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Abstract

Visual statistical learning (VSL) describes the unintentional extraction of statistical regularities from visual environments across
time or space, and is typically studied using novel stimuli (e.g., symbols unfamiliar to participants) and using familiarization
procedures that are passive or require only basic vigilance. The natural visual world, however, is rich with a variety of complex
visual stimuli, and we experience that world in the presence of goal-driven behavior including overt learning of other kinds. To
examine how VSL responds to such contexts, we exposed subjects to statistical contingencies as they learned arbitrary categorical
mappings of unfamiliar stimuli (fractals, Experiment 1) or familiar stimuli with preexisting categorical boundaries (faces and
scenes, Experiment 2). In a familiarization stage, subjects learned by trial and error the arbitrary mappings between stimuli and
one of two responses. Unbeknownst to participants, items were paired such that they always appeared together in the stream.
Pairs were equally likely to be of the same or different category. In a pair recognition stage to assess VSL, subjects chose between
a target pair and a foil pair. In both experiments, subjects’ VSL was shaped by arbitrary categories: same-category pairs were
learned better than different-category pairs. Natural categories (Experiment 2) also played a role, with subjects learning same-
natural-category pairs at higher rates than different-category pairs, an effect that did not interact with arbitrary mappings. We
conclude that learning goals of the observer and preexisting knowledge about the structure of the world play powerful roles in the

incidental learning of novel statistical information.
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One way sensory systems cope with the complexity of the
visual world is through various forms of learning. Extensive
previous work demonstrates that statistical structure
(spatiotemporal co-occurrence) is rapidly discovered by hu-
man observers in the absence of explicit instruction or inten-
tions to learn such structure, a phenomenon broadly known as
statistical learning (for review, see Sherman et al., 2020):
Repeated exposure to a predictive relationship between stim-
uli can lead to subsequent familiarity with that relationship,
such as when Stimulus A predicts subsequent Stimulus B,
even if the observer is neither informed about nor trying to
learn such relationships. A second extensively studied learn-
ing phenomenon is categorization (Richler & Palmeri, 2014),
which enables variability to be simplified based on broad class
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distinctions. It stands to reason that categorization and statis-
tical learning may interact in important ways, because objects
of statistical learning in natural contexts are often likely to be
stimuli about which the learner already has extensive knowl-
edge, such as category membership. Furthermore, statistical
learning may sometimes occur in contexts in which competing
learning goals (e.g., learning the category of stimuli) are on-
going. Finally, there are many attributes of categorical learn-
ing and reasoning that are “statistical” in nature, suggesting a
potential overlap with spatiotemporal co-occurrence learning.
In this paper, we examine the role of categories and category
learning in statistical learning. First, how does explicitly and
effortfully learning a category mapping during exposure to
statistical regularity impact statistical learning? Second, how
do preexisting categorical similarities and distinctions impact
statistical learning?

Undirected and incidental regularity extraction was first
shown in infants, who were able to extract statistical structure
without direction from an artificial auditory stream (Saffran
et al., 1996). Adults show the same capabilities (Saffran et al.,
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1999), including in other sensory modalities, such as vision
(i.e., visual statistical learning; VSL). During VSL, observers
are capable of incidentally extracting regularities from both
temporal (Fiser & Aslin, 2002) and spatial contexts (Fiser &
Aslin, 2001). VSL may be constantly active, detecting regu-
larities and storing that knowledge without observer inten-
tions, but some evidence suggests that top-down goals can
shape statistically learned representations, at least through
the route of selective attention (e.g., Baker et al., 2004;
Turk-Browne et al., 2005), with attended pairings learned bet-
ter than unattended ones. However, how preexisting knowl-
edge and explicit learning goals interact with unintentional
statistical learning is largely unknown, especially in contexts
wherein the impact of such knowledge and goals does not
impose obvious constraints on selective attention.

