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DATA-DRIVEN RECONSTRUCTION AND ENCODING OF SPARSE
STIMULI ACROSS CONVERGENT SENSORY LAYERS FROM
DOWNSTREAM NEURONAL NETWORK DYNAMICS*

VICTOR J. BARRANCAT, YOLANDA HUf, ZOE POTERFIELD!, SAMUEL ROTHSTEINT,
AND ALEX XUANT

Abstract. Neuronal networks vary dramatically in size, connectivity structure, and function-
ality across downstream layers of the brain. This raises the question of whether information is lost
as it is re-encoded along compressive and expansive pathways. In this work, we develop a poten-
tial data-driven mechanism for the preservation of information in the activity of neuronal networks
across downstream layers, which uses the widespread linearity of individual neuronal responses to
sufficiently strong ramped artificial inputs to fit a linear input-output mapping across the network.
We analyze the dynamics of several families of two-layer neuronal network models, where the input
components far outnumber the downstream neurons as in compressive pathways, and apply the fitted
mapping in conjunction with compressive sensing theory to reconstruct stimuli with sparse structure.
The input-output mapping facilitates stimulus reconstructions that only use measurements of down-
stream neuronal firing rates in response to inputs over a short time duration, furnishing stimulus
recovery even when theoretical analysis is intractable or the governing equations of the dynamical sys-
tem are unknown as in experiment. Similarly accurate stimulus reconstructions are obtained across
different single-neuron models, network coupling functions, and image classes. Improved reconstruc-
tions are yielded when uniformly-random feedforward connectivity is replaced by spatially localized
feedforward connectivity akin to receptive fields. We expect similar principles could be leveraged
experimentally in prosthetics as well as in the reconstruction of large-scale network connectivity.

Key words. Neuronal network dynamics, Signal processing, Input-output mappings
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1. Introduction. As stimuli are processed in sensory systems, information is
encoded in the dynamics of neuronal networks of disparate sizes and connectivity
structures. Across downstream layers in the brain, an especially common feature in
feedforward connectivity is compression and subsequent re-expansion. In the early
human visual system, for example, compression occurs when a stimulus injected into
a network of approximately 150 million photoreceptors is subsequently processed by
only roughly 1.5 million retinal ganglion cells. Further downstream, information en-
coded by the millions of neurons in the Lateral Geniculate Nucleus (LGN) is later ex-
panded when re-encoded by the primary visual cortex, which contains approximately
40 times as many neurons as the LGN [10, 103]. Similarly, the human olfactory system
begins with about 15 million olfactory receptor neurons that feed into just thousands
of glomeruli before re-expansion into a network of millions of neurons in the piriform
cortex [121, 118, 92, 86, 102]. This structure has been observed in various auditory
and somatosensory systems as well [105, 75, 80, 26], and is therefore hypothesized to
be central to efficient coding in the brain [9, 8, 68].

Numerous functional benefits to compression and re-expansion have been pro-
posed and verified theoretically [56, 4]. In the resultant low-dimensional space after
compression, neuronal networks have the potential to perform redundancy reduction,
prune extraneous sensory data, and facilite especially rapid information processing
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[71, 124]. Compression onto smaller neuronal networks via parallel pooling may also
enhance robustness to noise and improve performance in learning as well as classifi-
cation tasks [22, 84, 38, 41]. Nonetheless, if not performed intelligently, such massive
compression could result in destructive information loss. What potential mechanisms
may preserve information across sensory bottlenecks and how are stimuli embedded
in the dynamics of low-dimensional neuronal networks?

Previous work has largely investigated this question in the context of learned
stimulus representations or highly idealized neuronal network models. Through unsu-
pervised learning, for instance, sparse representations of sets of sub-sampled stimuli
can be developed without knowing the sampling structure or sparse basis for the stim-
uli, but such a framework does not fully address how reconstructions may be obtained
without learning or in the context of realistic neuronal network activity [40]. Other
approaches leverage linear or discrete-time dynamics to encode sparse sequences of
information in the network dynamics, but they do not address the more realistic case
of continuous and nonlinear network dynamics [55]. Recent work in the context of
simple spiking neuronal network models with nonlinear dynamics has successfully re-
constructed natural scenes using measurements of evoked firing rates; however, this
line of research requires knowledge of the underlying dynamical equations governing
the network activity for a successful reconstruction, which is likely not available to
neurons in the brain or in experiments [17, 16, 21].

In this work, we investigate the reconstruction and encoding of stimuli from
evoked nonlinear neuronal network dynamics without knowledge of the underlying
governing equations. We develop a new data-driven framework for the recovery of
realistic inputs into two-layer neuronal network models by leveraging the ubiquitous
linearity of neuronal responses to sufficiently strong stimuli [117, 96, 81]. Using the
evoked downstream neuronal activity across the network for a small set of ramped
artificial inputs, we first construct an approximate linear input-output mapping in-
trinsic to the nonlinear network dynamics. With the resultant highly underdeter-
mined linear system reflecting a sensory bottleneck, we use the widespread sparsity of
natural stimuli in combination with compressive sensing (CS) theory to reconstruct
novel gray-scale natural scene inputs from the evoked downstream neuronal dynamics
and thereby gauge the accuracy of input encoding [52, 36]. When using sufficiently
unstructured measurements of sparse signals, CS theory facilitates successful recon-
structions with a dramatic reduction in sampling rate as compared to classical uniform
sampling [100], potentially enabling the preservation of stimulus information across
convergent network layers.

We show that this encoding and reconstruction framework is successful for a host
of models with varying levels of biological realism, including both current-based and
conductance-based integrate-and-fire (I&F') single neuron models [31, 101, 77, 37] and
networks with either pulse-coupling or alpha-function coupling between downstream
neurons [91, 69, 33, 43]. For alternative inputs, such as Poisson spike train inputs
with image-based drive strengths and color image inputs, we also produce successful
reconstructions based on the evoked network dynamics. When the uniformly random
feedforward connectivity is adapted to reflect the spatial localization common in visual
receptive fields, our framework yields improved stimulus reconstructions as expected
from the evolutionary selection of sensory system structure.

This work provides a possible mechanism for information preservation across the
common compressive and expansive pathways in the brain, which is robust to different
modeling choices and is fundamentally consistent with many key physiological obser-
vations. Regardless of whether this particular mechanism is utilized by the brain, we
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ENCODING OF STIMULI ACROSS CONVERGENT LAYERS 3

nevertheless provide a proof of concept for the retention of signals across neuronal
networks of widely varying sizes. It also lays a possible groundwork for important
extensions to large-scale network connectivity reconstructions and improved design of
sensory prosthetic devices.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
the two-layer network model with a downstream compressive layer that we will study
throughout this work, beginning in the context of current-based I&F dynamics with
pulse-coupling between downstream neurons. We then develop our data-driven net-
work input-output mapping approximation methodology in Sect. 3 and subsequent
CS input recovery framework in Sect. 4. To gauge the encoding properties of the
network, here we analyze sample stimulus reconstructions as well as study their ro-
bustness to limitations in the measurement data and noise. We show how this input
encoding mechanism generalizes to alternative stimulus types in Sect. 5 and extends
to more detailed neuronal network models in Sect. 6. Finally, we investigate the
impact of the feedforward connectivity structure in Sect. 7 and discuss implications
as well as natural extensions of this work in Sect. 8.

