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Abstract

We present a reduced magnetohydrodynamic (MHD) mathematical model describing the dynamical behavior of
highly conducting plasmas with frozen-in magnetic fields, constrained by the assumption that there exists a frame
of reference, where the magnetic field vector, B, is aligned with the plasma velocity vector, u, at each point. We
call this solution “stream-aligned MHD” (SA-MHD). Within the framework of this model, the electric field,
E=− u×B≡ 0, in the induction equation vanishes identically and so does the electromagnetic energy flux
(Poynting flux), E× B≡ 0, in the energy equation. At the same time, the force effect from the magnetic field on
the plasma motion (the Ampère force) is fully taken into account in the momentum equation. Any steady-state
solution of the proposed model is a legitimate solution of the full MHD system of equations. However, the
converse statement is not true: in an arbitrary steady-state magnetic field, the electric field does not have to vanish
identically (its curl has to, though). Specifically, realistic three-dimensional solutions for the steady-state
(“ambient”) solar atmosphere in the form of so-called Parker spirals can be efficiently generated within the stream-
aligned MHD (SA-MHD) with no loss in generality.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Corotating streams (314); Solar corona (1483)

1. Introduction

Space weather describes the dynamic state of the Earth’s
magnetosphere-ionosphere system, which is driven by solar
wind and solar ionizing radiation. The greatest disturbances in
space weather are geomagnetic storms, the most severe of
which are caused by coronal mass ejections (CMEs) (see
Gosling 1993). To simulate, forecast, or just nowcast space
weather events, which from a mathematical standpoint are
essentially time-dependent processes, global models are needed
to simulate, as the initial stage, the steady state of the solar-
terrestrial environments. The resulting solution for the “pre-
event” solar wind and terrestrial magnetosphere serves as the
background through which the space weather disturbance
propagates and shocks and discontinuities are generated. The
solar energetic particle (SEP) transport, as well as the formation
of their seed population, is mostly controlled by this back-
ground solution as well.

In realistic solar atmosphere simulations, the essentially
three-dimensional (3D) interplanetary magnetic field can be
steady state only in coordinate systems corotating with the Sun
(such as HGR). In corotating frames, solar active regions and
coronal holes, which are mostly responsible for shaping the
structure of the solar atmosphere, can be treated as steady-state
sources. Despite being steady-state globally, the solution for
the solar wind is highly variable at Earth’s location, since in
any corotating system the Earth orbits the Sun with the
Carrington rotation period. This relative motion allows us to
compare time series of solar wind parameters observed by
Earth or L1 orbiting spacecraft, SWobserved(t), with the
simulated steady-state parameters for the 3D background solar
wind, SWbackground(R), by extracting the time series of
simulated values, SWbackground(REarth_HGR(t)), at the time-
dependent Earth location in the HGR system, REarth_HGR(t).

The time series of observations by the two STEREO spacecraft
provide additional validation possibilities.
In the last two decades, several 3D solar wind (Usmanov

et al. 2000; Suzuki & Inutsuka 2005; Verdini et al. 2009;
Osman et al. 2011; Lionello et al. 2014a, 2014b; Usmanov
et al. 2018) and coronal heating models (Tu & Marsch 1997;
Hu et al. 2000; Dmitruk et al. 2002; Li & Habbal 2003;
Cranmer 2010) that included, or were exclusively driven by,
Alfvén wave turbulence became increasingly popular. Our
group also includes Alfvén wave turbulence in our corona and
inner heliosphere model (see, e.g., Sokolov et al. 2013, 2021a;
Oran et al. 2013; van der Holst et al. 2014; Gombosi et al.
2018, 2021). Although popular, this physics-based approach to
modeling the background solar wind is not the only way to
model the solar corona and the solar wind. Empirical
descriptions of the solar wind, like the widely used Wang–
Sheeley–Arge (WSA) model (Arge & Pizzo 2000), are also
attractive because of their simplicity and ability to predict the
solar wind speed in the inner heliosphere. In addition, the WSA
formalism can be readily incorporated into global 3D models
for the solar corona and inner heliosphere, e.g., via a varying
polytropic index distribution (see Cohen et al. 2006), as
proposed by Roussev et al. (2003), or via the boundary
condition set at the solar surface (Shen et al. 2018) or at 0.1 au
(see, e.g., Pomoell & Poedts 2018).
There is, however, a conceptual difference between global

solar atmosphere models that are based on numerical solutions
of the ideal (or resistive) MHD equations and simple (but
efficient) semianalytic solar wind models that imply a classical
Parker-spiral structure for the interplanetary magnetic field
lines. Specifically, in semianalytic models, it is assumed that in
the corotating frame of reference under steady-state conditions
the solar wind velocity vector u(R) is always aligned (parallel
or antiparallel) with the interplanetary magnetic field vector,
B(R). This means that streamlines and magnetic field lines are
always identical and they form Archimedean or Parker (1958)
spirals. The assumed coincidence of solar wind streamlines and
interplanetary magnetic field lines (in corotating frames) is at
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the heart of almost all analytic, semianalytic, semiempirical,
and empirical models of interplanetary space. This assumption
results in simple methods for tracing interplanetary magnetic
field lines from any point of interest in the solar system back to
the Sun. One can just trace back a Parker spiral to find out
where the local solar wind and magnetic field line originates
from on the Sun. For instance, in the WSA semiempirical
model (Arge & Pizzo 2000), this assumption is used to relate
the Earth’s location to the point on the source surface at which
to extract the parameters, predicted by the model.

