginia, Charlottesville, VA, USA
{dls2fc,selbaum,matthewbdwyer}@virginia.edu

Abstract. Despite the large number of sophisticated deep neural net-
work (DNN) verification algorithms, DNN verifier developers, users, and
researchers still face several challenges. First, verifier developers must
contend with the rapidly changing DNN field to support new DNN opera-
tions and property types. Second, verifier users have the burden of select-
ing a verifier input format to specify their problem. Due to the many
input formats, this decision can greatly restrict the verifiers that a user
may run. Finally, researchers face difficulties in re-using benchmarks to
evaluate and compare verifiers, due to the large number of input formats
required to run different verifiers. Existing benchmarks are rarely in for-
mats supported by verifiers other than the one for which the benchmark
was introduced. In this work we present DNNV, a framework for reducing
the burden on DNN verifier researchers, developers, and users. DNNV
standardizes input and output formats, includes a simple yet expressive
DSL for specifying DNN properties, and provides powerful simplification
and reduction operations to facilitate the application, development, and
comparison of DNN verifiers. We show how DNNV increases the support
of verifiers for existing benchmarks from 30% to 74%.

Keywords: Deep neural networks - Formal verification - Tool

1 Introduction

Deep neural networks (DNN) are being applied increasingly in complex domains
including safety critical systems such as autonomous driving [3,7]. For such appli-
cations, it is often necessary to obtain behavioral guarantees about the safety
of the system. To address this need, researchers have been exploring algorithms
for verifying that the behavior of a trained DNN meets some correctness prop-
erty. In the past few years, more than 20 DNN verification algorithms have been
introduced [2,4,6,8-11,15,21,22,24-27,29-34,36], and this number continues to
grow. Unfortunately, this progress is hindered by several challenges.

First, DNN verifier developers must contend with a rapidly changing field
that continually incorporates new DNN operations and property types. While
supporting more properties and operations may increase the applicable scope
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 137-150, 2021.
https://doi.org/10.1007/978-3-030-81685-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_6&domain=pdf
http://orcid.org/0000-0003-0208-6517
http://orcid.org/0000-0001-9592-1352
http://orcid.org/0000-0002-1937-1544
https://doi.org/10.1007/978-3-030-81685-8_6

138

D. Shriver et al.

Table 1. The network and property formats supported by each verifier. A * indicates
that only a subset of the full input format specification is supported.

Verifier Network format Property format Algorithmic approach
Reluplex [16] Reluplex-NNET Hard-coded Search

Planet [10] RLV RLV Search

BaB [6] RLV RLV Search

BaBSB (6] RLV RLV Search

MIPVerify [29] | MIPVerify Julia API MIPVerify Julia API | Optimization

Neurify [30] Neurify-NNET Hard-coded Search-optimization
DeepZono [25] | ONNX*, ERAN-PYT, ERAN-TF | ERAN Python API Reachability
DeepPoly [26] | ONNX*, ERAN-PYT, ERAN-TF | ERAN Python API Reachability

RefineZono [27]

ONNX*, ERAN-PYT, ERAN-TF

ERAN Python API

Reachability

RefinePoly [24]

ONNX*, ERAN-PYT, ERAN-TF

ERAN Python API

Reachability

Marabou [17]

Reluplex-NNET or ONNX*

Marabou Python API

Search

nnenum [1]

ONNX*

nnenum Python API

Search-reachability

VeriNet [14]

ONNX* or Neurify-NNET

VeriNet Python API

Search-optimization

of verifiers to real-world problems, it also increases a verifier’s complexity.
For example, for a verifier such as DeepPoly, supporting additional operations
requires non-trivial effort to define and prove correctness of new abstract trans-
formers. For verifiers such as Reluplex or Neurify, supporting new property types
requires implementing a mapping from those properties onto internal verifier
structures.