2. Two-Layer Network Model with Current-Based Integrate-And-Fire
Neuronal Dynamics. To investigate information encoding along compressive path-
ways, we use the framework of a two-layer feedforward network, consisting of a sensory
input layer that transmits the incoming stimulus and a downstream output layer that
encodes the stimulus through its nonlinear neuronal dynamics. We model compressive
encoding across sensory layers of disparate sizes by assuming that the input layer has
significantly more components than the output layer, typically differing by a factor of
ten throughout this work.

Our initial analysis will assume that the downstream layer is governed by the
dynamics of a pulse-coupled integrate-and-fire neuronal network driven by the input
layer signal [31, 91, 101, 32, 88]. The I&F model well reproduces experimentally
recorded subthreshold membrane potential dynamics and firing statistics, and it pos-
sesses the additional benefit of furnishing relatively computationally inexpensive sim-
ulations [1, 96, 116, 15]. For concreteness, we will utilize the current-based I&F model
in this section and we will later generalize our framework to the conductance-based
setting in Sect. 6.1.

The membrane potential dynamics of the i*" neuron in the downstream layer are
governed by

dvi ~ S i
(2.1) 7 = —(vi —VR)+;Fijpj +N7R;Rikzl:6(t_7—kl)7

ki

evolving from the resting voltage Vx until reaching firing threshold voltage Vp. At
this moment, the neuron fires (spikes), and its voltage is immediately reset to Vg. At
the time of the [*" spike of the k*" neuron, 73, instantaneous inputs (S/Ng)&(t — 7i;)
are injected into all post-connected (post-synaptic) neurons in the downstream layer,
where §(-) is the Dirac delta function, S is the recurrent connection strength, and Ng
is the number of recurrent connections. This pulse-coupling reflects the extremely
short time scale of each firing event, and in Sect. 6.2 we will consider impact of
finite-time interactions between the downstream neurons.

With respect to the network connectivity structure, we assume m and n are the
numbers of downstream I&F neurons and input layer components, respectively, with
n > m to reflect the compressive layer. The feed-forward connection (adjacency)
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matrix between the two network layers is F' = (Fj;); we say that the i*" neuron in the
downstream layer is post-connected to the ;' input component if Fi; #0. For con-
creteness, we assume here that the input components randomly and sparsely feed into
each downstream neuron, such that each possible feedforward connection is equally
probable and each realized connection in F' has equal strength, f. In Sect. 7, we will
examine the impact of alternative and more realistic feedforward connectivity struc-
ture. The constant vector p = (p1,...,p,) gives the stimulus component strengths
transmitted by the upstream layer neurons, which will be generated by the pixels in
an n-component gray-scale image. Since photoreceptors in the early visual system, for
example, are known to undergo graded potentials with responses indicative of local
light intensities, we initially model the feedforward input from the initial layer as fixed
in time [108]. Later, in Sect. 5, we will consider the cases of color image inputs and
spiking inputs from the upstream layer.

The downstream recurrent connectivity matrix is similarly given by R = (R;;).
We assume the probability of a connection is low for both connectivity matrices, gen-
erating sparse feed-forward and recurrent connections as often found in experiment
[87, 57, 62]. For generality, we assume the downstream neurons are connected, but
we can also assume that they are uncoupled without impacting our overall analysis
by setting R;; = 0 for all 4, j [15, 11]. While ganglion cells in the retina, for example,
are in some studies measured to be disconnected, there are other cases in which con-
nectivity is observed and yet other scenarios where gap junctions are found between
neurons [44, 111, 109]. This modeling framework is meant to capture the essence of
compressive sensory pathways and potential frameworks for successful data compres-
sion in neuronal dynamics rather than reflecting the specifics found in any one sensory
system in a particular organism.

Unless specified otherwise, we choose n = 10000 input layer neurons, m = 1000
downstream neurons, feedforward connection probability 1/m = 0.001, and the recur-
rent connection probability 0.05. We also select nondimensional parameters Vi = 0,
Vr =1, and t = 1 to correspond to a time-scale of 20ms, as typically produced in
nondimensionalization [90, 17, 28]. We generally simulate the time evolution of this
model over 0 < ¢ < 10, which is comparable to typical human reaction times of 200ms
2, 3].

3. Data-Driven Network Input-Output Map Fitting. The issues posed by
the encoding of input layer stimuli in the dynamics of the neurons in the downstream
layer are two-fold. First, since the pathway is compressive, the inverse problem of
recovering the large number of input components from measurements of a relatively
small number of downstream neurons is highly underdetermined. Second, the down-
stream neuronal dynamics are nonlinear and vary in time, making the direct applica-
tion of linear recovery techniques infeasible.

To address this second problem, previous work had considered the limit of a
large downstream network size with high neuronal firing rates and small recurrent
communication strength, with coarse-graining techniques analogous to kinetic theory
in nonequilibrium statistical mechanics yielding an approximate network input-output
mapping [110, 34, 18, 12, 11]. In the Appendix, we include a brief derivation of this
approximate theoretical input-output mapping for the current-based integrate-and-fire
neuronal network as well as a comparison with the data-driven mapping discussed
in detail throughout the remainder of this section. This theoretical input-output
relationship is static in time and linear, relating the downstream neuronal firing rate
vector u = (u1,...,un,) measured from simulation to the injected stimulus vector p
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where e, is an m-vector of ones.

However, analytically deriving such a theoretical mapping is not feasible for more
detailed neuronal network models and it is not clear how to obtain an input-output
mapping when the underlying equations governing the neuronal dynamics are un-
known. To deal with these issues, in this work we instead take a data-driven approach
in obtaining such an input-output relationship. We inject into the network a small

number of artificial random stimuli, p", ..., p("), ramping up the mean strength of
each by adjusting the feedforward connectivity scaling constant f. For each input, we
record the resultant firing rate vectors, u(), ..., u(", across the downstream neuronal
network.

In Fig. 1 (a), we consider the firing rate response for an individual representative
downstream neuron in our model across an ensemble of ramped external inputs. We
depict the firing rate as a function of the external input scaling strength, which is a
multiplicative factor scaling the generated input stimuli. We see that for sufficiently
strong stimulation strengths, the firing rate increases in a highly linear fashion. This is
also true for each of the other individual downstream neuronal firing rates as well as for
the network-averaged firing rate, though the detailed structure of each curve may vary
from neuron to neuron. The linearity of neuronal gain curves is well documented in
the context of more realistic neuronal models in many dynamical regimes, including
the Exponential Integrate-And-Fire and Hodgkin-Huxley models, as well as in the
presence of realistic ionic currents [30, 54, 15, 117]. Experimental recordings have
similarly exhibited a linear increase in response with scaled external inputs [117, 96,
81]. Overall, the shape of the gain curve here resembles that of Rectified Linear Units
(ReLUs), which are especially effective and common in machine learning applications
[82]. If additional biological features are included in the single neuron dynamics, such
as a refractory period following action potentials [76, 15], a more sigmoidal gain curve
may be obtained, which will still generally have an accurate linear approximation for
a broad range of stimulus strengths.

