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Abstract— Erasure coding has been recognized as a powerful
method to mitigate delays due to slow or straggling nodes in
distributed systems. This work shows that erasure coding of data
objects can flexibly handle skews in the request rates. Coding can
help boost the service rate region, that is, increase the overall
volume of data access requests that the system can handle. This
paper aims to postulate the service rate region as an important
consideration in the design of erasure-coded distributed systems.
We highlight several open problems that can be grouped into two
broad threads: 1) characterizing the service rate region of a given
code and finding the optimal request allocation, and 2) designing
the underlying erasure code for a given service rate region.
As contributions along the first thread, we find the rate regions
of maximum-distance-separable, locally repairable, and simplex
codes. We show the effectiveness of hybrid codes that combine
replication and erasure coding in terms of code design. We also
discover fundamental connections between multi-set batch codes
and the problem of maximizing the service rate region.

Index Terms— Erasure coded storage, coded computing,
resource allocation, distributed systems, batch codes.

I. INTRODUCTION

THE emergence of flexible and affordable cloud storage
and computing has resulted in an exponential growth

in the amount of data stored and processed in cloud data
centers. This increase in data is accompanied by a similar
rapid increase in the volume of users accessing it, resulting in
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frequent contention for shared cloud resources. A simple way
to handle more requests in a fast and reliable fashion is to
replicate data at multiple nodes [2], [3]. However, replication
can be expensive in terms of storage, especially when the data
is updated frequently. Moreover, the popularity of different
data objects can vary drastically across objects and over time.
While edge caches can handle skews in popularity by selec-
tively increasing the number of replicas of the ‘hot’ or popular
objects [4]–[9], such quick adaptation may not be possible in
the data-center setting, especially for large data objects that
are used in data analytics or machine learning applications.
Besides, in caching, the backhaul link’s limited capacity is
considered the main bottleneck of the system, and the goal
is usually to minimize the backhaul traffic or maximize the
cache hit rate by prefetching the popular contents at the edge
nodes of limited storage capacity. However, caching does not
aim to handle scenarios such as live streaming where many
users want to get the same content simultaneously, given the
network’s limited service capacity (bandwidth).

In this work, we propose the use of erasure coding to
handle data access requests to distributed storage systems.
We consider coded distributed systems where k different data
objects (rather than k chunks of one object) are erasure
coded into n coded objects which are stored on n nodes.
We consider heterogeneous requests to access these objects
at rates λ1, λ2, …, λk, respectively. Each of the n nodes
can serve at most µ rate of requests. Thus, the total request
rate allocated to each node must not exceed µ. Under these
constraints, we aim to characterize the set of achievable vectors
(λ1, λ2, …, λk), which we refer to as the service rate region
of a coded distributed system. Since the nodes storing coded
objects can be used to partially serve requests for any of the
objects included in that coded combination, coded distributed
systems are more flexible and can have a different (possibly
more favorable) service rate region than an uncoded system
with the same number of nodes. We illustrate this through the
motivating example below.

A. Motivating Example

Consider an example shown in Figure 1, where two objects
a and b are redundantly stored on 4 nodes. Figure 1 (left)
shows 3 redundant storage schemes: replication, coding, and
replication and coding combined. Given that each node can
serve µ = 1 request per second, we want to maximize
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Fig. 1. (left) Replicated, coded, and hybrid systems with n = 4 nodes storing k = 2 files. (right) Service rate regions of the three systems when the service
capacity of each node is µ = 1. The regions have the same areas. Coding can handle the skews in request arrival rates λa and λb for the two stored objects.

λa and λb, the rate of requests for a and b that can be sup-
ported. Object a can be downloaded from the node storing a,
or from two nodes that store coded combinations of a and b.

Figure 1 (right) shows the service rate regions of the 3
storage systems. The replicated system can achieve the square
service rate region with 0 ≤ λa, λb ≤ 2; this is because there
are two copies of each object and each node can support
µ = 1 rate of requests. The coded system with two nodes
storing a+ b and a− b respectively instead of uncoded copies
of a and b achieves the blue colored shaded service rate
region. This system can handle skews in λa and λb better
than the replicated system when one of the two objects a and
b are more frequently accessed but both objects are unlikely
to be popular simultaneously. The service rate region of a
combined replication and coding system (shown in red) can
better support asymmetries in the demands λa and λb and is
the best choice when the request rate for a is expected to be
larger than that of b.

B. Related Previous Work

Erasure codes are often used in distributed storage systems
to improve reliability against disk failures [2]. A class of
codes, which are commonly used in distributed storage, are
systematic maximum-distance-separable (MDS) codes [10],
where an object is divided into k chunks (also called stripes)
that are then encoded into n chunks by adding n−k redundant
parity-check chunks, thus providing resilience to the failure of
up to n − k nodes. Until recently, erasure coding in storage
systems was mostly used for ‘cold’ or less frequently accessed
and less latency-sensitive data. This is because, erasure coded
systems require access to k nodes (each storing one of the
k chunks of an object) in order to download the object, and
slowdown of any one of these nodes can become a bottleneck
in serving data access requests. Thus, replication is generally
preferred over erasure coding for hot and latency-sensitive data
access. Recently, the idea of redundant data access requests,
that is, sending requests to all n nodes of an erasure-coded
system and waiting for any k nodes to respond, has been
shown to be effective in overcoming such tail latency due
to straggling nodes [11]–[15]. Similar redundancy ideas are
also used in the context of distributed computing [16]–[21].

However, most of these works on faster data access from coded
distributed systems focus on homogeneous reads, where all k
chunks of an object are accessed at the same time.

Heterogeneous data access has been previously considered
in the context of hot data download (see e.g., [22]–[25])
and load balancing (see e.g., [26]). In the hot data download
context, heterogeneity arises when one of the data objects is
highly popular. Works such as [22]–[25] analyze the expected
latency experienced by requests that are replicated across the
hot object’s recovery sets. Previous works on load balancing
heterogeneous requests to coded systems that arises when a
batch of simultaneous requests consists of different numbers
of requests for each of the k objects. Special coding schemes,
known as multi-set batch codes [26], have been proposed
to allow serving such requests with a balanced amount of
downloaded data across the servers (see e.g. [27], [28] and
references therein). In this paper, we do not impose any limits
on data access heterogeneity, that is, on the arrival rates λ1,
λ2, …, λk. Our main focus is the service rate region, that is,
the set of request arrival rates that the system can support; we
discuss connections to download latency and load balancing
in Sec. VIII.

The main difference between this and, nearly all, recent
work on coded distributed storage is that the proposed work
primarily addresses the external uncertainty in the storage sys-
tems (download requests fluctuations) rather than the internal
uncertainty (e.g., straggling) in operations of the system itself.
A related line of work by some of the authors (addressing
external uncertainty) considers systems with uncertainty in the
mode and level of access to the system [29]–[31].

C. Goals and Organization of this Paper

The main goal of this paper is to propose the service rate
region as an important paradigm in the design of erasure
coded distributed systems. Characterizing service rate region
gives us a clear picture of the collective rate of requests that
can be supported by the system as well as its robustness to
heterogeneous request patterns where some objects are more
frequently accessed than others. In this paper we highlight
two main threads of ongoing and future research directions
that explore different aspects of the service rate region of
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coded distributed systems: 1) designing optimal policies to
split incoming requests across the nodes in order to maximize
the achievable service rate region for a given storage scheme,
and 2) designing the underlying code to maximize the service
rate region or to cover a given region with minimum storage,
as introduced in Section III.

The first problem of optimal request splitting can be formu-
lated as a constrained optimization problem. However, it can-
not be trivially solved using linear solvers because the number
of optimization variables is large and the problem becomes
computationally intractable. As contributions along this thread,
we characterize the rate region of some well-known classes
of codes such as maximum-distance-separable (MDS), locally
recoverable (LRC), Simplex (also called Hadamard) codes,
and first-order Reed-Muller (RM) codes. These analyses pro-
vide insights into how the service rate region is affected
by the length and the rate of the underlying code. We can
probably find the best service rate region for certain classes
of codes such as MDS codes and Simplex codes, but finding
the optimal request splitting scheme for other code classes
still has many open questions. We highlight three different
techniques to solve the problem of optimal request splitting
to maximize the service rate region: 1) Section V uses a
waterfilling algorithm to find the rate region of MDS and
LRC codes, 2) Section VI uses fractional matching and vertex
cover on graph representation of codes (which we introduce
in Section VI-B) to find the rate region of Simplex codes, and
3) the geometric approach used in Section VII to find the rate
region of first-order RM codes. Along the second thread of
designing the underlying code, in Section III we highlight the
complementary problems of maximizing the rate region of a
given number of servers and covering a desired rate region
using a minimum number of nodes. The key insight from
this exploration is that hybrid codes that carefully combine
replication and erasure coding of data (such as the (a, a, b,
a + b) system considered in the motivating example above)
are best-suited for maximizing the service rate region in many
cases.

A crucial goal of this paper is to provide a comprehensive
list of open problems in connection with this emerging idea
of using the service rate region to guide the design and
analysis of erasure coded systems. These problems are of
interest to the information and coding theory, (combinatorial)
optimization, as well as the queueing/networking communities
and can bridge interdisciplinary connections between them.
In Section VIII we discuss specific problems such as service
rate region considerations in the design of codes, designing
codes that cover a given request rate distribution, latency
analysis of erasure coded systems, service rate region with
redundant requests. In Section VI-E we discover fundamental
connections between batch codes and the problem of maximiz-
ing the service rate region. In fact, codes that maximize the
service rate region are a generalization of primitive multi-set
batch codes where the demands λa and λb of different objects
are not constrained to be integers.

Several problems presented in this paper not only require
expertise from different areas, but have also already been
addressed in those areas in some special forms and under

different names. We will explain how some problems asso-
ciated with the service rate region generalize some previously
studied problems. We will also present several problems that
belong to but have not been asked yet in certain areas, and
thus experts in those areas could potentially provide answers
with not too much difficulty.

D. How to Read This Paper

Depending on the reader’s main interest and prior knowl-
edge, different sections of paper may or may not be relevant.
Sections II to IV should be read by everyone since they
provide the system model, problem formulation, some prelim-
inary notions as well as several examples running throughout
the paper. Information theorists and queueing theorists may
be primarily interested in Section V, theoretical computer
scientist in Section VI, and coding theorists in Section VII.
Each of the Sections V to VII can be read immediately after
the introductory Sections II to IV, and independently of the
other two. Similarly, the readers can select open problems
from the large list in Section VIII according to their interests
and expertise – this section includes performance analysis
and networking problems as well as coding theory and data
allocation problems.

II. DISTRIBUTED SERVICE MODEL

We distinguish between two functional components at each
node: one for data storage and the other for service request
processing. This is indicated in Figure 2 illustrating a system
of n = 7 servers.

A. Data Storage Model

Consider that we have k data objects (to be) redundantly
stored across n ≥ k servers. We assume all data objects are of
the same size, and all servers have a storage capacity of one
object. Mathematically objects are represented as elements of
some finite field Fq. Each server can store a linear combination
of data objects, which amounts to a coded object of the same
size. We assume that the same erasure code is used for all the
objects in the system. Simple replication of objects, that is,
storing identical copies, is allowed and, as we will see later,
often to a certain extent desirable. It is worth to note here that
the assumptions we make in our storage model are common in
the prior work, see, e.g., [13], [14], [24], [25]. We denote the
coded objects as c1, c2, . . . , cn. Because of redundancy, any
data object can be recovered (computed) from multiple sets of
encoded objects.

Definition 1: A recovery set for a coded object ci ∈ Fq

is a minimal set of coded objects R such that there exists a
recovery function rc : F|R|

q → Fq satisfying rc(R) = ci.
Each object has at least one recovery set (the object itself),

and may potentially have multiple recovery sets. We denote by
Ri,1, . . . , Ri,ti the ti recovery sets of object i. Figure 2 shows
a system where three data objects a, b and c are encoded by a
[7, 3] binary Simplex code. The recovery sets for object a are
its systematic copy (a) and the pairs of linear combinations
(b, a+b), (c, a+c) and (b+c, a+b+c). For a systematic MDS
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Fig. 2. A distributed system storing k = 3 data objects a, b, c over n = 7 nodes. Each node stores a symbol of the [7, 3] Simplex code. Rai ’s represent
the recovery sets for a, and λai denotes the portion of requests rate for serving a that is assigned to Rai such that λa = λa1 + λa2 + λa3 + λa4 holds.

code, the recovery sets for each object are its uncoded copy
and any size-k subset of the remaining n− 1 nodes, and thus
the number of recovery sets for each data object is 1+

(n−1
k

)
.