The problem with the concept of aligned interplanetary
streamlines and magnetic field lines is that numerical solutions
of the full set of MHD equations have not been able to
reproduce this feature so far. Full MHD numerical solutions of
the solar atmosphere obtained within the framework of regular
MHD are not stream aligned. Even if the initial conditions
describe parallel B and u vectors, the smallest numerical error
(such as truncation, finite representation, etc.) will result in
uncontrollable growth of misalignment. One of the reasons for
this discrepancy is the numerical reconnection across the
heliospheric current sheet near the top of helmet streamers: the
reconnected field is directed across the current sheet, while the
global solar wind streams along with the current sheet, thus
resulting in significant misalignment. Within regular MHD
there is no mechanism to reestablish the streamline field line
alignment.

Tracing magnetic field lines from a point of interest in the
heliosphere to the solar surface (magnetic connectivity) is
needed to identify the point of origin of the magnetic field line.
This same magnetic connectivity is also necessary to solve the
field-aligned transport of energetic particles that create space
radiation hazards. With standard computational MHD calculat-
ing the magnetic connectivity can become so challenging that
sometimes it is preferable to trace streamlines instead, or even
Lagrangian trajectories of fluid elements.

In this paper we present a new global model of the solar
atmosphere/solar wind system using a reduced MHD model
which ensures stream-aligned magnetic field under steady-state
conditions. We call this solution “stream-aligned MHD” (SA-
MHD). In this reduced set of MHD equations the electric field,
E=− u× B≡ 0, identically vanishes in the induction
equation and so does the electromagnetic energy flux (Poynting
flux) in the energy equation, E× B≡ 0. At the same time, the
impact of the magnetic force on the plasma motion (the
Ampère force) is explicitly enforced in the momentum
equation. It must be emphasized that any steady-state solution
of the reduced equation set is a solution of the full MHD
system of equations. However, the converse statement is not
true, since in an arbitrary steady-state magnetic field the electric
field does not have to vanish identically (though its curl must).
The main point is that the practically interesting Parker (1958)
spiral solutions for the steady-state background solar atmos-
phere and solar wind can be efficiently generated within the
SA-MHD with no loss of generality, in 3D geometry with a
realistic solar magnetic field.

2. Full 3D MHD Equations of the Global Model

2.1. Standard MHD Equations with Nonzero Magnetic Field
Divergence

Global models of the solar atmosphere are usually based on
the standard MHD equations (nonspecified notations are as

usual):
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where B= |B|, u= |u|, and Î is the unit tensor. We use the
equation of state, P= 2nikBT, ρ=mpni for the coronal plasma
with the polytropic index, γ= 5/3. We omitted many
important effects (effects of gravity and inertial forces are
discussed in Section 3.3 (see Sokolov et al. 2021a for a detailed
description of a model used in simulations here) in the
governing equations, while we explicitly included terms
proportional to the divergence of the magnetic field. If the
numerical solution for the magnetic field is not divergence-free
(see Godunov 1972; Powell et al. 1999), this approach allows
us to handle maintain basic physical properties, such as
pressure positivity. Indeed, if one takes Equation 1(d) divided
by temperature, T, subtracts the dot product of u/T with
Equation 1(c) and the dot product of B/(μ0T) and Equation

1(b) and finally adds Equation 1(a) times ( )s h
T

u1

2

2

+ - , an

extra conservation law is obtained:

( ) · ( ) ( )us s 0 2t r r¶ + =

(see also Godunov 1961, 1972; Harten et al. 1983; Powell et al.
1999), where s and h are the entropy and enthalpy per unit mass
and the thermodynamic equations

( )
( )dh Tds dP h

P1
,

1
, 3

r
g

r g
= + =

-

were used. Equation (2) is only valid for smooth solutions and
it states that the entropy satisfies the conservation law for a
passively advected scalar. At shocks and discontinuities the
entropy conservation breaks down, but, entropy can only
increase, not decrease. Therefore, the total entropy (its volume
integral) does not decrease: ∂t∫ρsdV� 0, since the integral of
∂t(ρs) over the smooth solution region vanishes due to Gauss’
theorem applied to Equation (2), while the discontinuities result
in entropy production. A consequence of this entropy property
is that for such systems, finite-volume numerical schemes
ensure that in the numerical solution the physical entropy does
not decrease, and consequently, the pressure can never become
negative (should the pressure go to zero, the entropy,

( )s Plogµ , would drop to minus infinity).
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2.2. Separating the Potential Magnetic Field in the Solar
Corona

