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Abstract— Distributed systems operate under storage access
and download service uncertainty. We consider two access mod-
els. In one, a user can access each storage node with a fixed
probability, and in the other, a user can access any fixed-size
subset of nodes. We consider two download service models. In the
first (small file) model, the time to transmit file data is negligible
compared to the overall average download time. In the second
(large file) model, the download time scales with the amount
of downloaded data. The performance metric is the system’s
service rate. For a fixed redundancy level, the systems’ service
rate depends on the allocation of coded chunks over the storage
nodes. Since finding the general optimal allocation is prohibitively
hard, we consider quasi-uniform allocations, where coded content
is equally spread among a subset of nodes. The question we
address asks what the size of this subset (spreading) should be.
We show that concentrating the coded content to a minimum-size
subset is universally optimal for the small file model. However, for
the large file model, the optimal spreading depends on the system
parameters. These conclusions hold for both access models.

Index Terms— Distributed storage systems, service rate,
optimal allocations, erasure coding, redundancy.

I. INTRODUCTION

D ISTRIBUTED storage systems (DSSs) are a vital part
of computing and content providing environments, such

as cloud data centers and edge systems. Their purpose is to
ensure reliable storage and quick access of data by end-users
or computing processes. Today, both goals are commonly
addressed by storing data redundantly. The DSS performance
must be robust to various forms of uncertainty. Most of the
current work addresses internal uncertainty (e.g., straggling) in
operations of the system itself (see, e.g., [3]–[6]). This paper
considers the uncertainty in both network accessibility and
download services, which are common in edge computing [7].
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We address the following network access uncertainties,
as considered in [8] and the follow-up work. 1) Users may
only be able to access a random subset of nodes. Such users
can retrieve a file if the storage content of the accessed nodes
suffices for file decoding. 2) Even when users have access to
all nodes, a node may not respond. Such users can retrieve the
file if the storage content of the responding nodes suffices for
file decoding. We adopt a storage model of [8], where files are
split into chunks, and redundancy is introduced at some fixed
level, determined by the storage budget that the DSS has for
the file. The total storage is the only constraint. There is no
limit on how many chunks a particular node can store.

We consider two download service models. In the first
download model, the time it takes to transmit file data is
negligible compared with the overall average download time.
Thus the download time is a random variable that only depends
on the storage system parameters. We refer to this model as
the small file scenario. In the second download model, there
is randomness associated with both the file transmission and
inherent system’s operations. Thus the download time scales
with the amount of data being downloaded. We refer to this
model as the large file scenario. We adopt two common service
and scaling models used in the literature. For more detail and
other models, see [9], [10] and references therein.

Two important DSS performance measures have been con-
sidered in the literature [1], [2], [8], [11]–[14]. One is the prob-
ability of successful data recovery and the other is the average
service rate. Finding these quantities has been challenging, and
the optimal allocations are known only in some special cases.
Some versions of this problem are related to a long-standing
conjecture by Erdős on the maximum number of edges in
a uniform hypergraph [15]. In general, both measures are
of interest and should be simultaneously taken into account.
Increasing the chance of successful download, while desirable,
should not come at the cost of intolerable delivery delay.
Moreover, in practice, we may want to partially sacrifice a
successful but tardy data delivery to some users to ensure that
other users, that can receive the data, are served fast. This
paper focuses on the service rate of a DSS. Service rate is an
emerging increasingly important performance measure, which
addresses stability in distributed systems with redundancy
under uncertainty in service request arrivals [16]–[22].