Second, DNN verifier users carry the burden of re-writing property specifi-
cations and transforming their models to match a chosen verifier’s supported
format. That burden is compounded by the diversity of input formats required
by each verifier, as illustrated in Table 1. There is little overlap between input
formats for verifiers (only DeepZono and DeepPoly or BaB and BaBSB which
are algorithmically similar), and even when using the same format (as in the
case of the popular ONNX format) we find that the underlying operations sup-
ported are different. This makes it difficult and costly to run multiple verifiers on
a given problem since the user must understand the requirements of each verifier
and translate inputs to their formats. While two new formats, VNNLIB [13] and
SOCRATES [20], have been introduced in an attempt to standardize DNN veri-
fier input formats, their expressiveness is currently limited and they can require
writing new conversion tools for networks, as we discuss at the end of Sect. 3.1.

Finally, DNN verifier researchers face challenges in re-using benchmarks to
evaluate and compare verifiers. Most benchmarks exist in the format of the ver-
ifier for which they were introduced, and running other verifiers on that bench-
mark requires writing custom tooling to translate the benchmark to other for-
mats, or writing new input parsers for verifiers to support the given benchmark
format. For example, the ACAS Xu benchmark (described in Sect.5), was orig-
inally specified with networks in Reluplex-NNET format, and properties hard-
coded into the verifier. The benchmark was converted, for example, into RLV
format for BaB and BaBSB, as well as into ONNX with hard-coded properties

DNNV: A Framework for Deep Neural Network Verification 139

for RefineZono. Other benchmarks, such as the DAVE benchmark used by Neu-
rify, has networks specified in Neurify-NNET, and properties hard-coded into
the verifier. Due to its format, this potentially great benchmark has not been
used by other verifiers.

Weintroduce a framework, DNNYV | to reduce the burden on verifier researchers,
developers, and users. DNNV helps to create and run more re-usable verification
benchmarks by standardizing a network and property format, and it increases the
applicability of a verifier to richer properties and real-world benchmarks by per-
forming property reductions and simplifying DNN structures.

Property o o
in DNNP P Reduce Property > - Run Verifier
/M \
1‘ Translate
4 Inputs 4
SAT
P Simplify Network > Translate Output »UNSAT
LA I 2 UNKNOWN

DNNV

Fig.1. DNNV architecture

As shown in Fig. 1, DNNV takes as input a network in the common ONNX
input format, a property written in an expressive domain-specific language
DNNP, and the name of a target verifier. Using the framework and plugins for
the target verifier, DNNV transforms the problem by simplifying the network
and reducing the property to enable the application of verifiers that otherwise
would be unable to run. DNNV then translates the network and property to
the input format of the desired verifier, runs that verifier on the transformed
problem, and returns the results in a standardized format.

The primary contributions of this work are: (1) the DNNV framework to
reduce the burden on DNN verifier researchers, developers, and users; DNNV
includes a simple yet expressive DSL for specifying DNN properties, and power-
ful simplification and reduction operations to increase verifiers’ scope of appli-
cability, (2) an open source tool implementing DNNV!, with support for 13
verifiers, and extensive documentation, and (3) an evaluation demonstrating the
cost-effectiveness of DNNV to increase the scope of applicability of verifiers.

2 Background
A deep neural network A encodes an approximation of a target function
f:R™ — R™. A DNN can be represented as a directed graph Gy = (Vir, Enr),

where nodes, v € V), represent operations and edges, e € Ejr, represent input

! https://github.com/dlshriver/DNNV.

https://github.com/dlshriver/DNNV

140 D. Shriver et al.

arguments to operations. A node without any incoming edges is an input to the
DNN. The output of a DNN can be computed by looping over nodes in topolog-
ical order and computing the value of the node given its inputs. The literature
on machine learning has developed a broad range of rich operation types and
explored the benefits of different combinations of operations in realizing accurate
approximations of different target functions, e.g., [12].

Given a DNN, N/ : R™ — R™, a property, ¢(/N'), defines a set of constraints
over the inputs, ¢y — the pre-condition, and a set of constraints over the outputs,
¢y — the post-condition. Verification of ¢(N) seeks to prove or falsify: Vo € R™ :
b (@) — dy(N ().