A separate field of research focuses on learning to form
broad classes (reviewed by Ashby & Maddox, 2005; Richler
& Palmeri, 2014). Research on category learning is focused
on the inference of hidden attributes that link large sets of
items to support generalization, whereas VSL is generally
related to specific spatiotemporal associative and predictive
links. Category membership is usually defined as either a
shared set of features that define category boundaries, which
can include stimulus attributes, conceptual attributes, or sim-
ply a common label, or in the context of distances within
similarity spaces (Shepard, 1987), or resemblance of discrete
characteristics (Tversky, 1977). Categories can also be ab-
stract or, “ad hoc” (Barsalou, 1983)—for example, “things
that need to be donated to charity.” The primary link amongst
these different forms of category learning and reasoning is the
presence of shared features that define categorical member-
ship, whether those features are stimulus based (e.g., color or
shape), conceptual (e.g., donation items), or action based (e.g.,
things that can be kicked).

In contrast to VSL, category learning is commonly studied
in contexts where participants are directed to learn, feedback
or explicit labels are provided, and learning goals are made
explicitly clear. However, it is also possible to learn categories
in an unsupervised fashion, in manners that suggest that cate-
gory learning is itself a “statistical” learning phenomenon, at
least in part. For example, even infants notice correlations
amongst features (Younger & Cohen, 1986) and are sensitive
to statistical attributes such as intraclass variability, which
shapes generalization (Quinn et al., 1993). Thus, in our view,
the key distinction between VSL and category learning is that
the former is usually thought of solely in terms of spatiotem-
poral regularities, whereas the latter concerns regularities
amongst feature attributes.

Both VSL and category learning provide useful accounts of
how we may organize and make sense of the world on a
moment-to-moment basis. VSL may enable us to bind distinct
items together into perceptual objects (Lengyel et al., 2021),
support compression in working memory (Brady et al., 2009),
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and perform predictive processing. Category learning enables
us to generalize properties from one instance to another, to
achieve invariance with respect to feature variation that does
not impact categorical membership, and to track collections
bound together by common goals, origins, and hidden proper-
ties. While these phenomena are thought of and studied in very
different ways, they bear some similarities in terms of sensitiv-
ity to statistical information and similar roles in prediction.
Additionally, statistical learning in the real world is likely to
occur with elements about which the learner already has rich
semantic knowledge, including category knowledge. However,
statistical learning is typically studied using novel stimuli that
do not fall into obvious previously learned categories, or do not
have an obvious arrangement in a feature space. This leaves
open an important question: How might statistical learning be
altered as a function of categorical knowledge?

Vickery et al. (2018) found that task demands strongly
shaped what is statistically learned, and that category informa-
tion can influence VSL when attended. In their experiment,
participants viewed a stream of face and scene images that
covertly appeared in pairs. Participants received one of two
sets of instruction: One group was told to respond when an
image “jiggles” back and forth while the other was told to
categorize the image with one of two button presses (e.g.,
female faces and an outdoor image could share one response
while male faces and indoor scenes shared the other response).
In the detection group, no significant differences in learning
were observed between different stimulus combinations.
However, in the categorization group, when two stimuli of a
pair shared a response, greater learning was observed than
when they did not, even when the items did not share catego-
ry. Learning was also better for same-category than for
different-category pairs, at least if the items shared the same
response. This experiment suggested that natural category
membership and/or response mapping had powerful impacts
on VSL. However, two important limitations of the study
limited our conclusions. First, response mapping in categori-
zation was confounded, at least within same-category pairs,
with category membership and similarity. That is, it is likely
that female faces are more like one another than they are to
male faces, and that indoor scenes are more like other indoor
scenes than outdoor scenes, on average. Secondly, while no
distinctions among category combinations were observed
within the “jiggle” detection group, this could have been due
to reduced depth of processing and/or a floor effect that lim-
ited variability in learning across combination types. That is,
detecting a jiggle required rather shallow processing relative
to categorization, which requires processing of features to
match to a subcategory. This alone, rather than the specific
act of categorizing the items, might have induced an effect of
categorization on learning.