Realistic models of the 3D coronal magnetic field use
boundary conditions taken from full disk photospheric
magnetograms incorporating current and past observation
results. The potential magnetic field solution provides the
minimum free magnetic energy for a given boundary condition,
therefore, in the “ambient” (background) solution for the solar
wind, the magnetic field is approximately equal to the potential
configuration in the proximity of the Sun. Following Ogino &
Walker (1984) and Tanaka (1994) (see also Powell et al. 1999;
Gombosi et al. 2002), we split the total magnetic field to a
potential (B0) and nonpotential (B1) component B= B0+ B1.
We note that at R= Re the potential B0 field dominates. If we
use photospheric maps of the radial magnetic field (Br), then
the potential B0 field can be recovered from the observed
magnetogram using the Potential Field Source Surface Method
(PFSSM) that has been originally described by Altschuler et al.
(1977). The Laplace Equation for scalar magnetic potential is
solved in terms of spherical harmonics between Re� R and
R� RSS= 2.5 Re with the given radial gradient of the potential
(the observed radial field) at R= Re and with vanishing
magnetic potential (i.e., purely radial magnetic field) at
R= RSS. Accordingly, the nonpotential (B1) field (used by
Sokolov et al. 2013; Oran et al. 2013; van der Holst et al. 2014)
satisfies zero boundary conditions for the radial field comp-
onent, B 01R = at R= Re.

Using the split magnetic field approach the governing
equations become the following (the continuity equation does
not change, therefore we do not repeat it here):
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An advantage of splitting the magnetic field is that there are
no quadratic terms in B0 in Equation 4(b). Near the Sun
(especially near active regions) such terms can be so large that
the error in their approximation might exceed the whole

physical effect from the B1 field. For the same reason we
cannot, in general, rely on the assumption that numerical
approximations for B0 ´ and · B0 are exactly zero (as it
is theoretically assumed), so that to maintain entropy
conservation we need to introduce the corresponding source
terms in Equations 4(a)–(c). Particularly, all contributions from
the field to the momentum Equation 4(b) can be combined with
the Ampère force ( ) [ ] ( )j B B B B B1 0

1
1 1 0

0
´ + = ´ ´ +

m
and it is the last term in the RHS of Equation 4(b), which
ensures that the potential, B0, contributes to the total field, but
not to the current, in the Ampère force.
In a solar corona model different approximations, with split

and non-split magnetic fields, can be used depending on the
heliocentric distance, R= |R|. For instance, the “threaded field
line model” Sokolov et al. (2021a), that includes the transition
region and covers heliocentric distances between the photo-
sphere (Re) and the low boundary of the solar corona,
Rb≈ 1.1 Re, neglects the nonpotential B1 component, assum-
ing that in this region B1≡ 0, and the plasma flow occurs only
along the potential field lines (threads). This approach allows
us to move the boundary conditions for all other physical
quantities from the top of the transition region (where they are
poorly known) to the photosphere. Accordingly, the boundary
condition, ( )B 0R1 = , is imposed at R= Rb, to solve the full set
of Equations 4(a)–(c) at distances Rb� R� RSS.
Finally, above the magnetogram source surface, at R� RSS,

the B0 field, which is purely radial at RSS, can be naturally
continued beyond the source surface as a steady state, radial,
and divergence-free field decaying as 1/R2:

( ) ( )⎛
⎝

⎞
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B R B R
R

R

R

R
. 50

2

2 0
SS SS=

This magnetic field, however, is no longer a potential field,
therefore its contribution to the current cannot be neglected. To
fully account for the total force effect when using split fields
and to ensure their continuity at RSS, one needs to add the extra
source term to the RHS of the momentum Equation 4(b) in the
R� RSS region:
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which is easy to compute, since only the last term (which is to
cancel the last term in the RHS of Equation 4(b)) depends on
time via B1, while all other terms are steady-state terms and can
be calculated only once.
With the newly added source, the momentum equation in

effect reduces to Equation 1(c) expressed in terms of the total
magnetic field, B= B0+ B1, and the induction (Equation 4(a))
reduces to Equation 1(b). Nevertheless, it is the unknown field
B1 that is solved from these equations throughout the
computational domain. In order not to break the entropy
conservation, for R� RSS the corresponding source term,
SE= u · SM, should be added to the RHS of the energy
Equation 4(c). For derivations, but not for computations, the
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RHS of the resulting energy equation can be written as follows:
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Although the energy Equation 4(c) with the split field and the
transformed RHS is formally reducible to Equation 1(d) for the
full field, such reduction would require us to redefine the
magnetic energy density in terms of the total field too, as
( ) ( )B B 21 0

2
0m+ , so that its time derivative, (1/μ0)(B1+ B0) ·

∂tB1, balances the last term in the RHS of Equation (7). This
redefinition, however, may compromise the whole idea of only
solving equations for B1 beyond RSS. To use the energy
Equation 4(c), with an extra source, u · SM, seems to be a better
option.

3. Reduced Equations of SA-MHD

3.1. Intuitive Solution

Now, we show how to proceed from standard MHD
Equations 1(a)–(d) to equations for SA-MHD, in which

( )B u E u B, 0, 8a= = - ´ º

where α(t, R) is a scalar function of time and coordinates. To
derive a governing equation for α, in a steady-state stream-
aligned solution, one can integrate the MHD equations over a
magnetic flux tube element of a length of dℓ bounded by two
nearby cross sections of the flux tube, dS1 and dS2, and a
bundle of magnetic field lines about a chosen magnetic field
line, which all pass through the contours of these cross
sections. The equation, · B 0 = , gives

( )BdS const 9=

along the flux tube, which allows us to relate the change in the
cross-section area along the thread to the magnetic field
magnitude. Now, since the streamlines are aligned with the
magnetic field lines, one can also integrate the continuity
Equation 1(a) for a steady-state flow along the flux tube, which
gives