A widely studied class of properties is robustness, which originated with the
study of adversarial examples [28,35]. These properties specify that inputs from
a specific region of the input space must all produce the same output class.
Detecting violations of robustness properties has been widely studied, and they
are a common type of property for evaluating verifiers [10,25,26,29,30]. Another
common class of properties is reachability, which define the post-condition using
constraints over output values. Reachability properties specify that inputs from
a given region of the input space must produce outputs within a given region
of the output space. Such properties have been used to evaluate several DNN
verifiers [16,17,30].

A recent survey on DNN verification [18] classifies these approaches based
on their type: reachability, optimization, or search, or a combination of these.
Reachability-based methods compute a representation of the reachable set of
outputs from an encoding of the set of inputs that satisfy the pre-condition. The
computed output set is often an over-approximation of the true reachable output
region. The precision of the computed output region depends on the symbolic
representation used, e.g., hyper-rectangles, zonotopes, polyhedra. Reachability-
based methods include [11,22,24-27,34]. Optimization-based methods formulate
property violations as a threshold for an objective function and use optimization
algorithms to attempt to satisfy that threshold. Optimization-based methods
include [2,9,21,29,33]. Search-based methods explore regions of the input space
where they then formulate reachability or optimization sub-problems. Search-
based methods include [6,10,15,16,31,32].

3 DNNYV Overview

DNNYV remedies several key challenges faced by the DNN verification commu-
nity. A general overview of DNNYV is shown in Fig. 1. DNNV takes in a property
and network in a standard format, simplifies the network, reduces the property,
translates the network and property to the input format of the verifier, runs the
verifier, and translates its output. Each of these components can be customized
by verifier specific plugins. We explain these components in more detail below.

DNNV: A Framework for Deep Neural Network Verification 141

3.1 Input Formats Table 2. The number of ONNX

operations supported by each

As shown in Table 1, existing verifiers do not '
verifier.

support a consistent, common input format

for networks and properties. DNNV' stan- verifier |# ONNX operations
dardizes the .mp.ut and (?utput forma‘Fs to al.d DNNV |31
the community in creating and running veri-

ERAN 22

fication benchmarks.
nnenum | 15

marabou | 12
VeriNet |12

ONNX. For specifying general deep neu-
ral network architectures, we choose the open
source DNN format ONNX [19]. ONNX can
represent real-world networks, is supported by many common frameworks (e.g.,
PyTorch, MXNet) and conversion tools are available for other frameworks (e.g.,
TensorFlow, Keras). Our current implementation supports a subset of the ONNX
specification that subsumes the subsets of ONNX implemented by the supported
verifiers. Table 2 shows the number of ONNX operations supported by each of
the verifiers included in DNNV. DNNV supports 40% more operations than the
verifier with the next highest support. The ONNX subset supported by DNNV
is sufficient for almost all existing verification benchmarks, as well as many real-
world networks including VGG16 and ResNet34.

DNNP. Due to the lack of

a standard format for specify-

ing DNN properties, we develop

a Python-embedded DSL for

DNN properties, which we call

DNNP. DNNP is designed to mean = 0.2860
9 |std = 0.3530

express any property that can 10 i = Parameter("data_idx", type=int, default=1)
be verified by existing DNN ver- 11 |x = (data[i][0] [None, :].numpy() - mean) / std

from dnnv.properties import *
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor

N = Network("N")
data = FashionMNIST("/tmp", download=True,
transform=ToTensor())

0N U W N

. . R 12 e = Parameter("epsilon", type=float) / std
ifiers in a form that is inde- |,

pendent of the network. DNNP 14 | Forall(

. . . . 15 X_,

is described in more detail in |, Taplies(

Appendix A of the extended 17 And(

version of this paper [23].

