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Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA, United States

The notion that a neuron transmits the same set of neurotransmitters at all of its

post-synaptic connections, typically known as Dale’s law, is well supported throughout

the majority of the brain and is assumed in almost all theoretical studies investigating the

mechanisms for computation in neuronal networks. Dale’s law has numerous functional

implications in fundamental sensory processing and decision-making tasks, and it plays

a key role in the current understanding of the structure-function relationship in the brain.

However, since exceptions to Dale’s law have been discovered for certain neurons

and because other biological systems with complex network structure incorporate

individual units that send both positive and negative feedback signals, we investigate

the functional implications of network model dynamics that violate Dale’s law by allowing

each neuron to send out both excitatory and inhibitory signals to its neighbors. We

show how balanced network dynamics, in which large excitatory and inhibitory inputs

are dynamically adjusted such that input fluctuations produce irregular firing events,

are theoretically preserved for a single population of neurons violating Dale’s law. We

further leverage this single-population network model in the context of two competing

pools of neurons to demonstrate that effective decision-making dynamics are also

produced, agreeing with experimental observations from honeybee dynamics in selecting

a food source and artificial neural networks trained in optimal selection. Through direct

comparison with the classical two-population balanced neuronal network, we argue that

the one-population network demonstrates more robust balanced activity for systems

with less computational units, such as honeybee colonies, whereas the two-population

network exhibits a more rapid response to temporal variations in network inputs, as

required by the brain. We expect this study will shed light on the role of neurons violating

Dale’s law found in experiment as well as shared design principles across biological

systems that perform complex computations.

Keywords: neuronal networks, decision making, balanced networks, nonlinear dynamics, Dale’s law

1. INTRODUCTION

Computation in the brain is closely tied to the complex network architecture of neuronal
interactions and the host of electrochemical signals transmitted between neurons (Boccaletti et al.,
2006; Stevenson et al., 2008; Gomez-Rodriguez et al., 2012). Studies relating network connectivity
to biological function have revealed potential mechanisms for fundamental cognitive processes,
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characterizing important aspects of stimulus encoding in
perception and evidence integration in choice (Hubel and
Wiesel, 1972; Shadlen and Newsome, 2001; Hafting et al., 2005;
Rangan et al., 2005; Bassett et al., 2010; Vzquez-Rodrguez
et al., 2019). The network adjacency matrix dictates the
general interaction structure for neuronal networks, revealing
certain dynamical properties such as synchronizability and
functional modules (Newman, 2003; Arenas et al., 2006; Estrada
and Higham, 2010; Sporns, 2014; Barranca et al., 2015),
but neurons also release diverse neurotransmitters that affect
their neighbors in unique ways and this necessitates a more
detailed portrait of neuronal communication beyond the binary
adjacency matrix.

One classical organizing feature for neuronal interactions
supported by strong experimental evidence is Dale’s law,
which typically states that a neuron releases the same types
of neurotransmitters at all of its post-synpatic connections
regardless of the nature of the post-synaptic neuron (Kandel,
1968; Strata and Harvey, 1999). Theoretical investigations and
mathematical models almost unanimously reflect Dale’s law by
separating a neuronal network into two disjoint populations of
neurons based on the collective action of their neurotransmitters,
where one population is composed of excitatory neurons that
upon firing increase the probability of their neighbors firing and
the other population is composed of inhibitory neurons that
analogously decrease the firing probability of their neighbors
(Orlandi et al., 2014; Barranca and Zhou, 2019; Lian et al.,
2019). However, experiments demonstrate that some neurons
indeed violate Dale’s law, for example through state-dependent
co-transmission or the release of different neurotransmitters at
distinct release sites (Jonas et al., 1998; Nicoll and Malenka, 1998;
Ludwig and Leng, 2006; Svensson et al., 2018). The functional
impact of such violations to Dale’s law in the brain remains
largely unexplored.

In a similar vein, biological systems, such as colonies
of honeybees, also communicate via explicit excitatory and
inhibitory feedback signals (Couzin, 2009; Marshall et al., 2009;
Seeley et al., 2012). In collectively selecting a food source akin
to decision making among neurons in the brain, each bee lacks
knowledge of the detailed state of the colony, yet the entire
group is able to effectively coordinate choices when accumulated
positive feedback passes a threshold. Honeybees use waggle
dances to encourage additional bees to forage at a profitable
food source and also utilize stop signals to discourage other
bees from foraging at a sub-optimal location (Seeley et al.,
2012; Von Frisch, 2013; Borofsky et al., 2020). In contrast
to the classical notion of Dale’s law, a single honeybee can
send out either type of feedback signal depending on its
circumstances. In engineered systems, such as artificial neural
networks, each unit generally has the potential to increase the
activity of some of its neighbors while decreasing the activity
of others, and this feature is typically preserved even upon
sufficient learning for optimal task performance (Wang and
Yeung, 2013; Deng et al., 2014; Chan et al., 2015; Schmidhuber,
2015; Barranca, 2021). Why do neuronal networks largely

follow Dale’s law unlike other systems and what classical
brain computations are preserved by neuronal networks that
violate it?