( )uS const 10r =

Therefore, the ratio of constant mass flux and the constant
magnetic flux,

( )B

u
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r
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is constant along the field line and along the streamline. Both of
these relations can be expressed as

( · ) ( )u 0 12
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Now, if we assume that this ratio is constant along the fluid
particle trajectory (which in steady state coincides with the

streamline but in the dynamic system this statement is a matter
of a model assumption):
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we can combine Equations 1(a) and (13) to obtain the
conservation law for α:

· ( ) ( )u . 14ta a¶ = -

3.2. Rigorous Solution

A less intuitive but mathematically more rigorous derivation
of the same set of model equations can be obtained if we
consider an MHD state that is close to the force equilibrium,
∂tu→ 0, and add the aligning source (that tends to zero) to the
induction equation (Equation 1(b)):
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where the definition of α from Equation (8) is generalized for
the case of nonaligned vectors u and B; for the aligned vectors,
both definitions are identical. To keep the entropy conservation,
a similar source should be added to the RHS of the energy
(Equation 1(d)):
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Now, if in an arbitrary MHD initial state the magnetic field is
aligned according to Equation (8), the aligning term ensures
that

[ ] [ ]
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and keeps the alignment forever. By substituting B= αu into
Equation (15), we arrive at Equation (14) (multiplied by u).
In the momentum equation the stream-aligned magnetic field

should be applied:
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which can be also written in a nonconservative form:
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Equation (19) contains the explicit expression for the Ampère
force, which happens to be always perpendicular to the velocity
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vector (similarly to the Coriolis force). In the equation of
energy Equation 1(d) the Poynting flux, E× B vanishes
identically. In addition, the sources in the RHS of
Equation (16) for the stream-aligned field reduce to ∂tB

2/2μ0
and entirely balance the change in the magnetic energy density
in the LHS. Therefore in effect, the stream-aligned magnetic
field does not contribute to the energy density, so that the
energy equation does not include the magnetic field at all:
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This is because the Ampère force is perpendicular to the
velocity vector and it does not affect the kinetic energy, hence,
does not exchange energy between the field and plasma. For
the same reason, under steady-state conditions, Equation (20)
conserves the Bernoulli integral along the streamline in its
classical form:

( · )
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0. 21

2 g
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 +
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Equations 1(a), (14), (18), and (20) present a full set of
governing equations which, as the solution approaches steady
state, becomes fully conservative (the nonconservative source
term that is proportional to ∂tα in the momentum equation
tends to zero), satisfies the · B 0 = , constrain (since

· B 0ta = -¶  ), and their solution in this limit presents
a legitimate solution of the MHD equations since the aligning
sources (∝∂tu→ 0) tend to zero too. Moreover, this is a
desired stream-aligned solution. On the other hand the full
MHD equations, with no aligning sources and once applied to
any nonequilibrium MHD state, with ∂tu≠ 0, will immediately
produce a non-stream-aligned solution even from a stream-
aligned initial state. It seems that in any discretized
implementation (actual numerical solution) it is extremely
difficult (if not impossible) to reach stream-aligned steady-state
3D solutions within the framework of regular computational
MHD, which justifies the approach proposed here.

3.3. Stream-aligned MHD in a Rotating Frame of Reference

For applications to solar wind, the momentum and energy
equations of SA-MHD are used the frame of reference rotating
with angular velocity, Ωe, with respect to the inertial frame. In
addition to the Coriolis force density, − 2ρΩe× u, the
centrifugal and gravitational forces are accounted for via the
gradient of the potential, Φ(R):
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In the rotating frame the Bernoulli integral (Equation (21)) is
modified by the inertial force potential (Equation (22)):

( · ) [ ]
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The Bernoulli integral can be used to relate the model
predictions at the source surface close to the Sun, such as the
WSA predictions at R= 2.5 Re, to the observed solar wind
parameters at 1 au (see, e.g., Cohen et al. 2007). However,
Equation (25) is not convenient for use, since the velocity in the
inertial frame, uinert, relates to that in the rotating frame, u, with
the well-known equation:

( )u u R, 26inert W= + ´

so that at 1 au the velocity in the rotating frame has a too-large
contribution from rotational velocity. In terms of the observable
parameters in the inertial frame, the Bernoulli integral implies
the conservation of the following quantity:

· [ ]

( )
( )
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h h
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g
g r
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

Within the framework of isothermal approximation for solar
atmosphere, one can use generic expression enthalpy per unit
of mass, h, instead of a particular model for an ideal gas with
constant γ assumed in Equation (27). For isothermal two-
component plasma with Ti= Te= T, the expression for
enthalpy is h logk T

m

2 B

p
r= .