For instance for the [4, 2] MDS coded system shown in blue
in Figure 1, the recovery sets for object a are (a), (a+b, a−b),
(b, a + b) and (b, a− b).

B. Data Access Model

We describe two data access models which are two different
ways of implementing resource sharing among the incoming
data access requests. We refer to them as the queuing and
the bandwidth model. Both of these access models result in
similar mathematical formulations of the service rate region,
which we define in Section III. In both models, we assume
that requests to download object i arrive at rate λi, and that
the service rate at each server is µ requests per unit time.

1) Queueing Model: Requests sent to each server are placed
in a queue at the server (the queue can follow either first-
come-first-served or any other scheduling discipline). In order
to maintain the stability of the queue at each server, the total
request arrival rate at each server should not exceed its service
rate µ. Our goal is to characterize the service rate region, that
is, the set of arrival rates (λ1, λ2, . . . , λk) for the k objects
that can be supported by the system.

2) Bandwidth Model: Suppose that storage drives associ-
ated with each node can concurrently serve only a limited
number of data access requests. This is because each drive has
an I/O bus with a finite access bandwidth W bits/second, and
a download request requires streaming at a fixed bandwidth
of b bits/second. Therefore, a node can serve only µ = W/b
number of requests concurrently. Let λi be the number of
requests for file i that are simultaneously present in the system.
Our goal is to characterize all request combinations for the k
data objects (λ1, λ2, . . . , λk) that can simultaneously be served
by the system. Note that unlike the queuing model, λi’s are
integers in this case. In Section VI-E we define the notion of
the integral service rate region for this model and show how
it is fundamentally connected to batch codes [26].

C. Extension to Coded Computing

We present the queueing and bandwidth models in the
context of data-access, but these models and the resulting
formulation of the service rate region can be directly applied to
determine the service rate region of coded computing systems

as well. Consider, for example, a system of n = 4 servers
storing large matrices A, B, A + B and A + 2B respectively.
Each request in the rate λA has a query vector x and its goal
is to obtain a matrix-vector product Ax, whereas the requests
in λB seek to compute Bx. The task of computing Ax can be
completed either by sending x to the server storing A, or by
sending it to any two out of the three remaining servers. In the
queueing model, requests are placed in a queue at each server
with service rate µ, whereas in the bandwidth model, µ is
the maximum number of tasks that each server can handle
simultaneously.

III. TWO PROBLEMS OF SERVICE RATE REGIONS

In this section, we describe two classes of problems that
arise in the context of using the service rate region as a
metric to design erasure-coded distributed systems. These
problems are 1) maximizing the service rate region of a
given storage scheme via optimal resource allocation and
2) designing a storage-efficient erasure-coded scheme to cover
or achieve a desired service rate region. This section aims
to formulate these problems and highlight the variety in
the mathematical techniques applicable to service rate region
problems. These techniques bridge deep connections between
fundamental coding theory and resource allocation problems.
In subsequent sections, we mainly address the first problem
described above: maximizing the service rate region of a given
storage allocation.

A. Finding the Service Rate Region of a Storage Scheme

Given distributed system with k data objects stored on
n servers, we first present the problem of maximizing the
service rate region by optimally splitting incoming request
rates λ = (λ1, λ2, . . . , λk) across the n servers. The problem
of optimally allocating incoming data access requests to one
or more servers can be formulated as a linear optimization
problem, which we describe below.

Recall that each server has the service rate µ, that is, it can
serve µ requests in unit time. Let us use λi,j to denote the
portion of requests for object i that is assigned to the recovery
set Ri,j , j = 1, . . . , ti.1 Without loss of generality, suppose
that the first k− 1 elements of the demand vector λ are given

1Note that we do not make any assumptions on the arrival process such as
Poisson arrivals.
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TABLE I

SUMMARY OF THE CODING SCHEMES AND THE TECHNIQUES USED TO CHARACTERIZE THEIR SERVICE RATE REGIONS

and we aim to maximize λk. Then the optimal request rate
split λi,j for all i = 1, . . . , k and j = 1, . . . , ti is the solution
to the following linear optimization problem:

max
λi,j :i∈[1,k],j∈[1,ti]

λk s.t. (1)

ti∑

j=1

λi,j = λi for 1 ≤ i ≤ k, (2)

k∑

i=1

∑

1≤j≤ti
!∈Ri,j

λi,j ≤ µ for 1 ≤ l ≤ n, (3)

λi,j ≥ 0, for 1 ≤ i ≤ k, 1 ≤ j ≤ ti. (4)

The first set of constraints (2) guarantees that the demands
for all objects are served. The second set of constraints (3)
ensures that the total demand assigned to each server are
within its service capacity limit. Note that these recovery
groups Ri,j can overlap. The set of constraints (3) ensures
the stability of the system, where the request arrival rates
must be below the corresponding service rates. The rates at
which the system is able to serve requests should not be
confused with information rates used to provide the service.
For example, if satisfying a request for object a involves
downloading objects b and a + b, then the user requesting
a will also get b. He will receive twice as much information
as requested but not more service as he did not request b.

Definition 2: Given a distributed system with k data objects
stored on n servers and a vector λ = (λ1, λ2, . . . , λk) of
non-negative real numbers, a set {λi,j : 1 ≤ i ≤ k, 1 ≤
j ≤ ti} satisfying (2)-(4) is referred to as a valid allocation
associated with λ.

Definition 3: Given a distributed system with k data objects
stored on n servers, a demand vector λ = (λ1, λ2, . . . , λk)
is said to be achievable if there exists a valid allocation
associated with λ. The set of all achievable demand vectors
(λ1, λ2, . . . , λk) is referred to as the service rate region of the
system.

Remark 1: It is well-known in queueing theory (see
e.g., [32]) that any vector λ outside the service rate region

would make the system unstable. Note that we do not consider
coalescing of requests, where a request of a sent to servers
storing b and a + b decodes both a and b and then shares the
b file with requests for b. Each request for a or b is handled
independently.

Note that the queueing and bandwidth data access models,
despite their different practical meanings, give rise to the
service rate region which is the solution to the optimization
problem described by (1)-(2) above.

There are scenarios wherein each user occupies the entire
bandwidth of the server they are accessing. This can happen,
for instance, when users are streaming from low-bandwidth
edge devices and each user needs to be served at a specific
rate. We call a service rate region under this constraint as an
integral service rate region (formally defined in Section VI-E).

Depending on the number of objects and nodes, and the
coding scheme, this problem can be very computationally
expensive to solve. For example, for systematic MDS codes
the number of recovery sets is

(n−1
k

)
+ 1, which grows

exponentially as n and k increase. Below we highlight three
varied approaches that allow us to solve this problem in
closed-form for certain classes of codes: 1) water-filling algo-
rithms similar to those used for proving capacity theorems in
information theory, 2) combinatorial optimization on graphs,
and 3) a geometric approach. Later in the paper we use
these approaches to characterize the service rate regions of
MDS and locally recoverable codes (Section V), Simplex
codes (Section VI), and Reed-Muller codes (Section VII),
respectively. We summarize the coding schemes considered
in this paper and the approaches used to characterize their
service rate regions in Table I.

1) Water-Filling Algorithm: The water-filling or water-
pouring algorithm is a common technique to allocate power
across multiple channels in a digital communication sys-
tem [34], [35]. It treats the channels as vessels with uneven
bottom levels, proportional to their noise variance. Power
is first allocated to the least noisy channel until its signal
plus noise reaches the level of the next lowest noise level.
In Section V, we extend the concept of water-filling to allocate
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requests to servers by treating each server as a vessel with
capacity µ, when the storage scheme is an MDS or a locally
recoverable code. Each small volume ε > 0 of requests within
the total

∑k
i=1 λi demand is assigned to a recovery group

by adding ε volume of water to the corresponding vessels.
We show that allocating each request to the least-loaded
nodes in the smallest recovery group (first the systematic
nodes, then the local parities and then the global parities)
maximizes the service rate region. In other words, water-filling
resource allocation achieves the optimal system throughput.
See Section V for a formal description of this technique
and bounds on the resulting service rate region. An ongoing
research direction is to explore the use of water-filling for
other classes of codes and proving its throughput-optimality.

2) Combinatorial Approach: This approach establishes a
significant connection between the service rate problem and
the well-known fractional matching problem in (hyper)graphs.
A connection between distributed storage allocation problems
(see [36], [37] and references therein) and matching problems
in hyper-graphs has been observed in computer science lit-
erature [38] (see also [39]). In particular, it was noted that
the uniform model of distributed storage allocation considered
in [36] leads to a question which is asymptotically equivalent
to the fractional version of a long-standing conjecture by
Erdős [40] on the maximum number of edges in a uniform
hypergraph.

Here, we introduce a novel technique for constructing a
special graph representation of a linear code. In particular
using this approach, the following results are shown: 1) equiv-
alence between the service rate problem and the well-known
fractional matching problem and 2) equivalence between the
integral service rate problem and the matching problem. These
equivalence results allow one to use techniques in the rich
literature of the graph theory for solving the service rate
problem. Leveraging these equivalence results, it is shown that
the maximum sum rates that can be simultaneously served
by the system equals the fractional matching number in the
graph representation of the code, and thus is lower bounded
and upper bounded by the matching number and the vertex
cover number, respectively. This is of great interest because
if the graph representation of a code is bipartite, then the
derived upper bound and lower bound are equal which allows
one to establish the maximum sum rates that can be served
by the system. Utilizing this result, the service rate region
of the binary Simplex codes is characterized whose graph
representation is bipartite as shown in Sec.VI-D1.

We also show in Sec. VI-E that the notion of integral
service rate region opens up interesting connections with batch
codes, a class of codes designed for simultaneous access [26].
Specifically, we show that the service rate problem can be
viewed as a generalization of the batch code problem, and the
multiset primitive batch codes problem is a special case of the
service rate problem when the portion of requests assigned to
the recovery sets is limited to be integral.

3) Geometric Approach: Finding the service rate region
of a given storage scheme is an optimization problem. One
natural way to look at this problem is through the geometric
approach, introduced in [33], that provides a set of half-spaces

whose intersection surrounds the service rate region of a given
linear storage scheme. In other words, the geometric approach
provides upper bounds (half-spaces) on the sum of each subset
of arrival rates in any demand vector (λ1, · · · , λk) in the
service rate region of a linear code in a more straightforward
manner in comparison to other approaches. This technique is
of great significance since it allows one to derive upper bounds
on the service rates of linear codes without explicitly knowing
the list of all possible recovery sets while waterfilling and
combinatorial approaches rely on enumeration of all recovery
sets that gets increasingly complex when the number of objects
k increases.

Using the geometric technique, upper bounds on the service
rates of the binary first order Reed-Muller codes and binary
Simplex codes are derived. It is worth mentioning that only
the cardinality of the recovery sets matters in deriving upper
bounds on the service rate of the first order Reed-Muller codes
using the geometric approach. Subsequently, it is shown that
how the derived upper bounds can be achieved. Moreover, it is
shown that given the service rate region of a code, a lower
bound on the minimum distance of the code can be obtained.
This approach will be discussed further in Sec. VII. For the
original observation and more details, see [33].

B. Designing Storage Schemes to Maximize or Cover the
Service Rate Region

Complementary to the problem of finding the service rate
region of a given storage scheme, we now discuss the problem
of designing the underlying storage scheme to achieve a
target service rate region with the minimum number of nodes.
The target service rate region represents a known probability
distribution of demand vectors λ = (λ1, λ2, . . . , λk) that
can be supported by the system. A system designer aims to
support this demand distribution using the minimum number
of servers or to maximize the volume of the service rate region
for a given number of servers. Below we discuss these two
facets of the storage scheme design problem and provide some
initial solution perspectives. These problem is largely open and
requires fundamental coding theoretic innovations.

1) Maximize Service Rate Region With a Given Number of
Servers: Consider a practical scenario where a fixed number of
nodes n is available to store k objects, and a coding scheme
is to be designed to maximize the service rate region. This
problem was considered for k = 2 in [1] for k = 3 in [41].
For example, consider four different schemes to store k = 2
files on a system of n = 8 servers as shown in Figure 3, where
α is a primitive element of F9 or a larger finite field.

Their service rate regions are illustrated on the left side
of the figure. It is interesting to note that the service region
depends on the encoding rather than on the code itself. In par-
ticular, the two codes in the middle (shown in blue and purple)
are identical from a coding theory perspective, but their service
rate regions are different. Amongst the four codes, we observe
a combination of replication and coding (shown in red), where
we create 3 replicas each of a and b and 2 coded combinations
a+ b and a+αb can achieve the largest (by area) service rate
region. Recent work [1] described the service rate region when
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Fig. 3. Four coding schemes and their corresponding service rate regions. The largest region is achieved by combining coding and replication. (α is a
primitive element of a sufficiently large finite field.)

