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Abstract
Humans automatically detect and remember regularities in the visual environment—a type of learning termed visual statistical
learning (VSL). Many aspects of learning from reward resemble VSL in certain respects, yet whether and how reward learning
impacts VSL is largely unexamined. In two studies, we found that reward contingencies affect VSL, with high-value associated
with stronger behavioral and neural signatures of such learning than low-value images. In Experiment 1, participants learned
values (high or low) of images through a trial-and-error risky choice task. Unbeknownst to them, images were paired as four
types—High-High, High-Low, Low-High, and Low-Low. In subsequent recognition and reward memory tests, participants
chose the more familiar of two pairs (a target and a foil) and recalled the value of images. We found better recognition when
the first images of pairs have high-values, with High-High pairs showing the highest recognition rate. In Experiment 2, we
provided evidence that both value and statistical contingencies affected brain responses. When we compared responses between
the high-value first image and the low-value first image, greater activation in regions that included inferior frontal gyrus, anterior
cingulate gyrus, hippocampus, among other regions, were found. These findings were driven by the interaction between statis-
tically structured information and reward—the same value contrast yielded no regions for second-image contrasts and for
singletons. Our results suggest that when reward information is embedded in stimulus-stimulus associations, it may alter the
learning process; specifically, the higher-value first image potentially enables better memory for statistically learned pairs and
reward information.
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Introduction

Reward motivation impacts human cognition in many con-
texts (Banich & Floresco, 2019). Value is not only linked to
stimuli that are critical for individuals’ survival (e.g., primary
reward; water or food), but also learned associations between
reward and neutral stimuli can also shape one’s behavior (e.g.,
secondary reward; money; Daw & Doya, 2006). There is vast
literature demonstrating how secondary cues, especially mon-
etary reward, guide an individual’s cognitive processes, such
as memory, attention, and decision making. Higher associated
value facilitates stimulus-reward memory association

(Wittmann et al., 2005), and features and objects that are as-
sociated with higher value capture more attention than those
with low or no rewards (Anderson, 2013; Theeuwes &
Belopolsky, 2012). Individuals’ decision-making tends to op-
timize action so that rewards are maximized and losses mini-
mized (Tversky & Kahneman, 1979).

Many studies have sought to understand how people learn
stimulus-reward associations in a naturalistic environment.
Behrens et al. (2007) provided evidence that people use prior
and subsequent value information even in a continually
changing environment (i.e., under volatility) to achieve an
optimal outcome. When performing probabilistic reward-
learning tasks, such as “bandit” tasks (Daw et al., 2006),
where the values of choices change stochastically, people sen-
sibly tend to choose items that were recently rewarded.
Researchers also investigated how humans learn reward infor-
mation during a foraging task (Zhang et al., 2017). It was
shown that participants foraged for longer and found more
targets when the value of a target successively increased, sug-
gesting the knowledge of reward patterns and the context
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where the reward is embedded play essential roles in learning
stimulus-reward associations (in this case, by foraging).When
stimulus-reward associations are repeatedly presented, stimu-
lus regularities become critical information for developing
strategies to gain optimal values (Erev & Roth, 1998;
Mookherjee & Sopher, 1994, 1997).

The relationship between learning and reward is typically
studied in the context of learning rewarding associations, spe-
cifically, or memory of individual stimuli that are explicitly or
implicitly associated to reward (Miendlarzewska et al., 2016).
Recently, Klein-Flügge et al. (2019) tested how the knowl-
edge of stimulus-reward associations and associative struc-
tures (i.e., statistical regularities) are represented when
stimulus-reward and stimulus-stimulus contingencies are pre-
sented concurrently. In their study, participants repeatedly ob-
served sequences of information (e.g., ABCD or A’B’C’D’)
wherein the last item either led to reward (e.g., D➔ reward) or
non-reward (e.g., D’➔ non-reward). Participants were told to
learn a hidden sequence. Each stimulus was highlighted se-
quentially in a 3x4 grid, and participants were asked to move
an agent to highlighted stimuli and press a button when a
target (e.g., D or D’) appears. Faster reaction time was ob-
served for a reward trial (e.g., D) than a non-reward trial
(e.g., D’). Reaction time for initiating the first movement to-
ward the next stimulus (e.g., A to B, B’ to C’) was faster with a
rewarded sequence than a non-rewarded sequence.
Additionally, a significant effect of transition (from A’ to B’,
B’ to C’, and C’ to D’) was found with both types of sequence,
suggesting statistical learning occurred even in the absence of
reward. Neural evidence showed that reward learning was
reflected by activity in the temporal polar cortex and posterior
orbitofrontal cortex. Both the knowledge of reward and statis-
tical regularity information relied on the medial prefrontal
cortex and the hippocampal-amygdala border region.
Interestingly, the ventral striatum (nucleus accumbens) ap-
peared only to encode the first item of the rewarded sequence
(e.g., A in ABCD sequence).

That study shed light on how different types of learning
processes may interact with each other. Intriguingly, a faster
reaction time for initiating the movement toward the next
stimulus was shown with rewarded compared with
nonrewarded sequences. This result suggests that learning a
stimulus-stimulus association, which was irrelevant to the
task, is impacted by reward information. Notably, however,
even though the task was irrelevant to reward, participants
were asked to find out and infer a rule (i.e., sequence) that
might lead to a reward target. In contrast, the present study
examined how learning explicitly about rewarding associa-
tions of each item in the sequence modulates the undirected
and uncued learning of visual statistical associations.

Visual statistical learning (VSL) is a type of learning that
reflects automatic and unsupervised extraction of statistical
contingencies by the visual system (Fiser & Aslin, 2001,

2002). Prior studies suggested that humans may, in part, ac-
complish efficient processing of complex visual environments
by learning and exploiting knowledge of visual regularities
(Fiser & Aslin, 2001, 2002; Turk-Browne et al., 2005). In
two early VSL studies, Fiser and Aslin (2001, 2002) found
that when particular visual items co-occurred with others, sub-
sequent recognition rates of those regularities were above
chance, even though those regularities were task-irrelevant,
no instructions to remember the associations were given, and
the associations were not cued. A typical VSL paradigm takes
place in the context of passive viewing or simple cover tasks.
How VSL occurs in the context of different task demands and
contexts, as it must occur in everyday life, is underexplored.
Because intentionally seeking and learning about rewards is
so foundational to adaptive behavior, it is important to under-
stand how learning about reward associations might impact
incidental learning of regularities.

What effect might reward have on learning regularities
when regularity information is completely task-irrelevant
(i.e., when participants are not given any types of sequence-
related information)? This question is underexamined. People
may learn the underlying rules or patterns regardless of reward
information, or reward information may aid learning underly-
ing statistical regularity, with differing levels of reward having
different effects on statistical learning. On the other hand, the
presence of reward might even block incidental learning, for
example by withdrawing attention from items or reducing the
persistence of stimuli in working memory. Therefore, the ef-
fects of reward on learning through the lens of VSL is a mean-
ingful approach to uncover the integration of two different
types of learning, each of which has been widely studied in-
dependently of the other.

