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Abstract. Neuronal networks vary dramatically in size, connectivity structure, and function-6
ality across downstream layers of the brain. This raises the question of whether information is lost7
as it is re-encoded along compressive and expansive pathways. In this work, we develop a poten-8
tial data-driven mechanism for the preservation of information in the activity of neuronal networks9
across downstream layers, which uses the widespread linearity of individual neuronal responses to10
sufficiently strong ramped artificial inputs to fit a linear input-output mapping across the network.11
We analyze the dynamics of several families of two-layer neuronal network models, where the input12
components far outnumber the downstream neurons as in compressive pathways, and apply the fitted13
mapping in conjunction with compressive sensing theory to reconstruct stimuli with sparse structure.14
The input-output mapping facilitates stimulus reconstructions that only use measurements of down-15
stream neuronal firing rates in response to inputs over a short time duration, furnishing stimulus16
recovery even when theoretical analysis is intractable or the governing equations of the dynamical sys-17
tem are unknown as in experiment. Similarly accurate stimulus reconstructions are obtained across18
different single-neuron models, network coupling functions, and image classes. Improved reconstruc-19
tions are yielded when uniformly-random feedforward connectivity is replaced by spatially localized20
feedforward connectivity akin to receptive fields. We expect similar principles could be leveraged21
experimentally in prosthetics as well as in the reconstruction of large-scale network connectivity.22
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1. Introduction. As stimuli are processed in sensory systems, information is25

encoded in the dynamics of neuronal networks of disparate sizes and connectivity26

structures. Across downstream layers in the brain, an especially common feature in27

feedforward connectivity is compression and subsequent re-expansion. In the early28

human visual system, for example, compression occurs when a stimulus injected into29

a network of approximately 150 million photoreceptors is subsequently processed by30

only roughly 1.5 million retinal ganglion cells. Further downstream, information en-31

coded by the millions of neurons in the Lateral Geniculate Nucleus (LGN) is later ex-32

panded when re-encoded by the primary visual cortex, which contains approximately33

40 times as many neurons as the LGN [10, 103]. Similarly, the human olfactory system34

begins with about 15 million olfactory receptor neurons that feed into just thousands35

of glomeruli before re-expansion into a network of millions of neurons in the piriform36

cortex [121, 118, 92, 86, 102]. This structure has been observed in various auditory37

and somatosensory systems as well [105, 75, 80, 26], and is therefore hypothesized to38

be central to efficient coding in the brain [9, 8, 68].39

Numerous functional benefits to compression and re-expansion have been pro-40

posed and verified theoretically [56, 4]. In the resultant low-dimensional space after41

compression, neuronal networks have the potential to perform redundancy reduction,42

prune extraneous sensory data, and facilite especially rapid information processing43
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[71, 124]. Compression onto smaller neuronal networks via parallel pooling may also44

enhance robustness to noise and improve performance in learning as well as classifi-45

cation tasks [22, 84, 38, 41]. Nonetheless, if not performed intelligently, such massive46

compression could result in destructive information loss. What potential mechanisms47

may preserve information across sensory bottlenecks and how are stimuli embedded48

in the dynamics of low-dimensional neuronal networks?49

Previous work has largely investigated this question in the context of learned50

stimulus representations or highly idealized neuronal network models. Through unsu-51

pervised learning, for instance, sparse representations of sets of sub-sampled stimuli52

can be developed without knowing the sampling structure or sparse basis for the stim-53

uli, but such a framework does not fully address how reconstructions may be obtained54

without learning or in the context of realistic neuronal network activity [40]. Other55

approaches leverage linear or discrete-time dynamics to encode sparse sequences of56

information in the network dynamics, but they do not address the more realistic case57

of continuous and nonlinear network dynamics [55]. Recent work in the context of58

simple spiking neuronal network models with nonlinear dynamics has successfully re-59

constructed natural scenes using measurements of evoked firing rates; however, this60

line of research requires knowledge of the underlying dynamical equations governing61

the network activity for a successful reconstruction, which is likely not available to62

neurons in the brain or in experiments [17, 16, 21].63

In this work, we investigate the reconstruction and encoding of stimuli from64

evoked nonlinear neuronal network dynamics without knowledge of the underlying65

governing equations. We develop a new data-driven framework for the recovery of66

realistic inputs into two-layer neuronal network models by leveraging the ubiquitous67

linearity of neuronal responses to sufficiently strong stimuli [117, 96, 81]. Using the68

evoked downstream neuronal activity across the network for a small set of ramped69

artificial inputs, we first construct an approximate linear input-output mapping in-70

trinsic to the nonlinear network dynamics. With the resultant highly underdeter-71

mined linear system reflecting a sensory bottleneck, we use the widespread sparsity of72

natural stimuli in combination with compressive sensing (CS) theory to reconstruct73

novel gray-scale natural scene inputs from the evoked downstream neuronal dynamics74

and thereby gauge the accuracy of input encoding [52, 36]. When using sufficiently75

unstructured measurements of sparse signals, CS theory facilitates successful recon-76

structions with a dramatic reduction in sampling rate as compared to classical uniform77

sampling [100], potentially enabling the preservation of stimulus information across78

convergent network layers.79

We show that this encoding and reconstruction framework is successful for a host80

of models with varying levels of biological realism, including both current-based and81

conductance-based integrate-and-fire (I&F) single neuron models [31, 101, 77, 37] and82

networks with either pulse-coupling or alpha-function coupling between downstream83

neurons [91, 69, 33, 43]. For alternative inputs, such as Poisson spike train inputs84

with image-based drive strengths and color image inputs, we also produce successful85

reconstructions based on the evoked network dynamics. When the uniformly random86

feedforward connectivity is adapted to reflect the spatial localization common in visual87

receptive fields, our framework yields improved stimulus reconstructions as expected88

from the evolutionary selection of sensory system structure.89

This work provides a possible mechanism for information preservation across the90

common compressive and expansive pathways in the brain, which is robust to different91

modeling choices and is fundamentally consistent with many key physiological obser-92

vations. Regardless of whether this particular mechanism is utilized by the brain, we93
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nevertheless provide a proof of concept for the retention of signals across neuronal94

networks of widely varying sizes. It also lays a possible groundwork for important95

extensions to large-scale network connectivity reconstructions and improved design of96

sensory prosthetic devices.97

The remainder of the paper is structured as follows. In Sect. 2, we introduce98

the two-layer network model with a downstream compressive layer that we will study99

throughout this work, beginning in the context of current-based I&F dynamics with100

pulse-coupling between downstream neurons. We then develop our data-driven net-101

work input-output mapping approximation methodology in Sect. 3 and subsequent102

CS input recovery framework in Sect. 4. To gauge the encoding properties of the103

network, here we analyze sample stimulus reconstructions as well as study their ro-104

bustness to limitations in the measurement data and noise. We show how this input105

encoding mechanism generalizes to alternative stimulus types in Sect. 5 and extends106

to more detailed neuronal network models in Sect. 6. Finally, we investigate the107

impact of the feedforward connectivity structure in Sect. 7 and discuss implications108

as well as natural extensions of this work in Sect. 8.109

2. Two-Layer Network Model with Current-Based Integrate-And-Fire110

Neuronal Dynamics. To investigate information encoding along compressive path-111

ways, we use the framework of a two-layer feedforward network, consisting of a sensory112

input layer that transmits the incoming stimulus and a downstream output layer that113