To address this key question, we formulate and analyze a
mechanistic network model composed of a single population of
neurons that can each transmit both excitatory and inhibitory
signals. Like physiological neuronal networks, we demonstrate
that this single-populationmodel network exhibits asynchronous
and irregular dynamics. In doing so, we provide a new
generalization for the theory of balanced network dynamics
(van Vreeswijk and Sompolinsky, 1996; Troyer and Miller, 1997;
Vogels and Abbott, 2005), which posits that strong excitatory and
inhibitory inputs into a given neuron are dynamically balanced
in time such that infrequent input fluctuations result in the
irregular activity typically observed in vivo (Haider et al., 2006;
Miura et al., 2007; London et al., 2010). Such balanced dynamics
are hypothesized to have numerous functional advantages, such
as fast input tracking (van Vreeswijk and Sompolinsky, 1996),
robust spatial working memory (Lim and Goldman, 2014),
efficient predictive coding (Boerlin et al., 2013), and effective
pattern learning (Ingrosso and Abbott, 2019). We show that
the single-population model exhibits a higher degree of balance
than the classical two-population model obeying Dale’s law for
relatively small network sizes, giving insight into why honeybee
colonies and other smaller-scale systems may violate Dale’s law.
While we establish that the one-population model well replicates
the rapid response to time-varying inputs found for classical
balanced networks, we observe that the two-population network
is able to yet more quickly respond and we conjecture this
may explain the ubiquity of Dale’s law in neuronal networks
that require fast computations for survival. In comparing the
computational properties of the two distinct network models,
we further demonstrate that the single-population model fosters
successful decision-making dynamics for two-alternative tasks,
thereby carrying out a computation that is fundamental in
numerous biological and engineered systems. We hypothesize
that networks violating Dale’s law are capable of more flexible
computations, particularly for relatively small systems, and that
functional or energetic constraints in large-scale systems may
have promoted Dale’s law among neurons.

The remainder of the paper is organized as follows. In Section
2.1, we briefly summarize the key aspects of balanced dynamics
in the context of a two-population network of excitatory and
inhibitory neurons, and then in Section 2.2, we formulate our
one-population network model that violates Dale’s law. We
demonstrate that the one-population model exhibits robust
balanced network dynamics, both theoretically and numerically,
in Section 3.1 and compare how the balanced dynamics for
the two different network models scale with network size in
Section 3.2. The input-response properties for the network
models are contrasted in Section 3.3, and we further show that
the one-population model facilitates successful decision-making
dynamics analogous to classical balanced networks in Section 3.4.
Finally, we reflect on our findings and potential directions for
future investigation in Section 4.
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2. MODELS AND METHODS

2.1. Two-Population Model and Balanced
Network Dynamics
We first introduce the conventional two-population network
model that obeys Dale’s law and summarize its dynamical
properties in the balanced operating regime; these dynamical
characteristics will provide a benchmark for comparison with
the activity of the one-population model violating Dale’s law that
will be introduced in the next section. For concreteness and
analytical tractability, we consider networks composed of the
binary-state neurons with which balanced network theory was
originally studied (van Vreeswijk and Sompolinsky, 1996, 1998).
The two-population network is composed of N neurons, where
NE neurons are excitatory (E) and NI neurons are inhibitory (I).
The state of the ith neuron in the kth population (k = E, I) at
time t is governed by

σ i
k(t) = H

(

µi
k(t)− θk

)

, (1)

where θk is the firing threshold for the neurons in population
k and H(·) is the Heaviside function. Each neuron, therefore,
has two possible states, namely firing (σ = 1) or subthreshold
(σ = 0), depending on whether its total input reaches a firing
threshold. The total drive µi

k
(t) into the ith neuron in the kth

population at time t is

µi
k(t) =

NE
∑

j=1

J
ij

kE
σ
j
E(t)+

NI
∑

j=1

J
ij

kI
σ
j
I (t)+ µ0

k, (2)

where J
ij

kl
denotes the connection strength between the ith

post-synaptic neuron in the kth population and the jth pre-
synaptic neuron in the lth population (l = E, I), and µ0

k
is

the strength of the external input into a neuron in the kth

population. The recurrent connection strength J
ij

kl
is chosen to

be Jkl/
√
K with probability K/Nl and 0 otherwise, abstracting

over any detailed network structure to highlight the impact of
Dale’s law in particular. Hence, a given neuron is expected to
receive K incoming synaptic connections of each type. Reflecting
the nature of the two populations, the excitatory connection
strength JkE is positive and the inhibitory connection strength
JkI is negative. In evolving the state of each neuron, the mean
time between subsequent updates is τE = 10 ms for excitatory
neurons and τI = 9 ms for inhibitory neurons, based on
experimental estimates of cortical membrane potential time
constants (McCormick et al., 1985; Shelley et al., 2002).

Since biophysical noise sources are generally unable to
account for the irregular neuronal dynamics observed in vivo
(Softky and Koch, 1993; Faisal et al., 2008), the model requires
that asynchronous dynamics are fully produced by the recurrent
interactions among neurons. We, therefore, assume constant
external inputs µ0

E = fEm0

√
K and µ0

I = fIm0

√
K, where the

positive external input strength is modulated by non-negative
and O(1) parameter m0. It is assumed that fE as well as fI
are positive O(1) parameters scaling the relative external input
into the excitatory and inhibitory populations, respectively.

The recurrent connection strengths and firing thresholds are
also O(1) parameters, and the relationship between them and
the external input scalings primarily determines the network
dynamical regime as will be further discussed in Section 3.1.

Considering each neuron is expected to receive K excitatory
incoming synaptic connections and K inhibitory incoming
synaptic connections, if the excitatory and inhibitory inputs
are not well balanced, the total drive is O(

√
K). Since the

total drive in this case is larger in magnitude than the firing
threshold, each neuron would generally either fire or remain
subthreshold for all time, thereby demonstrating highly regular
and unrealistic dynamics. When the total drive is instead of
the same order as the O(1) firing threshold, intermittent O(1)
input fluctuations become largely responsible for the exact timing
of firing events and their highly irregular distribution. This
theoretically produces balanced network dynamics, whose key
features we summarize in Figure 1 and later compare to those
produced for the one-population model violating Dale’s law.