Note, that in neglecting the effect from the gas-kinetic
pressure and from the magnetic field, for a test particle of a unit
mass comoving with the solar stream velocity, u, both the

energy integral, constu GM

R2
inert
2

- = , and the vector of particle
angular momentum, [ ]R u constinert´ = , conserve separately,
and so does their linear combination in Equation (27).
However, the force effect of the stream-aligned magnetic field
increases the angular momentum of the solar wind while
moving outward from the Sun. Therefore, according to
Equation (27), at large heliocentric distances there is a finite
gain in the solar wind energy per unit of mass equal
to · [ ]R uinert 1 auW ´ .
The closed system of equations describing the self-consistent

variation of the angular momentum and azimuthal magnetic
field component, while the solar wind propagating outward the
Sun Parker (1958), can be obtained by solving the equations of
SA-MHD in spherical coordinates, R, θ, j, which are the
heliocentric distance, colatitude, and longitude, respectively.
The analytical solution may be found assuming no dependence
on j (axially symmetric field) and no motion over θ (radially
divergent flow). The Coriolis force forces the particles to rotate
in the negative j direction, while it has no component in the θ
direction. Consequently, the fluid motion occurs only in the (R,
j) direction, and all streamlines will be on conical surfaces of
constant θ. Steady-state stream-aligned solutions of Equations
1(a), (23), (24) may be integrated along streamlines yielding
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the following equation:
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In the absence of the magnetic field, i.e., at α≡ 0,
Equation (28) would express the conservation of angular
momentum ( ∣ ∣R uR usin ,inert inertq º ´j ) in the inertial (not
rotating) system. However, due to the effect from the realistic
interplanetary magnetic field, the heliocentric distance on the
right-hand side should be taken at the Alfvén point where the
local stream speed, u, equals to the Alfvén wave speed,
V BA 0m r= , since

( )V

u M

1
. 29A
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2

2
A
2

a
m r

= =

Typically, the factor MA
2- is very large near the base of the

solar corona, because in this region the solar magnetic field is
large and the solar wind is not accelerated yet. In the opposite
limiting case at large heliocentric distances, where the solar
wind is fast and the magnetic field is weak, the plasma stream is
hyperalfvénic, MA

2- is negligibly small. In between the
accelerating and rarefying solar wind must go through the
Alfvén point and this is the point at which the integration
constant is determined (this point to avoid discontinuous
solutions). With these considerations the azimuthal velocity is
(see Weber & Davis 1967):
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Figure 1 demonstrates the difference between the over-
simplified Parker (1958) spiral and the SA-MHD solution

according to Equation (30). One can see that under idealized
conditions (constant solar wind speed of uR= 400 km s−1 and
source surface radius of 10 Re) the more accurate stream-
aligned solution Equation (30) lags behind the Parker (1958)
spiral by about 9° at Earth’s orbit. Taking into account the solar
rotation (with respect to Earth) this means that a stream-aligned
field line originating from the same point of the solar surface
will cross Earth about 15 hr later than the corresponding Parker
(1958) spiral aligned field line. In space weather applications,
tracing the streamline in the corotating frame from the
observation point toward its origin site can be used to associate
in situ solar wind properties to remotely observed structures of
the solar corona (see, e.g., Biondo et al. 2021). The large
difference demonstrated in Figure 1 means that field line
associated phenomena (like SEP events) will arrive at Earth
some 15 hr later than predicted by simple Parker (1958) spiral
connectivity models. It is, therefore, important that our
computational model fully incorporates all principles and
capabilities of earlier models.

4. Simulation Results and Discussion

4.1. Numerical Solution with Full MHD

For comparison with the SA-MHD numerical result
presented later in this paper, we provide a numerical solution
for the steady-state solar corona prior to the SEP event that
occurred on 2013 April 11 (Lario et al. 2014). GONG
magnetogram at 2013 April 11, 06:04 UT serves as the inner
boundary condition and the main driver of the solar wind
model (see the left panel of Figure 2).
In the simulation, the initial condition of the 3D magnetic

fields in the solar corona is reconstructed by a potential field
source surface (PFSS) solution using a spherical harmonic
expansion with the inner boundary provided by the magneto-
gram. The radial magnetic fields on the surface of the Sun
calculated using PFSS is shown in the right panel of Figure 2.
The PFSS reconstruction has been used to obtain the potential
(B0) field below the source surface located at 2.5 Re. Below the
source surface we solve the full set of MHD Equations 1(a) and
(4a)–(c), above it we add the source term SM given by
Equation (6) to the momentum equation, (Equation 4(b)), as
well as the extra energy source, u · SM, to the energy equation,
(Equation 4(c)). The governing equations for the solar corona
and inner heliosphere models described by Sokolov et al.
(2021a) are solved using the SWMF (Tóth et al. 2005; Toth
et al. 2012) developed at the University of Michigan.
The magnetic field in the equatorial plane (Figure 3 top

panels) and in the y= 0 meridional plane of the rotating HGR
coordinate system (Figure 3 bottom panels) exhibits visible
imperfections in the form of disconnected (“V-shaped”) field
lines below 20 Re and too long closed loops in (the middle
bottom panel of Figure 3). The magnetic field in the equatorial
plane of the inner heliosphere (right panels in Figure 3) is
totally disordered and is not applicable to solving magnetic
connectivity. We emphasize that this feature is independent of
the numerical solution algorithm: while steady-state field lines
and streamlines are identical at the PDE level, this is not true in
any discretization within the framework of computational
MHD. The stream-aligned model is designed to address all
these issues.