Fig. 4. Four service rate regions defined by the constraints λa, λb ≥ 0, λa ≤ α, λb ≤ β, λa + λb ≤ γ, and their corresponding storage schemes that cover
them with a minimum number of nodes.

there are A replicas of object a, B replicas of object b, and
C coded combinations of a and b. Given the total number of
servers n = A+B +C, determining the optimal values of A,
B and C that maximize the area of the service rate region
is an ongoing research direction. More generally, designing
the generator matrix of a code to maximize the area/volume
of the service rate region is an open problem. Also, since
the service rate region is multi-dimensional, designing a fair
metric other than the area/volume of the service rate region
in order to compare the rate regions of two different classes
of codes is an open problem. We propose some alternative
metrics in Section VIII.

2) Minimize the Number of Servers to Cover a Given
Service Rate Region: Consider a scenario where k = 2 data
objects, movies “a” and “b”, are stored redundantly across
multiple nodes in a coded storage system. At each time, each
node can serve at most one request and each user can request
to download at most one of the two movies a and b. It is known
that the number of users who are interested in downloading
the movie a and b is less than or equal to α (i.e., λa ≤ α) and
β (i.e., λb ≤ β), respectively. Also, it is known that the total
number of users in the area is at most γ (i.e., λa + λb ≤ γ).
This means that the desired service rate region of this storage
system is a bounded set R defined as follows:

R = {λa, λb ≥ 0, λa ≤ α, λb ≤ β, λa + λb ≤ γ} . (5)

Two natural questions that arise in the design of this
distributed storage system are the following: 1) What is the
minimum number n(R) of nodes required to serve all request
vectors (λa, λb) in the set R? 2) How should the files a and
b be stored redundantly in n(R) storage nodes (i.e., what is
the most storage-efficient redundancy scheme)?

Using the example shown in Figure 4, we briefly illustrate
how the storage-minimizing scheme varies with the shape of
the service rate region that we wish to cover. Let β = 4
and γ = 4, and α ∈ {1, 2, 3, 4}. The corresponding four
storage-minimizing redundancy schemes (one for each α)
together with their service rate regions are shown in Figure 4.
In Figure 4(a), the rate region is dominated by points (λa, λb)
for which the demands for a and b are complementary to each
other, that is, if λa is high then λb is low, and vice-versa. In this
case, adding two coded nodes a+b is the most storage-efficient
way for achieving the service rate region. On the other hand,
in Figure 4(d), where the demand for movie b dominates the
total request rate λa + λb, the best storage scheme does not
have any coded nodes; it simply replicates object b four times,
and keeps just one uncoded copy of a.

In general, the problem of minimizing the number of nodes
required for covering a desired service rate region can be
formulated as an integer linear programming (ILP). This is a
challenging problem because in order to list all the constraints,
one needs to explicitly know all possible recovery sets which
becomes increasingly complex when the number of files k
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increases. Recently, this problem of designing storage-efficient
schemes to cover a desired service rate region has been
studied for the first time in [42], but there are still many open
problems. For further details, please see [42].

IV. STORAGE SCHEMES CONSIDERED IN THIS PAPER

Each of the n nodes in the system stores a linear combina-
tion of k data objects which are mathematically represented as
elements of the finite field Fq . We refer to a linear combination
of data objects as coded object. If the linear combinations
involves only one object, we call it systematic. We use
the same terminology for the corresponding storage nodes.
We refer to a linear code over a finite field Fq with block-
length n and dimension k as an [n, k] code. The generator
matrix G of a linear code is an k×n size matrix whose rows
are a basis of the code, and their linear combinations form the
codewords. We focus our attention to three classes of codes
that are well-known in coding theory, see, e.g., [43].

A. Maximum-Distance-Separable (MDS) Codes

MDS codes achieve the well-known Singleton upper bound
on the minimum distance, dmin ≤ n − k + 1, hence the
name. For an [n, k] linear MDS code, any k columns of the
generator matrix are linearly independent, and thus all the k
data objects can be recovered from any k encoded objects.
Therefore, for a systematic MDS code, the minimal recovery
sets of a systematic column are the column itself and any
k of the remaining n − 1 columns. An example of MDS
codes commonly used in distributed storage systems is Reed
Solomon codes.

B. Simplex Codes

A binary Simplex code (aka Hadamard code in CS literature)
is a [2k − 1, k] code with a generator matrix consisting of
all distinct nonzero vectors of Fk

2 .2 Note that any generator
matrix of a Simplex code has this form. Simplex codes are
useful in distributed storage systems, since each symbol of
a Simplex code has t = 2k−1 − 1 disjoint recovery sets
of size two each [44]. They are known to be optimal in
several ways: i) they meet the upper bound on the distance of
codes having recovery sets of size at most two [44]; ii) they
achieve the maximum storage efficiency among the binary
linear codes with a given number of disjoint recovery sets
of size two [45]; iii) they meet the Griesmer bound and are
therefore linear codes with the lowest possible length given the
code distance [46]. Simplex codes play an important role in
Computer Science as well, where they are known as Hadamard
codes.

C. First Order Reed-Muller (RM) Codes

A k-dimensional binary first-order Reed-Muller code
RM2(1, k − 1) with parameter k ≥ 2, is a linear [2k−1, k]
code [47]–[50]. RM codes are important in both theory

2Although Simplex codes can be defined over any finite field, in this paper
we restrict our attention to the binary Simplex codes.

and practice. For a given k, the generator matrix of the
RM2(1, k − 1) can be constructed as follows.

Denote the set of all (k− 1)-dimensional binary vectors by
Fk−1

2 = {x1, . . . ,xn} where n = 2k−1 and for i ∈ {1, . . . , n},
xi = (xi,k−1, . . . , xi,1) with xi,j ∈ F2, j ∈ {1, . . . , k − 1}.
For any A ⊆ Fk−1

2 , define the indicator vector IA ∈ Fk−1
2 as

follows:

(IA)i =

{
1 if xi ∈ A;
0 otherwise.

For the k rows of the generator matrix of RM2

(1, k − 1), define k row vectors of length 2k−1 as follows,
r0 = (1, . . . , 1) and rj = IHj , where j ∈ {1, . . . , k − 1}
and Hj = {xi ∈ Fk−1

2 | xi,j = 0}. The set {rk−1, . . . , r1, r0}
defines the rows of a non-systematic generator matrix of
the RM2(1, k − 1). For a systematic generator matrix of
RM2(1, k − 1), the set of rows {rk−1, . . . , r1,

∑k−1
i=0 ri} can

be considered.

V. SERVICE RATE REGION USING WATERFILLING

In this section we find the service rate region of a
system of n servers that store k data objects u1, . . . , uk

using maximum-distance-separable codes or locally recover-
able codes. Suppose that we use an [n, k] systematic MDS
code to generate the data stored on each of the n servers.
Each object ui can be downloaded from the server storing it,
which we refer to as the systematic server, or by accessing
any k of the remaining n − 1 servers. Let the arrival rate
of requests for object ui be λi. We want to determine the
set of arrival rate vectors (λ1, . . .λk) that can be supported
by the system. In other words, without loss of generality,
we want to maximize λk for any given a feasible set of rates
(λ1, . . . , λk−1).

We propose the following water-filling algorithm to split
the request rate among the n servers of an (n, k) coded
system. The high-level idea behind this algorithm is that
requests are first routed to the respective uncoded or systematic
server. Once the systematic servers are saturated, the requests
are sent to the k least-loaded servers that have not been
yet saturated by µ rate of requests. Below, we present the
water-filling algorithm for MDS and locally recoverable codes
and show that its resulting request allocation achieves the opti-
mal service rate region for MDS codes. However, the core idea
of water-filling-based request splitting is broadly applicable
beyond these two classes of codes.

Definition 4 (Waterfilling Algorithm for MDS Coded Sys-
tems): Assume that the request arrival rates λ1, λ2, …λk

for the k objects are λ1 ≥ λ2 ≥ · · · ≥ λk without loss of
generality. Let γi denote the assigned load, or the request rate
assigned to server i. The water-filling algorithm assigns them
to the n servers as follows.

1) Assign requests to systematic (uncoded) nodes. We
first assign the arrival rate λi for object i to the respective
systematic (uncoded) server until that server is saturated.
Thus, the ith systematic server gets assigned the load
γi = min(λi, µ) for i = 1, . . . k. The remaining
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Fig. 5. Water-filling strategy to serve the requests using coded nodes for a (6, 3)-MDS code.

∑k
i=1(λi −min(λi, µ)) =

∑k
i=1(λi − µ)+ arrival rate

needs to be served using the (n − k) coded nodes and
the unsaturated systematic nodes.

2) Assign each request to the k least-loaded nodes. The
remaining λcoded =

∑k
i=1(λi − µ)+ load is split across

the nodes in the following manner. While λcoded > 0
and mini γi < µ do the following:

• Find the set S of the k least-loaded servers (with
minimum γi) in the system. If there are more than k
servers with the same minimum γi, choose k servers
uniformly at random.

• Assign a small rate ε > 0 of requests to these k
least-loaded servers

• Decrement λcoded by ε, that is, λcoded ← λcoded− ε
• Increment the corresponding k server loads by ε,

that is, γi ← γi + ε for all i ∈ S.

The algorithm is illustrated in Figure 5 for a (6, 3) MDS
code. After sending the requests to their respective systematic
nodes, nodes 1 and 2 are saturated but since λ3 < µ,
the third systematic node has some remaining service capacity,
which can be used to serve the overflow of requests for
objects 1 and 2. The total overflowing request rate for data
objects 1 and 2 is λcoded = (λ1 − µ)+ + (λ2 − µ)+ left to be
served. These requests can be served by accessing any k = 3
of the unsaturated nodes in the system, decoding all k = 3 data
objects, and obtaining the object of interest. Since all k = 3
objects end up being decoded, we do not need to consider
the overflowing requests for objects 1 and 2 separately, but
consider them together as λcoded = (λ1 − µ)+ + (λ2 − µ)+.

We first send λ3 out of the λcoded rate (shown by the light
green and blue shaded regions in Figure 5) to the MDS coded
nodes 4, 5, 6, since these are the k least loaded nodes in the
system. After this allocation, servers 3, 4, and 5, 6 all have
µ − λ3 capacity left and are the least-loaded nodes in the
system. Any 3 of these 4 servers can be used to serve the
remaining λcoded − λ3 rate of requests (shown in grey color).
Each coded request will be served by accessing 3 coded data
objects and then decoding the object of interest. There are(4
3

)
= 4 sets of 3 servers each, and each server participates in

3 such sets. Thus, the additional load allocated to servers 3,
4, 5, 6 (shown in grey) is 3(λcoded − λ3)/4 rate each. Here
we need the additional load 3(λcoded − λ3)/4 to be less than
µ − λ3, the remaining capacity of each of the nodes 3, 4, 5
and 6.

A. Service Rate Region for MDS Codes

Below we first find a converse or upper bound on the
achievable service rate region of MDS codes.

Theorem 1: The set of all achievable request vectors
(λ1, λ2, . . . , λk) of an (n, k) systematic-MDS coded system
lies inside the region described by

k∑

i=1

(
min(λi, µ) + k(λi − µ)+

)
≤ nµ, (6)

Proof: To prove this outer bound on the achievable rate
region, observe that each server in the system can support µ
requests/time, and thus the total capacity is nµ. Downloading
each data object from its own systematic (uncoded) node uses
only 1 unit of capacity. However, downloading an object from
k coded servers requires k units of capacity per unit request
rate. Thus, if λi is the rate of request arrivals for object i,
the minimum system capacity utilized by these requests is
min(λi, µ)+k(λi−µ)+, where min(λi, µ) requests are served
by the systematic node storing object i. Since the total system
capacity is nµ, the sum of the capacity utilized by all requests
must be less than nµ. Thus we have (6). !

Next, we show that this water-filling algorithm is optimal,
that is, it can serve any achievable set of request rates
(λ1, . . .λk). To prove the optimality we separately consider
two cases below: 1) n − k ≥ k (the code rate ≤ 1/2), and
2) n− k < k (the code rate > 1/2).

Theorem 2: The water-filling algorithm proposed in
Definition 4 is optimal, that is, it achieves the outer bound
given by (6), for any MDS code when n− k ≥ k.