In Figure 1A, we plot the total excitatory and inhibitory
inputs over time for a sample neuron in the balanced state. The
two input types are much larger in magnitude than the firing
threshold, but the excitation and inhibition dynamically cancel
and cause the total input to irregularly exceed threshold. We may
similarly represent the resultant dynamics on the network level
using the population-averaged state, which we will refer to as
the mean activity and will serve to approximate the firing rate
of each population. The mean activity for the kth population at

time t is thus mk(t) = 1
Nk

∑Nk
i=1 σ i

k
(t). The mean activity for

each population is depicted over time in Figure 1B, exhibiting
a high degree of statistical stationarity and relatively infrequent
firing events. In comparison to the time-averaged mean activity
over a long time horizon, mk, we see that fluctuations in the
mean activity with time are quite small for each population
and unpredictable in structure. Finally, we consider the time-
averaged ratio between the total excitatory and total inhibitory
input into each neuron, which we will refer to as the E/I ratio.
We plot in Figure 1C a histogram of the E/I ratios across the
network, which shows relatively tight clustering about a mean
near −1. Since the excitatory and inhibitory inputs are nearly
equal in magnitude for each neuron in this case, the total drive
is quite small in magnitude across the network and the collective
dynamics are thus well balanced.

2.2. One-Population Model Violating Dale’s
Law
In contrast to the conventional balanced network modeling
framework that splits the full neuronal network into excitatory
and inhibitory subpopulations to obeyDale’s law, we now develop
a single population network model in which each neuron is
able to send out excitatory signals to a subset of its post-
synaptic neighbors and inhibitory signals to other post-synaptic
neighbors. In this case, the state of the ith neuron in the single
population at time t is governed by

σ i(t) = H
(

µi(t)− θ
)

, (3)
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FIGURE 1 | Two-population balanced network dynamics. (A) Excitatory (blue), inhibitory (red), and net (yellow) inputs into a sample excitatory neuron in a

two-population balanced network. The dashed (green) line indicates the firing threshold. (B) The population-averaged state (mean activity) of the excitatory (blue) and

inhibitory (red) populations as a function of time. (C) Histogram of the ratio between time-averaged excitatory and inhibitory inputs across the two-population neuronal

network. Parameters utilized are JEE = JIE = 1, JII = −1.8, JEI = −2,NE = 4, 000,NI = 1, 000, fE = 1, fI = 0.8,m0 = 0.2,K = 200, θE = 1, and θI = 0.8.
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where the subscripts from the previous section are dropped
since only one population is considered, and all terms without
subscripts are given the same interpretations as described in the
previous section. The total drive µi(t) into the ith neuron at time
t is

µi(t) =
N
∑

j=1

Jijσ j(t)+ µ0, (4)

where Jij denotes the connection strength between the ith post-
synaptic neuron and the jth pre-synaptic neuron and µ0 =
fEm0

√
K is the total external input into a neuron. Reflecting

the potential for each neuron to provide both excitation and
inhibition, the recurrent connection strength Jij is now chosen
to be JE/

√
K with probability K/N, −JI/

√
K with probability

K/N, and 0 otherwise. As in the two-population network, each
neuron is expected to receive K excitatory and K inhibitory
incoming synaptic connections. Positive parameters JE and JI
determine the relative strengths of the excitatory and inhibitory
connections, respectively.

Since this one-population network model contains both
positive and negative feedback loops, with inhibition and
excitation of the same order of magnitude, it is intuitive to
hypothesize that balanced dynamics may be achieved under
appropriate constraints on the network structure. However, since
both feedback types are simultaneously provided by a single
computational unit in this case, whether the lack of separation in
the control mechanisms impacts the robustness of the balanced
operating state and its corresponding parameter regime will be
investigated in the next section.Moreover, we will later examine if
there are any functional differences between the one-population
and two-population models, discussing potential reasons for why
nature has largely selected the two-population setting that obeys
Dale’s law for neuronal networks in particular.

3. RESULTS

3.1. Balanced Network Dynamics in the
One-Population Model
To address the question of whether the one-population model
demonstrates balanced dynamics akin to the classical two-
population model, we first derive the theoretical parameter
regime for which the one-population network activity is indeed
balanced. To achieve asynchronous dynamics, the balanced
operating state requires the long-time mean activity of the
population to remain positive and less than 1 in the large-network
limit. Hence, we require 0 < m < 1 as N → ∞ and as
K → ∞, with sparse connectivity such that 1 ≪ K ≪ N. We
will show that this requirement yields theoretical bounds on
the model parameters necessary in order to achieve balanced
dynamics. In simulations that utilize finite network realizations,
these bounds hold approximately so long as the network size is
sufficiently large.

We consider the population-averaged total drive into the
ith neuron in the one-population network, E[µi(t)] =
E
[(

∑N
j=1 J

ijσ j(t)
)

+ µ0
]

, and use it to determine an analytical

expression for the mean activity necessary to derive balance
conditions. Assuming that the synaptic connections and states
are independent, since correlations are weak in the large-network

limit, E
[(

∑N
j=1 J

ijσ j(t)
)]

=
∑N

j=1 E
[

Jij
]

E
[

σ j(t)
]

. Since each

neuron is expected to receive a total of K incoming connections
of each type and because the population-averaged state is
E[σ j(t)] = m(t) regardless of neuron index, the population-
averaged drive reduces to

E[µi(t)] =
N
∑

j=1

(

JE√
K

K

N
−

JI√
K

K

N

)

E[σ j(t)]+ µ0.

=
√
K
(

(JE − JI)m(t)+ fEm0

)

.

