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ABSTRACT

While the theory of compressive sensing (CS) in modern signal processing typically indicates that uni-
formly random sampling facilitates the efficient recovery of sparse signals, such measurements are infea-
sible in many engineering applications and are not well reflected by the constraints of natural systems,
including neuronal networks in the brain. Uniformly random sampling also does not leverage the under-
lying structure of many classes of signals, and may therefore be suboptimal in these cases. We address
these issues by formulating a novel neural network framework for learning improved CS sampling based
on the intrinsic structure present in classes of training signals. Beyond sparsity in an appropriate domain,
this approach does not assume knowledge of any specific signal statistics and is purely data-driven. The
learning methodology is biologically realistic in that it utilizes (1) asymmetric feedback and feedforward
connections in the neural network and (2) only information from adjacent layers in training the CS mea-
surement matrix. Observing a broad spectrum of learned sampling paradigms that improve CS signal
reconstructions relative to uniformly random sampling, our learned sampling is widely applicable across
logistical constraints. Motivated by the receptive field structure of sensory systems, we specifically ana-
lyze natural scene inputs and demonstrate improved CS reconstruction as a result of training across sev-
eral choices of penalization schemes on the sampling weights. Considering this learning is effective even
under sparse and spatially localized constraints, as commonly observed in the brain, we hypothesize that
neuronal connectivity may have manifested with the aim of providing a compressive encoding of data by

leveraging its sparse structure, thereby achieving efficient signal transmission.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The ubiquity of compressive sensing (CS) in modern signal pro-
cessing theory marks a significant shift in the notion of efficient
sampling, with potentially important implications in understand-
ing information encoding in the brain. While signal acquisition
prior to CS theory had largely utilized uniform sampling with rate
determined by the Shannon-Nyquist theorem [1], compressive
sensing instead facilitated the successful reconstruction of signals
using far fewer non-uniform samples provided the signals were
sparse in an appropriate domain [2,3]. Leveraging the widespread
sparsity of technological and biological data, CS has furnished
numerous interdisciplinary scientific advances, taking root in
applications such as tomography, medical imaging, radar, micro-
scopy, neuroscience, and genetics [4-10].

The current mathematical framework for the CS reconstruction
of sparse data is primarily made rigorous when sampling is uni-
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formly random, typically determined by Gaussian or Bernoulli dis-
tributions [11-13]. However, in various practical applications,
completely random sampling is potentially infeasible or subopti-
mal. In many cases, sensors may be highly limited in number or
expensive [14]| and their completely random arrangement may
not satisfy logistical constraints, which, for example, may be lim-
ited by the size of gaps between sensors [15-17]. Uniformly ran-
dom sampling also does not take into account the structural
characteristics often known for classes of signals in applications
[18,19], and, particularly when the number of available measure-
ments is significantly limited, the question of how to improve CS
data acquisition in these common cases still remains an active area
of investigation. For this reason, various structured sampling and
recovery methods amenable to CS theory have been proposed for
specific classes of signals with known structural features [20-22].

Considering that the unifying characteristics of data are often
unknown in many applications and since an optimal CS sampling
may be unclear even with partial knowledge of signal structure,
several application-driven methodologies have recently been pro-
posed to develop CS sampling protocols using mutual coherence
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minimization to address these issues [23]. Other recent frame-
works instead use deep learning to entirely circumvent CS theory
while still making use of sparsity, inferring statistical dependencies
among signals and leveraging them to compute signal reconstruc-
tions upon sufficient training [24]; however, such approaches still
do not address the issue of improving compressive sensing sam-
pling in particular.

In this work, we formulate a novel neural network-based and
data-driven framework for learning improved compressive sensing
sampling paradigms in a biologically motivated fashion. Under the
observation that signals of interest commonly share certain unify-
ing properties in applications, we iteratively refine the uniformly
random sampling typical in CS theory by learning additional struc-
ture to incorporate into sampling based on CS reconstruction
errors driven by the class of signals composing the training data.
Since our method is largely motivated by the fact that learning in
the brain is based on similar predictive errors in perception [25-
27], we further show how realistic neuronal connectivity may
manifest using analogous principles.

The use of neural networks in signal processing has a long his-
tory [28-31], and deep learning has achieved profound success in
identifying as well as utilizing the structure common in large data
sets [32-34]. With its widespread applicability and generalizabil-
ity, the back-propagation method is the cornerstone of much of
modern supervised deep learning [35]. However, the biological
plausibility of most methods of deep learning, particularly back-
propagation, is still questionable and how the brain may imple-
ment neural-network type learning remains unknown. In conflict
with the requirements of conventional back-propagation, connec-
tivity in the brain is generally asymmetric and upstream neurons
do not necessarily possess knowledge of all downstream synapses
[36-39,16]. One recently developed approach for achieving a bio-
logically feasible mechanism for deep learning is feedback align-
ment, which effectively back-propagates error signals via fixed
randomly generated feedback weights distinct from the feedfor-
ward connectivity adapted via standard error-driven updates
[40,41]. Making a natural parallel with sensory processing in the
brain and addressing the issue of reconciling back-propagation
with the highly nonlinear and generally iterative CS reconstruction
algorithms, our methodology for learning improved CS sampling
utilizes a modified feedback alignment framework for adapting
measurements to input signal structure.