encodes the stimulus through its nonlinear neuronal dynamics. We model compressive114

encoding across sensory layers of disparate sizes by assuming that the input layer has115

significantly more components than the output layer, typically differing by a factor of116

ten throughout this work.117

Our initial analysis will assume that the downstream layer is governed by the118

dynamics of a pulse-coupled integrate-and-fire neuronal network driven by the input119

layer signal [31, 91, 101, 32, 88]. The I&F model well reproduces experimentally120

recorded subthreshold membrane potential dynamics and firing statistics, and it pos-121

sesses the additional benefit of furnishing relatively computationally inexpensive sim-122

ulations [1, 96, 116, 15]. For concreteness, we will utilize the current-based I&F model123

in this section and we will later generalize our framework to the conductance-based124

setting in Sect. 6.1.125

The membrane potential dynamics of the ith neuron in the downstream layer are126

governed by127

(2.1)
dvi
dt

= −(vi − VR) +
n∑
j=1

Fijpj +
S

NR

m∑
k=1
k 6=i

Rik
∑
l

δ(t− τkl),128

evolving from the resting voltage VR until reaching firing threshold voltage VT . At129

this moment, the neuron fires (spikes), and its voltage is immediately reset to VR. At130

the time of the lth spike of the kth neuron, τkl, instantaneous inputs (S/NR)δ(t− τkl)131

are injected into all post-connected (post-synaptic) neurons in the downstream layer,132

where δ(·) is the Dirac delta function, S is the recurrent connection strength, and NR133

is the number of recurrent connections. This pulse-coupling reflects the extremely134

short time scale of each firing event, and in Sect. 6.2 we will consider impact of135

finite-time interactions between the downstream neurons.136

With respect to the network connectivity structure, we assume m and n are the137

numbers of downstream I&F neurons and input layer components, respectively, with138

n � m to reflect the compressive layer. The feed-forward connection (adjacency)139
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matrix between the two network layers is F = (Fij); we say that the ith neuron in the140

downstream layer is post-connected to the jth input component if Fij 6= 0. For con-141

creteness, we assume here that the input components randomly and sparsely feed into142

each downstream neuron, such that each possible feedforward connection is equally143

probable and each realized connection in F has equal strength, f . In Sect. 7, we will144

examine the impact of alternative and more realistic feedforward connectivity struc-145

ture. The constant vector p = (p1, . . . , pn) gives the stimulus component strengths146

transmitted by the upstream layer neurons, which will be generated by the pixels in147

an n-component gray-scale image. Since photoreceptors in the early visual system, for148

example, are known to undergo graded potentials with responses indicative of local149

light intensities, we initially model the feedforward input from the initial layer as fixed150

in time [108]. Later, in Sect. 5, we will consider the cases of color image inputs and151

spiking inputs from the upstream layer.152

The downstream recurrent connectivity matrix is similarly given by R = (Rij).153

We assume the probability of a connection is low for both connectivity matrices, gen-154

erating sparse feed-forward and recurrent connections as often found in experiment155

[87, 57, 62]. For generality, we assume the downstream neurons are connected, but156

we can also assume that they are uncoupled without impacting our overall analysis157

by setting Rij = 0 for all i, j [15, 11]. While ganglion cells in the retina, for example,158

are in some studies measured to be disconnected, there are other cases in which con-159

nectivity is observed and yet other scenarios where gap junctions are found between160

neurons [44, 111, 109]. This modeling framework is meant to capture the essence of161

compressive sensory pathways and potential frameworks for successful data compres-162

sion in neuronal dynamics rather than reflecting the specifics found in any one sensory163

system in a particular organism.164

Unless specified otherwise, we choose n = 10000 input layer neurons, m = 1000165

downstream neurons, feedforward connection probability 1/m = 0.001, and the recur-166

rent connection probability 0.05. We also select nondimensional parameters VR = 0,167

VT = 1, and t = 1 to correspond to a time-scale of 20ms, as typically produced in168

nondimensionalization [90, 17, 28]. We generally simulate the time evolution of this169

model over 0 ≤ t ≤ 10, which is comparable to typical human reaction times of 200ms170

[2, 3].171

3. Data-Driven Network Input-Output Map Fitting. The issues posed by172

the encoding of input layer stimuli in the dynamics of the neurons in the downstream173

layer are two-fold. First, since the pathway is compressive, the inverse problem of174

recovering the large number of input components from measurements of a relatively175

small number of downstream neurons is highly underdetermined. Second, the down-176

stream neuronal dynamics are nonlinear and vary in time, making the direct applica-177

tion of linear recovery techniques infeasible.178

To address this second problem, previous work had considered the limit of a179

large downstream network size with high neuronal firing rates and small recurrent180

communication strength, with coarse-graining techniques analogous to kinetic theory181

in nonequilibrium statistical mechanics yielding an approximate network input-output182

mapping [110, 34, 18, 12, 11]. In the Appendix, we include a brief derivation of this183

approximate theoretical input-output mapping for the current-based integrate-and-fire184

neuronal network as well as a comparison with the data-driven mapping discussed185

in detail throughout the remainder of this section. This theoretical input-output186

relationship is static in time and linear, relating the downstream neuronal firing rate187

vector µ = (µ1, . . . , um) measured from simulation to the injected stimulus vector p188
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via189

µ =
Fp

(VT − VR)
− em

2
+

S

NR (VT − VR)
Rµ,(3.1)190

where em is an m-vector of ones.191

However, analytically deriving such a theoretical mapping is not feasible for more192

detailed neuronal network models and it is not clear how to obtain an input-output193

mapping when the underlying equations governing the neuronal dynamics are un-194

known. To deal with these issues, in this work we instead take a data-driven approach195

in obtaining such an input-output relationship. We inject into the network a small196

number of artificial random stimuli, p(1), . . . , p(r), ramping up the mean strength of197

each by adjusting the feedforward connectivity scaling constant f . For each input, we198

record the resultant firing rate vectors, µ(1), . . . , µ(r), across the downstream neuronal199

network.200

In Fig. 1 (a), we consider the firing rate response for an individual representative201

downstream neuron in our model across an ensemble of ramped external inputs. We202

depict the firing rate as a function of the external input scaling strength, which is a203

multiplicative factor scaling the generated input stimuli. We see that for sufficiently204

strong stimulation strengths, the firing rate increases in a highly linear fashion. This is205

also true for each of the other individual downstream neuronal firing rates as well as for206

the network-averaged firing rate, though the detailed structure of each curve may vary207

from neuron to neuron. The linearity of neuronal gain curves is well documented in208

the context of more realistic neuronal models in many dynamical regimes, including209

the Exponential Integrate-And-Fire and Hodgkin-Huxley models, as well as in the210

presence of realistic ionic currents [30, 54, 15, 117]. Experimental recordings have211

similarly exhibited a linear increase in response with scaled external inputs [117, 96,212

81]. Overall, the shape of the gain curve here resembles that of Rectified Linear Units213

(ReLUs), which are especially effective and common in machine learning applications214

[82]. If additional biological features are included in the single neuron dynamics, such215

as a refractory period following action potentials [76, 15], a more sigmoidal gain curve216

may be obtained, which will still generally have an accurate linear approximation for217

a broad range of stimulus strengths.218

While the resultant firing rate response may vary from neuron to neuron, we can219

approximate a linear input-output mapping for the ith downstream neuron by220

(3.2) µi = αi(Fp)i + βi,221

where αi and βi are constants produced from a least-squares linear fit of form (3.2) to222

the firing rate responses of the ith neuron, µ
(1)
i , . . . , µ

(r)
i , across the ramped external223

inputs, p(1), . . . , p(r), in the linear regime of the gain curve. An example of this fitted224

linear mapping for the previously considered sample neuron is given in Fig. 1 (a).225