Several findings support the idea of potential pathways for
reward to influence VSL. Prior studies provided evidence that
these two types of learning incorporate some similar associa-
tive mechanisms. For instance, both stimulus-reward and
stimulus-stimulus contingencies are learned as a result of be-
ing presented for multiple occurrences of these contingencies,
intentionally or unintentionally. Furthermore, the neural stud-
ies provide reasons to suspect reward learning and VSL may
be interrelated. That is, these two types of learning have been
shown to share common neural correlates, at least regionally:
correlates of both reward learning and VSL have been found
in hippocampus, striatum, and medial temporal lobe (Aron,
2004; Delgado et al., 2000; Klein-Flügge et al., 2019; Lansink
et al., 2009; Wittmann et al., 2007). As these brain areas are
known for their key roles in associative learning (Rieckmann
et al., 2010), reward learning and VSL may share common
neural substrates, in terms of extracting and binding meaning-
ful information (or patterns) and predicting and evaluating
upcoming events based on that information.

We further predicted that the effect of reward might be
especially potent when the high reward item is in the first
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position in a temporally presented pair sequence. In VSL, the
position of an item in a stereotyped sequence seems to deter-
mine the neural response profile to that item (Turk-Browne
et al., 2010). Turk-Browne et al. (2010) showed that the right
anterior hippocampus and medial temporal lobe showed en-
hanced responses when the first picture of a pair appeared (i.e.,
the predictive stimulus) compared with novel singletons.
These results suggest that during the acquisition of statistical
regularities, the first item of the structured information plays
an important role in predicting and evaluating subsequent
items. The findings from Klein-Flügge et al. (2019) addition-
ally support this hypothesis. They found that the ventral stri-
atum area appeared only to encode the first item of the
rewarded sequence (e.g., A in ABCD sequence) but not the
first item of the non-rewarded sequence (e.g., A’ in
A’B’C’D’).

Hence, when reward is embedded in VSL sequences, the
reward may evoke different responses according to the posi-
tion of the structured information it is associated with. In par-
ticular, higher reward that is specifically associated with early
items in a temporal sequence may aid visual statistical learn-
ing. To our knowledge, Rogers et al. (2016) is the only work
to examine the relationship between monetary reward and
VSL directly. Despite finding evidence of visual statistical
learning, the amount of reward associated with stimuli and
sequences did not affect the strength of VSL in their studies,
suggesting that reward processing and VSL were operating
independently. However, the manipulation of reward, in that
case, may have been too subtle for participants to process
reward contingencies in a VSL paradigm. Therefore, to moti-
vate learning and enhance participants’ performance, we
employed a trial-and-error risky choice task (e.g., Clark
et al., 2009). We introduced this task as a type of gambling
task—participants were told to guess and decide whether they
would choose to gamble or not on each trial. As implementing
gamification features in the task has been known to lead to
higher motivation and task engagement (Alsawaier, 2018;
Hamari et al., 2014; Muntean, 2011), we speculated that this
task would lead to in-depth processing of reward information.
We additionally conjectured that a trial-and-error task might
be ideal for introducing reward and regularity information
simultaneously, such that neither reward information nor sta-
tistical information was given temporal priority.

In the present study, we examined how reward modulates
VSL. To clearly see the interaction between varying rewards
(i.e., high vs. low) and the position of an item in a structured
sequence, we used pairs presented in temporal succession to
instantiate statistical regularities, but pairs were constructed
with different reward variations (i.e., High-High, High-Low,
Low-High, and Low-Low).We found higher recognition rates
for pairs when the first image of a pair had a high value, which
suggested the high value of the first item in a pair enhances
learning (or low-reward impairs learning). The neural

correlates linking reward variations to statistical regularities
was examined in Experiment 2. Using event-related fMRI,
we measured brain responses to images that were associated
with both varying levels of reward (i.e., high vs. low) and
sequential contingencies (i.e., the first or second image in a
pair, or singletons). The first image with a high value, com-
pared with the first image with a low value, led to greater
activity in areas, including inferior frontal gyrus (IFG), left
anterior cingulate gyrus (ACC), lateral occipital cortex
(LOC), orbitofrontal cortex (OFC), accumbens, hippocampus,
and putamen. This serves as circumstantial evidence that
higher reward that is associated with early items in a temporal
sequence evoke unique neural responses, which may result
from the interaction between value and statistical learning.
Importantly, we provided evidence that the differences be-
tween the high-value first image and the low-value first image
are not driven solely by the value difference, but by an inter-
action of predictiveness and value.

Experiment 1

The purpose of Experiment 1 was to examine the influence of
learned value on VSL by embedding different amounts of
reward into structured pairs (i.e., High-High, High-Low,
Low-High, and Low-Low reward pairs) that always co-
occurred temporally in a sequence of decisions. After partici-
pants learned the value in a temporally structured sequence,
we tested recognition for each type of pair, allowing us to
examine how the high- or low-reward association might inter-
act with the location of reward (i.e., first or second) in struc-
tured pairs.

Method

Participants

All procedures were approved by the University of
Delaware Institutional Review Board. Thirty-three
University of Delaware students who were 18-40 years
of age participated for course credit or cash. At the last
phase of Experiment 1, participants’ memory for the im-
age value was measured. Pilot data suggested that reward
memory recognition judged by the third phase was almost
always above chance levels. Because it was crucial for
participants to have a memory of reward associated with
constituent items to judge reward effects on VSL, we
established exclusion criteria based on last-phase perfor-
mance. The exclusion criteria were a priori. Two partici-
pants were excluded because they did not show above-
chance (50%) reward memory recognition rate.
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Stimuli and apparatus

Experiment 1 was run on Windows 10 with a 24-inch LCD
monitor with a resolution of 1920 x 1080. The experiment was
programmed in MATLAB with Psychophysics Toolbox v. 3
(Brainard, 1997; Kleiner et al., 2007). We used 32 fractal
images as novel visual stimuli. Images were randomly
assigned into structured sequences (i.e., pairs) between partic-
ipants. Stimuli were 200 pixels x 200 pixels, and participants
sat approximately 57 cm from the monitor (images subtended
approximately 5° of visual angle).

Procedure

Experiment 1 consisted of three phases. Participants per-
formed 1) a learning phase followed by 2) a surprise pair
recognition phase. In the last phase, they completed 3) a re-
wardmemory test, which asked participants to explicitly recall
the value of each image (i.e., high or low; two-alternative
forced-choice task). Before the experiment began, participants
were given instructions about the learning task. However, no
information was provided to participants about the subsequent
memory-test phases before completing the learning phase.
Regarding incentives, participants were told that during the
learning phase, points would be shown on the screen based
on their choice (the description is below). Points added up
over time and they would get money based on their point
totals. At the end of the experiment, the points were converted
to a maximum of $10. Total points (maximum of 3200) were
divided by 320 to derive this value. Participants were in-
formed that points would be converted to money at the end
of the experiment (up to $10 total), but not of the exact con-
version rate.