In the current paper, we isolated the role of response map-
ping from visual similarity by arbitrarily mapping diverse
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stimuli onto two keys during a “category” learning stage that
also served as a VSL familiarization stage. To limit the impact
of all factors other than category assignment, categories were
constructed in a spare fashion—by simply linking one of two
labels/responses arbitrarily to each item during VSL familiar-
ization of paired items. Previewing our results, we found that,
in two experiments, arbitrary category assignments strongly
shaped what pairs were remembered—same-category pairs
were correctly chosen at higher rates than different-category
pairs during a test phase. Experiment 2 further demonstrated
that natural categories shape memories for pairings in the
same manner, and that effect did not interact with arbitrary
category mappings.

Experiment 1

In Experiment 1, we employed fractal images that had no
obvious or systematic interrelationships in feature space.
During familiarization, subjects learned to map those images
onto one of two keys by trial-and-error learning. Subjects were
uninformed that stimuli also appeared in pairs, such that
Fractal A always preceded B. Such pairs were evenly divided
between same-response and different-response mappings,
allowing us to examine whether response mapping deter-
mined what statistical relationships were learned (assessed in
a surprise recognition memory phase), in the absence of any
clear relationship between visual similarity and arbitrary cat-
egories defined by key mappings.

Methods
Participants

Sample sizes were based on power analysis derived from
Vickery et al. (2018). We based our analysis on Experiment
4 of that paper, specifically the categorization subgroup
(whose familiarization task resembled the one used here)
and the effect of response (averaging over “task™). Cohen’s
d, was 0.692 for this comparison. To obtain a power of .95 to
detect an effect of this magnitude with a two-tailed # test would
require a sample size of 30 subjects, so this was selected as our
target sample for both experiments of the current study.

Our focus being on subsequent memory for pairs as a func-
tion of category learning, participants who failed to reach an
overall mean of 60% accuracy during the first, training phase
were excluded from analysis. Participants were expected to
easily reach well-above-chance levels of learning, so this cut-
off was arbitrarily selected to act as a liberal criterion for
participant inclusion. No participants were excluded from
Experiment 1, and two participants were excluded from
Experiment 2 based on this criterion. Excluded participants
were replaced to achieve the target sample size. Across the

two experiments, a total of 62 University of Delaware under-
graduate students (ages 18-22 years) were recruited.
Experiment 1 (N = 30) included 25 female participants, four
male participants, and one participant whose gender was not
disclosed. Experiment 2 (usable N = 30, after excluding two
subjects) were not asked to disclose gender but were sampled
from the same participant pool as Experiment 1. Subjects who
completed Experiment 1 were precluded from completing
Experiment 2. All experiments were conducted with the in-
formed consent of subjects and with approval of the
Institutional Review Board at University of Delaware.

Stimuli and materials

Stimuli consisted of 32 fractal images, which were gathered
in-house from various web sites, before the study. The images
were randomly and covertly assigned to 16 pairs independent-
ly for each subject. Images were further randomly assigned for
each subject to two equal-sized category or key mapping
groups (z images associated with the ‘z’ key and m images
associated with the ‘m’ key), with the constraint that eight
pairs were same-category and eight pairs were different-
category (we refer to these as “pair types”), with equal repre-
sentation of each category in each position in the pair. An
example subset of these assignments and same/different
pairings for one hypothetical subject are displayed in Fig.
la—b. The use of unfamiliar and diverse fractal images with
no natural categorical membership, and the use of random
assignment, ensured that visual similarity was equal across
different pair types and within and between categories, on
average. All images were presented on a 24-inch diagonal
LED monitor (120 Hz) with a resolution of 1,920 pixels x
1,080 pixels from an unrestrained viewing distance of approx-
imately 57 cm. Images were presented at 200 pixels x 200
pixels (approximately 5.5° x 5.5°).

Procedure

After providing informed consent, participants were seated at
a computer. They then completed two phases (familiarization
and a surprise test phase), with instructions presented before
each phase.