We demonstrate DNNP with
an example of a local robust-
ness property, shown in Fig. 2.
The property specifies that, for
all inputs, x_ (Lines 14-23),
in the input space (Line 18)
and within a hyper-rectangle of

(-mean / std) <= x_ <= ((1 - mean) / std),
(x —e) <x_ < (x+e),
),
argmax(N(x_)) == argmax(N(x)),
),
)

Fig. 2. Example of a local robustness property
specified with DNNP.

radius e centered at the given input x (Line 19), the network should predict
the same maximum class for both x_ and x (Line 21). For Fashion MNIST, this
means that for all images within an L, distance of e (specified on Line 12) from

142 D. Shriver et al.

image 1 of the dataset (selected on Lines 10-11), the network should classify all
of these images the same as it does for image 1. We first import several Python
packages that will be useful for specifying the property (Lines 1-3), including
the dataset used to train the network, and a method for data manipulation.
Because DNNP allows importing arbitrary Python packages, it enables re-use
of the same data loading and manipulation methods used to train a network.
After importing the necessary utilities, we define several variables that will be
used in the final property expression (Lines 5-12). Two of these variables, ¢ on
Line 10 and e on Line 12 are declared as parameters, which allows them to be
specified on the command line at run time. The value for e must be provided
at run time, since no default value is provided. Finally, we define the seman-
tics of the property specification, using methods provided by DNNP, as well as
variables defined above (Lines 14-23).

W =y Vv W,

ijmn

ijmn

BatchNorm[
rfmy

1
b’i :7’./‘[".*1’.*’5.'}’,*‘“./‘[".

Fig. 3. Batch Normalization Simplification simplifies a batch norm following a convo-
lution operation to an equivalent single convolution operation with modified weights
and bias, while maintaining the strides and pads.

Other Input Formats. Since the creation of DNNV, two new input formats,
VNNLIB [13] and SOCRATES [20], have emerged in an attempt to standardize
the verifier input space. The current draft of VNNLIB also uses ONNX as the
DNN input format, however it supports a much smaller set of operations than
DNNYV, supporting only 17 ONNX operations. The VNNLIB property format
is a subset of SMTLIB in which variables of the form X, are implicitly mapped
to network inputs and variables of the form Y; are implicitly mapped to net-
work outputs. In its current form, this specification only supports DNN models
with a single flat input tensor and single flat output tensor, whereas DNNP and
ONNX can support DNN models with multiple inputs and output tensors of any
shape. SOCRATES proposes a JSON format containing both the property and
network specifications. Because DNNV treats networks and properties indepen-
dently, properties can be re-used for multiple networks, and only a single network
must be stored to check multiple properties, resulting in a lower storage cost,
especially for large models. Additionally, while the custom JSON format used
by SOCRATES requires new DNN translation tools to be written to convert to
the required format, the ONNX format used by DNNV is commonly available
in most machine learning frameworks. While we believe that ONNX and DNNP
are currently the most expressive and easily accessible input formats currently
proposed, DNNV can provide benefits to any format through DNN simplification
and property reduction to increase the applicability of all verifiers.

DNNV: A Framework for Deep Neural Network Verification 143

3.2 Network Simplification

In order to allow verifiers to be applied to a wider range of real world networks,
DNNYV provides tools for network simplification. Network simplification takes in
an operation graph and applies a set of semantics preserving transformations to
the operation graph to remove unsupported structures, or to transform sequences
of operations into a single more commonly supported operation.

An operation graph Gy = (Vjr, Exr) is a directed graph where nodes,
v € V) represent operations, and edges e € FEj represent inputs to those
operations. Simplification, simplify : G — G, transforms an operation graph
Gy € G, to an equivalent DNN with more commonly supported structure,
simplify(Gnr) = Gav, such that the resulting DNN has the same behavior as
the original Vz.N (z) = N’(z), and uses more commonly supported structures.

One such simplification is batch normalization simplification, which removes
batch normalization operations from a network by combining them with a
preceding convolution operation or generalized matrix multiplication (GEMM)
operation. This is possible since batch normalization, convolution, and GEMM
operations are all affine operations. The simplification of a batch normalization
operation following a convolution operation is shown in Fig. 3. If no applicable
preceding layer exists, the batch normalization layer is converted into an equiva-
lent convolution operation. This simplification enables the application of verifiers
without explicit support for batch normalization operations, such as Neurify and
Marabou, to networks with these operations.