Neural network architecture in deep learning was largely
inspired by the hierarchical receptive field structure in the cat pri-
mary visual cortex [42]. Motivated by information processing in
mammalian visual systems, we focus on CS sampling in the context
of natural scenes, though our framework applies to data with
sparse structure in general. Amenable to CS theory, typical visual
stimuli are sparse in various frequency-based domains [43], and
odors as well as soundwaves are similarly known to possess sparse
representations [44,45]. Beyond sparsity, natural scenes generally
demonstrate strong spatial correlations among nearby pixels and
are composed of constituent modes with amplitudes that decay
with frequency [19]; we investigate if such additional structure
may be further leveraged in improving CS sampling. Analogous
to the underdetermined nature of CS signal processing, there are
many regions of the brain, such as the early visual system, in which
upstream neurons far outnumber downstream neurons [46-48].
Despite these networks of highly dissimilar sizes, information
must be preserved across such layers for successful sensation.
We hypothesize that evolution has optimized sensory systems to
efficiently encode sparse stimuli and explore the extent to which
neuronal networks can learn optimal sampling of stimuli based
on their sparsity and intrinsic properties.

Beyond sensory inputs, network connectivity among neurons in
the brain is generally sparse yet often demonstrates spatial local-
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ization and modularity [39,49-51]. The receptive field architecture,
prominent in the visual, somatosensory, auditory, and olfactory
systems, is localized in the sense that specific neurons are most
stimulated by a particular range of similar stimuli [52-58]. In the
early visual system, for example, this translates to a given down-
stream ganglion cell sampling spatially clustered image properties
prescribed by the activity of upstream photoreceptors, with the
response depending on where the light falls in the receptive field,
i.e., in the center or surround area, in addition to the light intensity
distribution. Taking into account this sparse and localized architec-
ture in the brain, we further explore how sampling, or receptive
field structure, may potentially evolve via CS learning with con-
straints on the density and locality of the connections as observed
in vivo.

The organization of this work is as follows. We first provide
background by reviewing the primary facets of compressive sens-
ing theory in Section 2.1. We then develop our methodology for
learning CS sampling in Section 2.2. Next, we investigate the per-
formance of several variants of our reconstruction framework on
natural scene data in Section 3.1, analyzing how and why the sam-
pling successfully adjusts upon learning in Section 3.2. In Sec-
tion 3.3, we visually investigate the learned sampling paradigms
in the spatial and frequency domains, exploring potential parallels
with sensory systems. Finally, in Section 4, we examine the ramifi-
cations of this work and possible avenues for future investigation.

2. Methods
2.1. Compressive sensing theory

In the context of compressive sensing theory, signal acquisition
is performed via linear measurements. For an unknown n-
component signal, x € R", each measurement of x is obtained by
taking a weighted sum of its elements. The set of m measurements
(samples) can be generated by a sequence of dot products between
the measurement weighting vectors A; and the signal x for
i=1,...,m. Aggregating all such measurement vectors as individ-
ual rows in a measurement matrix A, sampling may thus be
expressed compactly as

Ax =Db, (1)
where b € R™ contains the collected measurements. Reconstructing
unknown signal x is then equivalent to solving linear system Ax = b.
However, in the case of highly efficient sampling, when m < n, this
system is generally underdetermined and possess an infinite num-
ber of solutions. Depending on the structure of x and the design of
the measurement matrix A, CS theory shows an accurate recon-
struction is nevertheless possible in this case. A schematic of this
sampling and reconstruction paradigm is given by the top of
Fig. 1(a).

A key facet of compressive sensing is the observation that many
signals demonstrate sparse structure, namely x possesses a repre-
sentation which contains only a small number of non-zero compo-
nents in some domain. A signal with n components is defined as k-
sparse when there exists a representation that contains at most k
components whose magnitude exceeds a small threshold with
k< n. In the case of natural scenes, for example, frequency-
based transformations, such as a two-dimensional discrete Fourier,
cosine, and wavelet transforms, generally yield highly sparse rep-
resentations, as demonstrated in Fig. 1(b) for a representative nat-
ural scene [43,19].