Proof: For n− k ≥ k we now evaluate the set of arrival
rates that can be achieved by the waterfilling algorithm and
show that it matches the outer bound in (6). Without loss of
generality, sort the arrival rates in descending order such that
λ1 ≥ λ2 ≥ · · · ≥ λk. After sending requests to systematic
servers until they are saturated, the total residual arrival rate
is λcoded =

∑k
i=1(λi − µ)+, as illustrated in Figure 5 for

the (6, 3) MDS coded system. Assume that λ1 ≥ µ. If this is
not true, then λcoded = 0 and all requests can be served by
systematic servers.

The waterfilling algorithm, we first uniformly split requests
over n − k coded nodes, k + 1, . . . n, until the load at all
these nodes becomes equal to λk (the load of least-loaded
systematic node). Since each request needs be sent to k out
of the n − k servers, up to min(λk, µ)(n − k)/k requests
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can be served in this manner. After this assignment, there
are n − k + 1 nodes from node i = k, . . . n with the same
load γi = min(λk, µ). The waterfilling algorithm now assigns
each request to the least-loaded k out of these n − k + 1
servers until their load reaches min(λk−1, µ), the load of the
(k + 1)th least-loaded server. The request rate assigned this
way is (min(λk−1, µ)−min(λk, µ))(n−k+1)/k. Recursively
repeating this process for every r = k, . . . , 2, we uniformly
split min((γr−1 − γr)(n − r + 1)/k, λcoded) requests over
n−r+1 servers, r, r+1, . . . n. Thus the maximum rate λmax

coded
of requests that can be supported using coded servers is

λmax
coded = min(λk, µ)

n− k

k

+ (min(λk−1, µ)−min(λk, µ))
n− k + 1

k

+ · · · + (min(λ1, µ)−min(λ2, µ))
n− 1

k
(7)

= min(λ1, µ)
n

k
−

k∑

i=1

min(λi, µ)
1
k

(8)

= µ
n

k
−

k∑

i=1

min(λi, µ)
1
k

(9)

In Figure 5, the height of each lightly-shaded portion,
starting from the bottom upwards, corresponds to each term
in the above summation.

After saturating the systematic nodes, the residual rate
λcoded =

∑k
i=1(λi − µ)+ supported by the coded servers can

be at most λmax
coded. That is,

λcoded ≤ λmax
coded (10)

k∑

i=1

(λi − µ)+ ≤ µ
n

k
−

k∑

i=1

min(λi, µ)
1
k

(11)

Rearranging, this is equivalent to (6). Thus, for n− k ≥ k,
waterfilling can achieve the region given by the outer bound
in Equation 6. Hence, the proposed waterfilling algorithm is
optimal for n− k ≥ k. !

Next let us consider the second case n − k < k. For this
case, we cannot always achieve the same rate region as given
by the outer bound in (6). However, we can show that the
waterfilling algorithm is optimal, and no other rate splitting
scheme can yield a strictly larger rate region.

Lemma 1: It is optimal to first send requests to their sys-
tematic node. Only when the systematic node is saturated,
requests should be served using coded servers.

Proof: Suppose λi < µ for some i, that is all requests
for object i can be served by the systematic node. Instead,
suppose we serve λi− ε rate using the systematic node i, and
send the remaining ε portion to k other servers, and decode
file fi from the coded versions. As a result we are reducing
the load on the systematic node by ε, and instead adding ε
load to K other servers. If n− k < k, at least one of these k
servers is also a systematic node, which stores file fj . Thus,
the maximum rate of requests for file fj that can be served by
its systematic node reduces by ε. For n−k > k, we showed in
Theroem 2 that the water-filling algorithm, which first sends
requests to the systematic node is optimal. Thus, there is no

loss of optimality in sending requests to the systematic node
until it is saturated. !

Lemma 2: After the systematic node is saturated, it is
optimal to always send each request to the k least-loaded
servers that can serve it.

Proof: Each ε > 0 portion of the request rate λcoded,
needs to be allocated to k servers. Using any algorithm for
picking the k servers, we could reach one of the two possible
states:

1) r ≥ k unsaturated servers with the same load γ < µ.
Then we can split a maximum of (µ − γ)r/k request
rate uniformly over these servers. As a result all servers
will be saturated, and the outer bound on the service rate
region can be achieved.

2) There are exactly k unsaturated servers in the system
with loads γ1 ≥ γ2 ≥ γ3 ≥ · · · ≥ γk, where at least one
of these inequalities is strict. The waterfilling can serve
an additional µ− γ1 rate of requests. This would leave
a non-zero amount of capacity unused.

Since water-filling algorithm always sends requests to the k
least-loaded nodes in the system, it achieves the first state
whenever it is feasible. And if the system ends up in the second
state, water-filling minimizes the total unused system capacity
nµ−

∑n
i=1 γn by always allocating requests to the least-loaded

servers. !

B. Service Rate Region for Locally Recoverable Codes

Locality of a code captures the number of symbols partici-
pating in recovering a lost symbol. In particular, an [n, k] code
is said to have locality r if every symbol is recoverable from
a set of at most r symbols. For linear codes with locality,
a local parity check code of length at most r+1 is associated
with every symbol. The notion of locality can be generalized
to accommodate local codes of larger distance as follows
(see [51]). For an [n, k] code C and a subset S ⊂ [n], we use
CS to denote C restricted to symbols in S.

Definition 5 (Locality): An [n, k] code C is said to have
(&, r) information locality (& > r), if for every data object
i, there exists a set of indices Γi such that (i) i ∈ Γi, (ii)
|Γi| ≤ &, and (iii) dmin(CΓi) ≥ &−r + 1. The code CΓi is said
to be the local code associated with the i-th data object.

Properties 2 and 3 imply that for any codeword in C,
the values in Γi are uniquely determined by any r of those
values. Therefore, the (&, r) locality allows one to locally
repair any &−r erasures in CΓi , ∀i ∈ [n], by accessing r other
objects. When & = r + 1, the above definition reduces to the
classical definition of locality proposed by Gopalan et al. [52],
wherein any one erasure can be repaired by accessing at most
r objects.

Throughout the rest of this section, we focus on LRCs
that have the same structure as the Pyramid code from [53].
In particular, the k data objects are partitioned into k/r groups,
and each group has &−r local parities satisfying the properties
of Definition 5. Each such group is called a local group.
Further, the code has p global parities.

Example 1: Consider an (12, 4) LRC with (4, 2) locality
and p = 4 global parities which encodes [a, b, c, d] into
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Fig. 6. Water-filling strategy to serve the requests using coded nodes for a (12, 4)-LRC code.

[a, b, c, d, a + b, c + d, a − b, c − d, p1, p2, p3, p4] where pi,
1 ≤ i ≤ 4 denote global parity symbols. Observe that
(a, b, a + b, a− b) and (c, d, c + d, c− d) are local groups.

Next, we generalize the waterfilling algorithm to LRCs.
One key difference than MDS codes is that in LRCs it is
not possible to recover all the k data objects from any k
coded objects. In particular, each local group has r linearly
independent symbols, and sending a request to more than r
servers in a local group is redundant. Further, some set of k
servers cannot recover all the data symbols.3 For instance, for
Example 1, any one parity server from each of the two local
groups together with any two global parity servers cannot be
used to recover the four data objects. On the other hand, it is
not difficult to see that in parity-splitting LRCs like Pyramid
codes, one can recover the k data objects from any r parity
symbols for & local groups, where 1 ≤ & ≤ +k/r,, and any
k−r& global parity symbols. We restrict to such sets of servers
in the final step of waterfilling.

Definition 6 (Waterfilling Algorithm for LRC Coded Sys-
tems): Assume that the request arrival rates λ1, λ2, …λk

for the k objects are λ1 ≥ λ2 ≥ · · · ≥ λk without loss of
generality. Let γi denote the assigned load, or the request rate
assigned to server i.

1) Assign requests to systematic (uncoded) nodes and
coded nodes in local groups using waterfilling as in
Definition 4.

2) Assign each request to k least loaded coded nodes.
Denote the remaining load as λcoded.
While λcoded > 0 and mini γi < µ do the following:

• Find a set S of k least loaded servers such that
if the set contains a parity server from any local
group, then it should contain r servers from the
same group. If there are multiple such sets of k least
loaded servers, choose a set uniformly at random.

• Assign a small rate ε > 0 of requests to every server
in S, increment the corresponding server loads by
ε, and decrement λcoded by ε.

The algorithm is illustrated in Figure 6 for the (12, 4) code
in Example 1. Notice that λ1 > λ2 > λ3 > λ4, where we
denote objects {1, 2, 3, 4} as {a, b, c, d}, respectively. First,
after sending requests for c and d to the respective systematic
nodes, the remaining requests are sent to the local group {c+d,

3LRCs which have the information-theoretically optimal recovery guaran-
tees are referred to as maximally recoverable codes. See [54] and references
therein.

c−d}. Similarly, after saturating node b, the remaining requests
for b are sent to the local group {a+ b, a− b}. Since the local
group {a + b, a − b} still has some leftover capacity, some
of the a requests are sent to this group (after saturating the
systematic node a). Afterwards the remaining a requests are
sent to the four least loaded nodes, which turn out to be the
global parity nodes {p1, p2, p3, p4}. At one point, the global
parity nodes {p1, p2, p3, p4} share the same load as the local
group nodes {c + d, c− d}. From this point onward, a set of
four least-loaded servers out of {c + d, c − d, p1, p2, p3, p4}
are selected, and a small rate ε is assigned to them. This is
continued until all the servers are saturated.

We emphasize that, unlike MDS codes for which the water-
filling algorithm is optimal, it is open whether the waterfilling
algorithm is optimal for LRC codes. The techniques used for
proving the optimality of the waterfilling algorithm for MDS
codes are not sufficient for analyzing LRC codes. This is
because, after the systematic nodes are saturated, a request can
be satisfied using three ways: (i) only the local parity nodes,
(ii) a mix of local and global parity nodes, and (ii) only the
global parity nodes (when n−k ≥ k). Thus, the recovery sets
for LRCs are more complex (as opposed to k-node subsets for
MDS codes), which calls for novel techniques to analyze the
waterfilling algorithm for LRCs.

C. Summary

In this section, we introduced the waterfilling strategy to
determine how to split requests across different nodes in a
coded distributed system. We analyzed it for MDS and locally
recoverable codes, and showed that it is optimal for MDS
codes. Proving its optimality for LRCs remains open for the
reasons that we described above. Simplex codes can also be
considered as LRCs with (3, 2) locality [44], [45]. Therefore,
one can use the waterfilling algorithm to allocate requests in
a Simplex coded system as well. However, it is not clear how
to use waterfilling arguments to characterize the service rate
region for Simplex codes in a closed form. As we will see
next, the other two approaches, combinatorial optimization
and geometric, are well suited to characterize the service rate
region for the Simplex codes. In general, not surprisingly, each
approach is well suited for specific types of codes.

More broadly, the waterfilling strategy encompasses two
key ideas. Firstly, it takes into account the fact that each
request is associated with a ranked preference list of subsets
of servers that it wants to be assigned to. For example,
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Fig. 7. (a) Generator matrix and its recovery graph for a systematic [4, 2] MDS code. (b) Generator matrix and its recovery graph for the [7, 3] Simplex
code, and the Fano plane.

in MDS coded systems sending a request to a systematic
node preferred over sending it to k coded nodes. Secondly,
at each preference level, waterfilling assigns the request to
the least loaded server(s) in order to maximize the achievable
service rate region. Although we propose it in the context of
coded storage systems, these central ideas of the waterfilling
strategy can be utilized more broadly for resource allocation
in distributed systems. Exploring other applications of this
strategy is an interesting and open future direction.

VI. SERVICE RATE REGION USING COMBINATORIAL

OPTIMIZATION ON GRAPHS

In this section, we introduce a graph representation of a
coding scheme, and look at the service rate region problem
through the lens of combinatorial optimization on graphs.
We begin with briefly reviewing the notions of matching and
vertex cover in graphs. For details, we refer the reader to
standard texts on graph theory, e.g., [55].

A. Matching and Vertex Cover on Graphs

A matching in graph Γ is a set of pairwise non-adjacent
edges. A maximum matching in Γ is a matching that contains
the largest number of edges. The size of a maximum matching
is known as the matching number, and it is denoted as ν(Γ).
Note that a matching can be considered as assigning to each
edge a weight from the set {0, 1} such that the sum of the
weights on the edges incident on any vertex is at most one.