> > —p —>> *(argmaX(N(X)) #4)V
= (NX), 2N(x),)
Tlow [T ow] 8
. e : H) (argmax(N(x)) = 4) A
PN, < N(¥),)
@ =Vx. ((x€X) A (argmax(N(x)) = 4)) @, =Vx (x€X)
- (NX), 2 N(x),) = (NG, >NE))

Fig. 4. Property reduction to a local robustness property adds a suffix that classifies
outputs as violations or non-violations of the original output constraints, and changing
the property to a common form of robustness property.

DNNYV currently includes 6 additional DNN simplifications, enumerated and
described in more detail in Appendix B of the extended version of this paper [23].

3.3 Property Reduction

In order to allow verifiers to be applied to more general safety properties, DNNV
provides tools to reduce properties to a supported form. For instance, properties
can be translated to local robustness properties, which are required by MIP Verify
or reachability properties which are required by Reluplex.

144 D. Shriver et al.

Property reduction takes in a verification problem, which is comprised of
a property specification and a network, and encodes it as an equivalid set of
verification problems with properties in a form supported by a given verifier.

A werification problem is a pair, ¥ = (N,®), of a DNN, A/, and a prop-
erty specification ¢, formed to determine whether A/ = ¢ is valid. Reduction,
reduce : W — P(W), aims to transform a verification problem, (N, ¢) = € ¥,
to an equivalid form, reduce(y) = {(N1,¢1),..., (N, ¢r)}, in which property
specifications are in a common supported form. As defined, reduction has two
key properties. The first property is that the set of resulting problems is equivalid
with the original verification problem. The second property is that the resulting
set of problems all use the same property type. Applying reduction enables veri-
fiers to support a large set of verification problems by implementing support for
a single property type.

For example, given a network that classifies images of clothing items, a user
may want to specify that, if the network classifies an image as a coat, then the
score given to the class of a pullover is not less than the score for the sneaker class.
The property is specified in the bottom left of Fig. 4. Such a verification problem
can be difficult to specify for many verifiers. For example, Neurify would require
writing code to specify linear constraints for the property and re-compiling the
verifier, and MIP Verify cannot support this property as is. DNNV can reduce
this verification problem to an equivalent problem with a robustness property.

A high level overview of this reduction is shown in Fig.4; a more detailed
description is provided in Appendix C of the extended version of this paper [23].

3.4 Input and Output Translation

Because of the large variety of input formats required by the verifiers, one of
the primary components of DNNV translates from its internal representation
of properties and networks to the input formats of each verifier.

DNNYV also requires an output translator that can parse the results of run-
ning a verifier and returns sat, unsat, or unknown. If the result is sat, indicating
a violation was found, DNNV also returns a counter example to the property,
and validates that it does violate the property by performing inference with the
network and confirming that the input and output do not satisfy the property.

4 Implementation

DNNYV is written in 8400 lines of Python code and is available for download and
re-use at https://doi.org/10.5281/zenodo.4883626. Python was chosen due to its
ubiquitous use for developing deep neural networks. DNNV currently supports
13 verifiers, and was designed to facilitate the integration of new verifiers. The
currently supported verifiers are shown in Table 1, along with their original input
formats, and algorithmic approach. Around 2000 LOC (of the 8400 total LOC)
are used to integrate these 13 verifiers into DNNV, with Planet requiring the
most effort at 437 lines, and BaB and BaBSB requiring the least effort with 89
lines of code due to re-use of the Planet input translator.

https://doi.org/10.5281/zenodo.4883626

DNNV: A Framework for Deep Neural Network Verification 145

4.1 Supporting Reuse and Extension

DNNYV is designed to facilitate the integration of new verifiers. The 5 primary
components of DNNV, DNN simplification, property reduction, input transla-
tion, verifier execution, and output translation are designed to be re-usable, and
to facilitate the implementation of new components by providing utilities for
traversing and manipulating operation graphs and properties.