During the learning phase (Fig. 1a), images were presented
at the center of the screen, sequentially. Participants were
instructed to do a risky choice task, in which they learned
the values (high or low) of fractal images through trial-and-
error. For each image, participants needed to make a choice
(phrased as a “gamble”) of “Yes” or “No.” If they chose "Yes”
(press the Z button on the keyboard), they had a 50% chance
of winning nothing (0 points) and a 50% chance of winning
points. Importantly, "high-reward" images were associated
with a 50% chance to win 10 points. "Low-reward" images
were associated with a 50% chance to win 2 points. If they
chose "No" (pressed the M button on the keyboard), they
always got one point and, importantly, were able to see what
they could have gained (i.e., 0, 2, or 10) if they chose "Yes" on
that trial. This way, they were still able to learn 1) the associ-
ated value (if 2 or 10 points were assigned on that trial), and 2)
whether they won by not choosing “Yes” on that trial (if 0 was
assigned on that trial). If they could not choose within 2 sec-
onds, it was counted as "Miss."

Unbeknownst to participants, we paired images so that
some images always predicted other images on the following
trial. This led to four types of pairings: High-High, High-Low,
Low-High, and Low-Low (Fig. 1b). All structured pairs were
pseudo-randomized within the stream such that no immediate
repetition of a pair (e.g., ABAB) or two sets of pairs (e.g.,
ABEFABEF) could occur. The 32 fractal images (16 pairs)
were repeated four times within each block. With a total of 5
blocks, each image/pair appeared a total of 20 times. The 16
pairs were equally divided into 4 of each of the pairing
conditions.

Following the learning phase, the recognition phase began.
Participants were given on-screen instructions before they be-
gan the recognition phase. This phase involved a two-
alternative forced-choice task in which participants were

Fig. 1 aGeneral procedure of the learning phase in Experiment 1. b Pairs were equally divided into four reward variations (High-High, High-Low, Low-
High, and Low-Low)
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asked to choose which of two two-image sequences was more
familiar (Fig. 2a). One of the sequences was a sequence of a
target pair, and the other one was a sequence of a foil pair. The
target pair was a structured pair that was presented multiple
times during the learning phase (e.g., AB, CD, EF, etc.). Foil
pairs were recombined from pairs constructed from using the
first image of one target pair and the second image of another
target pair (e.g., AD). Each target and foil pair were presented
four times during the test phase. We constrained each target
pair type (in terms of reward) to match with all types of foil
pairs (e.g., High-High (target) vs. High-High (foil); High-Low
(foil); Low-High (foil); Low-Low (foil)) in each presentation.
No feedback was given during this phase, and participants had
unlimited time to respond.

After the recognition phase, participants were asked to re-
member the value of all images that they saw during the learn-
ing phase and choose whether they had high or low-values in a
two-alternative forced-choice paradigm. All 32 images were
presented one by one in a random order (Fig. 2b), with no time
constraints and no feedback provided.

Results

A two-way repeated measures ANOVA (value of image x
block) on risky choice proportion (i.e., choosing yes) showed
a significant main effect of value of image, F (1, 30) = 48.04, p
< 0.001, ηp2 = 0.616 (but no main effect of blocks, F < 1) and
an interaction between block and value, F (4, 120) = 12.48, p <
0.001, ηp2 = 0.3. Proportion of making a risky choice to high-
value images gradually increased across blocks. The opposite
was observed with low-value images (Fig. 3).

In regards to the recognition phase, a one-sample t-test
against chance (50%) yielded significant learning only for
the High-High condition, t(30) = 2.71, p = 0.01, d = 0.49. In
addition, with a 2 (value of first image, high or low) x 2 (value
of second image, high or low) repeated measures ANOVA,

we only found a significant main effect of the first image such
that there was better recognition when the first image of a pair
was a “High” image, F(1, 30) = 6.41, p = 0.017, ηp2 = 0.17
(Fig. 4). No main effect of the second image nor interaction
were found (F < 1). Bayesian Repeated Measures ANOVA
(using a position of image as a factor; the first or the second
position in a pair) were examined to evaluate evidence favor-
ing the null for the factor of second position value and the
interaction. We used the Bayesian Repeated Measures
ANOVA routine that is supplied with JASP (JASP Team,
2020), with the default multivariate Cauchy prior for
ANOVA (Rouder et al., 2012). The results showed evidence
that the effect of value of the second image favored the null
hypothesis (main effect of the second position, BF01 = 3.447,
error 1%; interaction, BF01 = 3.249; error 2.3%), indicating
mild evidence against the possibility of an effect of second-
image value or interaction involving the second image. To
ensure that results were not impacted by foil pair value, we
conducted a 2 (value of first image, high or low) x 2 (value of
second image, high or low) repeated measures ANOVA based
on foil type, which resulted in no significant main effects and
no interaction of foil value on recognition accuracy, all F < 1.

In the last reward memory phase, the mean proportion cor-
rect was 0.757 (standard deviation [SD]: 0.115, t(30) =
12.489, p < 0.001, d = 2.243 ; one-sample t-test against
chance, 50%). When we divided the results into the image
location (the first and second images for pairs) and the reward
type (high and low images), a repeated measures ANOVA did
not show any significant main effect nor interaction (all p >
0.1; Fig. 5).

Finally, we conducted an exploratory correlational analysis
between the pair recognition accuracy and the reward memory
accuracy (e.g., a correlation between a recognition rate of HH
pairs and reward memory of items in HH pair), for each type
of pair, to examine whether recognition of pairs was tied to
memory of reward value, and whether this differed across
conditions. A moderate correlation was only found with HH

Fig. 2 General procedure of the memory tests. a Example of the recognition test. b Example of the reward memory test
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pairs, r(29) = 0.42, p = 0.018 (uncorrected), but not with other
pair types (all p > 0.3; Fig. 6). To compare coefficients direct-
ly, we used the Cocor package in the R programming lan-
guage (Diedenhofen &Musch, 2015), which allows statistical
comparison of dependent correlations. Using Silver et al.'s
(2004) z-test, we contrasted the HH coefficient with correla-
tion coefficients of HL, LH, and LL pairs at an alpha level of
0.05. Coefficient comparisons did not reach significance (but
a trend of difference; z = 1.707, p = 0.087) with a HH vs. HL
comparison but showed a significant difference (z = 2.331, p =
0.019) with a HH vs. LH comparison. However, HH vs. LL
did not reveal a significant difference (z = 0.981, p = 0.326).

Discussion

Previous research found no differences in VSL amongst no-,
low-, or high-reward conditions (Rogers et al., 2016).
However, previous efforts did not explicitly draw attention
to value during exposure to statistical associations. In the cur-
rent study, using a risky choice task, the participants’ task was
to learn the value of images, which drew attention explicitly to
reward during exposure. Under these constraints, we found
better recognition for pairs when the first image of the pair
was a high-reward image.