For sparse signals, it is intuitive to conjecture that the number
of samples necessary for an accurate reconstruction should be
determined by the sparsity of the signal. CS theory therefore
provides a framework for the measurement and subsequent
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Fig. 1. (a) Schematic model of the learning process. A relatively large n-component
signal x is sampled by measurement matrix A, producing m-component measure-
ment vector b. A reduction factor of r is assumed in the sampling, such that m = n/r.
Next, in accordance with compressive sensing theory, the optimization problem
given by Eq. (2) is solved to produce reconstruction x.. (denoted by CS). The
reconstruction error is back-propagated (denoted by BP) via the learning rule in Eq.
(7) and fixed feedback connectivity matrix F, driving adjustments in the measure-
ment matrix A. This process in repeated across an ensemble of training inputs to
produce an improved CS measurement matrix. (b) Example natural scene and its
frequency domain representation via the two-dimensional discrete Fourier trans-
form. The natural logarithm of the absolute value is depicted, accentuating
differences between lower amplitude frequencies.

reconstruction of signals under the assumption of sparsity, select-
ing the sparsest reconstruction agreeing with the set of linear mea-
surements [11]. This is equivalent to minimizing the ¢, norm of x,
which gives the number of non-zero entries of the signal. Such a
minimization problem is computationally intractable in most
applications [13], generally requiring a search over all possible
subsets of nonzero elements in x consistent with Eq. (1). To address
this issue, CS theory further demonstrates that by carefully design-
ing the measurement matrix A, a computationally feasible surro-
gate ¢; minimization problem yields an identical solution with
high probability [13,2]. The resultant optimization problem is

(2)

argmin | x|, subject to Ax = b,
xeR

where | x|, = >"iL; |xi|. This ¢ minimization problem is solvable in
polynomial time using multiple fast algorithms, such as the orthog-
onal matching pursuit (OMP), the least angle regression (LARS), and
the least absolute shrinkage and selection operator (LASSO) meth-
ods [59,60], making the reconstruction now computationally tract-
able. Note that if the measured signal is not sparse in the sampled
domain, but is instead sparse under a transform, T~', then linear
system MX = b, where M = AT and % = T~'x, may be analogously
considered. Once X is determined, the solution in the non-sparse
domain, x = Tx, can be computed subsequently.

With the reconstruction methodology formulated, the remain-
ing key idea of CS theory addresses how to select a measurement
matrix such that solving the ¢; minimization problem (2) indeed
yields a viable x with as few measurements as possible. Intuitively,
the measurements should be as distinct as possible from the basis
used for the sparse domain, with each measurement collecting a
large number of nonzero basis element contributions, yielding
measurements that give distinct information about the compo-
nents of x in the sparse domain and thereby revealing a high
degree of structure in the measured signal. If instead, for example,
each measurement only generated data regarding a single compo-
nent of x in the sparse domain, then generally the full set of n mea-
surements would be necessary to capture all such components and
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thus recover x. In CS theory, the maximum correlation (coherence)
between the weighting vectors in the measurement matrix A and
the column vectors in transformation matrix T is often gauged by
the following maximum mutual coherence measure for the matrix
product M = AT,

_ | Mi - M; |
Honax M) = TS vt M ®
which generally becomes larger with increasing correlation and
facilitates rigorous estimates on the number of necessary measure-
ments based on signal sparsity.

Crucially, random weighting vectors in measurements will typ-
ically be uncorrelated with any fixed set of basis vectors. Conse-
quently, random measurement matrices are particularly viable
for CS recovery. For measurement matrices with independent iden-
tically distributed Gaussian or Bernoulli entries, it can be proven
that with high probability a successful CS reconstruction is achiev-
able given sufficiently many measurements, as determined by the
sparsity of x [11-13]. It is important to emphasize that such ran-
domness in measurements is sufficient but not necessary for suc-
cessful CS reconstructions, and that certain structured
measurement matrices in fact yield improved reconstructions,
depending on the class of signals analyzed [20-22,61]. In the sub-
sequent sections, we will demonstrate that it is possible to refine
the measurement matrix via learning, iteratively introducing
structure based on the inherent properties of the class of signals
to be reconstructed and thereby improving CS reconstruction
quality.

We remark that for the signal class of natural scenes considered
in detail in this work, the reconstruction step in solving Eq. (2) is
performed in the sparse domain via the vectorization of the two-
dimensional discrete cosine transform of the input image pixel

matrix, X = (X1,...,%,) = (D ® D)x. In this case, x is vectorized, ®
denotes the n x n Kronecker product

DD D, D
DoD= : . : ,

D mD D =D

and D is the v/n x v/n one-dimensional discrete cosine transform
matrix with entries

D; = (D’]>; = (i) cos (7(1' I 1)n)7

2vn

such that w(1) = (1/n)"* and w(i # 1) = (4/n)"/%.

Since the two-dimensional discrete cosine transform of the
stimulus, %, is sparse, recovering X is thereby reduced to Eq. (2)
where x = X and the effective left-hand side in the constraint is
A(D®D)™'. We solve this optimization problem using a greedy
algorithm known as the Orthogonal Matching Pursuit [59], though
a host of alternative algorithms may be similarly applied instead.
Once % is recovered, we invert the two-dimensional discrete cosine
transform and the vectorization to obtain the reconstructed signal

Xrec.