Familiarization phase During this phase, images were present-
ed one at a time, and subjects were instructed to learn, by trial
and error, the category (z or m) to which the image belonged,
by pressing the ‘z’ or ‘m’ key with their left or right index
finger, respectively. Each image was presented onscreen for 1
second and participants were required to respond before the
image disappeared. Feedback was provided in the form of a
green fixation circle for correct responses that remained on-
screen for 1 second. If incorrect, participants were presented
with a red fixation circle for 1.5 seconds (the additional time
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Fig. 1 Experiments 1 and 2 stimuli pairing and assignment to categories.
Note. Hypothetical examples of random stimulus assignments to
categories and pairings. a Experiment 1, four of 16 images assigned to
each category. b Experiment 1, from items in a, four different pairs used
to construct sequences exposed during familiarization. The arrow
indicates the sequence in which the images within a pair would occur
during familiarization. There were eight total same-category and eight

served as an incentive to learn). Sequences were constrained
such that all images appeared in their respective pair orders
(e.g., Image A always immediately preceded Image B in
Pairing AB), and pair orders were pseudorandomized such
that no pair could immediately repeat or repeat with a single
intervening pair. Participants viewed each pair four times per
block across six total blocks of training. All images appeared
an equal number of times (24 in total). Subjects were given
untimed breaks between blocks.

Test phase Following completion of the familiarization phase,
subjects were informed that the images encountered during
that phase always appeared in pairs. On each trial of a surprise
test phase, subjects viewed two sequences of pairs of images,
and were instructed to choose the pair that appeared more
familiar to them by pressing the ‘1’ or ‘2° key. One pair was
a target pair that had appeared during familiarization multiple
times, and the second pair was a foil pair composed of two
images that did not appear together in sequence previously.
The first image of a foil pair was taken from the set of first
images of target pairs, while the second image of a foil pair
was taken from the set of second images of different target
pairs. Foil pairs (16) were fixed and appeared an equal number
of times as each target pair during test, to prevent further pair
learning during the test phase. All images appeared an equal
number of times at a rate equal to that experienced during
familiarization (1 second on, 1 second off), along with indica-
tors that a sequence was beginning (e.g., “Sequence 1,” 1
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different-category pairings. There were eight pairs in each of the two
pairing types. ¢ Experiment 2, four of 16 images assigned to each cate-
gory. d Experiment 2, from items in ¢, four different pairings used to
construct sequences exposed during familiarization. The arrow indicates
the sequence in which the images within a pair would occur. There were
four total pairs for each of the four types of pairings

second on, 1 second off) that preceded each pair. Target pairs
were equally likely to appear first or second in the sequence.
The test phase consisted of 64 forced-choice trials that were
unspeeded, and subjects did not receive feedback during the
test phase.

Results
Familiarization phase

Categorization performance during familiarization is shown in
Fig. 2a. Participants reached above-chance accuracy within
the first block, #(29) = 2.08, p = .046, d = 0.38 (one-sample ¢
test of proportion correct vs. chance level of 0.5) and remained
above chance through the sixth block (all ps < .05).

A one-way repeated-measures ANOVA, with accuracy as
the dependent variable (DV) and block (six levels) as the IV,
was conducted to examine whether category learning im-
proved over time. There was a significant effect of block,
F(5, 145) = 191, p < 0.001, n,> = 0.868. Post hoc ¢ tests
comparing all blocks’ performance with p values corrected
using Holm’s method indicated that all blocks’ performance
differed from all other blocks (all ps < .05), except for Blocks
5and 6 (p = .22). Thus, performance improved steadily until it
leveled off by around Block 5, with performance numerically
peaking at Block 6 (proportion correct, M = 0.90, SD = 0.090).
A detailed analysis of accuracy and response time (RT) during
training, separated by position within a sequence (first and
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Fig. 2 Familiarization proportion correct and test proportion correct data
for Experiment 1. Nofe. a Mean categorization accuracy during the
familiarization phase from Experiment 1. b Mean proportion correct

second) and pair type (same or different), is presented in the
Supplementary Materials. In short, we found no effect of order
or interaction with order on accuracy in the last two blocks,
though a more complex interaction (likely due to subjects’
learning strategies) was present in early blocks. In terms of
RT, subjects were slightly faster to respond to second items in
a sequence versus first items (p = .043), but sequence position
did not significantly interact with pair type.