While the resultant firing rate response may vary from neuron to neuron, we can
approximate a linear input-output mapping for the i** downstream neuron by

(3.2) pi = oi(Fp)i + B,

where «; and 3; are constants produced from a least-squares linear fit of form (3.2) to
the firing rate responses of the i*" neuron, ugl), . ,ugr)7 across the ramped external
inputs, p(, ..., p"), in the linear regime of the gain curve. An example of this fitted
linear mapping for the previously considered sample neuron is given in Fig. 1 (a).
Across all individual neurons in the downstream layer, the collection of these linear

maps yields the data-driven network linear input-output relationship
(3.3) p=ao (Fp)+p,

where ® denotes entry-wise vector multiplication, « = (aq, . .., ), and

B = (B1,---,8m). We call « the slope coefficients and (8 the intercept coefficients,
corresponding to the parameters for the lines fitted to the respective gain curves of
the downstream neurons in the linear dynamical regime.

This manuscript is for review purposes only.



233
234
235
236
237
238

6 V.J. BARRANCA, Y. HU, Z. PORTERFIELD, S. ROTHSTEIN, AND A. XUAN

(@) s ;
- Simulation
—Fitted Mapping

Firing Rate
w IS

N
T

0 0.5 1 1.5 2

External Input Scaling Strength
T Slope
ntercgpt

e L T

© Ly e A e o 53D g W M e

Coefficient

0 200 400 600 800 1000
Neuron Number

—Neuron 1
—Neuron 2
4+ Neuron 3
—Neuron 4
i)
©3r R
o
)]
c
E2r i
(e
1 | -
0 0.5 1 1.5 2

External Input Scaling Strength

Fic. 1. (a) Gain curve for an individual representative downstream neuron in the two-layer
network with current-based neuronal dynamics prescribed by Eq. (2.1), depicting the individual
neuronal firing rate as a function of the external input scaling strength across several simulations
with ramped constant external inputs (blue). The input-output mapping for that individual neuron is
fitted in the linear regime of the gain curve (red). (b) Slope (blue) and intercept (red) coefficients in
the data-driven network input-output mapping given by Eq. (3.3) fitted for each downstream neuron
in the two-layer network considered in (a). (c) Fitted linear input-output mappings for several
additional sample neurons.

For this particular idealized two-layer network model, we may validate the data-
driven mapping by direct comparison with the known theoretical input-output rela-
tionship in Eq. (3.1). The slope and intercept coefficients fitted across the down-
stream neuronal network are plotted in Fig. 1 (b). Comparing the results obtained
from Eq. (3.3) to the theoretical input-output map derived via coarse-graining given
by Eq. (3.1), we see close agreement since the « components are clustered around
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a m =1 and the 3 components are clustered around 3 ~ —3.

It is important to underline that the data-driven framework for deriving the net-
work input-output map (3.3) does not require knowledge of the governing model
dynamical system given by Eq. (2.1). In the particular gain curve considered in Fig.
1, each random vector in the input ensemble is initially generated with mean 2, and
to construct different points in the gain curve, each input vector is then multiplied by
a distinct external input scaling strength in [0, 2], with 0.2 spacing between scaling
strengths. The activity of the downstream neurons in response to each given input
vector is recorded over 0 < ¢ < 10 to compute the neuronal firing rates used in fitting
each individual neuronal input-output mapping. Although there are some minor dis-
crepancies, the linear regime in the gain curve is about the same for all neurons, and
using only the random input vectors with mean strength of at least 1 in the fitting
process will generally produce an effective network mapping.

As discussed in more detail in the next section, this methodology succeeds with
only a small number of ramped input vectors, i.e., 2 or 3 in practice, and for a broad
range of external input strengths, so long as these inputs are sufficiently strong such
that the firing rate gain is approximately linear. There is generally little variability in
the fitted coefficients with the choice of random input vectors utilized. This is to be
expected because for a given downstream neuron, the mapping coefficients obtained
from different stimulus choices will typically vary no more than the coefficients differ
from neuron to neuron across the network as displayed in Fig. 1 (b), since the random
differences in the feed-forward connectivity matrix rows mediate random variations in
net external input across the downstream neurons. The fitted input-output mappings
for several additional downstream neurons are plotted in Fig. 1 (c) for comparison,
demonstrating relatively little variability across the network.

We note that it is also possible to fit a linear input-output map that uses data
regarding the time-averaged voltages across the downstream layer, oV, ..., ("), cor-
responding to the respective ramped inputs for models or dynamical regimes in which
this data produces a more robust linear mapping of form = a ® (Fp) + 8+ v © 7,
with the additional fitted parameter vector 7 [20]. For network dynamics governed
by Eq. (2.1), however, we have verified that including the voltage term does not alter
the encoding capability of the mapping.

4. Stimulus Encoding Across Compressive Layers and Compressive
Sensing Reconstructions. In characterizing a potential mechanism through which
stimulus information may be successfully encoded in downstream neuronal network
dynamics across compressive pathways, we seek to show that it is possible to recon-
struct stimulus information from our model network activity. In particular, we aim
to use the evoked firing rates of the downstream neurons, given by pu, to recover an
input vector with realistic stimulus structure, p, driving the I&F neuronal network
dynamics. The error in the resultant reconstruction of the input, p®“°", will then be
used to assess the accuracy of the stimulus encoding in the downstream layer activity.

With the approximate input-output mapping that is fitted in Eq. (3.3), we have
a linear relationship between p and p. However, to reconstruct p from g requires
solving the related linear system

1 1
(4.1) Fp=—0pu—-——048
@ @
for unknown vector p, where é = (a%’ ceey ai) This system is highly underde-

termined since the feedforward pathway is compressive and thus m < n. Such a
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problem generally has infinitely many solutions, yet our goal is to robustly recover
the particular solution corresponding to the true injected input vector p.

To address this issue, our reconstruction framework leverages the typical sparsity
of natural stimuli to utilize compressive sensing theory. Natural scenes and sounds
are both sparse in frequency-based domains and odors are sparse in the sense that
they are generally composed of a small number of molecule types [52, 114, 83, 123,
64]. For band-limited signals that are sparse in at least a single domain, CS theory
demonstrates that, in the sparse domain, the number of nonzero components, rather
than the full signal bandwidth [100], determines the minimum sampling rate needed
for an accurate reconstruction [35, 46]. In the case of natural scenes, p is typically
not sparse in the original spatial domain but p = Tp is indeed sparse after applying
a sparsifying transform T, such as the discrete cosine or Fourier transform [63, 47].
Upon recovering p, the sparsifying transform is then inverted to yield p in the original
domain.

Since the sparsest solution to Eq. (4.1) well reconciles a small number of samples,
a natural way to select p is to seek the solution with the smallest number of nonzero
components in the sparse domain. However, this approach is typically not possible to
implement in polynomial time, and therefore a more efficient method is desirable [29].
For sufficiently sparse p and a broad class of measurement matrices, CS theory shows

n
that a viable alternative is minimizing |pls, = Z |p;| subject to Eq. (4.1) [36]. This
i=1
{1 optimization problem can be efficiently solvéd in polynomial time using numerous
numerical methods [112, 47].