2.2. Neural network training methodology for optimal CS sampling

From a learning perspective, compressive sensing sampling and
signal reconstruction may be viewed as a two-step neural network
operation. In the first step, the signal x is sampled by measurement
matrix A to produce measurements b as in Eq. (1). Next, the ¢; opti-
mization problem given by Eq. (2) is solved to produce a recon-
struction X It is important to underline that only the first
operation is linear, since known CS reconstruction algorithms are
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generally iterative and nonlinear. The input layer is given by x, the
middle layer by b, and the output layer by Xy.

As a whole, this network may be described as an autoencoder,
where the input and output layers both possess n components
and the goal of the network operation is to minimize the distance
between the input and output signals. With this aim, the ubiqui-
tous back-propagation method, for example, distributes error sig-
nals across the network following a gradient descent approach,
typically requiring layer operations to be both known and differen-
tiable to send feedback to upstream layers [35]. For a three-layer
network, as in the CS context, the error may be gauged by

-l n
e= EZ(X% —x).
i=1

In general, back-propagation assumes that matrix A determines
the connectivity between the input and middle layers and that
matrix C determines the connectivity between the middle and out-
put layers. Supposing the inputs into the middle and output layers
are potentially integrated by nonlinear and differentiable activa-
tion functions, f and g, respectively, the total inputs into arbitrary
component i of the middle and output layers, respectively, are pre-
scribed by

(4)

b= f(h") f(if\yx,-) (5a)
=1
xeo —8(1?) =g (icybj) . (5b)
=

We remark that we will adapt these broad assumptions to the
context of CS subsequently, but we first briefly summarize the
main theory of back-propagation to provide context for our CS
learning framework. With the aim of minimizing the reconstruc-
tion error, gradient descent and the chain rule ultimately yield
the following adjustments to the two connectivity matrices

AGj =~ (r%_ = 7(% — Xee)g (B )by (6a)
0 . , y
My = = =730 = o )¢ (07 )G (1)) (6b)

where 7 is the learning rate controlling the magnitude of the con-
nectivity adjustments, AC; and AAjy, that occur on each iteration
of the learning algorithm.

In the compressive sensing neural network setting, particularly
when the number of components, n, in the input layer is far larger
than the number of components in the middle layer, m, a closed
form expression for the second, typically iterative, nonlinear oper-
ation is unknown and thus standard back-propagation is infeasible.
Back-propagation also makes the assumption of symmetric con-
nectivity between layers, i.e., reciprocal connections, and shared
knowledge of connectivity between all layers, which are both in
conflict with known physiological neuronal connectivity [36-
39,16].

To address the theoretical and biological challenges imposed by
learning CS sampling via back-propagation, we adapt a novel learn-
ing methodology known as feedback alignment. In its original con-
text, feedback alignment was developed with the aim of extending
the framework of back-propagation to improve the biological plau-
sibility of neural network learning [40]. In rewiring the first layer
connectivity matrix, A, as in Eq. (6b), feedback alignment replaces
the previously required knowledge of the second layer connectiv-
ity matrix, C, with a fixed randomly generated feedback matrix F.
In this case, the feedforward connections may adapt with learning
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while the feedback connections remain constant. Hence, the feed-
back alignment learning rule, which may be extended similarly to
networks with additional layers, simultaneously eliminates the
assumptions of symmetric connectivity between layers and shared
knowledge of the connectivity structure among layers. Intuitively,
the network learns how to make the static feedback useful, such
that the feedforward connectivity adjustments eventually facilitate
an alignment between the feedforward and feedback weights that
allows error signals to be effectively transmitted between layers.

In the specific case of our CS neural network architecture, while
the connectivity between the first two layers is indeed linear,
namely with activation function f(x) = x and feedforward connec-
tivity prescribed by measurement matrix A, the reconstruction
operation performed between the middle and output layers is non-
linear and not prescribed by a closed form expression. Hence, moti-
vated by feedback alignment, we fix the nature of the CS
reconstruction via solution to Eq. (2) and back-propagate error sig-
nals based on this operation via fixed feedback connectivity matrix
F in order to adjust the measurement matrix A. Hence, the CS sam-
pling learning rule is

AAj = —y (7)

n
= VZ(Xi - Xrec,->FjiXk~
i-1
Learning is carried out iteratively via Eq. (7) based on the CS
reconstruction error over an ensemble of signals in a common class
that composes the training set. A schematic model of the full recov-
ery process is given by the complete flow diagram in Fig. 1(a). Note
that while both feedforward connectivity matrices are trained in
conventional feedback alignment, the nonlinear, iterative second
feedforward layer operation remains fixed here and nonetheless
training only the first layer feedforward connectivity matrix is suf-
ficient for successful learning. It is important to emphasize that
this framework is relatively intuitive, biologically feasible, and
generalizable to diverse classes of signals with underlying sparse
structure because it is data-driven.