Computing the time-average in the long-time limit, such that
µi(t) → µ andm(t) → m, yields

µ =
√
K
(

(JE − JI)m+ fEm0

)

. (5)

The long-time, time-averaged mean total input is, therefore,
at most O(

√
K). However, this implies that the time-averaged

mean inputs potentially increase with network size and
must be dynamically adjusted in order for the network to
exhibit asynchronous and irregular dynamics. It is, therefore,
necessary for the total excitatory and total inhibitory inputs to
approximately cancel for balanced dynamics to be possible in the
large-network limit. For µ to beO(1), we require

(JE − JI)m+ fEm0 = O(1/
√
K), (6)

which must vanish in the large-network limit. In this case, the
resultant theoretical time-averaged mean activity is

m =
fE

(JI − JE)
m0, (7)

which linearly grows with the overall external input strength
parameter m0. Since the mean activity needs to be positive for
biological realism and fE > 0, we obtain the balance condition

JI > JE. (8)

Intuitively, since the external input is excitatory, the synaptic
inputs generated from within the network must be inhibition
dominated to dynamically cancel the positive external input
and produce irregular dynamics. In Figure 2A, we see that
when the balance condition is satisfied, large excitatory and
inhibitory inputs indeed cancel over time to produce irregular
dynamics and infrequent firing events for a sample neuron in the
single-population model.

The variance of the synaptic inputs across the one-population
network is also bounded in the large-network limit. With
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FIGURE 2 | One-population balanced network dynamics. (A) Excitatory (blue), inhibitory (red), and net (yellow) inputs into a sample neuron in a one-population

balanced network. The dashed (green) line indicates the firing threshold. (B) The population-averaged state (mean activity) of the single population as a function of

time. (C) Histogram of the ratio between time-averaged excitatory and inhibitory inputs across the one-population neuronal network. In evolving the state of each

neuron in the one-population network, the mean time between subsequent updates is τ = 10 ms unless stated otherwise. Parameters utilized are

JE = 1, JI = 1.5,N = 5, 000, fE = 0.5,m0 = 0.2,K = 200, and θ = 0.7.
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justification analogous to the computation of the population-
averaged drive, the long-time limit of the input variance for an
arbitrary ith neuron is

var(µi) =
N
∑

j=1

var
(

Jijσ j
)

=
N
∑

j=1

(E
[

(Jijσ j)2
]

−
(

E[Jijσ j]
)2
)

=
N
∑

j=1

(

E
[

(Jij)2
]

E[σ j]− E[Jij]2E[σ j]2
)

=
N
∑

j=1

(

(

J2E
K

K

N
+

J2I
K

K

N

)

m−
(

JE√
K

K

N
−

JI√
K

K

N

)2

m2

)

=
(

J2E + J2I
)

m− (JE − JI)
2 K

N
m2.

Therefore, in the limit of large N with K ≪ N, var(µi) → (J2E +
J2I )m, remaining bounded and O(1). As in the two-population
case, such finite input fluctuations about the near-zero expected
total drive are of comparable order to the firing threshold and
generate irregular firing activity. We verify this for a large one-
population network realization in Figure 2B, observing that the
dynamics are asynchronous with relatively small fluctuations in
time about the nearly statistically stationary mean activity. The
E/I input ratios across the network, plotted in Figure 2C, are
centered around−1, as expected in the balanced state.

Similarly, in the case of the two-population network
composed of excitatory and inhibitory neurons obeying Dale’s
law, it is necessary for both 0 < mE < 1 and 0 < mI < 1 to
avoid synchronous or completely quiescent network dynamics.
As shown in the seminal work on balanced networks in the
case of two populations (van Vreeswijk and Sompolinsky, 1996,
1998), this yields the following theoretical expressions for the
time-averaged mean activities in the balanced state

mE =
|JII |fE − |JEI |fI
JIE|JEI | − JEE|JII |

m0 (9a)

mI =
JIEfE − JEEfI

JIE|JEI | − JEE|JII |
m0, (9b)

which generates a linear scaling of the mean activities in each
subpopulation with m0, as obtained for the one-population
network in Equation (7).

Requiring that both the excitatory and inhibitory
time-averaged mean activities are positive and finite, the
parameter bounds

fE

fI
>

|JEI |
|JII|

>
JEE

JIE
(10)

are necessary for balanced dynamics in the large-network limit
for the two-population model. In Figure 3A, we see that as
the external input is increased, by adjusting m0 for different
network simulations, the time-averaged mean activity for both
the one-population and two-population networks demonstrates

highly linear growth. These strongly linear gain curves agree
well with the theoretical predictions in the large-network limit
given in Equations (7) and (9). Even when Dale’s law is
violated, we conclude that, although the activity of the individual
neurons is extremely nonlinear, the mean activity of the network
exhibits linear growth with external input strength for finite yet
large network realizations in the balanced state. Experimental
recordings of neuronal activity often exhibit a linear increase
in firing rate with external input strength (Rauch et al., 2003;
La Camera et al., 2006), but here we see that adherence to
Dale’s law is not in fact necessary to produce such a linear
response. Similarly, the irregular neuronal dynamics observed in
experiment (Haider et al., 2006; Miura et al., 2007; London et al.,
2010) are reproduced theoretically and in simulation for the one-
population model, capturing the hallmark dynamical features of
classical two-population balanced networks.

Large spike count variability across controlled trials is
commonly observed in cortical neurons in evoked conditions
(Shadlen and Newsome, 1994; Churchland et al., 2011), and
such stochasticity in spike emission is seen in balanced networks
that obey Dale’s law (Tsodyks et al., 1999; Litwin-Kumar and
Doiron, 2012). To compare the variability in activity for the one-
population and two-population networks in the balanced state,
we determine the distribution of spike count Fano factors across
each network. The spike count Fano factor for a neuron over time
interval [t, t + 1t] is

F(t, t + 1t) =
var(N(t, t + 1t))

E
[

N(t, t + 1t)
] ,

which gives the ratio of the variance to the mean for the
number of times the neuron fires over this time window, N(t, t+
1t), across trials. In each trial for a given model, an identical
network is generated with different initial conditions and each
neuron in the network is updated at identical times across trials.
The time window in this case is 1t = 100 ms and Fano
factors were computed using 100 trials. For a given neuron, we
averaged the Fano factors corresponding to each time interval
in a full simulation of 10000 ms to obtain a single neuronal
Fano factor. We plot in Figure 3B the histogram of spike count
Fano factors across neurons in the two-population network and
similarly plot the Fano factor histogram for the one-population
network in Figure 3C. For both network types, we observe
that the mean spike count Fano factor is near 1, which is the
Fano factor for a homogeneous Poisson process. Hence, we
conclude that a high degree of spike count variability is indeed
achievable by the one-population model violating Dale’s law,
facilitating rich computational capabilities similar to those of the
two-population network.