Measurement matrices suitable for CS are generally simple to generate, with a
large class of matrices with sufficient randomness, such as those with independent,
identically distributed random elements, are proven to satisfy sufficient conditions
for accurate recovery [7]. We note that our feedforward connectivity matrix F well
satisfies these conditions, and we show in Sect. 7 that even when spatial localization,
akin to spatial receptive field structure, is incorporated, CS reconstructions are still
highly accurate and in fact often improved.

To reconstruct a gray-scale image input with vectorization p = (p1,...,pn), we use
the two-dimensional discrete cosine transform (2D-DCT) to sparsify the image. We
note that for one-dimensional stimuli, such as sound waves, we need only consider a
one dimensional transform, and for signal representations of stimuli, such as odorants,
that are sparse in their sampled domain, no transforms are necessary.

The /n x y/n 1D-DCT matrix, D, is defined to have entries D;; = (D~!)] =
w() cos (%) , where w(1) = (1/n)"* and w(i) = (4/n)"/* for i # 1. The
2D-DCT of an image with vectorization p is (D ® D)p, where ® denotes the n X n
Kronecker product defined such that

DuD -+ Dy D
DeD=| : .
DymD -+ D sD

Given a vectorized input image, to recover the vectorization of its 2D-DCT, p, we
rewrite Eq. (4.1) with respect to the 2D-DCT as

- 1 1
—1~ _
(4.2) E Fi;(D ® D);; pj*a®#*a®ﬂ~

j=1
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Considering p is sparse, upon measuring the evoked neuronal firing rates, u, we de-
termine the solution to Eq. (4.2) that minimizes Z?=1 |p;| to obtain p [35, 46]. To
finally reconstruct the stimulus in the spatial domain, p, we invert the 2D-DCT and
the vectorization.

(@) (b) (c)

(d) (e)

F1G. 2. (a)-(c): Gray-scale input image stimuli composed of 100 x 100 pizels. (d)-(f): Corre-
sponding CS reconstructions of images in (a)-(c), respectively, using Eq. (4.2) and the data-driven
network input-output mapping. The relative reconstruction errors for (d)-(f) are 0.0624,0.2201, and
0.3092, respectively. (g) Reconstruction of the 250 X 250 pizel version of image (c) with relative re-
construction error 0.2588. FEach CS reconstruction in (d)-(g) uses a factor of 10 less downstream
I&F neurons than input pizels with current-based neuronal dynamics prescribed by Eq. (2.1).

Several representative gray-scale image reconstructions using this CS recovery
framework in conjunction with the data-driven network input-output mapping are
depicted in Fig. 2. To quantify the accuracy of each stimulus reconstruction, p"¢¢°",
we measure the relative reconstruction error, ||p — p™°°®||/||p||, using the Euclidean
norm, ||p|| = />_;p?. We view this error as a measure of information loss along
the compressive layer, though the resultant reconstruction may alternatively be inter-
preted as the stimulus information encoded by the subsequent expansive downstream
layer following compression.

For the simpler images in Fig. 2 (a)-(b), we see that the reconstruction is highly
accurate even when there are 10 times as many input pixels as downstream neurons,
akin to a compressive sensory pathway. For the more complicated cameraman image
in Fig. 2 (c), higher error is incurred, but the large-scale features are still well captured
and the reconstruction is recognizable. We use this more detailed natural scene as
our test stimulus in the subsequent analyses, focusing primarily on 100 x 100 pixel
inputs for computational tractability. The reconstructions obtained using the data-
driven input-output mapping, given by Eq. (3.3), are comparable to those analogously
obtained via the theoretical mapping, given by Eq. (3.1), but since such theoretical
mappings are not feasible to derive for the more detailed models discussed in the
following sections, the data-driven approach developed in this work is a necessity.

It is important to emphasize that for higher resolution images with more pixels
and generally more sparsity in the frequency domain, it is possible to reconstruct ad-
ditional, less dominant, image details using the same ratio of downstream to upstream
neurons. In Fig. 2 (g), we consider the cameraman image as in Fig. 2 (c) but instead
with 250 x 250 pixels while preserving the compression factor so that there is still a
factor of 10 less downstream neurons (i.e., here m = 6250 and n = 62500). In this
higher resolution case, closer to true sensory system layers with potentially millions
of neurons, we indeed observe an improved and quite accurate reconstruction.

While the previous reconstructions used the evoked downstream neuronal firing
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FiGc. 3. (a) Relative reconstruction error as a function of the amount of time over which
the network dynamics prescribed by Eq. (2.1) are recorded. (b) Relative reconstruction error as
a function of the mean external input strength into the downstream neuronal network. For each
data point, the error plotted uses data driven mapping (3.3) fitted with 11 different external inputs
with strengths centered around the mean strength and strength increments of 0.1. (¢) Relative
reconstruction error as a function of the number of ramped external inputs used to fit Eq. (3.3).
For each data point, the mean external input strength is 2.5 with strengths equally spaced in [1,4] and
centered around the mean. (d) Relative reconstruction error as a function of the standard deviation
of the mean 0 Gaussian noise multiplying the recorded downstream neuronal firing rates used in the
CS reconstruction. The mean relative reconstruction error is plotted over 5 realizations with error
bars giving the standard deviation in the error across noise realizations. For (a)-(d), each panel
considers the CS reconstruction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream
neurons than pizels and the linear system given by Eq. (4.2).

rates recorded over 0 < t < 10 each, the reconstruction error generally decreases
with observation time. In Fig. 3 (a), we depict the relative reconstruction error for
the image in Fig. 2 (c) as a function of the simulation runtime, demonstrating a
rapid initial decrease in error that later remains nearly constant for sufficiently long
simulations, i.e., after approximately t = 2 or 40ms. Hence, the downstream neuronal
dynamics in the compressive layer may reliably encode stimulus information over a
short and biologically realistic time scale.

With regard to fitting the network input-output mapping, the resultant map is
quite insensitive to changes in the number of external inputs used and their strengths.
In Fig. 3 (b), we plot the relative reconstruction error using different linear map fit-
tings, where each mapping is obtained using the same number of ramped input vectors
but different mean input vector strengths. Here we see that as long as the downstream
neuronal dynamics are in the linear regime, the accuracy of the resultant reconstruc-
tion is insignificantly impacted by perturbations in the mean input strength used for
obtaining the data-driven mapping. Varying the mean input vector strength by a
factor of four only results in about 0.02 fluctuations in reconstruction error. Likewise,
if we instead hold the mean input vector strength constant in the linear dynamical
regime but adjust the number of ramped inputs used, as in Fig. 3 (c), the recon-
struction error remains approximately constant so long as at least two input vectors
of distinct strengths are used. The ability to successfully reconstruct detailed stimuli
using data-driven mappings constructed from a small number of artificial inputs over
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a broad range of input strengths underlines both the efficiency and robustness of this
methodology.