Across all individual neurons in the downstream layer, the collection of these linear226

maps yields the data-driven network linear input-output relationship227

(3.3) µ = α� (Fp) + β,228

where � denotes entry-wise vector multiplication, α = (α1, . . . , αm), and229

β = (β1, . . . , βm). We call α the slope coefficients and β the intercept coefficients,230

corresponding to the parameters for the lines fitted to the respective gain curves of231

the downstream neurons in the linear dynamical regime.232
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Fig. 1. (a) Gain curve for an individual representative downstream neuron in the two-layer
network with current-based neuronal dynamics prescribed by Eq. (2.1), depicting the individual
neuronal firing rate as a function of the external input scaling strength across several simulations
with ramped constant external inputs (blue). The input-output mapping for that individual neuron is
fitted in the linear regime of the gain curve (red). (b) Slope (blue) and intercept (red) coefficients in
the data-driven network input-output mapping given by Eq. (3.3) fitted for each downstream neuron
in the two-layer network considered in (a). (c) Fitted linear input-output mappings for several
additional sample neurons.

For this particular idealized two-layer network model, we may validate the data-233

driven mapping by direct comparison with the known theoretical input-output rela-234

tionship in Eq. (3.1). The slope and intercept coefficients fitted across the down-235

stream neuronal network are plotted in Fig. 1 (b). Comparing the results obtained236

from Eq. (3.3) to the theoretical input-output map derived via coarse-graining given237

by Eq. (3.1), we see close agreement since the α components are clustered around238
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α ≈ 1
(VT−VR) = 1 and the β components are clustered around β ≈ − 1

2 .239

It is important to underline that the data-driven framework for deriving the net-240

work input-output map (3.3) does not require knowledge of the governing model241

dynamical system given by Eq. (2.1). In the particular gain curve considered in Fig.242

1, each random vector in the input ensemble is initially generated with mean 2, and243

to construct different points in the gain curve, each input vector is then multiplied by244

a distinct external input scaling strength in [0, 2], with 0.2 spacing between scaling245

strengths. The activity of the downstream neurons in response to each given input246

vector is recorded over 0 ≤ t ≤ 10 to compute the neuronal firing rates used in fitting247

each individual neuronal input-output mapping. Although there are some minor dis-248

crepancies, the linear regime in the gain curve is about the same for all neurons, and249

using only the random input vectors with mean strength of at least 1 in the fitting250

process will generally produce an effective network mapping.251

As discussed in more detail in the next section, this methodology succeeds with252

only a small number of ramped input vectors, i.e., 2 or 3 in practice, and for a broad253

range of external input strengths, so long as these inputs are sufficiently strong such254

that the firing rate gain is approximately linear. There is generally little variability in255

the fitted coefficients with the choice of random input vectors utilized. This is to be256

expected because for a given downstream neuron, the mapping coefficients obtained257

from different stimulus choices will typically vary no more than the coefficients differ258

from neuron to neuron across the network as displayed in Fig. 1 (b), since the random259

differences in the feed-forward connectivity matrix rows mediate random variations in260

net external input across the downstream neurons. The fitted input-output mappings261

for several additional downstream neurons are plotted in Fig. 1 (c) for comparison,262

demonstrating relatively little variability across the network.263

We note that it is also possible to fit a linear input-output map that uses data264

regarding the time-averaged voltages across the downstream layer, v̄(1), . . . , v̄(r), cor-265

responding to the respective ramped inputs for models or dynamical regimes in which266

this data produces a more robust linear mapping of form µ = α � (Fp) + β + γ � v̄,267

with the additional fitted parameter vector γ [20]. For network dynamics governed268

by Eq. (2.1), however, we have verified that including the voltage term does not alter269

the encoding capability of the mapping.270

4. Stimulus Encoding Across Compressive Layers and Compressive271

Sensing Reconstructions. In characterizing a potential mechanism through which272

stimulus information may be successfully encoded in downstream neuronal network273

dynamics across compressive pathways, we seek to show that it is possible to recon-274

struct stimulus information from our model network activity. In particular, we aim275

to use the evoked firing rates of the downstream neurons, given by µ, to recover an276

input vector with realistic stimulus structure, p, driving the I&F neuronal network277

dynamics. The error in the resultant reconstruction of the input, precon, will then be278

used to assess the accuracy of the stimulus encoding in the downstream layer activity.279

With the approximate input-output mapping that is fitted in Eq. (3.3), we have280

a linear relationship between p and µ. However, to reconstruct p from µ requires281

solving the related linear system282

(4.1) Fp =
1

α
� µ− 1

α
� β283

for unknown vector p, where 1
α =

(
1
α1
, . . . , 1

αm

)
. This system is highly underde-284

termined since the feedforward pathway is compressive and thus m � n. Such a285
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problem generally has infinitely many solutions, yet our goal is to robustly recover286

the particular solution corresponding to the true injected input vector p.287

To address this issue, our reconstruction framework leverages the typical sparsity288

of natural stimuli to utilize compressive sensing theory. Natural scenes and sounds289

are both sparse in frequency-based domains and odors are sparse in the sense that290

they are generally composed of a small number of molecule types [52, 114, 83, 123,291

64]. For band-limited signals that are sparse in at least a single domain, CS theory292

demonstrates that, in the sparse domain, the number of nonzero components, rather293

than the full signal bandwidth [100], determines the minimum sampling rate needed294

for an accurate reconstruction [35, 46]. In the case of natural scenes, p is typically295

not sparse in the original spatial domain but p̂ = Tp is indeed sparse after applying296

a sparsifying transform T , such as the discrete cosine or Fourier transform [63, 47].297

Upon recovering p̂, the sparsifying transform is then inverted to yield p in the original298

domain.299

Since the sparsest solution to Eq. (4.1) well reconciles a small number of samples,300

a natural way to select p̂ is to seek the solution with the smallest number of nonzero301

components in the sparse domain. However, this approach is typically not possible to302

implement in polynomial time, and therefore a more efficient method is desirable [29].303

For sufficiently sparse p̂ and a broad class of measurement matrices, CS theory shows304

that a viable alternative is minimizing |p̂|`1 =
n∑
i=1

|p̂i| subject to Eq. (4.1) [36]. This305

`1 optimization problem can be efficiently solved in polynomial time using numerous306

numerical methods [112, 47].307

Measurement matrices suitable for CS are generally simple to generate, with a308

large class of matrices with sufficient randomness, such as those with independent,309

identically distributed random elements, are proven to satisfy sufficient conditions310

for accurate recovery [7]. We note that our feedforward connectivity matrix F well311

satisfies these conditions, and we show in Sect. 7 that even when spatial localization,312

akin to spatial receptive field structure, is incorporated, CS reconstructions are still313

highly accurate and in fact often improved.314

To reconstruct a gray-scale image input with vectorization p = (p1, . . . , pn), we use315

the two-dimensional discrete cosine transform (2D-DCT) to sparsify the image. We316

note that for one-dimensional stimuli, such as sound waves, we need only consider a317

one dimensional transform, and for signal representations of stimuli, such as odorants,318

that are sparse in their sampled domain, no transforms are necessary.319

The
√
n ×
√
n 1D-DCT matrix, D, is defined to have entries Dij = (D−1)Tij =320

ω(i) cos
(

(i−1)(2j−1)π
2
√
n

)
, where ω(1) = (1/n)1/4 and ω(i) = (4/n)1/4 for i 6= 1. The321

2D-DCT of an image with vectorization p is (D ⊗ D)p, where ⊗ denotes the n × n322

Kronecker product defined such that323

D ⊗D =

 D11D · · · D1
√
nD

...
. . .