In VSL, the first item of structured pairs plays an im-
portant role in predicting and evaluating subsequent out-
comes during the acquisition of statistical regularities
(Turk-Browne et al., 2010). As we do not see any benefit
for pairs where the high-reward image appeared second
(i.e., Low-High pairs), we speculated that value informa-
tion might interact with VSL, because attention may be
engaged with greater frequency and/or intensity when the
first image of a pair is associated with high-reward in
advance of the predictable second image. This, in turn,
enables or enhances learning of the association (see the
General Discussion for mention of other possible mecha-
nisms). In Experiment 2, we investigated the neural cor-
relates of how reward variations affect the learning of
statistical regularities and probe the underlying mecha-
nisms of our finding that reward associations shape VSL.

Experiment 2

To investigate the neural basis of how reward impacts VSL,
we measured brain responses to visual images that were asso-
ciated with both varying levels of reward and sequential

Fig. 3 Proportion of making a risky choice throughout blocks. In this and all other figures, error bars represent standard error of the mean

Fig. 4 Accuracy at choosing target pairs over foil pair in four reward
variations. Lighter dots represent individual participants’ data points
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contingencies, using event-related fMRI. We examined the
neural activation of the first and the second image in pairs,
and how it differed according to the amount of reward (high
vs. low). We also compared images with structural informa-
tion (i.e., pairs) and without such information (i.e., singletons)
in each of high- and low-value (e.g., high-paired images vs.
high singleton; low-paired images vs. low singleton) and
asked how the varying level of reward affected the processing
of statistically structured information.

Method

Participants

Thirty University of Delaware students, aged 18-40 years,
each participated in one 2-hour long experimental session
(mean age: 21.6 years; 22 females). One participant did not
show above-chance levels of learning in the last reward mem-
ory phase, so that participant was excluded from further

Fig. 5 Accuracy at choosing reward value (high or low)

Fig. 6 Correlations between performance on the recognition phase and the reward memory test in each pair type. Darker dots represent overlapping data
points
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analysis. All participants were right-handed, reported having
normal color vision, and were compensated $20/hour. All
procedures were approved by the University of Delaware
Institutional Review Board.

Stimuli, apparatus, and procedure

In Experiment 2, a total of 48 fractal imageswere used. Thirty-
two images were assigned to 16 pairs. The remaining 16 im-
ages were used as singletons. The added singletons allowed us
to compare directly the differences in neural activity for im-
ages that contained statistical structure information and im-
ages that do not.

There were four phases: 1) the risky choice task (i.e., the
learning phase); 2) the passive viewing task; 3) the recognition
test; and 4) the reward memory test. Participants performed
the risky choice task and the passive viewing task inside of the
scanner. Two memory tests were performed outside of the
scanner. The rules of the risky choice task were identical to
Experiment 1. However, the procedure timing was modified
to accommodate fMRI analysis. In Experiment 2, there were
four runs of the risky choice task. In each run, a new set of four
pairs and four singletons were presented; each were repeated
six times within the block. We chose six repetitions based on
prior studies that showed evidence of learning even with a
small number of repetitions (Turk-Browne et al., 2010), so
that we could introduce new images in each run.
Additionally, we included jittered intervals between 1) the
choice phase and feedback phase of the trial, and 2) the feed-
back phase of the trial and the next image presentation (Fig.
7). Jittered intervals consisted of 2s, 3s, 4s, or 5s, and they

were evenly divided across conditions and presented in a ran-
domized order. During the risky choice task phase, partici-
pants responded with an MRI-compatible button box.
Following the four learning runs, a passive viewing run was
performed. In this run, all 48 images were presented one more
time, with each of the 16 pairs presented in pair-wise order and
16 singletons randomly presented in between pairs.
Participants were asked to focus on each image but otherwise
passively view them. Each image was presented for 1 second
followed by a jittered interval [2s, 3s, 4s, or 5s].1 Despite the
fact that these modifications (e.g., newly presented pairs and
singletons in each run, jittered intervals, and passive viewing
task) may yield different patterns of behavior results com-
pared with Experiment 1, we modified the experimental set-
tings to follow the best approach to measure the neural re-
sponses of how rewards impacts VSL.

After all runs, participants completed the recognition test
and reward memory test outside of the scanner. The proce-
dures for the recognition and reward memory tests were the
same as Experiment 1. All 48 images (including singletons)
were shown in the reward memory test. With the experimental
design modifications described above, we anticipated the pos-
sibility that the recognition and the reward memory tests may
not result in the same pattern. The incentive was provided
based on the points participants earned during the risky choice
task, and points were converted to a maximum of $15 (i.e.,
total points, maximum of 900, were divided by 60 to deter-
mine payout). Participants were informed at the beginning of

Fig. 7 General procedure of the learning phase in Experiment 2

1 Due to time constraints, 21 participants performed 1 run of passive viewing,
and 8 participants performed 3 runs of passive viewing.
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the experiment of the possible reward and that points would be
converted to cash rewards.

Data acquisition

Neuroimaging data were acquired on a 3T Siemens Prisma
system using a 64-channel head/neck coil. One high-
resolution T1-weighted MPRAGE structural image was col-
lected (0.7-mm isotropic voxels) for anatomical information.
Functional scans consisted of a T2*-weighted Siemens
Multiband (multiband factor of 8) EPI sequence with 80 slices
acquired in an interleaved manner and with an oblique axial
orientation (approximately 25° from anterior commissure/
posterior commissure line). The in-plane resolution was
2.0 mm x 2.0 mm, and slice thickness was 2.0 mm with no
skip (TR = 1 s, TE = 32 ms, flip angle 61°), resulting in
isotropic voxels. Each learning run consisted of 784 volumes
and lasted 13 minutes and 4 seconds. Each passive viewing
run contained 237 volumes and lasted 3 minutes and 57
seconds.

Structural and functioning processing

Data analyses were performed using fMRIB Software Library
(FSL, www.fmrib.ox.ac.uk/fsl) version 5.0.9, FMRI Expert
Analysis Tool (FEAT) version 6.0 (Jenkinson et al., 2012),
and the AFNI software package (Cox, 1996). For structural
scans, we first performed skull-stripping by using BET
(Smith, 2002), and then registered to a standard MNI152 2-
mm template. For functional runs, data were first de-obliqued
(AFNI’s 3dWarp) and reoriented to match the standard tem-
plate (fslreorient2std). Then, data were motion corrected,
smoothed (8-mm FWHM Gaussian kernel), and high-pass
temporal filtered with a 100-s cutoff.

At the first-level analysis of the risky choice task phase, a
total of 116 runs (4 runs, 29 participants) were modeled using
a standard GLM approach. Fifteen explanatory variables
(EVs) were set up: HH-First, HH-Second, HL-First, HL-
Second, LH-First, LH-Second, LL-First, LL-Second, High-
Singleton, Low-Singleton, Choice-Yes-Win, Choice-Yes-
Lose, Choice-No-Win, Choice-No-Lose, and the first presen-
tation of each image as a regressor of no interest. We included
the first presentation of each image as a regressor of no inter-
est, because participants had no previous reward (i.e., high or
low) and location information (i.e., first or second) of each
image on their first appearance. The regressor was modeled
as two seconds duration, which means the time point we ex-
cluded was when participants did not get any feedback but
were shown an image for the first time. As we want to see
the impacts of reward information on learning statistical reg-
ularities, we believed that each image's first appearance (i.e.,
having no prior reward information) should be excluded, be-
cause no such learning could have taken place at that time.