A fractional matching allows one to assign any fraction in
the interval [0, 1] as a weight to each edge such that the sum
of the weights on the edges incident on any vertex is at most
one. A maximum fractional matching of Γ has the maximum
sum of weights among all the fractional matchings of Γ. The
sum of weights of a maximum fractional matching is known
as the fractional matching number, and it is denoted as νf (Γ).

A vertex cover of a graph Γ is a set of its vertices such
that each edge in Γ is incident to at least one vertex in the
set. A minimum vertex cover is a vertex cover of smallest
possible size. The size of a minimum vertex cover is known
as the vertex cover number, and it is denoted as τ(Γ). For any
graph Γ, it holds that ν(Γ) ≤ νf (Γ) ≤ τ(Γ), and, in particular
for a bipartite Γ, we have ν(Γ) = νf (Γ) = τ(Γ).

B. Graph Representation of Storage Schemes
Here, we introduce a graph representation of storage

schemes described in Section IV. For simplicity, we consider
linear codes, however, it is straightforward to generalize the
notion for non-linear codes. For the clarity of exposition,
we focus on recovery sets of size one and two. In other words,
a recovery set for each object is either a systematic symbol or
a group of two symbols, as is the case when k = 2 and for
Simplex codes of any dimension. As we discuss in Remark 2
later, the notions described next can be easily extended to the
general case of arbitrary sized recovery sets by considering
hypergraphs. We consider hypergraphs associated with MDS
codes in Sec. VI-D2.

Consider an [n, k] code with a k × n generator matrix G.
We define a graph ΓG associated with the G as follows. ΓG

has n vertices corresponding to n columns of G. For every
recovery set (of size two) of data symbol x, the corresponding
vertices in ΓG are connected by an edge with label x. We refer
to such an edge as x-recovery edge. If G is systematic,
an additional vertex is added for each systematic column,
and it is connected by an edge to the vertex corresponding
to the systematic column and labeled accordingly. This avoids
self-loops corresponding to recovery sets of size one formed
by the systematic columns. We refer to ΓG as a recovery graph
for the coding scheme G.

Figure 7 shows generator matrices with their recovery
graphs for a systematic (4, 2) MDS code and the [7, 3] Simplex
code. In Sec. VI, we show how the service rate problem
associated with matrix G is related to matching and vertex
cover problems of its recovery graph ΓG.

C. Service Allocation as a Fractional Matching in the
Recovery Graph

Associating a recovery graph with a coding scheme allows
us to relate the service allocation problem to the problem
of finding a fractional matching in the recovery graph. (For
the original observation and more details, see [56].) Let us
consider a coding scheme G and its recovery graph ΓG.
We demonstrate that a valid allocation for the coding scheme
G for a given demand vector is equivalent to a fractional
matching with specific constraints on ΓG. In the rest of this
section, we assume without loss of generality that µ = 1.
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Proposition 1: Consider a system using an [n, k] code with
a generator matrix G where every recovery set is of size at
most two and µ = 1. The system can serve a demand vector
(λ1, · · · , λk) if and only if there exists a fractional matching
in the recovery graph ΓG such that the weights on the edges
with label i sum to λi.

Proof: Suppose there exists a fractional matching in ΓG

such that the weights on the edges with label i sum to λi. Let
wi,j denote the weight on the edge corresponding to recovery
set Ri,j . Then, for every object i, assign wi,j fraction of its
load λi to recovery set Ri,j for j ∈ [ti]. Since the sum of the
edge weights at any vertex does not exceed one, no server is
assigned requests in excess of its service rate. Further, since
the weights on the edges with label i sum to λi, all demands
are served.

On the other hand, suppose that there is a valid allocation
for a demand vector (λ1, λ2, · · · , λk). Let λi,j denote the load
assigned to recovery set Ri,j . Then, for every i ∈ [k], assign
the weight λi,j for the edge labeled i that is corresponding to
recovery set Ri,j . Since the allocation {λi,j : 1 ≤ i ≤ k, 1 ≤
j ≤ ti} satisfies (2)-(4), it is immediate to see that the weights
assigned form a fractional matching such that the sum of the
weights on the edges with label i sum to λi. !

Remark 2: In defining recovery graphs and in
Proposition 1, we restricted our attention to linear coding
schemes having recovery sets of size at most two. Extension
to the general case of a code having recovery sets of
arbitrary size is straightforward: we associate a hypergraph
with the code’s generator matrix. (A hypergraph is a
generalization of a graph in which any subset of vertices
may be joined by an edge, called a hyperedge, see, e.g., [57,
Chapter 7].) We form a hypergraph ΓG associated with
G such that its vertices correspond to columns of G and
hyperedges correspond to recovery sets. It is straightforward
to generalize the hypergraph representation for non-linear
codes. See Sec. VI-D2 for hypergraphs associated with
MDS codes.

The relation to fractional matching enables us to obtain
bounds on (and, in some cases, completely characterize) the
service rate region. First, we present a bound on the sum of
the request rates that can be served by the system using vertex
covers in ΓG. Recall that a vertex cover of a graph Γ is a set
of vertices of Γ such that each edge in Γ is incident to at least
one vertex in the set. From Proposition 1 and the well-known
combinatorial optimization result that the fractional matching
number is upper bounded by the vertex cover number of any
graph, we get the following upper bound on the sum of request
rates that can be served by a system.

Proposition 2: Consider a system using an [n, k] code with
a generator matrix G, and let ΓG be the recovery graph of G.
The sum of rates in any demand vector (λ1, · · · , λk) that can
be served by the system cannot exceed the number of vertices
in a cover of ΓG.

D. Using Graph Representations to Characterize Service
Rate Regions

1) Simplex Codes: Here, we characterize the service rate
region of binary Simplex codes. For clarity of exposition,

we focus our attention to non-overlapping recovery sets of
size two. Later, we show that considering all the recovery
sets does not increase the service rate region. Note that, since
any generator matrix of a Simplex code consists of all non-
zero length-k binary vectors, any generator matrix is a column
permutation of the other. Thus, recovery graphs associated
with all generator matrices of a Simplex code are isomorphic,
and consequently, we refer to a recovery graph associated with
arbitrary generator matrix of a Simplex code as the recovery
graph of the Simplex code. The first step is to show that the
recovery graph of a Simplex code is bipartite. (See Figure 7
for an example of the [7, 3] Simplex code.) We note that has
been shown in [1], [56], [58]. We present a brief proof for
completeness.

Lemma 3 (Structure of the Recovery Graph for Simplex
Codes): For a [2k−1, k] Simplex code with recovery graph Γk,
the following holds:

1) Γk is bipartite.
2) Each vertex of Γk has degree k where each edge

corresponds to a recovery set of a different object.
3) The 2k−1 vertices of Γk that correspond to the odd

weight columns of Gk form a minimal vertex cover.

Proof: Recall that a generator matrix Gk of the k
dimensional Simplex code consists of all non-zero length-k
binary vectors. Let us label each of the 2k − 1 vertices of
its recovery graph Γk with a length-k non-zero binary vector.
In addition, let us label each of the additional vertices for
systematic columns by the length-k zero vector. Edges in
Γk correspond to recovery sets of size two. Therefore, two
vertices of Γk are connected iff the Hamming distance between
their labels is one. The lemma immediately follows from this
observation. (The bipartite structure of Γ3 can be observed
in Figure 7(b) and Figure 13.) !
We use the above lemma to characterize the rate region of
Simplex codes in the following theorem.

Theorem 3: The service rate region of the [2k − 1, k]
Simplex coded system with µ = 1 consists of all demand
vectors (λ1, · · · , λk) such that λ1 + λ2 + · · · + λk ≤ 2k−1.

Proof: Consider first the non-overlapping recovery sets
of size at most two. Let Γk be the corresponding recovery
graph. Consider an arbitrary demand vector (λ1, · · · , λk)
such that λ1 + · · · + λk ≤ 2k−1. Assign weight λi/2k−1 to
each edge in Γk that corresponds to a recovery group of
object i. Note that this assignment forms a valid fractional
matching (cf. Lemma 3). It follows from Lemma 3 that the
vertex cover number of Γk is 2k−1, and thus, by Proposi-
tion 2, no demand vector (λ1, · · · , λk) can be served so that
λ1 + λ2 + · · · + λk > 2k−1.

Next, we show that larger (overlapping) recovery sets of
size three do not increase the service rate region. To show
this, let us add hyperedges to Γk corresponding to recovery
sets of size greater than two. Note that 2k−1 vertices with
odd number of 1’s also cover all the hyperedges. Indeed,
if this is not the case, there must be a recovery set consisting
of servers corresponding to vertices each having an even
Hamming weight. Clearly, this is not possible, since the labels
of vertices in a recovery set must add to a unit vector. !
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It is worth noting two interesting observations. First, it well-
known that the codewords of a [2k − 1, k] Simplex code
form a simplex in the Hamming space of binary length-
(2k − 1) vectors. Interestingly, the service rate region of a
[n = 2k−1, k] Simplex code is a (k−1)-dimensional simplex
in Rn defined as

∑
λi ≤ 2k−1, λi ≥ 0, i ∈ [k]. As we will see

in the next section, looking at codes through the lens of finite
geometry enables us to characterize the service rate region of
first-order Reed-Muller codes.

Second, from the achievability proof, one can observe that
when a server completes a request, it simply starts serving
the next request in the queue (if any). A natural question
is how many users can be simultaneously served by the
Simplex-coded system in parallel? This is especially important
for scenarios when each user occupies the entire bandwidth
of the server. As we discuss in Sec. VIII-B4, this question
motivates us to introduce the notion of asynchronous service
rate region.

2) MDS Codes: We show how a graph representation of
MDS codes allows one to obtain bounds on the service rate
region. In a system using an [n, k] systematic MDS code,
a data object can be recovered from its systematic copy or from
any k of the remaining servers. In other words, the recovery
sets of an MDS code are of size either one or k (see Figure 7(a)
for the recovery graph of a systematic [4, 2] MDS code).

We represent an MDS code using a hypergraph. Note that
a is a hypergraph any subset of vertices may be joined by
an edged, referred to as a hyperedge, rather than a pair of
vertices as in graphs (see, e.g., [57, Chapter 7]). Specifically,
given an [n, k] MDS code with a generator matrix G, we form
the recovery hypergraph ΓG such that it contains a vertex for
each column of G and a hyperedge for every recovery set.
We label every hyperedge of ΓG with the data symbol whose
recovery set it is associated with. For each systematic column
of G, we add k − 1 additional vertices to ΓG, and connect
them with a hyperedge labeled with the corresponding symbol.
As we see next, the recovery graph of an MDS code has a
specific structure.

Lemma 4 (Structure of the Recovery Graph for MDS
Codes): For an [n, k] MDS code with generator matrix G,
the following holds.

1) If G has no systematic columns, then ΓG is a complete
hypergraph on n vertices with k parallel hyperedges
connecting every k-subset of vertices.

2) If G is systematic, then ΓG has n + k(k − 1) vertices
with hyperedges of size k.

The above lemma allows us to obtain bounds on the service
rate region of MDS codes as follows.4

Proposition 3: For a system using an [n, k] MDS code with
no systematic nodes and µ = 1, the service rate region is the
set of all request vectors (λ1, · · · , λk) satisfying

∑k
i=1 λi ≤

n/k. For a system using a systematic [n, k] MDS code and

4The bounds obtained here for systematic MDS codes are loose as compared
to those obtained in Theorem 1 using the waterfilling algorithm in Section V.
Note that the waterfilling algorithm is defined only for systematic codes,
whereas recovery (hyper)graphs can be used to analyze non-systematic codes
as well.

µ = 1, the service rate region lies inside the region described
by

∑
i∈I,

I⊆{1,...,k}
λi ≤ k + |I|

k (n− k).

Proof: Consider an [n, k] MDS code with no systematic
symbols. For any (λ1, · · · , λk) in its service rate region, there
must exist a fractional matching in hypergraph ΓG such that
the sum of the weights of hyperedges of label i is λi by
Proposition 1. Obtain a hypergraph Γ′

G from ΓG by collapsing
parallel hyperedges connecting every k-subset of vertices into
one hyperedge and assign its weight to be the sum of the
weights of the parallel hyperedges. From Lemma 4, Γ′

G is a
complete hypergraph on n vertices with each hyperedge of
cardinality k (which is known as a k-uniform hypergraph).
Note that any fractional matching in ΓG induces a valid
fractional matching in Γ′

G since the sum of the weights on
hyperedges incident to any vertex does not change. Then,
the converse and the achievability follow by noting that, for
a complete k-uniform hypergraph on n vertices, the fractional
matching number is n/k (see, e.g., [59]).