...
D√n1D · · · D√n

√
nD

 .324

Given a vectorized input image, to recover the vectorization of its 2D-DCT, p̂, we325

rewrite Eq. (4.1) with respect to the 2D-DCT as326

(4.2)
n∑
j=1

Fij(D ⊗D)−1ij p̂j =
1

α
� µ− 1

α
� β.327
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Considering p̂ is sparse, upon measuring the evoked neuronal firing rates, µ, we de-328

termine the solution to Eq. (4.2) that minimizes
∑n
j=1 |p̂j | to obtain p̂ [35, 46]. To329

finally reconstruct the stimulus in the spatial domain, p, we invert the 2D-DCT and330

the vectorization.331

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. (a)-(c): Gray-scale input image stimuli composed of 100 × 100 pixels. (d)-(f): Corre-
sponding CS reconstructions of images in (a)-(c), respectively, using Eq. (4.2) and the data-driven
network input-output mapping. The relative reconstruction errors for (d)-(f) are 0.0624, 0.2201, and
0.3092, respectively. (g) Reconstruction of the 250 × 250 pixel version of image (c) with relative re-
construction error 0.2588. Each CS reconstruction in (d)-(g) uses a factor of 10 less downstream
I&F neurons than input pixels with current-based neuronal dynamics prescribed by Eq. (2.1).

Several representative gray-scale image reconstructions using this CS recovery332

framework in conjunction with the data-driven network input-output mapping are333

depicted in Fig. 2. To quantify the accuracy of each stimulus reconstruction, precon,334

we measure the relative reconstruction error, ‖p− precon‖/‖p‖, using the Euclidean335

norm, ‖p‖ =
√∑

i p
2
i . We view this error as a measure of information loss along336

the compressive layer, though the resultant reconstruction may alternatively be inter-337

preted as the stimulus information encoded by the subsequent expansive downstream338

layer following compression.339

For the simpler images in Fig. 2 (a)-(b), we see that the reconstruction is highly340

accurate even when there are 10 times as many input pixels as downstream neurons,341

akin to a compressive sensory pathway. For the more complicated cameraman image342

in Fig. 2 (c), higher error is incurred, but the large-scale features are still well captured343

and the reconstruction is recognizable. We use this more detailed natural scene as344

our test stimulus in the subsequent analyses, focusing primarily on 100 × 100 pixel345

inputs for computational tractability. The reconstructions obtained using the data-346

driven input-output mapping, given by Eq. (3.3), are comparable to those analogously347

obtained via the theoretical mapping, given by Eq. (3.1), but since such theoretical348

mappings are not feasible to derive for the more detailed models discussed in the349

following sections, the data-driven approach developed in this work is a necessity.350

It is important to emphasize that for higher resolution images with more pixels351

and generally more sparsity in the frequency domain, it is possible to reconstruct ad-352

ditional, less dominant, image details using the same ratio of downstream to upstream353

neurons. In Fig. 2 (g), we consider the cameraman image as in Fig. 2 (c) but instead354

with 250 × 250 pixels while preserving the compression factor so that there is still a355

factor of 10 less downstream neurons (i.e., here m = 6250 and n = 62500). In this356

higher resolution case, closer to true sensory system layers with potentially millions357

of neurons, we indeed observe an improved and quite accurate reconstruction.358

While the previous reconstructions used the evoked downstream neuronal firing359
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Fig. 3. (a) Relative reconstruction error as a function of the amount of time over which
the network dynamics prescribed by Eq. (2.1) are recorded. (b) Relative reconstruction error as
a function of the mean external input strength into the downstream neuronal network. For each
data point, the error plotted uses data driven mapping (3.3) fitted with 11 different external inputs
with strengths centered around the mean strength and strength increments of 0.1. (c) Relative
reconstruction error as a function of the number of ramped external inputs used to fit Eq. (3.3).
For each data point, the mean external input strength is 2.5 with strengths equally spaced in [1, 4] and
centered around the mean. (d) Relative reconstruction error as a function of the standard deviation
of the mean 0 Gaussian noise multiplying the recorded downstream neuronal firing rates used in the
CS reconstruction. The mean relative reconstruction error is plotted over 5 realizations with error
bars giving the standard deviation in the error across noise realizations. For (a)-(d), each panel
considers the CS reconstruction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream
neurons than pixels and the linear system given by Eq. (4.2).

rates recorded over 0 ≤ t ≤ 10 each, the reconstruction error generally decreases360

with observation time. In Fig. 3 (a), we depict the relative reconstruction error for361

the image in Fig. 2 (c) as a function of the simulation runtime, demonstrating a362

rapid initial decrease in error that later remains nearly constant for sufficiently long363

simulations, i.e., after approximately t = 2 or 40ms. Hence, the downstream neuronal364

dynamics in the compressive layer may reliably encode stimulus information over a365

short and biologically realistic time scale.366

With regard to fitting the network input-output mapping, the resultant map is367

quite insensitive to changes in the number of external inputs used and their strengths.368

In Fig. 3 (b), we plot the relative reconstruction error using different linear map fit-369

tings, where each mapping is obtained using the same number of ramped input vectors370

but different mean input vector strengths. Here we see that as long as the downstream371

neuronal dynamics are in the linear regime, the accuracy of the resultant reconstruc-372

tion is insignificantly impacted by perturbations in the mean input strength used for373

obtaining the data-driven mapping. Varying the mean input vector strength by a374

factor of four only results in about 0.02 fluctuations in reconstruction error. Likewise,375

if we instead hold the mean input vector strength constant in the linear dynamical376

regime but adjust the number of ramped inputs used, as in Fig. 3 (c), the recon-377

struction error remains approximately constant so long as at least two input vectors378

of distinct strengths are used. The ability to successfully reconstruct detailed stimuli379

using data-driven mappings constructed from a small number of artificial inputs over380
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a broad range of input strengths underlines both the efficiency and robustness of this381

methodology.382

Reflecting the potential noise in the response of downstream neurons to stimuli, for383

example due to fluctuations in photon absorption, synaptic release, and neurotrans-384

mitter availability [49, 76], we consider how information encoding in this framework is385

impacted by noise in the downstream neuronal firing rates. To include multiplicative386

noise, we multiply each downstream neuronal firing rate obtained from simulation by387

a distinct independent, identically distributed Gaussian random variable with mean388