For the passive viewing task, a total of 45 runs (1 run: 21
participants; 3 runs: 8 participants) were modeled using a
standard GLM. Ten explanatory variables (EVs) were set
up: HH-First, HH-Second, HL-First, HL-Second, LH-First,
LH-Second, LL-First, LL-Second, High-Singleton, Low-
Singleton. Regressors were unit-height boxcar functions that
modeled the appearance of image (2-seconds duration) or the
response/outcome (2-seconds duration) and were convolved
with a double-gamma canonical hemodynamic response func-
tion. A second-level, fixed-effect analysis was then used to
combine across four learning runs within each participant for
the learning phase and up to three passive viewing runs.
Finally, a third-level mixed-effects analysis was used to com-
bine participants’ data. Third-level results were cluster-
corrected for multiple comparisons using Randomise, FSL’s
nonparametric permutation testing tool (Jenkinson et al.,
2012), with 5,000 permutations and threshold-free cluster en-
hancement (TFCE). Results are FWE-corrected within each
analysis.

Our primary interest was examining any effect unique-
ly driven by the high-value first images (H1) compared
with the low-value first images (L1) to uncover activity
putatively associated with prioritized processing coincid-
ing with reward and order. We also ran contrasts to in-
vestigate any differences between high/low-value images
that appeared with or without statistical structure (e.g., H1
or H2 > High-value singleton (Hsin); L1 or L2 > Low-
value singleton (Lsin), and vice versa). This approach
allowed us to explore the potential for reward to influence
statistically structured or unstructured images (i.e., pairs
vs. singletons), as the additional associative information
bound to structured images (or lack thereof for singletons)
may predict learning based on their learned status as a
high or low reward image. For the passive viewing phase,
we focused on whether there is any relationship between
reward contingencies and serial position even when the
risky choice task was removed. If so, it would suggest
that reward-associated structured or unstructured images
continue to be represented uniquely outside of reward-
related contexts.

Results

fMRI data

Learning phase

To explore the potential impact of reward on early con-
stituent item in a temporal sequence, we first uncovered
any differences in neural responses between the high-
value first image (H1) and the low-value first image
(L1) in pairs. Second, we were interested in contrasting
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any such observations with differences that might arise in
response to high-value second images (H2) vs. low-value
second images (L2), and high-value singletons (Hsin) vs.
low-value singletons (Lsin), to ask whether structure mod-
ulated this response.

The contrast of the high-value first images versus the low-
value first images (i.e., H1 > L1) yielded significant clusters in
middle temporal gyrus, superior temporal gyrus,
parahippocampal gyrus, temporal fusiform cortex, hippocam-
pus, amygdala, thalamus, OFC (all bilaterally) as well as right
IFG, left LOC right accumbens, right putamen, left ACC, and
left paracingulate gyrus (Table 1; Fig. 8). To examine whether
these results were driven solely by the value difference (i.e.,
high vs. low), we contrasted the activity provoked by the high-
value second images with that in response to the low-value
second images (i.e., H2 > L2 and L2 > H2), but no significant
difference was observed. There also was no significant differ-
ence between high-value singletons and low-value singletons
(i.e., Hsin > Lsin and Lsin > Hsin).

Additionally, a statistical comparison of the interactions
between 1) (H1-Hsin) and (L1-Lsin), and 2) (H1-L1) and
(H2-L2) was derived. The contrast of (H1-Hsin) > (L1-Lsin)
yielded greater activation in the right postcentral gyrus, right
precentral gyrus, left middle temporal gyrus, right superior
temporal gyrus, left hippocampus, left amygdala, and other
regions (Table 2; Fig. 9). The lack of any observable differ-
ence between high-value singleton and low-value singleton,
and the significant interaction in many regions, supports the
conclusion that H1 > L1 outcomes are not driven solely by the
value difference, but rather an interaction between statistical
regularity and value differences. The contrast of (L1-Lsin) >
(H1-Hsin) did not yield any activation. With the contrasts of
(H1-L1) > (H2-L2), no significant clusters were observed

when using Randomise.2 The contrast of (H2 – Hsin) and
(L2 – Lsin) revealed no significant clusters, which again sup-
ports the idea that the value difference is not the only factor
that drives the findings from H1 > L1.

Considering these activations in conjunction with our
results from Experiment 1, the current findings suggest an
interaction of value processing and statistical regularity.
High-value first images (i.e., predictive images) provoke
deeper processing in learning reward information and an-
ticipation of the following item than low-value predictive
images. The greater activation in the IFG, left ACC, and
LOC suggests that the attentional process might also be
involved in enhanced processing of the high-value first
images (Beck & Vickery, 2020; Corbetta & Shulman,
2002; de Fockert et al., 2004).

Following up on these results, we examined how sta-
tistical regularities modulate responses, keeping value
constant. We examined four contrasts: 1) H1 vs. Hsin;
2) H2 vs. Hsin; 3) L1 vs. Lsin; and 4) L2 vs. Lsin. We
observed significant clusters for Lsin > L1 and Lsin > L2.
The contrast of Lsin > L1 showed greater activation in
middle temporal gyrus, hippocampus, amygdala, puta-
men, LOC, and other regions (Table 3; Fig. 10a). The
contrast of Lsin > L2 resulted in clusters in similar areas
(Table 4; Fig. 10b). Comparisons between high-value
paired images and high-value singletons did not yield
any significant differences.

Table 1 Result of the contrast with H1 > L1. In this and all other tables, clusters with five or fewer voxels were not reported

Anatomical label Hemisphere Cluster size
(voxel)

p value
(TFCE)

Peak MNI,
mm

High value first image (H1) > Low value first image (L1)

Middle temporal gyrus, superior temporal gyrus, parahippocampal gyrus, temporal
fusiform cortex,

Hippocampus, amygdala, thalamus, orbitofrontal cortex

Left 9220 0.009 -54, -28, -4

Parahippocampal gyrus, temporal fusiform cortex,
Hippocampus, amygdala, thalamus, accumbens

Right 2360 0.014 26, -34, -16

Middle temporal gyrus, superior temporal gyrus,
Supramarginal gyrus, planum temporale, parietal operculum

Right 890 0.034 72, -32, 2

Orbitofrontal cortex, inferior frontal gyrus Right 122 0.041 28, 20, -22

Frontal pole Left 54 0.04 -16, 50, 42

Cingulate gyrus Left 23 0.041 -2, -12, 34

Occipital fusiform gyrus Right 13 0.046 30, -68, 0

Lateral occipital cortex Left 8 0.048 -28, -88, 20

Paracingulate gyrus Left 6 0.05 -4, 46, 8

2 However, when clusters were defined using a family-wise error (FWE) cor-
rection following a Z > 2.8 threshold (p < 0.005), based on Gaussian Random
Field theory, we found greater activations in right LOC, with cluster size
(voxels) as 443, Z = 3.776, and peak MNI (mm) on 42, −84, −8 (x, y, z).
The contrast of (L1-L2) > (H1-H2) revealed no significant activation.
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We were not able to find any significant differences
with contrasts scrutinizing the first images of paired im-
ages > singletons (Turk-Browne et al., 2010). With our
design, however, paired images contained not only statis-
tical structure but also reward information, and the interac-
tion between these two variables may drive a different pat-
tern of results. Rather, we found that low-value singletons

showed greater activity than low-value predictive (L1) im-
ages in areas recognized for playing a role in processing
reward information (e.g., caudate, putamen, hippocampus).
These results suggest that our (H1-L1) > (Hsin-Lsin) inter-
action may have been driven predominantly by differences
in the way that L1 images are processed compared with
low-value images that are nonpredictive.