Reflecting the potential noise in the response of downstream neurons to stimuli, for
example due to fluctuations in photon absorption, synaptic release, and neurotrans-
mitter availability [49, 76], we consider how information encoding in this framework is
impacted by noise in the downstream neuronal firing rates. To include multiplicative
noise, we multiply each downstream neuronal firing rate obtained from simulation by
a distinct independent, identically distributed Gaussian random variable with mean
0 and standard deviation o. We use mean 0 noise based on the assumption that the
firing rate fluctuations have no general upward or downward bias. In Figure 3 (d), we
plot the relative reconstruction error as a function of the standard deviation ¢ and ob-
serve an approximately linear increase in error with o. Even when the noise standard
deviation is 10% of the firing threshold, the reconstruction error is only increased by
about 15%. For each choice of o, the reconstruction accuracy is nearly constant across
multiple noise realizations, highlighting the strong stability of information encoding
in neuronal dynamics across compressive pathways.

5. Extensions to Alternative Families of Stimuli.

5.1. Poisson Spike Train Inputs with Image-Based Drive Strengths. To
consider alternative forms of compressive pathways, we first adapt our framework to
two-layer networks in which feedforward signals are communicated via spike trains
rather than graded potentials. In this case, the constant input n-vector is replaced
by n Poisson spike trains, reflecting the notion that the time distribution of a large
number of spikes received by any given neuron across a large neuronal network is often
well approximated by event times generated via a Poisson process [119, 6]. The total
mean strengths of the Poisson spike train inputs received by the downstream neurons
are determined by the respective components of the constant vector originally injected,
namely Fp. In particular, the instantaneous membrane potential jump induced by
each feedforward spike from the initial layer is assumed to be held fixed at « for each
downstream neuron and the corresponding rate for the Poisson input is (Fp);/v for
the i downstream neuron; this neuron is thus driven by a Poisson spike train with
mean drive strength (F'p); and its dynamics are determined by Eq. (2.1) aside from
the feedforward input modification. Unless specified otherwise, we select the jump
strength to be v = 0.01.

As shown in Fig. 4 (a), the individual downstream neuronal firing rate responses
to Poisson spike train inputs with ramped mean drive strengths are highly linear for
sufficiently large drive strengths. In the limit of high incoming Poisson spike train
rates and low induced voltage jumps with fixed mean drive strength Fp across the
downstream neurons, the drive from the initial layer approaches the original constant
input vector [39]. Thus, we use the same methodology as described in Sect. 3 to fit
the data-driven input-output mapping across the downstream layer, except now we do
this via ramped artificial spike train inputs with their respective mean drive strengths
neighboring the slope coefficients in Eq. (3.3). The resultant coefficients in the data-
driven network input-output mapping are plotted in Fig. 4 (b), demonstrating nearly
the same structure and mean values as in the previous case of constant inputs from
the upstream layer. The coefficients in the case of Poisson inputs from the initial
layer do display larger variance than in the constant stimulus vector case, but this
is to be expected based on randomness introduced by the external spike train input.
If instead of using the voltage jump v = 0.01, a smaller jump size with higher mean
input rate is used, such that the mean drive strength is fixed, the resultant drive
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Fic. 4. (a) Gain curve for an individual downstream neuron in the two-layer network with
current-based dynamics and Poisson spike train inputs from the initial layer, depicting the individual
neuronal firing rate as a function of the external input strength across several simulations with
ramped mean drive strengths. In each case, the voltage jump for the Poisson spike train is fized
at v = 0.01 and the Poisson input rates are scaled. The input-output mapping for that individual
neuron is fitted in the linear regime of the gain curve. (b) Slope and intercept coefficients in Eq. (3.3)
fitted for each meuron in (a). (c) Relative reconstruction error dependence on the mean external
spike train input rate. The external drive strength for the i*® downstream neuron is fized at (Fp);
fori=1,...,m in each case. (d) Relative reconstruction error dependence on the time over which
the dynamics described in (a) are recorded. In (c)-(d), the error is plotted over 5 realizations of the
external input with error bars giving the standard deviation across realizations. CS reconstructions
are obtained using the linear system given by Eq. (4.2) and Fig. 2 (c) as input.
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is statistically closer to the original constant input vector considered previously and
tighter clustering of the coefficients is achieved.

As long as the rates of the Poisson spike train inputs are sufficiently high, such that
each downstream neuron receives a relatively large number of upstream spikes over
the observation time, the CS reconstructions obtained using the data-driven mapping
display accuracy and stability properties analogous to those discussed for constant
inputs. We illustrate this in Fig. 4 (c), where we hold the mean drive strength of the
Poisson spike train inputs across the network constant while varying their mean rate
and reconstructing the corresponding input stimulus given by Fig. 2 (c) in each case.
For each choice of mean Poisson spike train rate, we fit the network input-output
mapping over 0 < ¢ < 10 and observe little variability in the reconstruction error with
accuracy comparable to the constant input case for sufficiently high mean input rates.
For lower mean input rates, we note that longer observation times are necessary to
well capture the stimulus structure and obtain an accurate reconstruction. As seen in
Fig. 4 (d) for a successfully fitted network input-output mapping, the reconstruction
error decreases initially with runtime before leveling off when enough downstream
neuronal firing events are recorded to well encode the detailed stimulus features.

5.2. Color Image Inputs. To investigate if stimuli with color structure, more
representative of natural scenes than gray-scale images, are well encoded along such
compressive sensory pathways, we extend our model to RGB (red-green-blue) color
image inputs. Here each stimulus in the input layer is represented by three constant
n-vectors, corresponding to red, green, and blue intensities, respectively, across all
n spatial locations of the pixels. We consider three networks of m downstream I&F
neurons, each with unique feedforward and recurrent connectivity matrices, forced by
the three respective color intensity vectors.

We fit the network input-output relationship using the downstream neuronal net-
work responses to ramped constant artificial color image inputs with dynamics deter-
mined by Eq. (2.1) across each of the three two-layer networks, producing three sets of
coefficients for data-driven mapping (3.3). Then, we use the three sets of downstream
neuronal firing rate measurements in response to a fixed color image stimulus to re-
construct the corresponding intensity vectors across each of the three color channels
via CS and Eq. (4.2). The three intensity vector reconstructions together yield the
full color image input reconstruction. Note that since different photoreceptor types
respond to different light wavelengths [70] and mammalian visual systems are known
to often contain parallel channels [5], we choose to use three distinct compressive
pathways to encode color images as opposed to a single pathway with fixed structure.

Several representative color image reconstructions are depicted in Fig. 5. Even
in the case of color stimuli with realistic natural scene structure, we observe accurate
reconstructions with errors computed across the three channels generally less than
those observed in the case of 100 x 100 pixel gray-scale image inputs. Similar to
the reconstructions of higher resolution gray-scale images, the larger number of total
pixels across the three color channels facilitates more overall sparsity in the case of
color images and thus improved CS reconstructions.

6. Reconstruction Framework for Alternative Network Models.

6.1. Two-Layer Network Model with Conductance-Based Integrate-
And-Fire Neuronal Dynamics. While our initial analysis considered the dynamics
of the downstream network when determined by current-based 1&F neuronal activ-
ity, we will now turn to more physiological neuronal models and later more realistic

This manuscript is for review purposes only.