0 and standard deviation σ. We use mean 0 noise based on the assumption that the389

firing rate fluctuations have no general upward or downward bias. In Figure 3 (d), we390

plot the relative reconstruction error as a function of the standard deviation σ and ob-391

serve an approximately linear increase in error with σ. Even when the noise standard392

deviation is 10% of the firing threshold, the reconstruction error is only increased by393

about 15%. For each choice of σ, the reconstruction accuracy is nearly constant across394

multiple noise realizations, highlighting the strong stability of information encoding395

in neuronal dynamics across compressive pathways.396

5. Extensions to Alternative Families of Stimuli.397

5.1. Poisson Spike Train Inputs with Image-Based Drive Strengths. To398

consider alternative forms of compressive pathways, we first adapt our framework to399

two-layer networks in which feedforward signals are communicated via spike trains400

rather than graded potentials. In this case, the constant input n-vector is replaced401

by n Poisson spike trains, reflecting the notion that the time distribution of a large402

number of spikes received by any given neuron across a large neuronal network is often403

well approximated by event times generated via a Poisson process [119, 6]. The total404

mean strengths of the Poisson spike train inputs received by the downstream neurons405

are determined by the respective components of the constant vector originally injected,406

namely Fp. In particular, the instantaneous membrane potential jump induced by407

each feedforward spike from the initial layer is assumed to be held fixed at γ for each408

downstream neuron and the corresponding rate for the Poisson input is (Fp)i/γ for409

the ith downstream neuron; this neuron is thus driven by a Poisson spike train with410

mean drive strength (Fp)i and its dynamics are determined by Eq. (2.1) aside from411

the feedforward input modification. Unless specified otherwise, we select the jump412

strength to be γ = 0.01.413

As shown in Fig. 4 (a), the individual downstream neuronal firing rate responses414

to Poisson spike train inputs with ramped mean drive strengths are highly linear for415

sufficiently large drive strengths. In the limit of high incoming Poisson spike train416

rates and low induced voltage jumps with fixed mean drive strength Fp across the417

downstream neurons, the drive from the initial layer approaches the original constant418

input vector [39]. Thus, we use the same methodology as described in Sect. 3 to fit419

the data-driven input-output mapping across the downstream layer, except now we do420

this via ramped artificial spike train inputs with their respective mean drive strengths421

neighboring the slope coefficients in Eq. (3.3). The resultant coefficients in the data-422

driven network input-output mapping are plotted in Fig. 4 (b), demonstrating nearly423

the same structure and mean values as in the previous case of constant inputs from424

the upstream layer. The coefficients in the case of Poisson inputs from the initial425

layer do display larger variance than in the constant stimulus vector case, but this426

is to be expected based on randomness introduced by the external spike train input.427

If instead of using the voltage jump γ = 0.01, a smaller jump size with higher mean428

input rate is used, such that the mean drive strength is fixed, the resultant drive429

This manuscript is for review purposes only.



12 V.J. BARRANCA, Y. HU, Z. PORTERFIELD, S. ROTHSTEIN, AND A. XUAN

10
1

10
2

10
3

Mean External Input Rate

0.3

0.35

0.4

0.45

0.5

E
rr

o
r

0 0.5 1 1.5

External Input Scaling Strength

0

1

2

3

4

5

6

F
ir
in

g
 R

a
te

Simulation
Fitted Mapping

0 200 400 600 800 1000

Neuron Number

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
o
e

ff
ic

ie
n

t

Slope
Intercept

2 3 4 5 6 7 8 9 10

Runtime

0.32

0.34

0.36

0.38

0.4

0.42

0.44

E
rr

o
r

(a)

(b)

(c)

(d)

Fig. 4. (a) Gain curve for an individual downstream neuron in the two-layer network with
current-based dynamics and Poisson spike train inputs from the initial layer, depicting the individual
neuronal firing rate as a function of the external input strength across several simulations with
ramped mean drive strengths. In each case, the voltage jump for the Poisson spike train is fixed
at γ = 0.01 and the Poisson input rates are scaled. The input-output mapping for that individual
neuron is fitted in the linear regime of the gain curve. (b) Slope and intercept coefficients in Eq. (3.3)
fitted for each neuron in (a). (c) Relative reconstruction error dependence on the mean external
spike train input rate. The external drive strength for the ith downstream neuron is fixed at (Fp)i
for i = 1, . . . ,m in each case. (d) Relative reconstruction error dependence on the time over which
the dynamics described in (a) are recorded. In (c)-(d), the error is plotted over 5 realizations of the
external input with error bars giving the standard deviation across realizations. CS reconstructions
are obtained using the linear system given by Eq. (4.2) and Fig. 2 (c) as input.
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is statistically closer to the original constant input vector considered previously and430

tighter clustering of the coefficients is achieved.431

As long as the rates of the Poisson spike train inputs are sufficiently high, such that432

each downstream neuron receives a relatively large number of upstream spikes over433

the observation time, the CS reconstructions obtained using the data-driven mapping434

display accuracy and stability properties analogous to those discussed for constant435

inputs. We illustrate this in Fig. 4 (c), where we hold the mean drive strength of the436

Poisson spike train inputs across the network constant while varying their mean rate437

and reconstructing the corresponding input stimulus given by Fig. 2 (c) in each case.438

For each choice of mean Poisson spike train rate, we fit the network input-output439

mapping over 0 ≤ t ≤ 10 and observe little variability in the reconstruction error with440

accuracy comparable to the constant input case for sufficiently high mean input rates.441

For lower mean input rates, we note that longer observation times are necessary to442

well capture the stimulus structure and obtain an accurate reconstruction. As seen in443

Fig. 4 (d) for a successfully fitted network input-output mapping, the reconstruction444

error decreases initially with runtime before leveling off when enough downstream445

neuronal firing events are recorded to well encode the detailed stimulus features.446

5.2. Color Image Inputs. To investigate if stimuli with color structure, more447

representative of natural scenes than gray-scale images, are well encoded along such448

compressive sensory pathways, we extend our model to RGB (red-green-blue) color449

image inputs. Here each stimulus in the input layer is represented by three constant450

n-vectors, corresponding to red, green, and blue intensities, respectively, across all451

n spatial locations of the pixels. We consider three networks of m downstream I&F452

neurons, each with unique feedforward and recurrent connectivity matrices, forced by453

the three respective color intensity vectors.454

We fit the network input-output relationship using the downstream neuronal net-455

work responses to ramped constant artificial color image inputs with dynamics deter-456

mined by Eq. (2.1) across each of the three two-layer networks, producing three sets of457

coefficients for data-driven mapping (3.3). Then, we use the three sets of downstream458

neuronal firing rate measurements in response to a fixed color image stimulus to re-459

construct the corresponding intensity vectors across each of the three color channels460

via CS and Eq. (4.2). The three intensity vector reconstructions together yield the461

full color image input reconstruction. Note that since different photoreceptor types462

respond to different light wavelengths [70] and mammalian visual systems are known463

to often contain parallel channels [5], we choose to use three distinct compressive464

pathways to encode color images as opposed to a single pathway with fixed structure.465

Several representative color image reconstructions are depicted in Fig. 5. Even466

in the case of color stimuli with realistic natural scene structure, we observe accurate467

reconstructions with errors computed across the three channels generally less than468

those observed in the case of 100 × 100 pixel gray-scale image inputs. Similar to469

the reconstructions of higher resolution gray-scale images, the larger number of total470

pixels across the three color channels facilitates more overall sparsity in the case of471

color images and thus improved CS reconstructions.472

6. Reconstruction Framework for Alternative Network Models.473

6.1. Two-Layer Network Model with Conductance-Based Integrate-474

And-Fire Neuronal Dynamics. While our initial analysis considered the dynamics475

of the downstream network when determined by current-based I&F neuronal activ-476

ity, we will now turn to more physiological neuronal models and later more realistic477
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a)-(c): RGB color input image stimuli composed of 100 × 100 pixels for each of
the three color intensity vectors (red, green, and blue). (d)-(f): Corresponding CS reconstructions
of images in (a)-(c), respectively, using Eq. (4.2) and the network input-output mapping fitted
for each color pathway. The relative reconstruction errors for (d)-(f) are 0.098, 0.134, and 0.1615,
respectively. Each reconstruction uses a factor of 10 less downstream current-based I&F neurons
than input pixels in each of the three two-layer networks corresponding to the three different color
pathways.