Test phase

Mean accuracy at identifying the old pair was computed for
each subject and target pair type during the test phase (see Fig.
2b). These values were transformed using the arcsine-square-
root transformation, and statistically compared with chance
performance (accuracy of 0.5) using a one-sample ¢ test for
each type, and across pair type (same vs. different category)
using a paired ¢ test. Both same-category, #29) = 4.99, p <
.001, Cohen’s d = 0.912, and different-category, #(29) = 2.19,
p = .037, d = 0.4, pair types were chosen at above-chance
rates. There was a significant difference between these two
rates of recognition, however, #29) = 2.76, p = .01, Cohen’s
d, = 0.504. Same-category pairs were recognized at higher
rates (M = .621, SD = .130) than different-category pairs (M
=.550, SD = .125). The Supplementary Materials presents a
corresponding mixed-effect logistic regression analysis of this
data, which yields the same conclusions.

Discussion

Subjects were adept at learning arbitrary category mappings of
images. They further demonstrated learning of pairings for
both same-category and different-category pairs. However,
learned arbitrary categories predicted the strength of VSL
such that same arbitrary category pairings were learned better

o
o
[

Proportion Correct

Different

Same
Arbitrary Category

from Experiment 1 for same-group pairs and different-group pairs. The
outlines reflect hypothetical arbitrary category assignment. Participants
did not see outlines. Error bars depict the standard error of the mean

than different-category pairings. Thus, newly learned arbitrary
information seems to have enhanced VSL when two items of a
pair shared the same category. This difference cannot be at-
tributed to prior knowledge of the stimuli (before training), as
all images are novel to participants and did not consistently
fall into any kind of naturally occurring category.

A number of potential mechanisms may be responsible for
this result. One possibility is that the simple fact that two items
share a label may make items more similar in their memory
representations, which may in turn lead to greater tendency for
those items to form associative links in memory. Another
possibility is that the act of changing category responses
across first and second items in different-category pairs could
disrupt working memory storage of the first item, such that the
first and second items are less associated because their com-
mon storage in working memory was disrupted. Similarly, the
change in category from first to second items for different-
category but not same-category pairs could induce an “event
boundary.” Event boundaries are known to have effects on
long-term memory (DuBrow & Davachi, 2016).

An obvious question arises from these results: Does prior
categorical knowledge shape VSL like the novel arbitrary in-
formation learned in Experiment 1? Would such preexisting
knowledge and experience interact with the arbitrary categor-
ical information that is more recently imposed on the stimuli?

Experiment 2

With Experiment 2, we aimed to replicate the finding of
Experiment 1, and further examine how natural categories
impact VSL, when the task during learning requires process-
ing of images to individuate and identify them, but is orthog-
onal to natural category assignment. To this end, we main-
tained our basic design from Experiment 1, but employed face
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and scene images in place of the fractal images. Thus, face and
scene served as an orthogonal natural category membership
factor, which we manipulated and crossed with arbitrary cat-
egory membership.

Methods

Methods were identical to those of Experiment 1, except for
the stimuli used, which consisted of color images of faces and
scenes, and the way these images were divided into pairs was
affected by this. Here, we only highlight method differences.