478
479
480
481
482

483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

14 V.J. BARRANCA, Y. HU, Z. PORTERFIELD, S. ROTHSTEIN, AND A. XUAN

(a)

1’

(d)

Fic. 5. (a)-(c): RGB color input image stimuli composed of 100 x 100 pizels for each of
the three color intensity vectors (red, green, and blue). (d)-(f): Corresponding CS reconstructions
of images in (a)-(c), respectively, using Eq. (4.2) and the network input-output mapping fitted
for each color pathway. The relative reconstruction errors for (d)-(f) are 0.098,0.134, and 0.1615,
respectively. FEach reconstruction uses a factor of 10 less downstream current-based I6F neurons
than input pizels in each of the three two-layer networks corresponding to the three different color
pathways.

network coupling. As a first step closer to biological realism, we instead assume that
each downstream neuron is governed by conductance-based 1&F dynamics. In the
conductance-based model, synaptic input currents are now voltage-dependent and
produce a richer repertoire of more biophysical dynamics [37, 79]. In particular, the
membrane potential of the i*" downstream neuron now obeys

d’l}i - S U
(6.1) 5 = (i = Vi) - ;Fijpj Ny ;Rik lea(t — 1) | (i — Vg),

ki

where Vg = 14/3 is the excitatory reversal potential [77] and the remaining terms as
well as the network structure are identical to the original two-layer model in Sect. 2.

We now apply our data-driven reconstruction approach to this alternative two-
layer network model. First, we fit the input-output mapping (3.3) and then recon-
struct constant gray-scale image inputs as outlined in Sect. 4. In Fig. 6 (a), we plot
the firing rate of a single downstream neuron in response to ramped artificial con-
stant inputs, similarly demonstrating linear gain for sufficiently strong input scaling
strengths, and the resultant network input-output mapping is fit in the broad linear
dynamical regime.

In Fig. 6 (b), we depict the corresponding slope and intercept coefficients in
mapping (3.3) across the downstream layer. We observe coefficients distinct from
those obtained previously, especially in the case of the slopes. Comparing Fig. 1 (b)
and Fig. 6 (b), the two linear maps are fairly different, as the slopes and intercepts for
the current-based model are clustered near 1 and —0.5, respectively, while those for
the conductance-based model are near 4.2 and —0.8. This is to be expected because
the analytically derived network input-output mapping in Eq. (3.1) does not apply to
neurons with conductance-based dynamics governed by Eq. (6.1). Nevertheless, using
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F1G. 6. (a) Gain curve for an individual downstream neuron in the two-layer network with
conductance-based neuronal dynamics prescribed by Eq. (6.1), depicting the individual neuronal
firing rate as a function of the external input scaling strength across several simulations with ramped
constant external inputs. The input-output mapping for that individual neuron is fitted in the linear
regime of the gain curve. (b) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream
neuron in the two-layer network considered in (a). (c) Relative reconstruction error as a function of
the amount of time over which the network dynamics prescribed by Eq. (6.1) are recorded. Panel (c)
considers the CS reconstruction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream
neurons than pizels and the linear system given by Eq. (4.2).

CS and the data-driven mapping, we recover input stimuli with accuracy comparable
to the reconstructions obtained using the current-based neuronal network model. As
shown in Fig. 6 (c), compressive encoding is indeed successful over relatively short
time scales when the downstream neurons have conductance-based I&F dynamics.

6.2. Two-Layer Network Model with Conductance-Based Integrate-
And-Fire Neuronal Dynamics and Alpha-Function Coupling. Beyond more
detailed single neuron dynamics, we investigate the robustness of our compressive en-
coding framework in the presence of more realistic recurrent neuronal communications
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in the downstream layer. Reflecting the brief but finite time course of post-synaptic
conductance changes induced by received action potentials, we replace the instanta-
neous Dirac delta function coupling between downstream neurons with a more phys-
iological a-function time course for the neuronal interactions [101]. In this case, 6(¢)
is replaced by

(62) 9(t) = 5 exp (~1/o) H (1),

where H(t) is the Heaviside function, such that H(t) = 1 for ¢ > 0 and H(t) = 0
otherwise, and the finite rise and decay time scales are both controlled by o = 1/20
(i.e., Ims) [89, 76]. Aside from this change in coupling, we assume the individual
downstream neuronal dynamics are conductance-based as in Eq. (6.1).

It is important to emphasize that in the case of this more realistic two-layer model
network, analytically deriving an input-output mapping is intractable and thus our
data-driven framework provides a more feasible alternative. We observe in Fig. 7
(a) that the individual downstream neuronal firing rate response to sufficiently strong
ramped constant external inputs is still linear; thus we apply our methodology to
fit a data-driven network input-output mapping prescribed by Eq. (3.3) and obtain
the corresponding coefficients plotted in Fig. 7 (b) across the downstream neuronal
network. Though the data-driven mapping obtained is distinct from those gleaned
for the prior models considered, we achieve similarly accurate input reconstructions
for sufficiently long observation times, as displayed in Fig. 7 (c), highlighting the
robustness of compressive encoding across sensory pathways with realistic neuronal
dynamics. We expect that applying this reconstruction framework for alternative
coupling models or different rise and decay time scales will produce comparable results
once an appropriate data-driven network input-output mapping is obtained. For these
alternative network models, it is also important to note that we are able to well fit
the data-driven mapping with a very small number of ramped external inputs over a
broad range of mean external input strengths as well as in the presence of noise, just
as described for the current-based two-layer network model in Sect. 4.

7. Spatially Localized Random Feedforward Connectivity. In contrast
with our previous investigations of encoding across compressive layers in light of in-
creasing biological realism, which focused on the dynamics of individual downstream
neurons, their communications, and their external input structure, we conclude by
shifting our analysis to the impact of the feedforward connectivity organization.
Receptive field structure in feedforward connectivity is shared throughout much of
the visual, auditory, somatosensory, and olfactory systems in the sense that down-
stream neurons are most stimulated by a range of stimuli with similar characteristics
[60, 121, 118, 92, 75]. Across sensory system layers, one key consequence of receptive
fields is spatial localization in stimulus sampling. In the retina, for example, gan-
glion cells often exhibit center-surround receptive fields, such that the output of local
clusters of photoreceptors is sampled by downstream ganglion cells, exciting ganglion
cell activity in on-center locations and inhibiting activity in off-surround locations
[120, 66].