network coupling. As a first step closer to biological realism, we instead assume that478

each downstream neuron is governed by conductance-based I&F dynamics. In the479

conductance-based model, synaptic input currents are now voltage-dependent and480

produce a richer repertoire of more biophysical dynamics [37, 79]. In particular, the481

membrane potential of the ith downstream neuron now obeys482

(6.1)
dvi
dt

= −(vi − VR)−

 n∑
j=1

Fijpj +
S

NR

m∑
k=1
k 6=i

Rik
∑
l

δ(t− τkl)

 (vi − VE) ,483

where VE = 14/3 is the excitatory reversal potential [77] and the remaining terms as484

well as the network structure are identical to the original two-layer model in Sect. 2.485

We now apply our data-driven reconstruction approach to this alternative two-486

layer network model. First, we fit the input-output mapping (3.3) and then recon-487

struct constant gray-scale image inputs as outlined in Sect. 4. In Fig. 6 (a), we plot488

the firing rate of a single downstream neuron in response to ramped artificial con-489

stant inputs, similarly demonstrating linear gain for sufficiently strong input scaling490

strengths, and the resultant network input-output mapping is fit in the broad linear491

dynamical regime.492

In Fig. 6 (b), we depict the corresponding slope and intercept coefficients in493

mapping (3.3) across the downstream layer. We observe coefficients distinct from494

those obtained previously, especially in the case of the slopes. Comparing Fig. 1 (b)495

and Fig. 6 (b), the two linear maps are fairly different, as the slopes and intercepts for496

the current-based model are clustered near 1 and −0.5, respectively, while those for497

the conductance-based model are near 4.2 and −0.8. This is to be expected because498

the analytically derived network input-output mapping in Eq. (3.1) does not apply to499

neurons with conductance-based dynamics governed by Eq. (6.1). Nevertheless, using500
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Fig. 6. (a) Gain curve for an individual downstream neuron in the two-layer network with
conductance-based neuronal dynamics prescribed by Eq. (6.1), depicting the individual neuronal
firing rate as a function of the external input scaling strength across several simulations with ramped
constant external inputs. The input-output mapping for that individual neuron is fitted in the linear
regime of the gain curve. (b) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream
neuron in the two-layer network considered in (a). (c) Relative reconstruction error as a function of
the amount of time over which the network dynamics prescribed by Eq. (6.1) are recorded. Panel (c)
considers the CS reconstruction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream
neurons than pixels and the linear system given by Eq. (4.2).

CS and the data-driven mapping, we recover input stimuli with accuracy comparable501

to the reconstructions obtained using the current-based neuronal network model. As502

shown in Fig. 6 (c), compressive encoding is indeed successful over relatively short503

time scales when the downstream neurons have conductance-based I&F dynamics.504

6.2. Two-Layer Network Model with Conductance-Based Integrate-505

And-Fire Neuronal Dynamics and Alpha-Function Coupling. Beyond more506

detailed single neuron dynamics, we investigate the robustness of our compressive en-507

coding framework in the presence of more realistic recurrent neuronal communications508
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in the downstream layer. Reflecting the brief but finite time course of post-synaptic509

conductance changes induced by received action potentials, we replace the instanta-510

neous Dirac delta function coupling between downstream neurons with a more phys-511

iological α-function time course for the neuronal interactions [101]. In this case, δ(t)512

is replaced by513

(6.2) g(t) =
t

σ2
exp (−t/σ)H(t),514

where H(t) is the Heaviside function, such that H(t) = 1 for t > 0 and H(t) = 0515

otherwise, and the finite rise and decay time scales are both controlled by σ = 1/20516

(i.e., 1ms) [89, 76]. Aside from this change in coupling, we assume the individual517

downstream neuronal dynamics are conductance-based as in Eq. (6.1).518

It is important to emphasize that in the case of this more realistic two-layer model519

network, analytically deriving an input-output mapping is intractable and thus our520

data-driven framework provides a more feasible alternative. We observe in Fig. 7521

(a) that the individual downstream neuronal firing rate response to sufficiently strong522

ramped constant external inputs is still linear; thus we apply our methodology to523

fit a data-driven network input-output mapping prescribed by Eq. (3.3) and obtain524

the corresponding coefficients plotted in Fig. 7 (b) across the downstream neuronal525

network. Though the data-driven mapping obtained is distinct from those gleaned526

for the prior models considered, we achieve similarly accurate input reconstructions527

for sufficiently long observation times, as displayed in Fig. 7 (c), highlighting the528

robustness of compressive encoding across sensory pathways with realistic neuronal529

dynamics. We expect that applying this reconstruction framework for alternative530

coupling models or different rise and decay time scales will produce comparable results531

once an appropriate data-driven network input-output mapping is obtained. For these532

alternative network models, it is also important to note that we are able to well fit533

the data-driven mapping with a very small number of ramped external inputs over a534

broad range of mean external input strengths as well as in the presence of noise, just535

as described for the current-based two-layer network model in Sect. 4.536

7. Spatially Localized Random Feedforward Connectivity. In contrast537

with our previous investigations of encoding across compressive layers in light of in-538

creasing biological realism, which focused on the dynamics of individual downstream539

neurons, their communications, and their external input structure, we conclude by540

shifting our analysis to the impact of the feedforward connectivity organization.541

Receptive field structure in feedforward connectivity is shared throughout much of542

the visual, auditory, somatosensory, and olfactory systems in the sense that down-543

stream neurons are most stimulated by a range of stimuli with similar characteristics544

[60, 121, 118, 92, 75]. Across sensory system layers, one key consequence of receptive545

fields is spatial localization in stimulus sampling. In the retina, for example, gan-546

glion cells often exhibit center-surround receptive fields, such that the output of local547

clusters of photoreceptors is sampled by downstream ganglion cells, exciting ganglion548

cell activity in on-center locations and inhibiting activity in off-surround locations549

[120, 66].550

To incorporate similar spatial structure into the two-layer network feedforward551

connectivity, each pixel in the n-component sampled image p is assigned a unique552

(x, y) location with integer coordinates on a [1,
√
n]×[1,

√
n] Cartesian grid reflecting553

all possible pixel locations. Each row of the feedforward connectivity matrix, F , is554

associated with a distinct random location (xi, yi) on this Cartesian grid, around555
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Fig. 7. (a) Gain curve for an individual downstream neuron in the two-layer network with
conductance-based neuronal dynamics prescribed by Eq. (6.1) except with α-function coupling be-
tween downstream neurons given by Eq. (6.2), depicting the individual neuronal firing rate as a
function of the external input scaling strength across several simulations with ramped constant ex-
ternal inputs. The input-output mapping for that individual neuron is fitted in the linear regime of
the gain curve. (b) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream neuron
in the two-layer network considered in (a). (c) Relative reconstruction error as a function of the
amount of time over which the network dynamics are recorded. Panel (c) considers the CS recon-
struction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream neurons than pixels and
the linear system given by Eq. (4.2).