The proof of the upper bound for a systematic code essen-
tially follows the same steps as above. Consider the case
when, for some I ⊆ {1, 2, . . . , k}, λi > 0 for i ∈ I and
λi = 0 otherwise. Then, by Prop. 1, for i ∈ {1, 2, . . . , k} \ I,
every hyperedge labeled with λi must have zero weight in any
fractional matching corresponding to a valid service allocation.
Let Γ′

G be the graph obtained from ΓG by removing all
hyperedges labeled λi for each i ∈ {1, 2, . . . , k} \ I, and
deleting the dummy vertices corresponding to the system-
atic columns i ∈ {1, 2, . . . , k} \ I. In other words, after
removing the hyperedges labeled λi, we delete the resulting
independent vertices. Note that any fractional matching in ΓG

corresponding to a valid service allocation is also a fractional
matching in Γ′

G. Further, from Lemma 4, it is straightforward
to see that the pruned graph Γ′

G contains N = n + |I|(k − 1)
vertices. Therefore, the bound follows from Prop. 1 by using
the fact that the fractional matching number for a k-uniform
hypergraph on N vertices is at most N/k (see, e.g., [59]). !

As an example, consider the non-systematic [8, 2] MDS
code shown in the second row (in blue) in Figure 3. The
corresponding recovery graph is the complete graph on 8
vertices. As shown in the proposition, the service rate region
is the simplex λ1, λ2 ≥ 0, λ1 + λ2 ≤ 4, depicted in blue
in Figure 3.

For an example of a systematic MDS code, consider
Figure 7 (a). It shows a [4, 2] code along with the correspond-
ing recovery graph having 6 vertices. As per Proposition 3,
the sum of arrival rates λ1 + λ2 ≤ 3. Now, consider the case
that only a is being requested, i.e., λ2 = 0. Then, we prune
the recovery graph to remove the edges labeled with b and
deleting dummy vertices corresponding vertices. The pruned
graph consists of the vertices a and 0a connected by an edge,
and the triangle formed by b, a + b, and a − b. It is easy to
see that the fractional matching number for this graph is at
most 5/2, and thus, λ1 ≤ 5/2.

E. Integral Service Rate Region and Batch Codes

Recall that in the bandwidth model (In Sec. II-B2), each
server can concurrently serve only a limited number of data
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access requests. In this model, λi represents the number of
requests for object i that are simultaneously present in the
system. Even though this model results in the same allocation
problem as in the queuing model (Sec. II-B1), it opens up
interesting questions. In particular, consider scenarios wherein
each user occupies the entire bandwidth of the server they
are accessing. For example, this can happen when users are
streaming from low-bandwidth edge devices and each user
needs to be served at a specific rate. Motivated by these
scenarios, we introduce the notion of integral service rate
region defined as follows.

Definition 7: The integral service rate region of an [n, k]
coding scheme is a set of demand vectors (λ1, · · · , λk) for
which there exists a valid allocation {λi,j : 1 ≤ i ≤ k, 1 ≤
j ≤ ti} satisfying (2), (3) and (4) such that each λi,j is an
integer.

From the definition of the integral service rate region
and Proposition 1 it follows that a system using an [n, k]
code with a generator matrix G contains a demand vector
(λ1, λ2, · · · , λk) in its integral service rate region if and only
if there exists an integral matching in the recovery graph ΓG

such that the weights on the edges with label i sum to λi.
An open problem associated with this observation is discussed
in Section VIII-B3.

Next, we show that, if the integral service rate region of
a coding scheme contains a specific region (in particular,
all demand vectors (λ1, · · · , λk) such that

∑k
i=1 ≤ t for a

positive integer t), then the coding scheme must be a batch
code [26] – a well-known class of codes in computer science.

Batch codes (in particular, multiset batch codes) are
designed to simultaneously serve a certain number of requests
(each asking for one object)

such that the worst-case maximal load on the system as well
as the total amount of used storage are minimized [26]. In the
simplest form (called primitive batch codes), k data objects are
encoded into n objects, which are distributed among n servers
(one object per server). The encoding should be such that an
arbitrary subset (or batch) of t objects can be decoded by
simultaneous reads from a (sub)set of the servers. The formal
definition of primitive multiset batch codes is as follows (see,
e.g., [26], [60], [61]).

Definition 8: An (n, k, t) (primitive multiset) batch code
over Fq encodes k objects x1, · · · , xk ∈ Fq into n objects
c1, · · · , cn ∈ Fq in such a way that for any multiset
i1, · · · , it ∈ [k], there is a partition of the servers into subsets
S1, · · · , St ⊆ [n] such that each object xij , j ∈ [t], can be
recovered by downloading (at most) one object from each
server in Sj .

Next, we show that the service rate region problem can be
seen as a generalization of the (primitive multiset) batch code
problem.

Proposition 4: The integral service rate region of a storage
system using an [n, k] code with µ = 1 includes all demand
vectors (λ1, · · · , λk) such that

∑k
i=1 λi ≤ t if and only if the

code is an (n, k, t) batch code.
Proof: Consider a demand vector (λ1, · · · , λk) such that

each λi is a non-negative integer and
∑k

i=1 λi ≤ t. It should

be noted that any such demand vector can be considered as a
multiset of size

∑k
i=1 λi (which is at most t), where element

i is repeated λi times. The proposition 4 then follows directly
from the definitions of the integral service rate region and the
multiset primitive batch codes. !

Batch codes are related to a class of codes designed for
private information retrieval (PIR) [62]. The key property of
PIR codes [61], [63] is that they have a number of disjoint
recovery sets. Specifically, a binary [n, k] code is called a t-
server PIR code if for every i ∈ [k], there exist a partition of
the servers into subsets S1, · · · , St ⊆ [n] such that the object
xi can be recovered by downloading (at most) one object from
each server in Sj , for all j ∈ [t]. The integral service rate
region for PIR codes immediately follows from Proposition 4
as follows. The integral service rate region of storage system
using an [n, k] code with µ = 1 includes all demand vectors
(t · e1, . . . , t · ek), t ∈ N, if and only if the code is a t-server
PIR code.

F. Summary

In this section, we proposed a graph representation to cap-
ture recovery sets of a linear code, and showed that the service
rate allocation problem for a given linear code is equivalent
to the fractional matching problem on the recovery graph
associated with the code. This enabled us to characterize the
service rate region for binary Simplex codes. A natural future
direction is to analyze the service rate region for non-binary
Simplex codes using the graph-based techniques. We also
introduced the notion of integral service rate region, where
allocations are constrained to be integers. We proved that the
problem of characterizing an integral service rate region can
be viewed as a generalization of the problem of designing
primitive multiset batch codes. Exploring connections between
the general batch codes and the problem of (integral and
general) service rate region is an interesting future direction.

VII. SERVICE RATE REGION USING GEOMETRY

Here, we look at the service rate problem through a geomet-
ric point of view. The problem of characterizing the service
rate region of a code is a linear constrained optimization
problem. The geometric approach is a powerful technique for
addressing this problem that provides upper bounds on the
sum of each subset of arrival rates in any demand vector
(λ1, · · · , λk) that can be served by a linear code. That is,
using this approach, one can obtain a finite set of half-spaces
(upper bounds) whose intersection encompasses the service
rate region of a given linear storage scheme. In this section,
we first discuss a geometric view of a storage scheme. We then
give a brief description of the approach, and finally, using two
examples, we explain how the service rate regions of the binary
first order Reed-Muller codes and binary Simplex codes are
obtained by the geometric technique. For a formal description
and more details, see [33], where this approach is introduced.

A. Geometric Description of Storage Schemes
The projective space of dimension k − 1 over Fq , denoted

as PG(k−1, q) is the set of k-tuples of elements of Fq, not all
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zero, under the equivalence relation given by (x1, . . . , xk) ∼
(αx1, . . . , αxk), α .= 0, α ∈ Fq.

Consider a generator matrix G of a linear [n, k]q code.
Columns of G are vectors in Fk

q . Since in the service rate
region problem, we are only concerned with linear dependence
of the columns of G, we consider G as a geometric object
in the projective space PG(k − 1, q). Each column gi of G
determines a point, and all columns that are scalar multiples of
gi are the same point in PG(k−1, q). Therefore, the columns
of G form a multiset of points in PG(k − 1, q). We denote
this n-multiset by G and say that it is induced by G [64].

Any 2-dimensional subspace of Fk
q determines a line in

PG(k−1, q) and any k−1 dimensional subspace of Fk
q deter-

mines a hyperplane in PG(k−1, q). For details, see [65], [66].
Note that since we are working over finite fields, hyperplanes
consist of a finite number of points.

For example, consider the binary [7, 3] Simplex code. The
columns of its generator matrix are the seven non-zero vectors
of F3

2, and the seven points in the projective space PG(2, 2).
Figure 7-b shows the corresponding 7-multiset, known as the
Fano plane. Since k = 3, the 7 lines of the PG(2, 2) are also
the hyperplanes of this 2-dimensional projective space.

Consider next the first storage scheme in Figure 3 with four
replicas of a and four replicas of b. In the 8-multiset induced
by this scheme, there are only two different points (1, 0) and
(0, 1) and the multiplicity of each is four. Finally, consider
the last storage scheme in Figure 3 with three replicas of a,
three replicas of b and two independent linear combinations
a + b and a + αb. In the 8-multiset induced by this scheme,
the points are (1, 0) and (0, 1), each with multiplicity three
and (1, 1) and (1, α) each with multiplicity one.

B. Geometric Interpretation of the Service Rate Region
Problem

The following proposition plays a key role in deriving upper
bounds on cumulative rates that can be simultaneously served
by linear codes. In particular, it provides an upper bound
on the sum of each subset of rates in any demand vector
(λ1, · · · , λk) in the service rate region of the system. In other
words, it shows that the service rate region lies inside a region
defined as the intersection of a finite number of half spaces
(derived upper bounds).

Proposition 5: For a system using an [n, k] code with
n-multiset G in PG(k − 1, q), consider any arbitrary demand
vector (λ1, · · · , λk) in its service rate region. Then, it holds
that

∑

i∈I
I⊆{1,...,k}

λi ≤ µ · |G \ H|

where H is a hyperplane of PG(k − 1, q) not containing ei

for all i ∈ I.
Proof: If a vector (λ1, . . . , λk) is in the service rate region,

then it holds that simultaneously the cumulative request rate of∑
i∈I

I⊆{1,...,k}
λi for all objects i ∈ I is served by the system.

On the other hand, since the hyperplane H does not contain
any unit vector ei for all i ∈ I , the points contained in H∩G,

on their own, are not able to generate ei for all i ∈ I . Thus, for
each i ∈ I, whatever the used recovery sets for object i are,
in order to serve the request rate λi for object i, some points
outside of H with the cumulative service rate of (at least) λi

must be used. Thus, in order to satisfy the cumulative request
rate of

∑
i∈I

I⊆{1,...,k}
λi for all objects i ∈ I, the cumulative

service rate of the points in G that are outside of H must be
at least

∑
i∈I

I⊆{1,...,k}
λi. !

C. Using Geometric Approach to Characterize Service Rate
Regions

The geometric approach equipped with Proposition 5 can be
used to obtain the service rate region of Simplex and Reed-
Muller codes. The service rate region of the binary [2k − 1, k]
Simplex code and binary [2k−1, k] first order Reed-Muller
code are given in [33]. To illustrate the method, we here
provide two examples: binary [7, 3] Simplex and [8, 4] first
order Reed-Muller codes.

1) Simplex Codes: In this section, as an example, we show
how the service rate region of the [7, 3] Simplex code is
characterized using the geometric approach. Consider a stor-
age system using the [7, 3] Simplex code. Without loss of
generality, assume that µ = 1. Let (x1, x2, x3) denote a
generic non-zero vector in F3

2. Observe that the hyperplane
H given by

∑3
i=1 xi = 0 (namely, the hyperplane containing

the points (0, 1, 1), (1, 0, 1) and (1, 1, 0) in the Fano plane
depicted in Figure 7-b) does not contain any unit vector ei,
i ∈ {1, 2, 3}. Thus, for any demand vector λ = (λa, λb, λc)
in the service rate region, applying Proposition 5 results in
λa + λb + λc ≤ 4. The reason is that the hyperplane H does
not contain the points (0, 0, 1), (0, 1, 0), (1, 0, 0) and (1, 1, 1).
Thus, so far we have shown that the service rate region is
contained in the polytope P =

{
λ ∈ R3

≥0 :
∑3

i=1 λi ≤ 4
}

.
It is interesting to note that, in the recovery graph, that the
vertices corresponding to the points outside of H form a
minimal vertex cover (see Figure 7-b).