Networks are represented as an operation graph, where nodes represent oper-
ations in the DNN and edges represent inputs and outputs to those operations.
The operation graph can also be traversed using a visitor pattern. This pat-
tern is particularly useful for the development of DNN simplifications and input
translators. It allows developers to easily traverse computation graphs in order
to translate operations to the required format. We provide built-in utilities for
converting from our internal network representation to ONNX, PyTorch, and
TensorFlow models. The implementation also includes utilities for performing
pattern matching on operation graphs. We utilize this feature to provide utilities
that transform a network from an operation graph representation to a sequential
layer representation, which is particularly useful for the network input translator
of Neurify, which requires DNNs to have a regular structure of a set of convolu-
tional layers followed by fully connected layers, all with relu activations.

4.2 Usage

DNNYV can be run from the command line as follows: python -m dnnv <prop>
<verifier> --network <name> <path>, where the arguments correspond to a
DNN model in the ONNX format, a property written in DNNP, and the verifier
to run. Many additional options can be seen by specifying the -h option.

After execution, for each verifier, DNNV reports the verification result as
one of sat (if the property was falsified), unsat (if the property was proven to
hold), unknown (if the verifier is incomplete and could not prove the property
holds), or error, along with the reason for error, if an error occurs during DNN
and property translation, or during verifier execution. DNNV also reports the
time to translate and verify the property.

5 Study

We now examine the applicability of verifiers to existing verification benchmarks
with and without DNNV. A verification benchmark consists of a set of verifica-
tion problems which are used to evaluate the performance of a verifier. A problem
is made of a DNN and a property specification and asks whether the property is
valid for the given DNN. We consider a verifier to support a benchmark if it can
be run on that benchmark out of the box. We consider a verifier to have support
for a benchmark through DNNV if DNNV can be run on that benchmark with
networks specified using ONNX and properties specified in DNNP, and can
reduce, simplify, and translate the problem to work with the target verifier.

146 D. Shriver et al.

Benchmarks. To evaluate benchmark support, we collected the benchmarks
used by each of the 13 verifiers supported by DNNV, and determined whether
each verifier can run on the benchmark out of the box, and also whether they
could be run on the benchmark when DNNV is applied. The verification bench-
marks are shown in Table 3 and are also described in more detail in Appendix D
of the extended version of this paper [23]. Each row of the table corresponds
to a benchmark, to which we assign a short key for identifying the benchmark.
For each benchmark, we give the name, some of the verifiers it evaluated, the
number of properties (#P) and networks (#N), and features that can make it
challenging for verifiers. These features include whether any properties cannot
represent their input constraints using hyper-rectangles (-HR), whether any
network in the benchmark contains convolution operations (C), whether any
network contains residual structures (R), and whether any network uses any
non-ReLU activation functions (—ReLU).

Results. The support of verifiers for each benchmark is shown in Table4. Each
row of this table corresponds to one of the 13 verifiers supported by DNNV and
each column corresponds to one of the 19 benchmarks identified in Table 3. Each

Table 3. Verifier benchmarks.

Features
Key |Name Uses #P | #N |-HR|C |R | -ReLU
AX | ACAS Xu [1,6,16,17,30] 10 1 45
CD | Collision Detection [6,10,17] 500 1
PM | Planet MNIST [10] 711 v v
TS | TwinStream [5] 181
PCA | PCAMNIST [6] 1217
MM | MIPVerify MNIST [29] 10000 | 5 v’
MC | MIPVerify CIFAR10 |[29] 10000 | 2 v v
NM | Neurify MNIST [14,30] 500 | 4 v
NDB | Neurify Drebin [30] 500 3
NDv | Neurify DAVE [30] 20001 Vv v’
DZM | DeepZono MNIST [25] 1700 | 10 arard
DZC | DeepZono CIFAR10 |[25] 1700 | 5 v v’
DPM | DeepPoly MNIST [14,26] 1500 | 8 v’ v’
DPC | DeepPoly CIFARIO | [26] 800 5 N
RZM | RefineZono MNIST | [27] 800 8 v’
RZC | RefineZono CIFARI10 | [27] 200| 2 v’
RPM | RefinePoly MNIST [24] 600, 6 v’
RPC | RefinePoly CIFARI0 | [24] 300 3 v v
VC | VeriNet CIFAR10 | [14] 250 | 1 v