Fig. 8 The H1 > L1 contrast yielded clusters that included middle
temporal gyrus, superior temporal gyrus, parahippocampal gyrus,
temporal fusiform cortex, hippocampus, amygdala, thalamus, OFC (all
bilaterally) as well as right IFG, right putamen, left ACC, left LOC, right

accumbens, and left paracingulate gyrus. From top to bottom, coordinates
are centered on left IFG, left OFC, left ACC, and left hippocampus. In this
and all other figures, coordinates are in MNI standard space
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Passive viewing phase

During the passive viewing phase, participants were not re-
quired to perform any task other than to focus on each image
as it goes by. We were interested in seeing whether any
reward/structure related findings from the risky choice task
phase would extend into other contexts (i.e., a context where
participants are no longer making a choice or actively earning
reward). However, we were unable to find similar patterns of
activity with contrasts we ran with the risky choice task. We
suspect that failure to observe patterns of activity similar to
that found for the learning phase is possibly due to a lack of
power, from only having time to collect data from a single run
of the passive viewing task for most participants. This will be
addressed further in the general discussion section.

Behavior data

We analyzed participants’ choices (i.e., yes or no) for the risky
choice task for each time presentation (1st to 6th) collapsed
over runs. As shown in Fig. 11, a two-way repeated measures
ANOVA (value of image x number of presentation) on risky
choice proportion (i.e., choosing yes) showed a significant
main effect of value, F (1, 28) = 51.21, p < 0.001, ηp2 =
0.647, and a trend (but not significant) of main effect of the
number of presentation, F (1, 28) = 2.22, p = 0.055, ηp2 =
0.074. A significant interaction between value of image (high
or low) and the number of presentation (1st to 6th) was found,
F (5, 140) = 29.46, p < 0.001, ηp2 = 0.513. Proportion of
making a risky choice was equally high for both high-value
and low-value images at the first presentation, but across the
second to sixth presentation, the proportion of making a risky

Table 2 Result of the contrast with (H1-Hsin) > (L1-Lsin)

Anatomical label Hemisphere Cluster size (voxel) p value (TFCE) Peak MNI, mm

(H1 - High Singleton) > (L1 - Low Singleton)

Postcentral gyrus, precentral gyrus Right 203 0.033 26, -26, 68

Planum temporale, superior temporal gyrus Right 145 0.041 50, -32, 14

Middle temporal gyrus, superior temporal gyrus Left 35 0.042 -66, -28, 0

Hippocampus, amygdala Left 22 0.037 -20, -10, -20

Planum temporale Right 10 0.048 64, -10, 2

Fig. 9 The (H1-Hsin) > (L1-Lsin) contrast yielded significant clusters in
the right postcentral gyrus, right precentral gyrus, left middle temporal
gyrus, right superior temporal gyrus, left hippocampus, and left

amygdala. Top row coordinates are centered on right precentral gyrus,
and bottom row coordinates are centered on left hippocampus
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choice on high-value images gradually increased. The oppo-
site was observed with low-value images.

Participants completed two memory tasks after scanning:
the recognition test, and the reward memory test. As described
earlier, there are several differences in design between
Experiment 1 and Experiment 2. Based on these differences,
the replication of behavior data was not guaranteed. In addi-
tion, we added the passive viewing task (1 run: 21 partici-
pants; 3 runs: 8 participants) after the learning phase. This task
might drive a different pattern of results.

For the recognition test, a one-sample t-test of recognition
accuracy against chance (50%) yielded significant learning for
all pair conditions: High-High: t(28) = 3.3, p = 0.002, d =
0.62; High-Low: t(28) = 3.26, p = 0.002, d = 0.6; Low-
High: t(28) = 3.1, p = 0.004, d = 0.57; Low-Low: t(28) =
2.46, p = 0.02, d = 0.45. A 2 (value of first image, high or
low) x 2 (value of second image, high or low) repeated mea-
sures ANOVA did not show any significant main effects nor
an interaction (all p > 0.5; Fig. 12). In addition, a 2 (value of
first image, high or low) x 2 (value of second image, high or
low) repeated measures ANOVA did not reveal any main
effects nor an interaction of foil type (i.e., foil pairs of High-
High, High-Low, Low-High, and Low-Low conditions; F <
1). Although the behavioral results of Experiment 1 did not
replicate, this is likely due to design differences. This will be
discussed further in the General Discussion section.

In the last reward memory phase, the mean proportion cor-
rect was 0.79 (SD: 0.13, t(28) = 11.75, p < 0.001, d = 2.18;
one-sample t-test against chance, 50%). When we divided the
results into the image type (the first, second images for pairs
and singletons) and the reward type (high and low images), a
repeated-measures ANOVA did not show any significant
main effect nor interaction (all p > 0.2; Fig. 13).

In line with our exploratory correlational analysis in
Experiment 1, we calculated correlations between pair recog-
nition accuracy and reward memory accuracy, separately for
each pair type. Similar to findings in Experiment 1, a moderate
correlation was only found with HH pairs, r(27) = 0.47, p =
0.009 (uncorrected), but not with other pair types (all p > 0.15;
Fig. 14). In this context, this pattern is more meaningful, while
performance was at chance for HL/LH/LL pairs in
Experiment 1. Thus, one might have expected that that per-
formance on those pairs would not correlate with anything
else. Here all four pair-types were recognized equally well at
above-chance levels. Still, only HH pair memory correlated
with reward memory. Coefficient comparisons using Silver

Table 3 Result of the contrast with Lsin > L1

Anatomical label Hemisphere Cluster
size
(voxel)

p value
(TFCE)

Peak
MNI,
mm

Low-value singleton (Lsin) > Low-value first image (L1)

Middle temporal gyrus,
superior temporal gyrus,
caudate, parahippocampal
gyrus, temporal fusiform
cortex, hippocampus,
amygdala, cingulate
gyrus, thalamus, putamen,
postcentral gyrus, planum
temporale, precentral
gyrus, lateral occipital
cortex, ventricle, right
cerebellum, accumbens

Both (unless
stated
specifical-
ly)