Stimuli and materials

Stimuli were 16 face from the FERET database (Phillips et al.,
1998) and 16 scene images from Vickery et al. (2018) that
were originally collected from the internet. These images were
of the same size as fractals in Experiment 1 and were random-
ly sampled for each participant from a pool of 50 images of
each type. Participants were randomly assigned either male or
female images, and either indoor or outdoor scenes. The set of
images selected for the participant were divided into 16 pairs
with the following constraints: eight pairs were same-arbitrary
and were assigned to the same key during familiarization (cat-
egorization training), while eight pairs were different-arbi-
trary, assigned to different keys. Of the eight pairs of each
arbitrary type, four were same-natural-category (two both-
faces and two both-scenes), and four were different-natural-
category (two were face followed by a scene and two pairs
were scene followed by a face). Thus, there were two crossed,
orthogonal factors associated with each pair: arbitrary catego-
ry (same or different) and natural category (same or different).
Assignment to key was counterbalanced across all four pair
types defined by these factors. An example subset of these
assignments and same/different pairings are displayed in
Fig. 1c—d.

Results
Familiarization phase

A one-way repeated-measures ANOVA, with block as a fac-
tor, was used to examine category leaning during familiariza-
tion (see Fig. 3a). Categorization accuracy changed across
blocks, F(5, 145) = 211, p < .001, np2 = 0.879, with partici-
pants reaching above-chance accuracy by the second block,
#29) =17.29, p=.001, d = 1.33. Post hoc tests comparing all
blocks demonstrated that all blocks were significantly differ-
ent from one another in terms of categorization performance
(all ps < .006, corrected for multiple comparisons using
Holm’s method)—performance increased monotonically
from block to block.
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A more detailed analysis of accuracy and RT during famil-
iarization is presented in the Supplementary Materials. In
short, we focused on the final two blocks, and found no effect
of position on categorization accuracy, as well as no interac-
tion of position with other factors on categorization accuracy.
We did, however, find an effect of position on RT (p < .001),
with faster responses to second items than to first items in a
sequence, consistent with a predictive response. Position ef-
fects interacted with natural category composition, however (p
=.009), such that order effects only manifested for different-
natural-category pairs and not same-natural-category pairs.
More details and discussion are presented in the
Supplementary Materials.

Test phase

A 2 x 2 RM-ANOVA was conducted on arcsine-square-root
transformed accuracy during the test phase, with factors of
arbitrary pair type (same-arbitrary vs. different-arbitrary) and
natural category pair type (same-natural vs. different-natural).
The four available pair-type conditions were same-natural
same-arbitrary (M = 0.740, SD = 0.154), same-natural differ-
ent-arbitrary (M = 0.662, SD = 0.182), different-natural same-
arbitrary (M = 0.648, SD = 0.175), and different-natural,
different-arbitrary (M = 0.568, SD = 0.189). Significant main
effects of arbitrary category pair type, F(1, 29) = 15.23, p <
.001, 7]12, = .344, and natural category pair type, F(1, 29) =
6.07, p = .02, 77127 =.173, were observed. In both cases, same
pairs were recognized at higher rates than different pairs.
However, the interaction was not significant, F(1, 29) =
0.07, p = .793, 77!27 = .002. The Supplementary Materials pre-
sents a corresponding mixed-effect logistic regression analysis
of this data, which yields the same conclusions.

Discussion

As in Experiment 1, we observed greater learning for pairs
that shared an arbitrary category as defined during familiari-
zation. Additionally, we observed greater learning for pairs
that shared a natural category, despite natural category distinc-
tions being irrelevant to the task at hand. There was no inter-
action between influences from arbitrary categories and natu-
ral category membership, suggesting that the total information
shared between two images of a pair predicts the ability to
statistically learn the pair. Natural category membership
shapes learning even when it is unattended, at least if the cover
task requires individuation and identification of items during
familiarization.

This result suggests that the act of changing category re-
sponse, offered as one explanation for Experiment 1°s results,
cannot solely explain the same versus different category dif-
ference because a change in natural categories did not result in
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Fig. 3 Familiarization proportion correct and test proportion correct data
for Experiment 2. Nofe. a Mean categorization accuracy during the
familiarization phase from Experiment 1. b Mean proportion correct
from Experiment 2 for same/different arbitrary group pairs and same/

a category response change. In our view, this makes it more
probable that similarity of representations (shaped by both
novel and preexisting category knowledge) in memory ac-
counts for most of the effect of categories. However, it is still
possible that the natural category change across different-
category pairs induced an event boundary that shaped asso-
ciative pair memory, even though such distinctions were not
cued explicitly by the task.