oe
OAjk

3. Results
3.1. Performance analysis

We utilize the neural network methodology for learning
enhanced CS sampling discussed in Section 2.2 via stochastic gra-
dient descent on a training set of 10000 inputs in the form of
50 x 50 pixel patches of natural scenes extracted from the Compu-
tational Visual Cognition Laboratory of MIT database [62]. A valida-
tion set of 2000 patches drawn from the same database distinct
from the training set is utilized to gauge the reconstruction perfor-
mance. To quantitatively assess the accuracy of each CS recon-
struction, we measure the relative reconstruction error defined by

8)

Error = ||X — Xrec||/[|X,

where the Euclidean norm ||x|| = /31, x? is utilized. For concrete-

ness, the signals are sampled with reduction factor r = 5, such that
n = 2500 and m = n/r = 500. Alternative reduction factors may be
utilized analogously, yielding potentially distinct learned measure-
ment matrices, though the details of the training process remain

identical. A learning rate of y = 1077 is shown to yield relatively fast
convergence to a local minimum in error. The measurement matrix
A is initialized with independent identically Gaussian distributed
elements, as typical in CS theory, with mean y = 0.02 and standard
deviation ¢ = 0.2, and the fixed feedback connectivity matrix F is
analogously generated with entries given by new realizations of
the same Gaussian distributed random variable.
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Fig. 2. Mean relative reconstruction error for the CS image reconstructions
averaged over the validation set of natural scene patches across epochs. The
training parameters are described in detail in Section 3.1. Each input is recon-
structed by solving Eq. (2) and the measurement matrix is adjusted according to
learning rule (7) for each training input. The error using no penalization is plotted in
solid blue, using localized penalization in dashed red, and using ¢; penalization in
dotted green.

In Fig. 2, we plot the mean CS relative reconstruction error over
the validation set across 15 epochs. Inputs are reconstructed by
solving Eq. (2) and the measurement matrix is adjusted according
to the learning rule in Eq. (7) for each training image. We observe
an initial rapid decrease in error across the first three epochs, sub-
sequently leveling off upon processing further training data. The CS
reconstruction error is reduced by over one third as a result of
learning, demonstrating marked improvements in the resultant
sampling scheme beyond the conventional uniformly random sam-
pling with which the network was initialized. Considering that the
error remains approximately constant upon sufficient training, we
see that there exists a relatively broad range of low error local min-
ima that corresponds to a widespread space of sampling schemes
over which improved compressive sensing is achievable. Hence,
as we will affirm in our later analysis in Section 3.2, once a certain
degree of structure is present in the sampling, based on the class of
training inputs considered and number of samples utilized, signal
information may be captured with high accuracy by leveraging
the distribution of dominant components in the sparse domain.

For comparison, we also investigate the result of learning under
several penalization schemes on the sampling structure with the
goal of utilizing a small number of weights in each measurement
and later to better reflect biological realism. The learning rule given
by Eq. (7) adapted to account for a general penalization term is

AAj =

0
=y BTjk (e + )R(Ajk))

n
Y (Z(Xi — Xree; ) Fiixe — 2R’ (Ajk)> ;
i-1
where cost function R(-) penalizes non-zero entries in measurement
matrix A and parameter A determines the penalization weight.

To incorporate sparsity into the sampling paradigm, we first uti-
lize an ¢; penalization on the connection weights in measurement
matrix A, such that R(Ay) =| Ai | and therefore R'(Aj;) = sign(Ay).
In Fig. 2, we observe CS reconstruction results using ¢; penalization
analogous to those in the absence of penalization, indicating that
sparsity may be enforced in the weighting of signal components
while still yielding improved CS reconstructions over a broad space
of sampling paradigms. We remark that since neuronal network
connectivity in the brain is generally sparse [39,49], the sampling
reflected under ¢; penalization is more physiological and consis-
tent with the notion that the brain may achieve efficient process-
ing of sparse stimuli via CS principles. As seen in our learning
framework, for sensory systems, such sparse feedforward connec-
tivity may yield a similarly accurate compressive encoding as
dense connectivity while additionally satisfying physical con-
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straints on energy expenditure and the speed of information trans-
fer [63,64].

A yet closer step towards biological realism is to utilize spatial
localization in sampling akin to receptive fields [52-58]. To incor-
porate spatial structure into the sampling, each pixel in the sam-
pled image is assigned a unique (x,y) location with integer
coordinates on a [1, v/n] x [1, v/n] Cartesian grid reflecting all
available pixel locations on n-component image x. Each row of
the measurement matrix A is associated with a distinct random
location (x;,y;) on this Cartesian grid and entry Ay is penalized
based on the normalized Euclidean distance, d(Ajk), from the row
location to location (xi,y,) of pixel k. We note that this distance
measure normalizes the raw Euclidean distance by the maximum
possible Euclidean distance between grid points to produce O(1)
quantities, and it is held constant throughout the learning process
for a given entry of A. Based on this distance measure, we now
impose the cost function R(Ax) = d(Ay)- | Ax | with derivative
R'(Ai) = d(Aj) - sign(Aj). Hence, sparsity is encouraged by the ¢
norm with increased penalization for more distant connections,
thereby yielding distance-dependent sparse sampling. Using the
localized penalization, we again observe a rapid initial decrease
in CS reconstruction error with learning and diminishing gains in
accuracy upon sufficient training. The accuracy achieved is compa-
rable to that of the other two methods, demonstrating a minor
improvement from the non-local ¢; penalization.