44022 0.009 10,

-34, 58

Precuneous cortex Left 146 0.036 -22,
-48, 26

Lingual gyrus Left 32 0.046 -6,
-70, 2

Cerebellum Left 32 0.046 -4,
-46, -12

Intracalcarine cortex,
precuneous cortex

Right 8 0.05 6, -66,
12

Table 4 Result of the contrast with Lsin > L2

Anatomical label Hemisphere Cluster size
(voxel)

p value
(TFCE)

Peak MNI,
mm

Low-value singleton (Lsin) > Low-value second image (L2)

Middle temporal gyrus, superior temporal gyrus, precuneous cortex, supramarginal
gyrus

Right 1903 0.02 22, -52, 30

Caudate, pallidum, putamen Right 670 0.021 16, 4, 26

Ventricle Both 145 0.041 0, 4, 6

Precuneous cortex Left 63 0.038 -24, -52, 26

Orbitofrontal cortex, frontal pole, caudate, putamen Right 52 0.042 22, 32, -6

Temporal occipital fusiform cortex Left 48 0.048 -40, -44, -10

Planum polare Right 24 0.044 42, -24, -4

Inferior temporal gyrus, lateral occipital cortex Left 6 0.049 -48, -66, -14
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et al.'s (2004) z-test revealed significant differences in HH vs.
HL and HH vs. LH comparisons (z = 3.037, p = 0.002 and z =
2.207, p = 0.027, respectively). However, similar to
Experiment 1, HH vs. LL did not reveal a significant differ-
ence (z = 0.919, p = 0.358). Despite the failure to replicate

higher HH pair memory vs. other conditions in this experi-
ment (and potential reasons will be discussed further in the
general discussion section), our exploratory correlational anal-
yses showed similar patterns of behavior performances in
Experiments 1 and 2.

Fig. 10 a The contrast of Lsin > L1 showed greater activation in middle
temporal gyrus, hippocampus, amygdala, putamen, and LOC. b The
contrast of Lsin > L2 also showed significant activations in middle

temporal gyrus, hippocampus, inferior temporal gyrus, amygdala,
putamen, and LOC. From top to bottom row, coordinates are centered
on right caudate, right precentral, right caudate, and right LOC
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Discussion

In Experiment 2, we measured brain responses to visual
images that were associated with both varying levels of
reward and statistical contingencies. We found that the
high-value first image (i.e., H1) led to greater activity in
areas, including IFG, left ACC, LOC, fusiform gyrus,
OFC, accumbens, precuneous cortex, parahippocampal
gyrus, middle temporal gyrus, amygdala, hippocampus,
and putamen, compared with the low-value first image
(i.e., L1). These findings suggest that H1, compared with

L1, led to greater neural activity that may have potential
to enhance associative learning. The contrasts of (H1-
Hsin) > (L1-Lsin) yielded greater activation in the
precentral gyrus, middle temporal gyrus, hippocampus,
and amygdala, which supports the possibility that the dif-
ferences between the high-value first image and the low-
value first image are not driven solely by the value dif-
ference, but by an interaction of predictiveness and value.

For contrasts comparing first images and singletons (e.g.,
H1>Hsin and L1>Lsin), we did not replicate the findings of
Turk-Browne et al. (2010). We speculate that embedded

Fig. 11 Proportion of making a risky choice by the number of presentations, split by value

Fig. 12 Accuracy at choosing target pairs over foil pair in four reward variations. Lighter dots represent individual participants’ data points
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reward information possibly altered learning in such a way
that made it unique versus when VSL occurs in the absence
of reward. The cover task also was quite different, which
might contribute to differences in how VSL manifests. In ad-
dition, we found that low-value, predictive images (i.e., L1)
provoked less activity than nonpredictive, low-value

singletons. In contrast, there was no difference in high-value
comparisons between paired images and singletons. This sug-
gests that the predictive nature of a stimulus may specifically
down-regulate responses to low-value images and thus that
the learning process of the low-value first image was less
guided/prioritized than the high-value first image.

Fig. 13 Accuracy at choosing reward value (high or low)

Fig. 14 Correlations between performance on the recognition phase and the rewardmemory test in each pair type. Darker dots represent overlapping data
points
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General discussion

Across two experiments, we provided behavioral and neural
evidence that reward may alter visual statistical learning. In
Experiment 1, better recognition of pairs when the first image
of a pair was associated with high-value was observed. This
effect was especially pronounced for High-High pairs. In
Experiment 2, when the first image of a pair was associated
with high-value, compared with the first image being associ-
ated with low-value (i.e., H1 > L1), greater BOLD response
was observed in brain areas that have been known to play an
essential role in associative learning (e.g., hippocampus,
precuneous cortex, parahippocampal gyrus; Turk-Browne
et al., 2010). In addition to the above areas, brain regions that
have been known to play an important role in value processing
(e.g., OFC, accumbens, and caudate; Baliki et al., 2013;
Kringelbach & Rolls, 2004) showed greater activations in
the high-value first image than the low-value first image.
These findings are not driven solely by the value difference
(i.e., high value vs. low value) but rather the interaction be-
tween statistically structured information and reward. With
additional analyses, we showed that this value difference
was specific to predictive items, suggesting that predictiveness
and value interact in determining neural responses to images.

Additionally, greater BOLD response was observed in
brain regions whose activity is known to scale with attentional
processing (LOC, inferior frontal gyrus, precentral gyrus, and
anterior cingulate gyrus; Beck & Vickery, 2020; Corbetta &
Shulman, 2002; de Fockert et al., 2004) in the contrast of H1 >
L1. We speculate that selective attention might be involved in
this finding, such that the first image in a pair that is associated
with high value may receive attentional priority compared
with the attention given to low-value first images. Again, we
did not observe similar differences with comparisons of H2
vs. L2 or Hsin vs. Lsin, which implies that a combination of
predictiveness and reward value might be crucial in provoking
this response. Our findings suggest that VSL occurs differen-
tially as a function of the magnitude of reward associated with
the first image. In other words, when different amounts of
reward are embedded in visual regularity, the rewards may
interact with VSL in a way that it only impacts on the first
position of the structured sequence.

A number of mechanisms might explain this finding, with
variations in attention caused by associated value being one
candidate. According to previous studies, selective attention
plays an important role in VSL, as selective attention to stim-
uli is required for VSL to occur (Baker et al., 2004; Turk-
Browne et al., 2005). Based on prior studies, we assume learn-
ing of structural information does not occur in a uniform way.
Rather, selective attention may be required to process such
information, with the degree of selective attention determining
the strength of learning. Mounting evidence suggests that re-
wards bias attention towards stimuli that have been associated

with those rewards as well (Anderson et al., 2013; Raymond
& O’Brien, 2009; Theeuwes & Belopolsky, 2012; Won &
Leber, 2016). For example, Anderson et al. (2013) found that
greater attention was driven to items that were previously
learned as high-value items rather than low-value items even
though value information was no longer relevant to the task.
Participants were not able to remember explicitly the associa-
tion between stimulus and reward outcomes. The role of at-
tention in each of these phenomena is compelling enough to
believe that reward may impact VSL on the basis of how
reward shapes attention. Shared neural activity in LOC in
response to both types of learning (Anderson, 2017; Turk-
Browne & Scholl, 2009) may further imply one potential
pathway of reward to influence on VSL, as attention may play
an important role in their relationship. However, further study
is needed to directly measure the role of attention in the inter-
action between reward and VSL.