3.2. Scaling With Network Size
Since the key dynamical features explored thus far are
comparable for the one-population and two-population
networks, it still remains unclear why Dale’s law is typically
followed in the brain if not to help maintain balance. We
now investigate several additional dynamical and functional
properties for which the two network models potentially differ
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qualitatively to shed additional light on the ubiquity of Dale’s law
in the brain.

Previous sections only examined the activity of the networks
theoretically in the large-network limit and compared their
dynamics for relatively large-scale network realizations.
Considering other biological systems that disobey Dale’s law
are often significantly smaller than brain networks, such as
colonies of honeybees charged with similar functional tasks as
neuronal networks, we compare the scaling properties of the
two network models as the number of constituent neurons
is increased. In Figure 4A, we plot the time-averaged mean
activity across each network as a function of the network size.
We observe that for relatively small networks, with less than
ten thousand neurons, the mean activity for the two-population
model remains below the theoretical prediction and grows
with network size. On the other hand, the mean activity of the
one-population model remains nearly constant and close to the
value expected theoretically over the same range of network sizes.

We analogously plot the mean and variance of the E/I input
ratios with growing network sizes in Figures 4B,C, respectively.
Particularly for small network sizes, the one-population network
exhibits mean E/I input ratios closer to −1 than seen for the
two-population model. The variances are relatively comparable
across network sizes, with the one-population network displaying
slightlymore variability in the E/I input ratios across the network.

These scaling properties together suggest that the one-
population model better maintains balanced dynamics for
smaller network sizes, with comparable performance once the
networks are sufficiently large. Considering that the results in
Figure 4 are averaged over 10 different network realizations for
each network size, this trend is robust and largely independent of
a specific network simulation. For smaller networks outside of the
realm of neuroscience, it is possible that evolution has selected
systems that violate Dale’s law in order to better achieve balanced
dynamics and the accompanying functional benefits of the
balanced operating state. While a computational unit in the one-
population network has more diversity in functionality and may
require a larger energetic cost, if the network is of moderate size,
the price is likely worthwhile to pay for maintaining balanced
dynamics. This leaves the remaining question of why neuronal
networks primarily obey Dale’s law if in the large-network limit,
which well applies for the brains of complex species, the two
network types thus far exhibit similar dynamical features. We
explore this question in the context of two common functional
tasks in the subsequent sections.

3.3. Fast Tracking of Inputs
A major functional advantage of the balanced state in the two-
population setting is the ability to rapidly respond to changes
in external input (van Vreeswijk and Sompolinsky, 1998). In
particular, anO(1/

√
K) change in external input scaling strength

m0 results in a comparable adjustment in the steady-state mean
activity for each population in accordance with Equation (9). We
determine how the fast-tracking ability of the one-population
model compares to that of the classical two-population network,
underlining a qualitative functional difference between the
two networks.

We consider the one-population network response to two
classes of time-varying external inputs, and then compare the
response speeds for the different network models across a family
of external inputs of each class. In Figure 5A, the external input
continuously increases in a linear fashion within a small time
window and otherwise remains constant. For even a relatively
high input slope, we see that the one-population network activity
nearly identically follows the external input over all times, as
expected from balanced network theory. We similarly address
the case in which the external input instead demonstrates a jump
discontinuity in Figure 5B, which can be viewed as the high-slope
limit of the previous linearly-ramped input. The mean activity
of the one-population network demonstrates a minor deviation
from the external input immediately following the jump, but it
calibrates to the new magnitude of the input after only a short
amount of time.

For the class of linearly-ramped inputs akin to Figure 5A, we
investigate how the response of each network model depends
on the time interval over which the input linearly increases to
achieve its fixed maximal value. We note that as this time interval
becomes longer, the input increases more slowly. We compute
the mean lag time across a family of such linearly-ramped inputs.
To measure the lag time in the tracking of each external input,
we compute the difference between the time when each external
input value is realized and the time when the corresponding
value of the network mean activity is reached, averaging over
this time difference from when the external input first begins to
change until the network activity saturates in order to obtain the
mean lag time. For both the one-population and two-population
networks, we observe in Figure 5C that the mean lag time
decreases with the size of the time interval over which the input
is linearly ramped, demonstrating less lag for inputs that change
more slowly as expected. However, for each external input, the
two-population network exhibits less lag than the one-population
network, especially for more rapidly varying inputs.

For the discontinuous class of inputs represented in
Figure 5B, we similarly investigate how the external input
tracking ability of each network is affected by the size of the
jump in m0, which determines the resultant magnitude of the
instantaneous input change that the network must respond to
and also the maximal external input value. Since the input
jumps instantaneously, the prior method for measuring the time
difference between the network response and input must be
modified. In this case, for each external input, we compute the
amount of time following the jump that elapses until the network
mean activity saturates; here shorter saturation time is evidence
of a faster response. In Figure 5D, we see that as the jump size
increases, the two network models require more time to saturate
in response to the new external input value. As observed for the
continuous class of external inputs, the two-population network
demonstrates superior tracking ability with a shorter saturation
time for each discontinuous input utilized.