Figure 1. Parker (1958) solutions (magenta) vs. the SA-MHD solution by
Weber & Davis (1967) (blue) in the equatorial plane for a uniform solar corona.
A constant solar wind speed of uR = 400 km s−1 and source surface radius of
10 Re are assumed.
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4.2. The Leontovich Boundary Condition as the Aligning
Source

The computational SA-MHD cannot be applied to the entire
solar corona that starts with a slowly expanding atmosphere
with speeds as low as a few km/s on top of the transition
region and in closed field regions. The slow-speed region
extends to heliocentric distances of 2.5–3.5 Re. In this region
the SA-MHD would fail to describe closed magnetic field lines.
In addition, the problem to align the strong magnetic field with
the slow and somewhat random motion is not only physically
inappropriate but also mathematically ill-posed, since the
characteristic perturbation speeds tend to infinity if the plasma
speed tends to zero. Therefore, we successfully apply the SA-
MHD above some spherical heliocentric boundaries with a
radius of RSA.

Below this boundary we apply source terms in the MHD
equation, which are proportional to the electric field describing
the nonalignment between the field and flow and turning to
zero when the alignment is achieved. These terms reduce the
electric field below RSA and entirely eliminate it at R= RSA.
However, they do not prevent slow motions and magnetic field
line reconnection and closure. The sources are heuristically
derived from the well-known Leontovich (1948) boundary
condition which makes them physics-based.

The Leontovich boundary condition (Leontovich 1948;
Landau et al. 1985) is applicable to electromagnetic fields
when a high-frequency wave interacts with a metal, and deep
inside the metal, the field vanishes. The currents shielding the
field are assumed to be concentrated in a thin layer near the
boundary, having the impedance, Z. Under these assumptions
the transverse components of electric and magnetic fields
outside the metal are related to boundary condition:

ˆ ( )E B nZ , 31t t= ´

where n̂ is a unit vector normal to the metal surface directed
inward the metal. A straightforward (however, insufficient)
application to the boundary between the usual and SA-MHD
gives us an opportunity to consider the electric field-free SA-
MHD region as if this is the metal and to assign the impedance
Z to the boundary surface. In this case at the MHD side of this
boundary the finite electric field will cause a change in the B0

field given by Equation (31):

ˆ ( )B n E Z, 320d = ´

It is important to emphasize that this field is induced by the
current which is not conducted by the moving solar wind
plasma, that is why Equation (32) describes B0 field, rather than
B1. Another comment is that the field undergoes a jump across
the surface at which the finite current is concentrated, that is
why the field given by Equation (32) exists only “outside the
metal,” that is in the SA-MHD region that starts at a
heliocentric distance of R= RSA. The modified field contributes
to the flux function resulting in the evolution of the MHD state
toward higher alignment (lower electric field). The effect is
easy to evaluate if the impedance surface is orthogonal to the
magnetic field. In this case the electric field ˆE n uBn t= ´ is
orthogonal to n̂. The normal components, · ˆB nBn = ,

· ˆu nun = of the field and velocity are not affected by the
extra field given by Equation (32), while the transverse velocity
and field in the layer of a thickness of Δx, orthogonal to the
magnetic field evolve since the extra field Equation (32) is
present at the upper boundary of the slab and absent at the
lower one. Using the flux functions in Equations 4(a), (b), one
can find the source terms for the MHD velocity, ( )ut L¶ , and for
the induction field, ( )Bt L¶ , caused by the shielding currents
implied in the Leontovich (1948) boundary condition (that is
why we use subscript L):

( ) ( )u
B uB

x

V

Z x
33t L

n A t0

0

2d
r m

¶ =
D

= -
D

( ) ( )B
B uu

x

B u

Z x
, 34t L

n n n t0d
¶ = -

D
=

D

in the last equation one can also put Bnun=B · u, since the normal
vector is aligned with the field, hence, ˆB nBn= . Now, one can
derive aligning sources assuming the distributing conducting
layers instead of concentrated impedance by substituting d(1/Z)/
dx for 1/(ZΔx) ratio, which may be conveniently parameterized
as ( ) ( )d Z dx V u1 1 A n

2 2 t= + , so that:

( )
( )

( )u
uV

V u
35t L

A t

A n

2

2 2 t
¶ = -

+

Figure 2. Left: Radial magnetic field from GONG magnetogram observation at 2013 April 11, 06:04 UT. Right: Radial magnetic field calculated using PFSS Model
with spherical harmonics of order 90. Simulations with 180 harmonics were less stable.
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( ) ( · )
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2 2 t
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These sources at some choice of τ can be added to the MHD
equations in a chosen region, not necessarily near the
boundary. The advantage of the chosen parameterization is
that τ directly characterizes the electric field relaxation due to
the aligning sources, since:

( ) ˆ ( )

ˆ ( ) ( )
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n B
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u . 37

t L n t L

n t L
t

¶ = ´ ¶

- ´ ¶ = -

Although greatly improving the MHD solution at R< RSA, the
source terms do not allow us to align the solution at R→ RSA.
The latter goal is achieved if while integrating numerically the
MHD equations over time after advancing the solution through
the time step, Δt, we add the source terms and assume that the
relaxation rate, 1/τ, is equal to 1/Δt at R→ RSA and
modulated with some geometric factor, ξ, which equals one at
R→ RSA and decays at smaller heights. In other words, the
linear aligning operator is applied to the velocity and magnetic
field vectors in the following manner:

( )u u u u
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The total energy density decreases by the following quantity:
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2
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2 2

2

x r
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+

x

At ξ= 1, that is in the proximity of the SA-MHD
computational domain, operator Equations (38), (39) provides
a perfect alignment about some weighted average direction
such that the weak field is aligned with the strong stream
without noticeable modification in the stream direction and, in
the opposite limiting case, slow flow is aligned with the
strong field.