For the achievability proof, since the service rate region is a
convex subset of R3

≥0, we only need to show that the vertices
of the polytope P , i.e., (0, 0, 0), (4, 0, 0), (0, 4, 0) and (0, 0, 4),
are in the service rate region of this storage system. To see that,
we observe that there are four disjoint recovery sets for each
data object (see Figure 2 for object a), and thus the request
rate of 1 can be assigned to each of these recovery sets without
violating the node capacity constraints.

2) First-Order Reed-Muller Codes: To show a sketch of
the proof in characterizing the service rate region of the first
order Reed-Muller code, we consider a non-systematic [8, 4]
first order Reed-Muller code. Consider a system where four
objects a, b, c, and d are stored across 8 servers using the
first order Reed-Muller code RM2(1, 3) with a non-systematic
generator matrix as:

G =





1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1





Authorized licensed use limited to: Emina Soljanin. Downloaded on April 12,2022 at 13:39:56 UTC from IEEE Xplore.  Restrictions apply. 



7956 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Fig. 8. Recovery sets for data object a in the [8, 4] Reed-Muller code.

Fig. 9. Recovery sets for data object d in the [8, 4] Reed-Muller code.

which encodes [a, b, c, d] into [a+b+c+d, a+b+d, a+c+d,
a + d, b + c + d, b + d, c + d, d]. The recovery sets for object
a are shown in Figure 8. The recovery sets for objects b and
c can be obtained similarly to those for a. The recovery sets
for object d are shown in Figure 9.

Let (x1, . . . , x4) be a non-zero vector in F4
2. Observe that

the hyperplane H given by
∑4

i=1 xi = 0 does not contain
any unit vector ei, i ∈ [4]. The hyperplane H does not
contain the 4 column vectors (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
and (0, 0, 0, 1) of the generator matrix. Thus, for any demand
vector λ = (λa, λb, λc, λd) in the service rate region, applying
the Proposition 5 results in the constraint below

λa + λb + λc + λd ≤ 4. (12)

On the other hand, we know that the unit vector ei for
all i ∈ {1, 2, 3} is not a column of the generator matrix which
means that files a, b, and c do not have any systematic recovery
sets. Thus, for files a, b, and c, the cardinality of all recovery
sets is at least two, and the minimum system capacity utilized
by λi for i ∈ {a, b, c} is 2λi. For file d, since all columns of
the generator matrix have one in the last row, the cardinality of
every recovery set is odd. Hence, for file d, the unit vector e4,
which is a column of G, forms a recovery set of cardinality
one, while all other recovery sets have cardinality at least
three. Thus, the minimum system capacity utilized by λd for
λd ≤ 1 is λd and for λd ≥ 1 is 1 + 3(λd − 1) = 3λd − 2.
Since the system has 8 servers, each of service capacity 1,
based on the capacity constraints, the total capacity utilized
by the requests for download must be at most 8. Thus, any
vector (λa, λb, λc, λd) in the service region must satisfy:

{
2(λa + λb + λc) + λd ≤ 8 for λd ≤ 1
2(λa + λb + λc) + 3λd − 2 ≤ 8 for λd ≥ 1

(13)

Fig. 10. Service rate region of the [8, 4]2 first order Reed-Muller code in
λa − λd plane with λb = λc = 0 where the constraints (12) and (13) are
respectively shown with the red line and the green line.

We showed that the service rate region lies inside the
polytope T =

{
λ ∈ R4

≥0 : λ satisfies (12), (13)
}

. Suppose
λb = λc = 0. Figure 10 depicts the service rate region of this
storage scheme in the λa − λd plane wherein (12) and (13)
are respectively shown with the red line and the green line.

For the achievability proof, one needs to provide con-
structions only for the vertices of polytope T in λa − λd

plane. The demand vector (λa, λb, λc, λd) = (4, 0, 0, 0) can
be achieved by assigning the request rate of 1 to each of the
4 disjoint recovery sets of file a shown in Figure 8. For the
(λa, λb, λc, λd) = (2, 0, 0, 2), the λa = 2 can be served by
assigning the request rate of 1 to each of the recovery sets
(b+d, a+b+d) and (b+c+d, a+b+c+d), and λd = 2 can
be satisfied by assigning the request rate of 1 to the systematic
recovery set (d), and the request rate 1 to the recovery set
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(a + d, c + d, a + c + d) of file d. For the demand vector
(λa, λb, λc, λd) = (0, 0, 0, 10

3 ), the λd = 10
3 can be served

without violating the node capacity constraints by assigning
the request rate of 1 to the systematic recovery set (d), and
the request rate of 1

3 to each of the 7 recovery sets of size 3
for file d, depicted in Figure 9.

D. Summary

In this section, we proposed a geometric technique for
addressing the problem of characterizing the service rate
region of a given linear storage scheme without explicitly
listing the set of all possible recovery sets. By leveraging the
proposed geometric technique, initial steps were taken towards
deriving upper bounds on the service rate regions of some
parametric classes of linear codes. In particular, upper bounds
on the service rate regions of the binary first order Reed-Muller
codes and binary simplex codes, as two classes of codes which
are important in both theory and practice, were derived. Then,
it has been shown that how the derived upper bounds can be
achieved. Utilizing the geometric technique to investigate the
service rate regions of other common coding schemes such
as MDS codes, second order Reed-Muller codes, non-binary
Reed-Muller codes, and non-binary simplex codes are amongst
the most natural future directions.

VIII. ONGOING AND OPEN PROBLEMS

This paper presented several initial fundamental results and
techniques concerning the service rate region of a distributed
coded storage system. We summarised the findings at the
end of each section. Table I outlines the results concerning
particular code classes. The table also indicates the limita-
tions of this early work. Thus, many direct extensions and
continuations within the described thrusts are apparent. Some
compelling problems of varying degrees of difficulty include,
e.g., extending the results to other classes of codes.

There are many related problems just outside of the
main scope of the paper. This section presents a sum-
mary of connected ongoing and open problems along two
threads: 1) performance analysis of storage schemes, which
requires queueing and combinatorial optimization expertise,
and 2) designing the storage schemes to maximize the service
rate region, which requires information and coding theory
expertise. Since each of these problems would greatly benefit
from jointly solving both the performance analysis and code
design problems, we believe that these directions will bridge
deeper connections between these communities.

A. Performance Analysis and Networking Problems

1) The Coverage of a Rate Region: The service rate region
of a given storage scheme covers the set of achievable
demand vectors λ = (λ1, λ2, . . . , λk). Since this is a multi-
dimensional region, we need a way to map it to a single scalar
metric that can be used to objectively compare two service rate
regions. One candidate is the volume of the k-dimensional
region. Instead, we propose a more natural candidate metric
– we consider a probability distribution fΛ(λ) of demand

vectors and measure the fraction of requests that are covered
by the service rate region. The coverage or the covered mass
of a rate region S is defined as

M(S, fΛ) =
∫

λ∈S
fΛ(λ)dλ. (14)

For example, in Figure 11 we compare the coverage of the
replication and MDS coding storage schemes for k = 2 objects
stored on n = 4 servers. The heatmap shows the probability
distribution fΛ(λ) of the demand vectors, where one of a or
b is likely to be in high demand, but both objects are not in
high demand simultaneously. The MDS coded system has a
coverage of MMDS = 0.91, which is larger than the coverage
MRep = 0.82 of the replicated system.

Analyzing the service rate regions of well-known classes of
codes for typical demand or content popularity distributions
such as the Zipf distribution is an open performance analysis
problem. It will provide valuable insights that can be used
in designing codes that provide maximum coverage with the
minimum number of nodes.

2) Analyzing the Cost of Serving Requests: Serving a down-
load request collaboratively by two or more servers (some of
which store encoded objects) occupies more system resources
than serving it at a single server. For instance, accessing a
from b and a + b requires downloading two objects to access
one object. An interesting research direction is to study this
cost quantitatively. In the following we formally propose the
cost associated with a given storage scheme.

Let us define the service cost of a single request as the
number of objects that are downloaded in order to satisfy the
request, which is the size of the corresponding recovery group
Rj . We define the normalized service cost C(λ) of a demand
vector λ as the cumulative transfer rate required by the servers
to serve this demand, divided by the sum of the elements of λ,
that is,

C(λ) =
∑k

i=1

∑ti

j=1 |Rj | · λi,j
∑k

i=1

∑ti

j=1 λi,j

, (15)

where λi,j is the portion of the request rate λi allocated to
the jth repair group Rj , whose size is |Rj |. The service cost
C(λ) represents the amount of data that is downloaded per
request, and it depends on the underlying coding scheme and
the request allocation scheme used to split requests across
recovery groups. For example, if we use replication coding,
then the size of each recovery group |Rj | = 1, and thus,
C(λ) = 1. With erasure coding, a request may need to
download two or more coded objects to recover one data
object, and thus we will incur a higher cost. Consider again the
example of serving the demand with λa = 1.5µ and λb = 0.5µ
would cost 2µ in the replicated system (a, a, b, b) and 4µ
in the MDS coded system (a, b, a + b, a + 2b). Normalizing
these by the demands, we get the cost C(λ) = 1 for the
replicated system and C(λ) = 1.6 for the MDS-coded system.
Figure 12 shows a heat map of the normalized service cost
for all demand vectors within the service rate region of two
systems.

An open question for future research is to compare the
expected costs of different service rate regions. We can again

Authorized licensed use limited to: Emina Soljanin. Downloaded on April 12,2022 at 13:39:56 UTC from IEEE Xplore.  Restrictions apply. 



7958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Fig. 11. The demand rate distribution shown as a heatmap for (left) replication system (a, a, b, b) and (right) MDS coded system (a, b, a + b, a + 2b). Blue
lines show the boundary of system’s service rate region. Covered mass is the cumulative probability mass for the demand vectors that lie within the system’s
service capacity region.

Fig. 12. The normalized service cost C(λ) shown as a heat map for (left) replicated system (a, a, b, b) and (right) MDS system (a, b, a + b, a + 2b). The
normalized service cost at each point in the service rate region is defined as the number of bits that need to be downloaded per data bit. For the replicated
system, the cost is C(λ) = 1, whereas for the MDS system that cost varies from 1 to 1.6 depending on the skewness of the object demands (λa, λb).

consider a probability distribution fΛ(λ) of demand vectors
and measure the fraction of requests that are covered by the
service rate region. Then the expected service cost of a rate
region S is C(S, fΛ) =

∫
λ∈S C(λ)fΛ(λ)dλ. We conjec-

ture that for imbalanced demand distributions, where several
objects are not in high demand at the same time, the coded
systems will incur little additional cost, but will have higher
coverage.

Instead of measuring the service cost in terms of the
amount of data accessed to serve one request as captured by
C(λ), an alternate metric is to consider the total computing
time spent serving each request, as considered in [12], [25],
[67]–[69]. These papers identify regimes where coded data
access or computing incurs a lower total computing time than
replicated systems.

3) Latency Analysis of Coded Systems: In this paper,
we focused on the service rate region, that is, the demand
vectors λ = (λ1, λ2, . . . , λk) that can supported by the system
while ensuring that the total request rate assigned to each
server does not exceed its capacity µ. We did not consider the
delay experienced by each request. The request splitting poli-
cies proposed in this paper such as the water-filling algorithm
are throughput-optimal, and not necessarily delay-optimal.
Open problems for future research include 1) analyzing the
latency experienced by a user accessing data from coded

distributed system and 2) designing delay-optimal policies
for splitting requests across recovery groups, which is much
harder than designing throughput-optimal policies.

The first problem of analyzing the latency of accessing
content from coded distributed systems, specifically MDS and
availability coded systems, has been previously considered
in [12]–[14], [22], [70], [71]. However, these works consider
redundant requests, that is, each request is sent to multiple
recovery groups and the request is considered served when
the data is successfully accessed from any one of the groups.
They show that the resulting system is a generalized fork-join
queueing system, whose analysis is a famously hard problem
in queueing theory [72]–[74], and find bounds on the expected
latency. Besides the fork-join queue model, several approaches
like block-t and probabilistic scheduling have been developed
to remove some of the key assumptions in latency analy-
sis [75], [76]. Analyzing the latency of hybrid systems that
use a combination of replication and erasure coding, both with
and without sending redundant requests to multiple recovery
groups, as proposed in this paper is a pertinent open problem.

The second problem of designing delay-optimal policies,
a highly challenging problem, requires striking the perfect
balance between using several recovery groups in parallel to
serve a set of incoming requests and queueing more requests
for sequential processing at smaller recovery groups. Our
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throughput-optimal allocation policies such as water-filling are
biased towards the latter strategy as they give higher priority
to sending requests to smaller recovery groups. An alter-
native approach is to design policies that perform the best
possible load balancing of requests across the nodes, that
is, minimize the cumulative request rate assigned to the
maximally loaded node, as recently considered in [77]. Such
load-balancing strategies can give better latency performance
than the throughput-optimal strategies considered in this paper.