This trend is true when the different network models each
have the same total number of neurons as well as when the
excitatory and inhibitory populations in the two-population
model each have the same total number of neurons as the entire
one-population network. Based on the diversity in the types of
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FIGURE 3 | Comparison of balanced network dynamics. (A) The mean activity averaged over a long time horizon for various choices of external input strength m0,
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FIGURE 3 | the large-network limit. Parameters are chosen such that the theoretical mean activity is identical for all three population types. (B) Histogram of the spike

count Fano factors across neurons in the two-population network. (C) Histogram of the spike count Fano factors across neurons in the one-population network.

Parameters in the one-population network utilized are JE = 1, JI = 1.8,N = 20, 000, fE = 0.8,K = 800, and θ = 1. Parameters in the two-population network utilized

are JEE = JIE = 1, JII = −1.8, JEI = −2,NE = 10, 000,NI = 10, 000, fE = 1, fI = 0.8,m0 = 0.1,K = 800, θE = 1, and θI = 0.8.

outputs that neurons can transmit to their neighbors, it can be
argued that a neuron in the two-population network has less
computational capability than a neuron in the one-population
network. For this reason, we consider such a comparison in
tracking performance when the two-population network has a
larger total number of neurons. While doubling the number
of neurons in the two-population network improves external
input tracking, the gains depicted in Figure 5 are relatively
marginal. We remark that in comparing the scaling properties
for the one-population networks with two-population networks
containing double the neurons in Figure 4, the overall trend of
more balanced dynamics in the one-population model for small
network sizes and comparable performance in the large-network
limit still holds. Hence, the potentially high energetic costs of
the large synaptic input currents necessary to maintain balanced
dynamics garner a rapid response to changes in external inputs
for both network types, but we hypothesize that evolution may
have selected two-population networks obeying Dale’s law in the
brain in order to facilitate yet further improved input tracking
necessary to respond to stimuli and make decisions over very
short time scales. For smaller networks outside of the brain,
where the response need not be quite so fast yet still efficient
enough to carry out network functions, the one-population
architecture likely suffices.

3.4. Decision-Making Dynamics
Activity in multiple brain areas, including the prefrontal cortex,
thalamus, basal ganglia, and parietal cortex, plays an important
role in decision-making (Platt and Glimcher, 1999; Munakata
et al., 2011; Ding and Gold, 2013), and numerous studies
have made significant parallels between the collective decision-
making mechanisms used by social insects and neurons in the
brain (Couzin, 2009; Marshall et al., 2009; Seeley et al., 2012).
For each biological system, when a certain cluster of units
displays sufficiently high activity relative to other competing
groups, a decision is typically made. The classical leaky
competing accumulatormodel for decision-making facilitates the
competition between neuronal assemblies by directly including
lateral inhibition between clusters (Usher and McClelland,
2001), and an attractor such that one cluster demonstrates
significantly more activity than the others corresponds to a
particular decision. Balanced networks containing excitatory
and inhibitory neurons that incorporate competing pools of
neurons are known to demonstrate such decision-making
dynamics (Wang, 2008; Cohen et al., 2019), and we conclude by
investigating if one-population networks violatingDale’s law have
analogous functionality.

We consider two competing pools of one-population neurons,
A and B, with dynamics and connectivity within each pool as
described in Section 2.2. We relabel the recurrent connection
strengths within the kth pool as JkkE and JkkI (here k = A,B), to

distinguish them from the cross-pool connections from the lth
pool to the kth pool, whose strengths are similarly denoted JklE
and JklI . We assume that each pool contains the same number

of neurons, N, and that the cross-pool connection strength J
ij

kl
between the ith post-synaptic neuron in the kth pool and the
jth pre-synaptic neuron in the lth pool is chosen to be JklE /

√
K

with probability K/N, −JklI /
√
K with probability K/N, and 0

otherwise. As a result, each neuron is expected to receive K
excitatory and K inhibitory incoming synaptic connections from
within its own pool and is also expected to receive the same
number of incoming cross-pool connections of each type.

In facilitating an attractor state where relatively high activity
in one pool corresponds to a particular decision, we assume that
the external input into the kth pool is now scaled by parameter
fk rather than fE as considered earlier, with the overall external
input scaling strength m0 identical for each pool. For successful
decision-making dynamics, we require that when fA > fB, the
mean activity of pool A is greater than the mean activity of pool
B, namelymA > mB.

Following an argument similar to Section 3.1, the long-time,
population-averaged total drive into an arbitrary neuron in pool
A and in pool B of the one-population network, respectively, is

E[µA] =
√
K
((

JAAE − JAAI
)

mA +
(

JABE − JABI
)

mB +m0fA
)

≡
√
K
(

JAAin mA + JABoutmB +m0fA
)

.

E[µB] =
√
K
(

JBBin mB + JBAoutmA +m0fB
)

In order for the dynamics to be balanced theoretically, it is
necessary for E[µA] and E[µB] to remain O(1) in the large-
network limit, requiring that

JAAin mA + JABoutmB +m0fA = 0 (11a)

JBBin mB + JBAoutmA +m0fB = 0 (11b)

We assume symmetry in the connectivity parameters for the two
pools, such that JAAin = JBBin ≡ Jin and JABout = JBAout ≡ Jout . This
implies that the main determining factor in the decision-making
process is the difference in the external input scalings for the
pools, fA and fB.