4.3. Numerical Solution with SA-MHD

The simulation results with SA-MHD are provided for the
same solar configuration as described in Section 4.1. Below the
PFSS source surface at R= 2.5 Re the MHD model is not
modified and the numerical solution is not much different from
that provided in Figure 2.
In the intermediate region 2.5 Re< R< 3.5 Re we apply the

aligning operator Equations (38), (39) based on the Leontovich
boundary condition as described in Section 4.2. The geometric
factor ξ= R/Re− 2.5 is chosen equal to zero at the lower
boundary and one at the upper boundary, of this region.
At R= RSA= 3.5 Re the MHD solution is enforced to be

aligned so that above this boundary the SA-MHD equations are
solved numerically. The characteristic perturbation speeds
needed to construct the numerical scheme are discussed in
the Appendix.

Figure 3. The magnetic field in the equatorial plane (top panels) and in the y = 0 meridional planes (bottom panels) of the rotating HGR coordinate system.
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Figure 4 shows the magnetic field structure in the corona and
inner heliosphere obtained with SA-MHD and the Leontovich
(1948) boundary condition. One can see that the unphysical
features seen in Figure 3 are gone: There are no long closed
loops or V-shaped field lines, and the magnetic field lines in the
inner heliosphere clearly form a Parker (1958) spiral.

4.4. Magnetic Connectivity

Magnetic connectivity (the magnetic field line connecting a
point of interest in the heliosphere to the solar photosphere) is a
very important component of space weather simulations.
Among other things magnetic connectivity controls the
simulated intensity and time profiles of SEP events (see
Borovikov et al. 2018; Li et al. 2021; Young et al. 2021).
For the synoptic map shown in Figure 2, the streamlines are

not as simple as in the case of uniform solar wind speed (see
Figure 1). As one sees in Figure 5, the delay between the Earth
crossing of MHD and SA-MHD streamlines can vary between
a few hours and a few days, depending on the actual angular
radial speed profile.

Most existing SEP models use MHD streamlines as proxies for
IMF lines and solve the SEP transport along these streamlines.
Our results indicate that this approach should be used with great
care: the Earth crossing of an interplanetary streamline can be off
by a few hours or a few days depending on actual solar wind
conditions. In addition, the sign of the radial magnetic field
component can flip back and forth depending on the heliospheric
current sheet crossings, so the ( )pitch anglecosm = - quantity
(appearing in the focused transport equation of Skilling 1971)
might abruptly change the sign along the streamline. An equation

describing energetic particle transport in SA-MHD and a method
to solve such equation numerically is described in a follow-up
paper (Sokolov et al. 2021b).

5. Conclusion

We showed how the MHD equations can be modified to
describe stream-aligned steady-state flows of plasma parallel to

Figure 4. SA-MHD solutions of magnetic field lines in the equatorial plane of the inner heliosphere in the rotating HGR coordinate system.

Figure 5. Streamlines obtained with MHD (dashed lines) and SA-MHD (solid
lines). The streamlines are colored by the sign of the radial component of the
local magnetic field vector. One can see that the sign of the radial magnetic
field “flips” whenever the streamline crosses the heliospheric current sheet.
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the magnetic fields with no electric field. We call this approach
stream-aligned MHD (SA-MHD). We applied the new
approach to modeling the solar corona and heliosphere in a
coordinate frame corotating with the Sun. Domains using the
SA-MHD approach can gradually be merged to regions in
which the ordinary MHD equations are solved by distributed
external currents similar to those implied by the Leontovich
(1948) boundary condition. With this approach, the numerical
solution in the heliosphere is perfectly aligned with the IMF
lines shaped as classical Parker spirals. Our model addresses
the magnetic connectivity problem as well as the simulation of
the SEP acceleration and transport.

This work was supported by the NASA Heliophysics
DRIVE Science Center (SOLSTICE) at the University of
Michigan under grant NASA 80NSSC20K0600. We would
also like to acknowledge high-performance computing support
from (1) Yellowstone (ark:/85065/d7wd3xhc) provided by
NCAR’s Computational and Information Systems Laboratory,
sponsored by the National Science Foundation, and (2)
Pleiades operated by NASA’s Advanced Supercomputing
Division.

Appendix
Characteristic Wave Speeds and Eigenvectors

In order to demonstrate an effect of the aligning terms on the
characteristic waves, one can linearize Equations (15) and (16),
together with Equations 1(a), (c). For linear characteristic
perturbations, (δρ, δu, δP, δB)T, propagating along the x axis,
i.e., depending on the coordinates and time via the combina-
tion, (x−Dt). The background for the wave propagation is (ρ0,
u0, P0, B0) where B0= (Bx0, By0, 0). The z component of the
magnetic field is made zero by choosing a coordinate system in
which the magnetic field vector is in the (x,y) plane. In the
equations for the perturbation, all time derivatives should be
substituted with ∂t=−D∂x, and, after this substitution, one
can omit the x derivatives by denoting ∂x(δρ)→ δρ, etc. Note
that De Sterck et al. (1999) analyzed eigenvalues of two-
dimensional steady-state SA-MHD; however, such eigenvalues
only characterize the direction of wave propagation rather than
their speed needed to construct numerical schemes.