To incorporate similar spatial structure into the two-layer network feedforward
connectivity, each pixel in the n-component sampled image p is assigned a unique
(z,y) location with integer coordinates on a [1, y/n]x[1, y/n] Cartesian grid reflecting
all possible pixel locations. Each row of the feedforward connectivity matrix, F, is
associated with a distinct random location (x;,y;) on this Cartesian grid, around
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Fic. 7. (a) Gain curve for an individual downstream neuron in the two-layer network with
conductance-based neuronal dynamics prescribed by Eq. (6.1) except with a-function coupling be-
tween downstream meurons given by Eq. (6.2), depicting the individual neuronal firing rate as a
function of the external input scaling strength across several simulations with ramped constant ex-
ternal inputs. The input-output mapping for that individual neuron is fitted in the linear regime of
the gain curve. (b) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream neuron
in the two-layer network considered in (a). (c) Relative reconstruction error as a function of the
amount of time over which the network dynamics are recorded. Panel (c) considers the CS recon-
struction of the image in Fig. 2 (c) utilizing a factor of 10 less downstream neurons than pizels and
the linear system given by Eq. (4.2).

which the receptive field of the i*" downstream neuron is centered. Reflecting both
spatial localization and some degree of randomness in the connectivity, we assume
that the probability, P, that the i*" downstream neuron samples a pixel with spatial
coordinates (z;,y;) is given by

(7.1) P = pexp(—[(z; — =;)* + (yi — y;)*)/[207)),

where p is the sampling probability if (x;,y;) = (z;,y;), that is when the receptive
field center matches the location of a given pixel, and ¢ characterizes the distance
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563 over which the receptive field samples pixels. Each feedforward connection in a given
564 row i of F' can therefore be described by a Bernoulli random variable, determined
565 independently of all other entries of F', with success probability given by Eq. (7.1).
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Fic. 8. (a) Slope and intercept coefficients in Eq. (3.3) fitted for each downstream neuron
in the two-layer network with spatially localized random feedforward connectivity prescribed by Eq.
(7.1). (b) CS reconstruction of the 100 x 100 pizel image in Fig. 2 (¢) using the data-driven linear
input-output mapping with coefficients in (a). The sampling probability parameter is p = 0.9, the
sampling distance parameter is o = 2.5, and the relative reconstruction error is 0.1933. (c¢) Relative
reconstruction error dependence on the (p,o) parameter choice. For each parameter choice, Fig.
2 (c) is reconstructed using a factor of 10 less downstream meurons than pizels and current-based
neuronal dynamics prescribed by Eq. (2.1).
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566 Previous work has demonstrated that, relative to the uniformly random feedfor-
567 ward connectivity assumed earlier in this work, sampling analogous to this spatially
568 localized random feedforward connectivity more accurately captures the dominant low
569 and moderate frequency components composing an image when using a small number
570 of linear samples [19, 21]. By applying our data-driven reconstruction framework,
571 we examine if this more realistic feedforward connectivity structure is capable of well
2 transmitting stimulus information across the type of compressive pathway modeled
3 initially through the two-layer current-based I&F network discussed in Sect. 2. Even
4 though the feedforward connectivity is now distinct from the uniformly random struc-
5 ture discussed earlier, the slope and intercept coefficients of the resultant network
6 input-output mapping, plotted in Fig. 8 (a), have nearly the same mean values as
7 found previously for downstream neurons with current-based I&F dynamics. Compar-
& ing with Fig. 1 (b), relatively uniform clustering about the means is observed in each
9 case, though the variance of the coefficients in the spatially localized case is smaller.
80 This suggests that the network input-output mapping structure is largely determined
81 by the dynamics of the individual downstream neurons and the time course of their
communications, which were both shown to impact the fitted coefficients in Sect. 6,
whereas the feedforward connectivity structure plays more of a role in determining the
stimulus features that are well captured by the downstream network dynamics. The
optimal CS reconstruction obtained using spatially localized random feedforward con-
nectivity and the data-driven network input-output mapping for the input stimulus in
Fig. 2 (c) is displayed in Fig. 8 (b), exhibiting a reconstruction error approximately
half that obtained originally using uniformly random feedforward connectivity.

Since the success of the stimulus encoding in the downstream neuronal dynamics
may be intimately tied to the receptive field size and density, we vary feedforward
connectivity parameters, p and o, and plot the reconstruction error for each parameter
choice in Fig. 8 (c). The optimal o generates moderately-sized receptive fields and the
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corresponding optimal choice of p is sufficiently large such that each pixel is expected
to be sampled at least once. A local minimum in reconstruction error occurs near
o =~ 2.5, and even when p is as high as p = 0.9, which corresponds to the reconstruction
in Fig. 8 (b), the feedforward connectivity matrix is sparse with a connection density
of only approximately 0.001. Increasing p yet further for fixed ¢ has little impact
on reconstruction quality in this case, and 1 is the upper bound for p based on its
probabilistic interpretation.

We remark that for simultaneously large p and o, each receptive field collects
information from too much of the visual field, resulting in redundancy in the im-
age information obtained by each downstream neuron akin to the uniformly random
connectivity considered originally. In this case, a high correlation in the input data re-
ceived across the downstream network results in diminished reconstruction accuracy.
Likewise, for simultaneously small p and o, each receptive field may gather insuffi-
cient information across pixel locations and the input into the downstream neurons
may be too small to drive the firing events necessary to encode stimulus information,
generating extremely large reconstruction error. Overall, for moderately sized recep-
tive fields with relatively sparse connectivity, as often observed in vivo, improved CS
reconstructions are achieved. This gives further credence to the hypothesis that sen-
sory systems have evolved to exhibit structure optimized for efficient natural stimulus
encoding across compressive pathways.

8. Discussion and Conclusions. We have developed a potential mechanism
for the preservation of stimulus information across the ubiquitous compressive path-
ways in the brain, demonstrating its suitability in the context of numerous two-layer
network models with varying degrees of biological realism in both the dynamics of
individual neurons and their coupling. Our novel framework for reconstructing input
layer information from the nonlinear neuronal activity of a compressive downstream
layer was completely driven by simulation data and did not require knowledge of the
dynamical system governing the model activity. We approximated a network input-
output mapping based on the linear firing rate response of the downstream neurons to
a small number of ramped artificial inputs, which is a feature shared by all models in-
vestigated in this work for sufficiently strong external input strengths. In conjunction
with compressive sensing reconstruction techniques, we used this data-driven net-
work input-output relationship to reconstruct realistic input stimuli taking the form
of gray-scale natural scenes, color images, and image-driven Poisson spike trains. By
incorporating characteristics of spatial receptive fields into the feedforward connectiv-
ity, we also showed that the encoding properties of the downstream neuronal network
dynamics are in fact improved, as expected by the prevalence of receptive fields across
sensory systems.

This work provides a new proof of concept supporting the notion that such com-
pressive pathways, if designed intelligently, well preserve stimulus information with
great efficiency. By containing significantly less neurons in the first downstream layer,
stimuli may be rapidly processed in ways that improve encoding capability in the
subsequent expansive downstream layers with minimal energy expenditure required
[67, 115, 104, 98, 13, 23, 48]. Such processing in the compressive layer may help
to reduce redundancy and enhance the function of sensory pathways in performing
commonly encountered tasks, such as classification [71, 41].

While our two-layer model was meant to capture the primary shared features
of compressive pathways and their mechanisms for stimulus encoding, it would be
informative to extend our analysis to models with more detailed physiological struc-
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ture corresponding to a specific early sensory system pathway. Such an investigation
would benefit from incorporating yet more detailed neuronal activity. We emphasize
that even in these more realistic model settings, the linear gain in neuronal response
leveraged in our analysis is commonly observed [30, 54, 15, 117], and thus we expect
our framework to be naturally extended to such models where analytical techniques,
such as coarse-graining, become intractable. Even for highly nonlinear single neuron
models, such as the Hodgkin-Huxley model, previous work has successfully produced
approximately linear gain curves in the presence of various additional realistic ion
channels with dynamics over a range of time scales [74, 25], and the presence of nega-
tive feedback in the form of biophysical adaptation currents is known to linearize gain
curves that are nonlinear when unadapted [51].