Solving linear system (11) yields the time-averaged mean
activity for each pool

mA =
JinfA − JoutfB

J2out − J2in
m0 (12a)

mB =
JinfB − JoutfA

J2out − J2in
m0. (12b)

For balanced dynamics among at least one of the competing
pools, it is required that 0 < mA < 1 or 0 < mB < 1. We
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FIGURE 4 | Comparison of scaling properties with network size. (A) The time-averaged mean activity as a function of the total network size for the one-population

(green) and two-population (red) networks. The mean activity for each population expected from theory is 0.2. (B) Mean of the ratio between time-averaged excitatory
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FIGURE 4 | and inhibitory inputs across each network model as a function of network size. (C) Variance of the ratio between time-averaged excitatory and inhibitory

inputs across each network model as a function of network size. Parameters in the one-population network utilized are

JE = 1, JI = 1.5,m0 = 0.2, fE = 0.5,K = 0.08N, and θ = 0.7. Parameters in the two-population network utilized are

JEE = JIE = 1, JII = −1.5, JEI = −5/3, fE = 1, fI = 0.8,m0 = 0.2,K = 0.08N,NE = NI = 0.5N, θE = 1, and θI = 0.8. Each plot is averaged over 10 network

realizations.
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FIGURE 5 | Comparison of the tracking of network inputs. (A) Mean activity in the one-population model plotted over time (red) for an external input that evolves

continuously in time. The external input strength parameter m0 varies over time and is plotted for comparison (black), while all other parameters are fixed. Here the

external input is either constant or linearly increases in time. (B) Analogous plot as in (A), except now the external input changes discontinuously at t = 5 via a jump

discontinuity and remains constant otherwise. The same range of m0 values is used in each plot. (C) Across a family of linearly-ramped inputs of the form in panel (A),

the time interval over which the external input transitions from its fixed minimal value to its fixed maximal value is varied. For each such time interval, the mean lag time

between the network response and the external input is plotted. The mean lag time plotted for each input is the time difference between the mean activity and the

external input averaged from when the external input first begins to change in time until the network mean activity saturates (reaches the value of the long-time,

time-averaged mean activity following input saturation). (D) Across a family of discontinuous inputs of the form in (B), the maximal value of the external input is varied.

For each resultant input jump size, the time elapsed from the input jump until the network mean activity saturates is plotted. In (C,D), the fast-tracking properties are

plotted in red for the two-population network with 100, 000 neurons, in orange for the two-population network with 50, 000 neurons, and in green for the

one-population network with 50000 neurons. Parameters in the one-population network utilized are JE = 1, JI = 1.5,m0 = 0.2, fE = 0.5,K = 0.08N, and θ = 0.7.

Parameters in the two-population network utilized are JEE = JIE = 1, JII = −1.5, JEI = −5/3, fE = 1, fI = 0.8,m0 = 0.2,K = 0.08N,NE = NI = 0.5N, θE = 1, and

θI = 0.8. The mean activity is computed over 0.01 time windows in each case and the plots in (C,D) are averaged over 10 network realizations.

assume that in the absence of any communications between the
pools, each is internally balanced. From the analysis in Section
3.1, we conclude that JkkI > JkkE and, therefore, Jin < 0.
The cross-pool connection strength is the remaining parameter
that determines whether balanced dynamics are achieved and
whether the network carries out successful decision-making as
well. We argue that this is determined by the sign of Jout and how
the magnitude of Jout compares to |Jin|.

For the mean activity of pool A to increase with fA and
the mean activity of pool B to increase with fB, as expected
in effective decision-making, it is necessary for |Jin| > |Jout|.
Similarly, for increased input into the competing pool B to
suppress the mean activity of pool A, it is also necessary for

Jout < 0. When fA > fB, this means that pool A is dominant
with balanced dynamics such that 0 < mA < 1, whereas
pool B is either relatively suppressed or quiescent. Winner-take-
all dynamics emerge when unequal alternatives are presented,
and the pool with greater external input is capable of exhibiting
nonzero mean activity with balanced dynamics while the other
pool is fully suppressed. Collectively, this yields the following
conditions for effective decision-making in competing pools of
single-population neurons

Jout < 0, Jin < 0 (13a)

|Jin| > |Jout|. (13b)
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We verify this numerically in Figure 6A, where initially fA = fB
and then fA jumps in value at several points in time. We see
that the mean activities are equal and well agree with Equation
(12) at the start of the simulation. As fA is first increased, the
mean activity of pool A increases whereas the mean activity of
pool B decreases yet remains nonzero, agreeing with theoretical
predictions from Equation (12) as well. Once fA is sufficiently
large, pool B becomes completely quiescent and dynamics of pool
A are akin to the single-population balanced network theory for
one pool given by Equation (7), since pool A is now effectively
receiving no input from pool B.

In the special case of tied alternatives, when fA = fB = f , we
note that Equation (12) reduces to mA = mB = 1

−Jout−Jin
fm0.

Under the same parameter restrictions in Equation (13), the
mean activity of each pool in this case increases with external
stimulus scaling fm0 and decreases with the magnitude of the
effective internal recurrent connectivity strength, |Jin|, and the
magnitude of the effective cross-cluster connectivity strength,
|Jout|. These trends can be verified numerically in Figure 6B,
which tracks the time-averaged mean activity for pool A in the
case of tied alternatives across simulations where the external
input scaling, f , and cross-pool inhibition strength, JABI =
JBAI , are varied. Theoretically, balanced dynamics can persist as
long as −Jout − Jin > fm0, particularly when there is enough
total recurrent inhibition between the neurons to counteract the
excitatory external stimulus.

When the balance conditions in Equation (13) are satisfied,
the one-population network with competing pools generally
functions as follows: (1) under spontaneous conditions when
fA = fB, both pools demonstrate balanced dynamics that are
responsive to changes in external input and (2) under evoked
conditions when fA 6= fB, the pool with a stronger external
stimulus, signaling a more profitable alternative, continues
to demonstrate balanced dynamics while the other pool is
suppressed. Considering systems violating Dale’s law are often
required to effectively make decisions, though perhaps not as
rapidly as neuronal networks in the brain, this functionality
agrees with real-world constraints.