4) Expanding the Service Rate Region via Redundant
Requests: In this paper we assume that each data access
request is sent to exactly one of its recovery groups. Instead,
assigning requests to more than one recovery groups, waiting
for any one copy to be downloaded and canceling the out-
standing requests can reduce the latency experienced by that
request. But too much redundancy can increase the waiting
time in queue for subsequent requests. Several recent works
study queueing systems with redundancy [12], [17], [18],
[67], [70], [71], [78]–[82]. Some of these works [12], [14],
[78] observe that when the distribution of the service time
of each request is heavier than an exponential distribution
(in particular, new-shorter-than-used distributions such as the
hyper-exponential distribution) then redundancy expands the
achievable rate region beyond the sum capacity of individual
servers. That is, a system of n servers with capacity µ
requests per time each can support a demand higher than
nµ. This non-intuitive phenomenon has been recently studied
in the context of replication of jobs in computing systems
in [68], [83]–[85]. However, understanding the expansion of
the service rate region due to heavy-tailed and new-shorter-
than-used service times for erasure coded distributed systems
such as those considered in this paper is an open question.
The effect of heavy-tailed distributions on the latency of jobs
with many parallel tasks, where straggling tasks are replicated
is also previously studied in [69], [86]–[88], albeit without
considering queueing of tasks.

B. Coding Theory and Data Allocation Problems

Next we discuss some open problems from the perspective
of code design or data allocation to achieve the best possible
service rate region with minimum number of storage nodes.

1) Designing Codes to Achieve a Rate Region With Desired
Properties: In Section III-B, we introduced the problems of
designing the coded storage schemes to maximize the volume
of the service rate region with a given number of servers or
cover a given service rate region with the minimum number
of servers. Note that the service rate regions of two generator
matrices G and G′ of the same linear code might not be the
same. Depending on the application, one may be interested
in using a particular code with some desired properties. Then,
these problems can be interpreted as finding the best generator
matrix of a code with respect to the service rate region. Also,
depending on the application, a metric different from the
volume of the region might be of interest to a system designer.
An alternative metric of practical interest is to optimize for
a given number of servers n and demand distribution fΛ is
the fraction M(S, fΛ) of the demand distribution fΛ covered

by the region, as defined in (14). Using this metric can
present some interesting challenges in designing the coding
schemes. For example, consider two objects a and b whose
demands are negatively correlated, that is, when a is popular,
b is not popular, and vice-versa. Then encoding a and b
together to form the coded object a + αb will give better
coverage than encoding a+αc, where c’s demand is positively
correlated with a, that is, c and a becomes popular at the same
time.

Another design objective can be to achieve the tail latency
Pr(T > τ) ≤ δ for a given demand distribution fΛ, deadline
τ and tail probability δ with the minimum number of servers.
For commonly observed demand distributions in which only a
few objects are in high demand simultaneously, we expect that
the erasure coded storage schemes to significantly outperform
the replication based storage schemes.

2) Data Striping Across Multiple Nodes and Multiple
Objects Per Node: For simplicity in introducing the new
concept service rate region, in this paper, we treat each data
object as an atomic unit such that the k data objects are used
as k information symbols when creating encoded versions of
the objects. We also assume that each of the n servers has the
capacity to store exactly one data object. Distributed storage
systems often employ data striping or sub-packetization [2],
that is, dividing object a is divided into stripes a1, a2, …, as,
which are used as source symbols, and encoded and stored
across different nodes. Spreading an object across more nodes
can allow faster parallel reads of large objects.

However, there are two possible drawbacks of parallelism.
First, its impact on service rate region is not straightforward.
Request service times might go down super linearly with
the reduced data size. That is, if downloading a takes t
seconds, downloading each ai where i = 1, . . . , s might take
longer than t/s. In this case, parallelism might lead to a
smaller service rate region. Second, parallel download requires
accessing multiple nodes simultaneously. Failure or slowdown
at any one of these nodes can bottleneck the data access and
increase latency. Removing the assumption of atomicity of
each data object and generalizing the concept of service rate
region to characterize the rate region of distributed storage
with data striping is an open problem for future research.

Even without data striping, each node may store multiple
data objects, unlike our assumption that each server has the
capacity to store exactly one data object and the entire object
is accessed by each request. In this setting, designing optimal
storage of objects so as to maximize the service rate region is
an interesting open problem. In particular, as observed in [77],
minimizing the overlap between recovery groups of different
objects could lead to a storage allocation that maximizes the
service rate region. One possibility is to use expander graphs
to design such storage allocation schemes.

Sub-packetization can also possibly make the system’s
service rate region larger. Whether it actually gets larger is
not obvious. The answer depends on the scaling of the request
service times with the object sizes. We elaborate on this
connection below with an example. It is worth to note here
that, in real storage systems (e.g., Google file system), object
sizes are experimentally tuned to a value that is not too small
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Fig. 13. (a) The recovery graph of the [7, 3] Simplex code. (b) A fractional matching for demand vector (1, 3, 0). (c) An integral matching for demand
vector(1, 3, 0).

in order to keep the system level overheads small compared
to the actual time spent while fetching data from the nodes.

Recall that we define the node capacity as the maximum
number of requests that can be served by a node per second.
Suppose now we divide each object into two equal chunks
and store them across separate servers. An object request will
now be served by splitting it into two chunk requests and then
assigning them to the respective servers. Obviously, the time
to download a single chunk from a server, t1, will be less
than the time to download an object (two chunks), t2. Note
that, due to the system level overheads, download time is not
a linear function of the data size. That is why, we cannot
conclude that t1 = t2/2. Note also that, to download an object,
the system now needs to serve two chunk requests instead
of one object request. This overall means that downloading
objects by fetching chunks from multiple servers can lead to
consuming more system capacity than downloading the whole
object from a single server. It is therefore not clear whether
dividing objects into chunks can lead to larger service rate
region.

3) Integral Service Rate Region: We have defined the
integral service rate region as a set of demand vectors
(λ1, · · · , λk) for which there exists a valid allocation5 {λi,j :
1 ≤ i ≤ k, 1 ≤ j ≤ ti} such that each λi,j is an integer (see
Sec. VI-E). Recall that λi =

∑
1≤j≤ti

λij for 1 ≤ i ≤ k, and
thus, all points (λ1, · · · , λk) in the integral service rate region
have all integer components. An important open problem
asks whether an integer component point (λ1, · · · , λk) in the
service rate region is always in the integral service rate region,
i.e., whether for an integer component point (λ1, · · · , λk) in
the service rate region, there always exists a valid allocation
{λi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ti} such that each λi,j

is a non-negative integer. Confirming that this is true tells
us (cf. Proposition 4) that an [n, k] code whose service rate
region includes the points satisfying

∑k
i=1 λi ≤ t for some

positive integer t is an (n, k, t) batch code. Thus the service
rate region problem can be seen as a generalization of the
batch code problem. The potentially more general service rate
region problem may be easier to solve than the corresponding

5An allocation is valid if it satisfies (2), (3) and (4).

batch code problem. For example, proving that the binary
[2k − 1, k] Simplex code is a (2k − 1, k, 2k−1) batch code
is fairly involved [58], while deriving its service region
is straightforward by using either the combinatorial or the
geometric techniques, as we did above. Another unexplored
direction is using the techniques proposed in this paper to
derive the batch properties of binary Hamming and Reed-
Muller codes, previously considered in [89]).

Next, we consider an example to illustrate the problem of
integral service rate region that we just defined. Also, we want
to point out an interesting question concerning the matching in
graphs that, to the best of our knowledge, has not been asked
before.

Consider the binary [7, 3] Simplex code and its recovery
graph as shown in Figure 13-(a). We are interested in serving
the demand vector (1, 3, 0). An easy way to see that this
vector is in the service rate region is to consider the fractional
matching on the recovery graph that assigns weight 1/4 to all
a recovery edges, weight 3/4 to all b recovery edges, and 0 to
all c recovery edges, as shown in Figure 13-(b) and instructed
by Theroem 3. Alternatively, we can satisfy this demand with
an integral service where file a is downloaded solely from
the node storing a, while file b is downloaded from the node
storing b and the repair groups c & b+c and a+c & a+b+c,
as shown in Figure 13-(c). The matching problem asks the
following: Given an [n, k] code recovery graph and a matching
such that the for object i, the sum of weights on its recovery
edges is an integer λi, is there an integral matching with λi

recovery edges for object i, for all 1 ≤ i ≤ k?
The answer to this question is yes for the binary Simplex

codes. Since these codes are batch codes [58], the claim fol-
lows easily from the results in Section VI. Moreover, an algo-
rithm is presented in [56] that takes an integer demand vector
(λa, λb, λc) in the service rate region of the [7, 3] Simplex
code and produces an integral matching with λa a-recovery
edges, λb b-recovery edges, and λc c-recovery edges (see
[56, Algorithm 1]). This algorithm can be easily extended to
the binary [15, 4] Simplex code, but a generalization to an
arbitrary [2k − 1, k] Simplex code is an open problem.

4) Asynchronous Service Rate Region: In systems serving
multiple users, it is natural to ask the following: If a user
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leaves the system, can another user interested in downloading
different objects take the freed place? This question is of
interest, e.g., whenever different queries take different times to
process. We refer to storage schemes that support such dynam-
ics as asynchronous, following [90] which has introduced this
question and the terminology in connection with batch codes.

Consider the [7, 3] Simplex code, and observe that point
(λa, λb, λc) = (1, 3, 0) belongs to its service rate region, and
can be achieved by assigning the entire λa = 1 to the node
storing a, and splitting λb = 3 evenly between the nodes
storing b, c & b + c, and a + c & a + b + c. Suppose that
all users downloading object a leave the system. Can then
λc = 1 users take their place? Although point (λa, λb, λc) =
(0, 3, 1) belongs to the service region, the answer is no because
the only available servers in the system are those storing
a and a + b. Consider again the [7, 3] Simplex code and
point (λa, λb, λc) = (1, 3, 0), but this time the demands are
split shown in Figure 13-(b), and described in the proof of
Theroem 3 for the general case. Note that now the departure
of all users downloading object a frees the system to serve
any new demand vector as long as it belongs to the service
rate region.

There are two natural questions: 1) Are there allocation
schemes that are scalable to user departures/arrivals? 2) What
is the service rate region of a storage scheme if we require
that each point be not only achievable but also achievable
by scalable allocations? The latter question was addressed
for batched codes in [90], where it was found out that,
e.g., Simplex codes can serve any multiset of size 2 in an
asynchronous way, as opposed to any multiset of size four
without this requirement.

IX. CONCLUDING REMARKS

We introduced the service rate region as a new aspect in
the design of distributed storage and computing systems. The
service rate region of a storage system storing k files is the
set of request demand rates λ = (λ1, . . . , λk) that can be
supported by a set of n servers, each of which has a limited
service capacity µ.

Previously considered design considerations for distributed
storage include reliability against node failures, repair effi-
ciency, data locality, and latency. Codes that optimize these
aspects may not support a large volume of access requests,
especially when different objects have different demands.
The service rate region can capture this aspect and enable
the design of storage schemes that maximize the volume of
heterogeneous data access requests that can be satisfied with a
minimum number of resources. We highlighted two problems
of interest: 1) optimal splitting of the requests for each object
across its recovery groups to maximize the service rate region
and 2) design of the underlying coding scheme to achieve a
service rate region with desired properties.

Through preliminary work on the problem of optimal
request splitting, we show how the notion of the service
rate region employs diverse mathematical techniques such as
water-filling, geometric representations of codes, and combina-
torial optimization over graphs. In particular, we characterize

the rate regions of maximum distance separable (MDS) codes,
Reed-Muller codes, and Simplex codes using three different
techniques: water-filling, combinatorial and geometric repre-
sentations.

Our initial work on the thread of designing coding schemes
to maximize the service rate region with a given number of
servers provide the novel insight that codes that are a hybrid of
replication and coding can achieve the best service rate region.
Further exploration of code design for service rate region
maximization can help discover fundamental connections with
existing classes of codes such as batch codes and availability
codes. We hope that the open problems presented in this
paper will result in interdisciplinary interactions between the
networking and coding theory communities and result in
practical insights to boost the service capacity of distributed
storage and computing systems.
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Symp. Inf. Theory, Jul. 2013, pp. 902–906.
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