Though our analysis focused on the activity of a downstream layer of exci-
tatory neurons that were largely mean-driven, networks containing additional in-
hibitory neurons in alternative dynamical regimes, such as the balanced operating
state [14, 116, 113], also demonstrate a highly sensitive and linear increase in neu-
ronal activity with external input strength. In general, the neuronal gain curve has
been shown to adapt to different stimulus conditions, such as light level in the con-
text of the visual system [27], and potential improvements in stimulus encoding along
compressive pathways leveraging this adaptation would mark an interesting area of
future investigation. Since our methodology specifically considers dynamical regimes
exhibiting linear firing rate gain, it is worth noting that the single neuron models we
had analyzed and neurons in experiment nonetheless demonstrate nonlinear voltage
dynamics, which are important in their own right and have been shown to enhance
feature selectivity [58] as well as decorrelate neuronal responses to stimuli [95, 73].

By more closely mimicking the structure of compressive feedforward pathways, yet
further improvements in encoding may be possible using our reconstruction method-
ology. The size of receptive fields varies widely within a sensory pathway and depend-
ing on the receptive field size, details of various scales are measured [99, 45], akin
to adjusting the o parameter in our model of feedforward connectivity with spatially
localized structure. By incorporating a diversity of receptive field sizes, we hypoth-
esize that lower amplitude frequency component contributions may be successfully
captured with the same number of downstream neurons. Including center-surround
antagonism in the feedforward connectivity, which could be modeled using a differ-
ence of Gaussians [122, 50], may facilitate the encoding of finer edge information in
the downstream neuronal dynamics. Reflecting the architecture of the primary visual
cortex by including simple cells in further downstream layers [65, 93], modeled via
Gabor functions [42, 85, 72], could also result in orientation selectivity. It would be
natural to investigate if additional receptive field types as well as multiple compres-
sive and expansive layers would further improve the encoding of higher order stimulus
features. Including these physiological details in the engineering of prosthetic sensory
devices and adapting our reconstruction framework to send realistic signals across
artificial compressive pathways presents a potential approach to better mitigating
sensory impairments [78, 24].

Since in vivo neuronal recordings have been shown to exhibit a linear increase in
response with scaled external inputs in certain dynamical regimes [117, 96, 81, 61],
our developed framework is likely generalizable to experimental settings seeking to
approximate neuronal input-output mappings by making use of intracellular and mul-
tielectrode array recordings in response to ramped optogenetic forcing [97, 94]. Once
the network input-output relationship is obtained across a pathway of interest, similar
CS techniques may be leveraged in order to recover sparse and large-scale neuronal
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network connectivity [20, 106, 125, 12]. Since directly measuring structural neuronal
connectivity is infeasible for large networks due to, for example, limitations on the
spatial resolution of measurement technology [107, 59, 53], such efficient connectivity
reconstructions based on recordings of neuronal dynamics are especially valuable in
characterizing the structure-function relationship of networks in the brain.

Appendix A. Derivation of the Theoretical Input-Output Mapping for
the Current-Based Integrate-And-Fire Neuronal Network.

In deriving the theoretical input-output mapping given by Eq. (3.1), we leverage
a coarse-graining approach that applies probabilistic arguments to ultimately obtain
a static, linear system relating the network input, stimulus vector p, to the network
output, namely the vector of individual downstream neuronal firing rates pu. We
focus our analysis in this Appendix on the two-layer current-based integrate-and-fire
neuronal network given by Eq. (2.1) because it is analytically tractable, and since
this argument does not well extend to more detailed modeling frameworks, we instead
resort to our newly developed data-driven approach in the remainder of this work.

We start by analyzing a statistical ensemble of almost identical networks that
differ only in their initial membrane potentials, v;(t = 0), and their resultant input
currents, for i = 1,...,m. For each realization of the network, the i*" downstream
neuron is hence driven by a new independent spike train transmitted by its pre-
connected neighbors as well as the external input current, Z?zl Fijp;. For each
realization of the network in the ensemble, the feed-forward and recurrent connectivity
matrices, F' and R, respectively, remain fixed.

To more tractably characterize the total drive into each downstream neuron, we
assume the network exhibits a large number of firing events, of which each only evokes
a relatively small voltage jump to post-connected neurons as typical in vivo. This
implies high spike frequency, u; > 0, and small spike magnitude, S/Ng =~ 0. The
total recurrent network input into each downstream neuron, say the i*", is

S m
— Rk ot — 1),
OSSN
ki
and therefore may be approximated by a Poisson spike train [39]. Statistically, the

effect of the rapid recurrent network input approaches the mean drive from pre-
connected neurons,

S m
Al — ; .
(A1) Nr ; R

ki

Replacing the rightmost term of Eq. (2.1) by Eq. (A.1), we obtain the voltage at
time ¢ for the i*" downstream neuron

Ul(t) :Ui(to)ef(t*to) 4 (1 _ 6*(t7t0))

(A.2) x| Va+Y_ Fyp; + N > Rikp
=t o
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Letting v;(tg) = Vg, the resting voltage, implies a firing event is expected to occur
when v;(to + 1/u;) = Vr , where p; is the firing rate of the i** downstream neuron.
To obtain a static, nonlinear input-output mapping, we divide by 1 —e~/#i_ yielding

(A'3) ZFUPJ _ _1//” N ZRszk

k;éz

To linearize this mapping, we leverage the earlier assumption that the downstream
network is in a high-firing-rate dynamical regime. We Taylor expand with respect to
the small parameter 1/(u;) and up to the leading order O(1/(u;)?), we obtain

Vi =V,
(A4) ZF”pj wi(Ve = Vi) + % - Z Rkt
=
Rewriting Eq. (A.4) across the downstream network, for ¢ = 1,...,m, yields the

static, linear input-output mapping equivalent to Eq. (3.1),

(A.5) Fp= (u + %’") (V= Vgr) — iRm

where e, denotes an m-vector of ones. To more closely compare with the data-driven
mapping given by Eq. (3.3), we isolate u above and obtain

S Fp €m
A6 |—-———R|py=—""7<— —.
(4.6) ( Ni (Ve — Va) ) R — v 2
Expanding in the form of a Neumann series yields

S Fp em
AT ~ I+R+...><—>.
(A7) g ( Ng (Vi — Vg) (Vr —Vg) 2

To leading order, we observe that Eq. (A.7) takes a form analogous to the data-driven
mapping, where comparing the mappings shows that across the downstream network
the fitted coefficients in this case are o = (‘/Tl‘/l?) and f ~ —%. We also see that the
correction term in Eq. (A.7) implies that p is generally modulated by the number
of incoming recurrent connections. This is a primary motivation for the inclusion of
the Np term that normalizes the recurrent connectivity matrix by the total number
of recurrent connections in the two-layer network model framework, which keeps the
total drive across the downstream network approximately constant with changes in
the connection density of R.
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