Two other potential mechanisms underlying these effects
are related to working and long-term memory. One possibility
is that high-reward images are maintained in working memory
longer than low-reward images. This persistence could lead to
increased co-activation in working memory of the first item in
a sequence during the presence of a second item, which would
improve the probability of the images being bound together.
Indeed, such a mechanism is implicit in at least one model of
how VSL might manifest in the hippocampus (Schapiro et al.,
2017). Because the neural correlates of attention and working
memory overlap (LaBar et al., 1999), further experiments
would be required to determine whether one or both of atten-
tion and working memory play a role. A final possibility that
we considered is that reward might bolster the strength of
individual item representations, which might make associa-
tions between them easier to learn (Wittmann et al., 2005).

The processing of reward information elicited different pat-
terns with behavior and neural approaches. In Experiments 1
and 2, our behavioral results of learning of reward associations
(i.e., the reward memory test) showed no difference in reward
memory as a function of the structured information, which
means that predictive structure (i.e., the first position of a pair
vs. the second position of a pair vs. singleton) did not impact
the recognition of reward information. However, our neural
evidence in Experiment 2 reveals that reward-related re-
sponses were differentiated based on which structural position
the reward was embedded in. Behavior and neural results
might not be comparable, because the neural data were col-
lected during the first familiarization phase, and the behavior
data were collected during the last reward memory test.
Therefore, we speculated that the recognition task (i.e., two-
alternative forced-choice task) prior to the last rewardmemory
test might cause subtler effects due to the presentations of foil
pairs, which potentially interfere with the reward memory as a
function of the structured information.
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Different results of the recognition phase between
Experiments 1 and 2 alsomay be driven by design differences.
For example, in Experiment 2, the gradual introduction of new
pairs throughout the experiment might have cued learning and
led to more generic learning effects. In addition, the timing of
the risky choice task was different due to jittered intervals, and
singletons were newly used in Experiment 2 as well. We pre-
sented singletons in between pairs during the learning phase to
compare neural responses between paired images and single-
tons, but the inclusion of singletons might result in different
patterns of behavior compared with presenting only pairs, like
in Experiment 1. Among these different experimental settings
between Experiments 1 and 2, we suspect that the passive
viewing task, where all pairs appeared one to three times
across all participants, may play a critical role in yielding the
different patterns. In this phase, participants were not required
to make any choice, which means they did not have to process
information related to reward variation. Hence, there is a pos-
sibility that the overall recognition rate may be increased
across the board and eliminate the differences between reward
variations. Even though the pair recognition phase between
Experiments 1 and 2 revealed different results, the two exper-
iments showed similar patterns of 1) correlations between per-
formance on the reward memory test and the recognition
phase, and 2) correlation comparisons (Diedenhofen &
Musch, 2015). Notably, while all pair-types were recognized
equally well at above-chance levels in Experiment 2, a signif-
icant correlation was only shown with HH pairs. This might
suggest that behavior performance was affected by both value
and statistical contingencies. However, possibly due to a lack
of power, not all comparisons involving HH were statistically
significant.

As an extension of the findings from Klein-Flügge et al.
(2019), our work provides evidence of behavioral
(Experiment 1) and neural responses (Experiment 2) being
modulated by the interaction of reward and VSL. As
mentioned earlier, Rogers et al. (2016) explored the interac-
tion between reward and VSL, but the reward variations (i.e.,
no-, low-, or high-reward) did not affect the learning of regu-
larities. In our work, by using a risky choice task, we enhanced
participants’ engagement to the task and value (Alsawaier,
2018; Hamari et al., 2014; Muntean, 2011) and observed an
effect of reward onVSL. Our results imply that robust engage-
ment with value information may be necessary to induce in-
teractions with the learning of visual regularities. Furthermore,
the different patterns of behavioral results (i.e., the recognition
rate) from Experiment 1 and Experiment 2 show that experi-
ment design manipulation may be a critical factor in finding
the impact of reward on VSL. In other words, we suspect that
the modifications in study design (e.g., block design, the in-
clusion of singletons) might have driven the differences in
results between the two experiments. Therefore, we suggest
that the context of the task could be one of the most important

aspects to be considered in future studies. In conjunction with
other recent results highlighting the importance of task during
exposure shaping VSL (Vickery et al., 2018), the current
study highlights the need to carefully consider context during
exposure to regularities, and how those contexts shape inci-
dental learning. Along this line, it would be worthwhile to
investigate how our findings can be extended to longer se-
quences (e.g., triplets or quadruplets). Prior studies have
shown the importance of temporal statistics of the reward
and extended environments in learning and memory
(Behrens et al., 2007; Clewett et al., 2019).

With respect to the passive viewing task, we were unable to
observe a similar pattern of activity as that found in the risky
choice task phase. We suspect that this failure is possibly due
to a lack of power, due to our only having time to collect data
from a single run of the passive viewing task for most partic-
ipants. Another possible explanation for lack of such a finding
is that the effect of reward in VSL may only arise within the
context of tasks that draw attention to value, like our risky
choice task. Therefore, simply viewing the sequence of im-
ages may not yield the same neural responses as actively mak-
ing a risky choice on each image. Finally, because we intro-
duced new sets of images in each learning run, it is possible
that persisting VSL effects were variable across early vs. late,
thus complicating detection of neural differences in our para-
digm. Further studies of how the interaction between reward
and VSL may affect the later representation of memory even
outside of a reward-related context may be needed.

Another possible limitation in this study relates to the gam-
bling task. There is an optimal response on high-reward trials
but no optimal response for low-reward trials. In other words,
the expected value for a yes response is higher than for a no
response with high reward images, but the expected value was
equal for yes and no responses with low reward images.
However, the purpose of the gambling task is to enhance
participants’ motivation to learn the value and to draw atten-
tion explicitly to reward during exposure. We, first, did not
observe equal levels of choosing yes or no with low reward
images even though the expected value is the same; rather,
participants tend not to choose to gamble with low reward
images throughout the task. Second, even if optimality may
determine the different degrees of value learning, our neural
results demonstrate that not only the higher value but also the
order in the sequence matters, such that only the early items in
a temporal sequence and value interact in determining neural
responses to images.

The set of present studies provide evidence that VSL is
modulated by reward. When a high reward is embedded in
the first location of a statistically structured pair, it aids learn-
ing: a result we found support for in neural evidence. Several
brain areas that reflect reward processing, associative learning,
and the intermixed effect among them support the notion that
reward contingencies affect VSL. These findings highlight the
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fact that reward may alter stimulus–stimulus learning, which
is entirely undirected and task-irrelevant. Specifically, when a
high reward is associated with the predictive item in the sta-
tistical regularity, it potentially enables better memory for sta-
tistically learned pairs and reward information, ultimately fa-
cilitating visual statistical learning.

Open Practices Statements The experiments were not preregistered.
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