4. DISCUSSION

While theoretical studies largely assume strict adherence
to Dale’s law, in light of notable exceptions in the brain
and other biological systems with complex functionality,
we have systematically studied the computational capabilities
of neuronal networks that instead violate Dale’s law. We
demonstrated that, like classical two-population networks
composed of excitatory and inhibitory subpopulations, one-
population networks with neurons that can transmit both
excitatory and inhibitory signals are capable of exhibiting
balanced network dynamics resembling the irregular and
asynchronous activity commonly observed in experiment. These
one-population networks rapidly respond to changes in inputs
and mediate effective decision-making dynamics in the balanced
regime. In the case of smaller systems, the one-population

networks in fact exhibit a higher degree of balance than two-
population networks of the same size, suggesting a potential
reason why systems with less computational units than the
brain, such as honeybee colonies, do not adhere to Dale’s
law even though they operate under similar computational
goals. However, for larger systems, where the dynamics are
sufficiently balanced for both network models, the two-
population networks demonstrate superior fast-tracking of
inputs and this suggests that evolution may have constructed
neuronal systems that primarily obey Dale’s law in order to
prioritize the particularly rapid information processing necessary
for survival.

This work aimed to examine the fundamental mechanistic
properties imbued by the presence or absence of a Dale’s law
constraint, abstracting over more detailed biological assumptions
to isolate the impact of this specific network characteristic.
Focusing on network computations imparted by firing patterns
as opposed to subthreshold voltage dynamics, each individual
neuron in our analysis possessed only two possible states.
However, there is a rich history of studies demonstrating
analogous balanced dynamics for networks with more detailed
single-neuron models (Renart et al., 2007; Rosenbaum and
Doiron, 2014), and we expect nearly identical comparisons to
be drawn for neurons with integrate-and-fire dynamics. Prior
work shows that in the classical two-population setting, both
binary-state and integrate-and-fire balanced neuronal networks
furnish the same input-output mapping structure (Barranca
et al., 2019b; Gu et al., 2019). Since the presence of other
systems capable of complex computations, such as honeybee
colonies and artificial neural networks, was a motivation for
this work, an investigation of Dale’s law in the context of
single-unit dynamics more faithful to such systems, as opposed
to the brain, would be a natural avenue for further study.
While numerous recent advances in neuromorphic computing
demonstrate biologically plausible mechanisms for learning and
transmitting error information (Lillicrap et al., 2016; Barranca,
2021; Yang et al., 2021), this work does not directly seek to
improve upon state-of-the-art methods. Instead, this study shows
that, from a functional perspective, strict adherence to Dale’s
law does not necessarily significantly diminish performance
and rather suggests that for artificial neural networks with a
particularly large number of units some efficiencies may be
gleaned from connectivity structures inspired by two-population
balanced networks.

There is a host of different excitatory and inhibitory
neurotransmitters in the brain (Yamada et al., 1989; McCormick
et al., 1993; Koch, 1999), and though we have neglected
their individual time-scales and the relative magnitude of their
effects, it is possible to similarly construct network models
violating Dale’s law that are capable of sending out distinct sets
of neurotransmitters to different neighbors. The release of a
diversity of neurotransmitters by a single neuron likely grants
flexibility to circuits in the brain, but the maintenance of a
mechanism for selective neurotransmitter release may require
a higher metabolic cost. It would be especially informative to
explore an energy landscape, where the addition of neurons
obeying or violating Dale’s law incur different energetic costs,
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FIGURE 6 | Decision-making in competing pools of one-population neurons. (A) Mean activity for pool B (blue) and pool A (red) over time, where the input into pool B

is fixed with fB = 0.1 and the input into pool A has fA = 0.1 initially with fA stepped up by 0.025 at several times. These simulated mean activities are compared to the

theoretical mean activities in Equation (12) for pool B (orange) and pool A (purple) as well as the theoretical mean activity for a single pool of one-population neurons

(green) given by Equation (7). (B) Time-averaged mean activity for pool A in the tied alternatives case as a function of external input scaling strength fA = fB = f and

cross-pool inhibition strength JABI = JBAI , varied across runs. Unless specified as varying, the parameters utilized are N = 10, 000 neurons in each pool,

JAAE = JBBE = 1, JAAI = JBBI = 1.8, JABE = JBAE = 1, JABI = JBAI = 1.5, k = 400, fB = 0.1, and θ = 1.
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and determine whether the relatively rare addition of neurons
violating Dale’s law as found in the brain indeed optimizes certain
aspects of the network performance.

While we had assumed statistically homogeneous random
connectivity to be faithful to traditional balanced network
theory and to facilitate analytical tractability, neuronal networks
observed in experiment often exhibit complex network structure
that can intimately impact the network dynamics (Massimini
et al., 2005; Bonifazi et al., 2009; Markov et al., 2013). An indirect
inhibitory circuit, mediated by an intermediate inhibitory neuron
post-connected to an excitatory neuron, for example, may
effectively imbue function like a one-population neuron capable
of sending out both excitatory and inhibitory signals in certain
computations (Shpiro et al., 2007). Nevertheless, how this
impacts more subtle functional properties affected by time lags
and precise network structure in comparison to an analogous
one-population model remains unexplored. It is also possible
to similarly engineer one-population networks with the goal
of effectively choosing among a large number of alternatives
(Ganguli et al., 2008; Heekeren et al., 2008; Barranca et al.,
2019a), and we expect such networks exhibit similar functional
properties as we have demonstrated in the case of two options.
Our analysis focused primarily on stimulus response properties
and decision making, though it would be informative to study
the computational properties of one-population networks in the

context of other roles, such as predictive coding and short-
term memory (Whalley, 2013; Ingrosso and Abbott, 2019).
Since neurotransmitters and their co-transmission have been
implicated in brain disorders, including Parkinson’s disease
(Svensson et al., 2018), the continued study of the functional
consequences of neuroatypical characteristics, such as an
imbalance of excitatory and inhibitory inputs or a surplus of
neurons violating Dale’s law, may chart out important advances
in treating neurological disorders.
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