DNNV: A Framework for Deep Neural Network Verification 147

Table 4. Benchmark support by each verifier. The left half of the circle is black if
the verifier can support the benchmark out of the box, and is white otherwise. The
right half is black if the verifier supports the benchmark through DNNV| and is white
otherwise. An absent circle indicates that the verifier can not be made to support some
aspect of the benchmark.

Benchmark

oz Z2u=835820882 %0
Verifier <O AMBEHMAME2Z2Z2Z2AQAA0AQAAQ0ARK~KEKRE MM >
Reluplex @ © O @ @ OO O ®O ONONONORONG
Planet | NN N N NCECHCECEU DO OD
BaB | NN N N NCEONC(E(EU DOPDPDIDOOD
BaBSB | NN N N NCEONCNCNU DODDIOOD
MiPVerify @ O O D 0 @ © O ® O ONONONORONG
Neurify | NORCN(R(N(EON N N J DOODDOOD
DeepZono @ OO D PPPIPPOOO0OO0OOGOOOOO O
eIz NONON(R(N(N(R(N(EON N N N N N N N N()
RefineZono @ O O D D D PP PO 0O0O0OO0OO0OOO O
RefinePoly @ O O D DD PP PO 00000000 O
Marabou @O D @ @ DO DD DODDIOOD
nmenum @O PP PDODPDOD DO OOD
VeriNet DPOODPIIOGODIOODDIIIIIIOO®

cell of the table may contain a circle that identifies the support of the verifier for
the benchmark. The left half of the circle is black if the verifier can support the
benchmark out of the box, and is white otherwise. The right half is black if the
verifier supports the benchmark through DNNV, and white otherwise. An absent
circle indicates that the verifier can not be made to support some aspect of the
benchmark. For the benchmarks shown here, this is always due to the presence
of non-ReLU activation functions in some of the networks in the benchmarks.

As shown in Table4, DNNV can dramatically increase the support of ver-
ifiers for benchmarks. For example, the Planet verifier could originally be run
on 5 of the 19 benchmarks, but could be run on 16 using DNNV. Similarly, the
nnenum verifier, could originally only be run on 1 of the existing benchmarks,
but could be run on 13 using DNNV. Of the 223 pairs of verifiers and
benchmarks for which support may be possible, 166 of them are cur-
rently supported by DNNV, an increase of over 2.4 times the 68 pairs
supported without DNNV.

148 D. Shriver et al.

6 Conclusion

We present the DNNV framework for reducing the burden on DNN verifier
researchers, developers, and users. DNNV standardizes input and output for-
mats, includes a simple yet expressive DSL for specifying DNN properties, and
provides powerful simplification and reduction operations to facilitate the appli-
cation, development, and comparison of DNN verifiers. Our study showed the
potential of DNNV and we made its implementation available, with support for
13 verifiers, and extensive documentation.

Acknowledgment. This material is based in part upon work supported by the
National Science Foundation under Grant Number 1900676 and 2019239.