While post-processing steps, such as applying a rectified linear
function to the CS reconstructions, may improve results further by
about 20%, we focus on the effect of learned sampling in this work
rather than other means of improved reconstruction to limit con-
founding factors. Applying our framework to alternative signal
databases, such as MNIST or sinusoidal functions modeling sound
waves, produces similar results, but we investigate natural scenes
here for concreteness and to more closely draw parallels with the
visual system.

3.2. Sampling analysis

To elucidate the changes in sampling structure that manifest
with training for each learning method, we first analyze the spatial
distribution of the dominant connections in the measurement
matrix A. Eliminating the near-zero connections that are pruned
from learning, we limit our considerations to all connections that
are at least two standard deviations from the mean connection
strength across their respective rows. We note that similar results
are observed if instead connections only at least one standard devi-
ation from the row mean are included. Across the remaining dom-
inant connections, we generate for each row a point cloud of
Cartesian grid locations corresponding to the sampled pixels. On
a row-by-row basis, the centroid of the (x,y) point cloud of sam-
pled pixels is computed and the mean Euclidean distance from
the centroid is determined. Finally, taking the average of the mean
distance from the centroid across all rows yields an average dis-
tance measuring the spatial dispersion of the sampling for the full
measurement matrix.

Agreeing with the intuition for the connection penalization
schemes discussed in the previous section, we observe in Fig. 3 that
only the learning method with localized penalization demonstrates
any significant change in the average distance of measurements
upon training. Via localized penalization, we observe an initial
sharp decrease in distance with learning that saturates upon suffi-
cient training, showing the same qualitative structure as the CS
reconstruction error and minimizing distance when high recon-
struction accuracy is achieved. We conclude that by adding some
degree of spatial localization into the CS sampling, as demon-
strated by realistic neuronal networks, improved reconstructions
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Fig. 3. Mean sampling distance averaged across the rows of A, computed upon the
completion of each epoch using: (a) no penalization, (b) localized penalization, and
(c) ¢; penalization. The distance measure utilized is discussed in detail in
Section 3.2.

are indeed obtainable. Since nearly comparable accuracy is yielded
via training using the other penalization methods, we also note
that alternative types of sampling structure may yield improved
CS recovery, but likely the physical constraints of sensory systems
encourage the implementation of localized sampling and engi-
neered sampling devices may similarly be subject to such spatial
limitations [15-17].

With the aim of investigating the general structure introduced
in CS sampling with learning beyond distance-dependence, we
next analyze correlations between columns in the effective mea-
surement matrix M = AT. To quantify the mutual coherence
between the measurement matrix A and transformation matrix
T = (D ® D)~' while not over-weighting a single outlier as the net-

work learns, we utilize the following average mutual coherence
measure

1 | Mi - M; |
M) = T
Hoos™M) = 00—y 2 VTG

lg_i.jgn
i#j

which gives a more global analogue to the maximum mutual coher-
ence measure [,,,., discussed in Section 2.1, typically utilized in CS
theory because it lends itself to theoretical results [11-13].

We depict in Fig. 4, the average mutual coherence with training,
which initially increases and then levels off for each learning
method. This suggests that increasing the average mutual coher-
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Fig. 4. Average mutual coherence in sampling, computed upon the completion of
each epoch using: (a) no penalization, (b) localized penalization, and (c) ¢
penalization.

ence up to a sufficient level, based on the training input signal
structure, improves CS reconstruction quality. The average mutual
coherence reaches a clear plateau since further increases in coher-
ence may prove counterproductive to the demands of CS theory
and would instead cause the reconstruction error to increase.

It is important to remark that neural network learning in our CS
framework indeed coincides with the mechanisms observed in
explaining the success of feedback alignment. Given the feedback
connectivity matrix F remains fixed throughout learning whereas
the feedforward measurement matrix A is adjusted, we demon-
strate that the two align with learning as the network is trained
to make the feedback information useful.

To gauge the correlation between the feedforward and feedback
signals, we compute the angle between them with training, which
was shown to diminish with training in the original formulation of
feedback alignment [40]. Specifically, we use the angle measure

v-w

0(v,w) = cos™! (W)

for v = F(Xpec —x) and w = A(Xec — X).

Before training, the angle between the feedforward and feed-
back signals is near 7/2 radians, and thus the signals are unaligned.
However, as shown in Fig. 5, with each penalization method, this
angle precipitously decreases before ultimately saturating once
the signals are well aligned upon sufficient training. Thus, fixed
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Fig. 5. Angle between feedforward and feedback signals using: (a) no penalization,
(b) localized penalization, and (c) ¢; penalization.

random feedback connections, which are not reciprocal with the
feedforward connections as observed for physiological neuronal
networks [36-39,16], send instructive training signals for rewiring
the feedforward measurement matrix and thereby improve CS
reconstructions in a biologically plausible manner. We posit that
connectivity between layers of disparate sizes in physiological
neuronal networks may develop according to similar learning prin-
ciples in order to facilitate an efficient compressive coding of
information.