General discussion

These experiments highlight the importance of category learn-
ing and prior knowledge in VSL by demonstrating the impact
of recently learned groupings and the influence of task-
irrelevant and familiar natural category information. When
items in a pair came from the same category, whether arbitrary
or natural, they were learned better than when they came from
different categories. This was true whether the categorical
distinction was new to observers and learned during the same
familiarization period that exposed subjects to statistical infor-
mation, or whether it was a previously learned distinction that
had no bearing on the familiarization task.

Vickery et al. (2018) found that category membership im-
pacted performance. However, it was unclear whether this
was due to visual similarity confounds with category mem-
bership. In Experiment 1, we randomly assigned fractals to
two arbitrary categories and asked subjects to learn mappings
of those fractals while they were exposed to statistical regu-
larities. Because fractals were randomly assigned to category,
within-category similarity and between-category similarity
were balanced on average. The fact that these arbitrary cate-
gory mappings had a powerful impact on learning demon-
strates that similarity is not likely the sole factor contributing
to prior results.

o]
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o
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Natural Category
W Same Category
Different Category
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different natural category pairs. Outlines around images indicate their
arbitrary group membership. Participants did not see these outlines.
Error bars depict the standard error of the mean

Another unresolved question from Vickery et al. (2018)
work was whether category information had to be explicitly
attended to impact statistical learning performance.
Apparently, this was not the case—two-face or two-scene
pairs were learned better than face and scene pairs in
Experiment 2. This contrasts with Vickery and colleagues’
finding, that when same-category and different-category pairs
were exposed during a familiarization phase, with a cover task
to detect an image “jiggle,” no differences were observed in
learning of those types of pairings. One possible reason for
this is floor effects—Ilearning was generally weak across pair
types under the detection task in this prior work, and it is
possible that with increased exposure and better overall learn-
ing these patterns might emerge even under a detection cover
task. Another possibility is that the individuation and identifi-
cation of images, which was required by our categorization
cover task, is important to induce category effects.

It is important to mention that Experiment 2 did not sepa-
rate natural category information from visual similarity. The
current work cannot disentangle the role of natural category
membership from that of visual similarity (i.e., a pair
consisting of two faces share a great deal of visual information
above and beyond their category as faces). Experiment 1 sug-
gests that category information alone can induce differences in
learning, though, in the absence of similarity differences.
Future work will be needed to dissociate visual similarity in-
formation from categorical information, to assess the true im-
pact of item similarity on VSL.

These findings may have profound implications for how
real-world statistical learning occurs. We have shown that
both recently learned and well-established category distinc-
tions can predict the strength of statistically learned represen-
tations. This suggests that prior knowledge may have a pow-
erful impact on statistical learning, and the strength of that
prior knowledge may exert influences on learning despite be-
ing irrelevant to the task at hand. Our results also add to
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growing evidence that the task during exposure to statistical
regularities plays an important role (Turk-Browne et al., 2005;
Vickery etal., 2018; Zhao et al., 2011; Zhao et al., 2013; Zhao
& Yu, 2016).

In the natural world, it is highly likely that most statistical
regularities are encountered under contexts in which those
regularities have no obvious bearing on the immediate task
at hand (e.g., even in navigation tasks, we may follow a series
of landmarks described in directions while encountering nu-
merous other statistical regularities that are not relevant to
navigation, per se). In addition, statistical learning must often
occur over stimuli that are associated with deep prior knowl-
edge and experience. Thus, understanding how tasks and prior
knowledge impact statistical learning is essential to develop-
ing an appreciation for how it may manifest in real-world
contexts.
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