References

1. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66-96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8_4

2. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Neural Information Pro-
cessing Systems, NIPS 2016, pp. 2621-2629. Curran Associates Inc., USA (2016)

3. Bojarski, M., et al.: End to end learning for self-driving cars. In: NIPS 2016 Deep
Learning Symposium (2016)

4. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an effi-
cient framework for certifying robustness of convolutional neural networks. AAAI,
January 2019

5. Bunel, R., Turkaslan, 1., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear
neural network verification: a comparative study. CoRR abs/1711.00455v1 (2017).
http://arxiv.org/abs/1711.00455v1

6. Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: NeurIPS, pp. 4795-4804
(2018)

7. Codevilla, F., Miiller, M., Lépez, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1-9, May 2018. https://doi.org/10.1109/
ICRA.2018.8460487

8. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Mufoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121-138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5-9

9. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to
scalable verification of deep networks. In: Conference on Uncertainty in Artificial
Intelligence (UAI 2018), pp. 162-171. AUAI Press, Corvallis (2018)

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269-286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://arxiv.org/abs/1711.00455v1
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

DNNV: A Framework for Deep Neural Network Verification 149

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3-18, May
2018. https://doi.org/10.1109/SP.2018.00058

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

Guidotti, D., Barrett, C., Katz, G., Pulina, L., Narodytska, N., Tacchella, A.: The
Verification of Neural Networks Library (VNN-LIB) (2019). www.vnnlib.org
Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Giacomo, G.D., et al. (eds.) ECAI 2020.
Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2513-2520. I0S
Press (2020). https://doi.org/10.3233/FAIA200385

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. CoRR abs/1903.06758 (2019)

ONNX: Open Neural Network Exchange (2017). https://github.com/onnx/onnx
Pham, L.H., Li, J., Sun, J.: SOCRATES: towards a unified platform for neural
network verification. CoRR abs/2007.11206 (2020). https://arxiv.org/abs/2007.
11206

Raghunathan, A.; Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: ICLR. OpenReview.net (2018)

Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: IJCAI, pp. 2651-2659. ijcai.org (2018)
Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: A framework for deep neural net-
work verification (2021). http://arxiv.org/abs/2105.12841

Singh, G., Ganvir, R., Piischel, M., Vechev, M.T.: Beyond the single neuron con-
vex barrier for neural network certification. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: NeurIPS 2019, pp. 15072-15083 (2019)
Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 10802-10813. Curran Associates, Inc. (2018). http://papers.nips.
cc/paper/8278-fast-and-effective-robustness-certification.pdf

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1-41:30 (2019)

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: Boosting robustness certifica-
tion of neural networks. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, 6-9 May 2019. OpenReview.net (2019).
https://openreview.net/forum?id=HJgeEh09KQ

https://doi.org/10.1109/SP.2018.00058
http://www.deeplearningbook.org
http://www.deeplearningbook.org
www.vnnlib.org
https://doi.org/10.3233/FAIA200385
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://github.com/onnx/onnx
https://arxiv.org/abs/2007.11206
https://arxiv.org/abs/2007.11206
https://www.ijcai.org
http://arxiv.org/abs/2105.12841
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
https://openreview.net/forum?id=HJgeEh09KQ

150 D. Shriver et al.

28. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, 14-16 April 2014, Conference Track Proceedings (2014)

29. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019). https://openreview.net/forum?id=HyGIdiRqtm

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NeurIPS, pp. 6369-6379 (2018)

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX Security Symposium, pp.
1599-1614. USENIX Association (2018)

32. Weng, T., et al.: Towards fast computation of certified robustness for RELU net-
works. In: ICML, Proceedings of Machine Learning Research, vol. 80, pp. 5273—
5282. PMLR (2018)

33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: ICML, Proceedings of Machine Learning
Research, vol. 80, pp. 5283-5292. PMLR (2018)

34. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777-5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

35. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805-2824 (2019)

36. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. Adv. Neural Inf. Process.
Syst. 31, 4944-4953 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1109/TNNLS.2018.2808470
http://creativecommons.org/licenses/by/4.0/

	DNNV: A Framework for Deep Neural Network Verification
	1 Introduction
	2 Background
	3 DNNV Overview
	3.1 Input Formats
	3.2 Network Simplification
	3.3 Property Reduction
	3.4 Input and Output Translation

	4 Implementation
	4.1 Supporting Reuse and Extension
	4.2 Usage

	5 Study
	6 Conclusion
	References