3.3. Sampling structure

For the signal class of natural scenes analyzed in this work, we
may visually inspect the sampling structure that arises from our
learning framework. For each penalization type, we observe that
the sampling shifts from the independent identically distributed
Gaussian entries conventional in CS theory with which the net-
work was initialized to a more structured though still relatively
incoherent sampling scheme.

In Fig. 6, the spatial domain representation of the sampling
across 400 representative rows of the measurement matrix yield-
ing minimal mean reconstruction error over the validation set is
depicted for each penalization method. Note that the spatial
domain representation for a given row of size n is computed by
reshaping the weighting vector into the form of a v/n x v/n image
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Fig. 6. Spatial domain representation of each row of A yielding minimal mean
validation error using (a) no penalization, (b) localized penalization, and (c) ¢,
penalization. Positive entries are scaled in white and negative entries are scaled in
black.

matrix with entries corresponding to the weight given to each
respective spatial location sampled.

Likewise, we similarly plot in Fig. 7 the frequency domain
representation of the sampling, which corresponds to the
two-dimensional discrete Fourier transform of the spatial domain
representation for each constituent row. Initially, the uniformly
random structure of the measurement matrix A weights all
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(a)

(b);

Bl

B

Fig. 7. Frequency domain representation of each row of A yielding minimal mean
validation error using (a) no penalization, (b) localized penalization, and (c) ¢,
penalization. Entries distant from the center correspond to higher frequency
components, and brighter (warmer) coloring indicates higher amplitude.

constituent frequency components in the sparse domain approxi-
mately equally for each row measurement. As a result of learning,
the dominant low frequency components composing natural sce-
nes are given more weighting.

Particularly when a large reduction factor is imposed, corre-
sponding to a relatively small number of measurements, higher
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CS reconstruction quality may be obtained from sampling that cap-
tures components carrying the most signal information even if
some lower amplitude component information is lost as a result.
While additional spatial structure clearly manifests for optimal
CS sampling, it is generally not smooth and demonstrates some
degree of randomness so as to maintain sufficient incoherence
with the sparse domain basis and thereby produce samples that
yield distinct information.

We remark that while sampling structure more heavily weight-
ing dominant components in the sparse domain is introduced from
learning even with no penalization or ¢; penalization, the localized
sampling scheme visually demonstrates the clearest clustering in
the spatial domain. In the sparse domain, this is indicated in the
localized penalization sampling by a particularly rapid decrease
in amplitude with increasing frequency.

We characterize the distribution of amplitudes in the sampled
frequency components for a given measurement matrix row, corre-
sponding to one set of weighted measurements, using the fre-
quency entropy

H= *ZPilngpn
i

where p, denotes the probability of observing the i frequency-
component amplitude, binned over the amplitudes corresponding
to all frequency components composing the sparse domain repre-
sentation [65]. An average frequency entropy over the set of all
measurement matrix rows, H, can then be used to quantify the
overall spread of frequency amplitudes corresponding to all con-
stituent weighted measurements. In Fig. 8, we plot the measure-
ment matrix average frequency entropy after each epoch for each
penalization type. We observe that while the average frequency
entropy ultimately saturates upon sufficient training regardless of
the penalization scheme, only in the case of localized penalization
does the average frequency entropy increase initially with learning.
For the alternative penalizations, the average frequency entropy
either decreases initially or remains approximately the same, and
thus localized sampling ultimately achieves the greatest frequency
entropy after training. Note that while uniformly random sampling,
as in the case of the untrained measurement matrices, generally
yields high H because of the unstructured diversity of sampled fre-
quencies, it lacks concentration of amplitudes about the lower fre-
quency components and therefore should be distinguished from the
frequency entropies obtained after training. Hence, the abrupt tran-
sition in amplitudes from the heavily-weighted low frequency com-
ponents to the lightly-weighted moderate frequency components
that manifests through training with localized penalization pro-
duces sampling with both structure and relatively large frequency
entropy.