For the eight wave MHD with the aligning sources, the
characteristic equations become:

( )u 0, A1ax0dr r d-L + =
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P B B
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y y
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d
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m r
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( ) ( )B u u 0, A1fx x x0d a d-L + L + =

[ ( )] ( )B u B u B u 0, A1gy x x y y x0 0 0d a a d d-L + L + - + =

[ ( )] ( )B u B u 0, A1hz x x z0 0d a a d-L + L + - =

where Λ=D− ux0 is the characteristic speed in the plasma
frame.

Equations A1(a), (f) are independent and describe the
propagation of two perturbations with the plasma speed
(D= ux0, Λ= 0) in which

( ) ( )
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These are the entropy wave and the · B wave respectively
(see Powell et al. 1999). Herewith, δW1:8 denote arbitrary
amplitudes of perturbations.
Equations A1(h), (d) can be solved separately:
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This pair of waves can be considered in two limiting cases. In
the first limiting case we consider “traditional” MHD with no
alignment source. Now one can put Ṽ0, 0x,Aa = = in
Equation (A4). Note that for Bx0> 0 and ux0> 0 the perturba-
tions of velocity and magnetic field are parallel in the left
propagating wave (Λ< 0), but they are antiparallel in the wave
propagating to the right, creating or increasing field misalign-
ments with the stream. Both of these Alfvén waves can exist in
the absence of an aligning source and propagate with the
Alfvén speed, V Bx x, 0 0 0A m r= .
The other limiting case is when we include the aligning

source and assume a stream-aligned background (Bx0= αux0).
Under these circumstances, ˜V u Vx x x,

2
0 ,A A= and Equation (A4)

describes two types of waves. In one of them, propagating to
the left (upwind), the perturbation is stream aligned,
δBz= αδuz:
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This means that the left Alfvén wave still exists, but its
characteristic speed adjusts (Ṽ Vx x, ,A A¹ at MA≠ 1) to ensure
that the (parallel) perturbations of velocity and magnetic field
are aligned. However, the right Alfvén wave in which the
perturbations are antiparallel (and they cannot be aligned) is
arrested: Equation (A4) requires the speed of this perturbation
to be zero and the magnetic field to be unperturbed:

( ) ( )
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=
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Analogously, Equations A1(g), (c) allow a wave propagating
with the plasma:

( ) ( )
( ) ( )

u u u P B B B

W

W8 : 0, , , , , , , ,

0, 0, 1, 0, 0, 0, 0, 0 . A7
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8
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=

Here, again, the perturbation speed is zero and the perturbations
are not aligned. In the MHD description without the aligning
sources, this would be the slow magnetosonic wave. We see
that in MHD (two three-component-vector equations + two
scalar equations, eight characteristic waves) with the aligning
sources and stream-aligned background two kinds of waves
(right Alfvén and right slow magnetosonic) degenerate. These
are the only waves in which the perturbations are not stream
aligned. The distinction of SA-MHD (one three-component-
vector equation + three scalar equations with six characteristic
waves) is that it lacks these two degenerate waves since this
approximation does not allow nonaligned perturbations.

A1. Characteristic Waves in Stream-aligned MHD

Instead of three components of the magnetic field, we
introduce a background value, α0, and linear perturbation, δα,
for the quantity, α, obeying the equation:

( )u 0. A8x0da a d-L + =

In the entropy wave (W1) and the modified Alfvén
wave (W5) we have δα= 0, while in the · B wave
(W6) the velocity perturbation should maintain the
continuity of the stream-aligned field, δαuy0+ α0δuy= 0, so
that ( ) ( )u u u P u W, , , , , 0, 0, , 0, 0,x y z y

T
0 0

T
6d r a a d= - .

In the remaining three branches of waves, the magnetic field
is stream aligned and there is a relationship between δuy and
δBy:

( ˜ ) ( )

u
u

B

V B B u

,

0. A9
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x
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x y y x
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0 0
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d
a
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d

d d

= -
L

´ L + - =

In the particular case of magnetic field-aligned propagation
(By0= 0) this reduces to the expression for another Alfvén
wave of different polarization:

( ) ˜ ( )
( ) ( )

a V u u u P

W

W3 : , , , , , ,

0,0, 1,0, 0,0 , A10

x x y z3 ,
T

T
2

A d r a

d

L =-

=

In the special case of By0= 0 Equations A1(b) and (e) give two
sound waves:

( ) ( )
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In the general case when By0≠ 0 there are three wave branches,
in which the perturbations of velocity, pressure, and magnetic

field are all interrelated:

( ) ( ) ( )

˜
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˜
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This cubic equation always has three roots, corresponding to
two fast and one slow magnetosonic wave. The characteristic
speeds for u0,x> 0 range (from most negative to largest
positive) as: left fast magnetosonic, left Alfvén, left slow
magnetosonic, combined entropy · B+ wave, right fast
magnetosonic wave. For u0,x< 0 the order is reversed, with
changing “left” to “right.”
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