which the receptive field of the ith downstream neuron is centered. Reflecting both556

spatial localization and some degree of randomness in the connectivity, we assume557

that the probability, P , that the ith downstream neuron samples a pixel with spatial558

coordinates (xj , yj) is given by559

(7.1) P = ρ exp(−[(xi − xj)2 + (yi − yj)2]/[2σ2]),560

where ρ is the sampling probability if (xi, yi) = (xj , yj), that is when the receptive561

field center matches the location of a given pixel, and σ characterizes the distance562
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over which the receptive field samples pixels. Each feedforward connection in a given563

row i of F can therefore be described by a Bernoulli random variable, determined564

independently of all other entries of F , with success probability given by Eq. (7.1).565
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Fig. 8. (a) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream neuron
in the two-layer network with spatially localized random feedforward connectivity prescribed by Eq.
(7.1). (b) CS reconstruction of the 100 × 100 pixel image in Fig. 2 (c) using the data-driven linear
input-output mapping with coefficients in (a). The sampling probability parameter is ρ = 0.9, the
sampling distance parameter is σ = 2.5, and the relative reconstruction error is 0.1933. (c) Relative
reconstruction error dependence on the (ρ, σ) parameter choice. For each parameter choice, Fig.
2 (c) is reconstructed using a factor of 10 less downstream neurons than pixels and current-based
neuronal dynamics prescribed by Eq. (2.1).

Previous work has demonstrated that, relative to the uniformly random feedfor-566

ward connectivity assumed earlier in this work, sampling analogous to this spatially567

localized random feedforward connectivity more accurately captures the dominant low568

and moderate frequency components composing an image when using a small number569

of linear samples [19, 21]. By applying our data-driven reconstruction framework,570

we examine if this more realistic feedforward connectivity structure is capable of well571

transmitting stimulus information across the type of compressive pathway modeled572

initially through the two-layer current-based I&F network discussed in Sect. 2. Even573

though the feedforward connectivity is now distinct from the uniformly random struc-574

ture discussed earlier, the slope and intercept coefficients of the resultant network575

input-output mapping, plotted in Fig. 8 (a), have nearly the same mean values as576

found previously for downstream neurons with current-based I&F dynamics. Compar-577

ing with Fig. 1 (b), relatively uniform clustering about the means is observed in each578

case, though the variance of the coefficients in the spatially localized case is smaller.579

This suggests that the network input-output mapping structure is largely determined580

by the dynamics of the individual downstream neurons and the time course of their581

communications, which were both shown to impact the fitted coefficients in Sect. 6,582

whereas the feedforward connectivity structure plays more of a role in determining the583

stimulus features that are well captured by the downstream network dynamics. The584

optimal CS reconstruction obtained using spatially localized random feedforward con-585

nectivity and the data-driven network input-output mapping for the input stimulus in586

Fig. 2 (c) is displayed in Fig. 8 (b), exhibiting a reconstruction error approximately587

half that obtained originally using uniformly random feedforward connectivity.588

Since the success of the stimulus encoding in the downstream neuronal dynamics589

may be intimately tied to the receptive field size and density, we vary feedforward590

connectivity parameters, ρ and σ, and plot the reconstruction error for each parameter591

choice in Fig. 8 (c). The optimal σ generates moderately-sized receptive fields and the592
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corresponding optimal choice of ρ is sufficiently large such that each pixel is expected593

to be sampled at least once. A local minimum in reconstruction error occurs near594

σ ≈ 2.5, and even when ρ is as high as ρ ≈ 0.9, which corresponds to the reconstruction595

in Fig. 8 (b), the feedforward connectivity matrix is sparse with a connection density596

of only approximately 0.001. Increasing ρ yet further for fixed σ has little impact597

on reconstruction quality in this case, and 1 is the upper bound for ρ based on its598

probabilistic interpretation.599

We remark that for simultaneously large ρ and σ, each receptive field collects600

information from too much of the visual field, resulting in redundancy in the im-601

age information obtained by each downstream neuron akin to the uniformly random602

connectivity considered originally. In this case, a high correlation in the input data re-603

ceived across the downstream network results in diminished reconstruction accuracy.604

Likewise, for simultaneously small ρ and σ, each receptive field may gather insuffi-605

cient information across pixel locations and the input into the downstream neurons606

may be too small to drive the firing events necessary to encode stimulus information,607

generating extremely large reconstruction error. Overall, for moderately sized recep-608

tive fields with relatively sparse connectivity, as often observed in vivo, improved CS609

reconstructions are achieved. This gives further credence to the hypothesis that sen-610

sory systems have evolved to exhibit structure optimized for efficient natural stimulus611

encoding across compressive pathways.612

8. Discussion and Conclusions. We have developed a potential mechanism613

for the preservation of stimulus information across the ubiquitous compressive path-614

ways in the brain, demonstrating its suitability in the context of numerous two-layer615

network models with varying degrees of biological realism in both the dynamics of616

individual neurons and their coupling. Our novel framework for reconstructing input617

layer information from the nonlinear neuronal activity of a compressive downstream618

layer was completely driven by simulation data and did not require knowledge of the619

dynamical system governing the model activity. We approximated a network input-620

output mapping based on the linear firing rate response of the downstream neurons to621

a small number of ramped artificial inputs, which is a feature shared by all models in-622

vestigated in this work for sufficiently strong external input strengths. In conjunction623

with compressive sensing reconstruction techniques, we used this data-driven net-624

work input-output relationship to reconstruct realistic input stimuli taking the form625

of gray-scale natural scenes, color images, and image-driven Poisson spike trains. By626

incorporating characteristics of spatial receptive fields into the feedforward connectiv-627

ity, we also showed that the encoding properties of the downstream neuronal network628

dynamics are in fact improved, as expected by the prevalence of receptive fields across629

sensory systems.630

This work provides a new proof of concept supporting the notion that such com-631

pressive pathways, if designed intelligently, well preserve stimulus information with632

great efficiency. By containing significantly less neurons in the first downstream layer,633

stimuli may be rapidly processed in ways that improve encoding capability in the634

subsequent expansive downstream layers with minimal energy expenditure required635

[67, 115, 104, 98, 13, 23, 48]. Such processing in the compressive layer may help636

to reduce redundancy and enhance the function of sensory pathways in performing637

commonly encountered tasks, such as classification [71, 41].638

While our two-layer model was meant to capture the primary shared features639

of compressive pathways and their mechanisms for stimulus encoding, it would be640

informative to extend our analysis to models with more detailed physiological struc-641
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ture corresponding to a specific early sensory system pathway. Such an investigation642

would benefit from incorporating yet more detailed neuronal activity. We emphasize643

that even in these more realistic model settings, the linear gain in neuronal response644

leveraged in our analysis is commonly observed [30, 54, 15, 117], and thus we expect645

our framework to be naturally extended to such models where analytical techniques,646

such as coarse-graining, become intractable. Even for highly nonlinear single neuron647

models, such as the Hodgkin-Huxley model, previous work has successfully produced648

approximately linear gain curves in the presence of various additional realistic ion649

channels with dynamics over a range of time scales [74, 25], and the presence of nega-650

tive feedback in the form of biophysical adaptation currents is known to linearize gain651

curves that are nonlinear when unadapted [51].652

Though our analysis focused on the activity of a downstream layer of exci-653

tatory neurons that were largely mean-driven, networks containing additional in-654

hibitory neurons in alternative dynamical regimes, such as the balanced operating655

state [14, 116, 113], also demonstrate a highly sensitive and linear increase in neu-656

ronal activity with external input strength. In general, the neuronal gain curve has657

been shown to adapt to different stimulus conditions, such as light level in the con-658

text of the visual system [27], and potential improvements in stimulus encoding along659

compressive pathways leveraging this adaptation would mark an interesting area of660

future investigation. Since our methodology specifically considers dynamical regimes661

exhibiting linear firing rate gain, it is worth noting that the single neuron models we662

had analyzed and neurons in experiment nonetheless demonstrate nonlinear voltage663

dynamics, which are important in their own right and have been shown to enhance664

feature selectivity [58] as well as decorrelate neuronal responses to stimuli [95, 73].665