5.5r P
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- et
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3.5~ |
0 5 10 15
Epoch

Fig. 8. Average frequency entropy of A after each epoch. The average frequency
entropy using no penalization is plotted in solid blue, using localized penalization in
dashed red, and using ¢; penalization in dotted green.
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The key differences in structural organization between the
trained measurement matrices using the ¢; and localized sam-
pling penalizations support the notion that beyond energetic con-
straints on the number of synapses, as enforced by the ¢; penalty,
evolutionary pressure towards spatial locality was a potentially
necessary ingredient in forming the largely distance-dependent
and modular neuronal connectivity observed in vivo. The local-
ized connections learned were often all of the same sign for a
given row of A, with some demonstrating a sharp transition
between excitatory and inhibitory weights in the spatial domain
as observed in center-surround or simple cell receptive fields.
We note that altering the penalization scheme and reduction fac-
tor may change the spatial structure of samples, therefore pro-
ducing different types as well as distributions of receptive
fields. However, the broad region of locally minimal CS recon-
struction error upon sufficient training depicted in Fig. 2 across
penalization schemes indicates that there are numerous means
of achieving a relatively accurate compressive encoding of signals,
and thus numerous specific system constraints are likely still
amenable to improved reconstructions by introducing some
degree of structure in sampling. This speaks to the robustness
of CS across applications as well as a possible explanation for
the variety of receptive field types found downstream in many
sensory systems whose constituent layers may be optimized for
the compressive encoding of specific signal features via particular
sparse representations [66-68].

4. Discussion

Formulating a neural network framework for the compressive
sensing sampling and reconstruction of sparse signals, we develop
a new data-driven methodology for learning more effective CS
measurement protocols. Our training method significantly
improves signal reconstruction quality across several connection
weight penalization schemes and classes of signals. The methodol-
ogy demonstrates both logistical pragmatism and biological plausi-
bility, utilizing asymmetric feedforward and feedback connectivity
as well as only requiring neuronal knowledge of local connectivity
information. Learning results in more structured sampling, driven
by the potentially unknown structural characteristics of the class
of signals analyzed in the sparse domain, while still maintaining
a sufficient degree of incoherence as typically suggested by con-
ventional CS theory. When utilizing spatially localized penalization
of measurements in particular, we demonstrate that learning
yields sparse and distance-dependent sampling weights, as com-
monly observed in the feedforward connectivity of physiological
neuronal networks, suggesting that the brain may learn to encode
information across neuronal layers of diverse sizes in agreement
with CS principles.

We conjecture that the numerous convergent brain pathways in
which the number of neurons encoding information is significantly
reduced downstream may serve to facilitate efficient processing in
low dimensional spaces while preserving information via compres-
sive coding so that it is available across subsequent expansive
pathways [46-48]. This is made possible by the ubiquity of sparse
representations in high dimensional spaces, which is likely lever-
aged in the brain through evolutionary selection. Note that while
solving the minimization problem given by Eq. (2) facilitates our
CS reconstruction of signals in silico, whether and how the brain
implements ¢; minimization is still an area of investigation. One
implementation argued to be potentially biologically feasible is a
locally competitive algorithm with thresholding, which takes the
form of a nonlinear system of ordinary differential equations mim-
icking more detailed computations across a neuronal network with
inhibitory interactions [69].
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Considering prior theoretical work demonstrates that the firing
rate dynamics in model neuronal networks can provide a success-
ful compressive encoding of sensory information [70,71], investi-
gating if it is possible for such systems to learn improved CS
sampling based on their nonlinear network dynamics, analogous
to the method in this work, marks an interesting area for future
analysis. Through the conduit of learning receptive field structure
in a biologically plausible way that is motivated by compressive
coding, it would be informative to study if differences in receptive
fields across species, such as the salt-and-pepper organization of
the rodent primary visual cortex and the pinwheel orientation col-
umns of many higher mammals, may manifest from learned sam-
pling based on distinctions in encountered stimuli and resultant
training data [72,73].

Though here we primarily investigated learned CS sampling of
natural scenes, with particularly well known structure [19], our
data-driven methodology may be analogously applied to alterna-
tive classes of sparse signals in engineering applications or non-
visual stimuli in the context of sensory system models. For exam-
ple, we have applied our framework to both sound data as well as
handwritten text data and obtained similar improvements in CS
reconstructions, but other reduction factors or training data may
yield alternative sampling characteristics furnishing new
application-specific insights. In contrast to modern deep learning,
which leverages many layers to help improve performance, we
focus on a three-layer network for interpretability. This allows us
to consider the natural case in which only a single measurement
matrix is utilized and trained, with adaptability to any nonlinear
or iterative optimization scheme that produces the final layer CS
reconstruction output. In engineered systems, one measurement
matrix is typically utilized for practical purposes and our work
gives insight into amenable measurement matrix structures
beyond those considered in classical CS theory. However, in the
realm on neuroscience, the primary visual cortex is composed of
many layers that are often optimized for processing different stim-
ulus features [74,75], and hence investigating information encod-
ing across multiple compressive-and-expansive pathways
provides a natural avenue for further biologically-motivated
studies.

Since using uniformly random samples is costly or infeasible
due to the spatial scale between sampling locations in most engi-
neered systems across the natural sciences [14-17], it is promising
that the space of measurement matrices over which learned CS
sampling improves reconstructions is demonstrated to be exten-
sive. This grants much needed flexibility in effective sampling
designs. Considering improved CS reconstructions are learned even
under highly limited, distance-dependent measurement con-
straints, it is likely possible to use spatially localized random clus-
ters of measurements, which are often more feasible to implement
in practice, and still yield particularly accurate CS reconstructions.
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