By more closely mimicking the structure of compressive feedforward pathways, yet666

further improvements in encoding may be possible using our reconstruction method-667

ology. The size of receptive fields varies widely within a sensory pathway and depend-668

ing on the receptive field size, details of various scales are measured [99, 45], akin669

to adjusting the σ parameter in our model of feedforward connectivity with spatially670

localized structure. By incorporating a diversity of receptive field sizes, we hypoth-671

esize that lower amplitude frequency component contributions may be successfully672

captured with the same number of downstream neurons. Including center-surround673

antagonism in the feedforward connectivity, which could be modeled using a differ-674

ence of Gaussians [122, 50], may facilitate the encoding of finer edge information in675

the downstream neuronal dynamics. Reflecting the architecture of the primary visual676

cortex by including simple cells in further downstream layers [65, 93], modeled via677

Gabor functions [42, 85, 72], could also result in orientation selectivity. It would be678

natural to investigate if additional receptive field types as well as multiple compres-679

sive and expansive layers would further improve the encoding of higher order stimulus680

features. Including these physiological details in the engineering of prosthetic sensory681

devices and adapting our reconstruction framework to send realistic signals across682

artificial compressive pathways presents a potential approach to better mitigating683

sensory impairments [78, 24].684

Since in vivo neuronal recordings have been shown to exhibit a linear increase in685

response with scaled external inputs in certain dynamical regimes [117, 96, 81, 61],686

our developed framework is likely generalizable to experimental settings seeking to687

approximate neuronal input-output mappings by making use of intracellular and mul-688

tielectrode array recordings in response to ramped optogenetic forcing [97, 94]. Once689

the network input-output relationship is obtained across a pathway of interest, similar690

CS techniques may be leveraged in order to recover sparse and large-scale neuronal691
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network connectivity [20, 106, 125, 12]. Since directly measuring structural neuronal692

connectivity is infeasible for large networks due to, for example, limitations on the693

spatial resolution of measurement technology [107, 59, 53], such efficient connectivity694

reconstructions based on recordings of neuronal dynamics are especially valuable in695

characterizing the structure-function relationship of networks in the brain.696

697

Appendix A. Derivation of the Theoretical Input-Output Mapping for698

the Current-Based Integrate-And-Fire Neuronal Network.699

700

In deriving the theoretical input-output mapping given by Eq. (3.1), we leverage701

a coarse-graining approach that applies probabilistic arguments to ultimately obtain702

a static, linear system relating the network input, stimulus vector p, to the network703

output, namely the vector of individual downstream neuronal firing rates µ. We704

focus our analysis in this Appendix on the two-layer current-based integrate-and-fire705

neuronal network given by Eq. (2.1) because it is analytically tractable, and since706

this argument does not well extend to more detailed modeling frameworks, we instead707

resort to our newly developed data-driven approach in the remainder of this work.708

We start by analyzing a statistical ensemble of almost identical networks that709

differ only in their initial membrane potentials, vi(t = 0), and their resultant input710

currents, for i = 1, ...,m. For each realization of the network, the ith downstream711

neuron is hence driven by a new independent spike train transmitted by its pre-712

connected neighbors as well as the external input current,
∑n
j=1 Fijpj . For each713

realization of the network in the ensemble, the feed-forward and recurrent connectivity714

matrices, F and R, respectively, remain fixed.715

To more tractably characterize the total drive into each downstream neuron, we716

assume the network exhibits a large number of firing events, of which each only evokes717

a relatively small voltage jump to post-connected neurons as typical in vivo. This718

implies high spike frequency, µi � 0, and small spike magnitude, S/NR ≈ 0. The719

total recurrent network input into each downstream neuron, say the ith, is720

S

NR

m∑
k=1
k 6=i

Rik
∑
l

δ(t− τkl),721

and therefore may be approximated by a Poisson spike train [39]. Statistically, the722

effect of the rapid recurrent network input approaches the mean drive from pre-723

connected neurons,724

(A.1)
S

NR

m∑
k=1
k 6=i

Rikµk.725

Replacing the rightmost term of Eq. (2.1) by Eq. (A.1), we obtain the voltage at726

time t for the ith downstream neuron727

vi(t) =vi(t0)e−(t−t0) +
(

1− e−(t−t0)
)

728

×

VR +
n∑
j=1

Fijpj +
S

NR

m∑
k=1
k 6=i

Rikµk

 .(A.2)729

730
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Letting vi(t0) = VR, the resting voltage, implies a firing event is expected to occur731

when vi(t0 + 1/µi) = VT , where µi is the firing rate of the ith downstream neuron.732

To obtain a static, nonlinear input-output mapping, we divide by 1− e−1/µi , yielding733

(A.3)
n∑
j=1

Fijpj =
VT − VR

1− e−1/µi
− S

NR

m∑
k=1
k 6=i

Rikµk.734

To linearize this mapping, we leverage the earlier assumption that the downstream735

network is in a high-firing-rate dynamical regime. We Taylor expand with respect to736

the small parameter 1/(µi) and up to the leading order O(1/(µi)
2), we obtain737

(A.4)
n∑
j=1

Fijpj = µi(VT − VR) +
(VT − VR)

2
− S

NR

m∑
k=1
k 6=i

Rikµk.738

Rewriting Eq. (A.4) across the downstream network, for i = 1, . . . ,m, yields the739

static, linear input-output mapping equivalent to Eq. (3.1),740

(A.5) Fp =
(
µ+

em
2

)
(VT − VR)− S

NR
Rµ,741

where em denotes an m-vector of ones. To more closely compare with the data-driven742

mapping given by Eq. (3.3), we isolate µ above and obtain743

(A.6)

(
I − S

NR (VT − VR)
R

)
µ =

Fp

(VT − VR)
− em

2
.744

Expanding in the form of a Neumann series yields745

(A.7) µ ≈
(
I +

S

NR (VT − VR)
R+ . . .

)(
Fp

(VT − VR)
− em

2

)
.746

To leading order, we observe that Eq. (A.7) takes a form analogous to the data-driven747

mapping, where comparing the mappings shows that across the downstream network748

the fitted coefficients in this case are α ≈ 1
(VT−VR) and β ≈ − 1

2 . We also see that the749

correction term in Eq. (A.7) implies that µ is generally modulated by the number750

of incoming recurrent connections. This is a primary motivation for the inclusion of751

the NR term that normalizes the recurrent connectivity matrix by the total number752

of recurrent connections in the two-layer network model framework, which keeps the753

total drive across the downstream network approximately constant with changes in754

the connection density of R.755
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