For a fixed redundancy level, the system’s service rate is
determined by the allocation of coded chunks over the storage
nodes. We consider quasi-uniform storage allocations, where
coded content is uniformly spread among a subset of nodes,
and ask what the size of this subset (spreading) should be
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Fig. 1. A DSS with N nodes with quasi-uniform allocation. Each node stores either k/α or 0 data blocks of interest to some users, and thus only ϕ = mα
nodes contain data blocks. The WiFi sign indicates that the node is able to serve the user. Note that that is independent of whether or not the node has been
accessed or has the data. Here, three nodes are successfully accessed, but only two of them have (coded) data blocks. One of the accessed nodes has data
blocks but is not able to serve the user.

to maximize the expected download service rate. We con-
sider two service time models: scaled exponential service
time and shifted exponential service time. These and other
models are considered in the context of the server-dependent
scaling and data-dependent scaling in [9], [10]. We show that
concentrating the coded content to a minimum-size subset is
universally optimal for the small file model. However, for the
large file model, the optimal spreading depends on the system
parameters. These conclusions hold for both access models.

The paper is organized as follows: In Sec. II, we present
the system architecture and the models for the service time
and rate. In Sec. III, we state the problem and summarize the
contributions of this paper. In Sec. IV, V, and VI, we character-
ize the DSS service rate and determine the optimal allocation
for three common service time distributions and two different
access models. Conclusions are given in Sec. VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Storage Model

A file consisting of k blocks is redundantly stored over a
DSS with N storage nodes. The file is encoded by a maximum
distance separable (MDS) code into mk (m ∈ N) encoded
blocks so that any k of them are sufficient to recover the file.
The mk encoded blocks are partitioned into N subsets Si’s
for i ∈ {1, . . . , N} where |Si| = si, and thus

∑N
i=1 si = mk.

We refer to such partitioning as allocation. The si blocks in
Si are stored at the storage node i. Note that 0 ≤ si ≤ k since
storing more than k blocks on a node is unnecessary.

Optimizing general storage allocations is computationally
difficult, see [11]. Thus we focus on quasi-uniform alloca-
tions [12], where a node can either store a constant number
of blocks k/α (α ∈ N) or no blocks at all. We will refer to
such allocation as α quasi-uniform allocation. Fig. 1 depicts an
example of α quasi-uniform allocation on N nodes. We refer
to a quasi-uniform allocation where α = 1 as the minimal
spreading allocation [11]. Note that for the minimal spreading
allocation, the k file blocks are simply replicated over some
m storage nodes. Similarly, an allocation with α = N/m is
referred to as a the maximal spreading allocation since the file
chunks are spread over all N nodes in the system.

B. Data Access and Delivery Models

Fixed-size Access: In this model, the download request is
forwarded to a random r-node subset of the N storage nodes.

Therefore, since the data is MDS encoded, the access to a
given r-subset A results in the successful recovery of the data
iff the nodes in A jointly contain at least k coded blocks:

∑

i∈A

si ≥ k. (1)

Probabilistic Access: Here, each download request is for-
warded to all N nodes. However, a node does not respond with
probability p. Let A be the set of nodes that are successfully
accessed. Then the condition for data recovery is again (1).
In this case, 1 ≤ α ≤ N

m . In this access model, |A| is a
binomial random variable distributed as Bin(N, p).

Regardless of the access model, for an accessed subset of
nodes A, we denote the number of nodes containing data by
ϕ(A). Observe that ϕ(A) ≤ |A|. For instance, in Fig. 1, three
nodes (|A| = 3) are accessed while only ϕ(A) = 2 of them
have data. We assume a request is simultaneously served by
all nodes in the accessed set A, where each node takes some
i.i.d. random time to deliver its data blocks. In the fixed-size
access model, |A| = r, while in the probabilistic access model,
|A| is a Binomial random variable between 1 and N . The file
can be reconstructed when the accessed nodes jointly deliver
k encoded blocks. We assume that a node has to deliver all
its blocks for the download to count. For an α quasi-uniform
allocation, the download request can be served iff ϕ(A) ≥ α,
and as soon as all blocks are downloaded from any α out of
ϕ(A) nodes. Therefore, the average service time for the file,
Ts(α|ϕ(A)), is the expected value of the α-th order statistics
of ϕ(A) waiting times at the storage nodes.

C. Download-Time Models

As discussed in the introduction, depending on how the data
transmission time compares with the average time the system
takes to fulfill the request, we consider the small and large file
models. Here, small and large are informal descriptive terms.
The precise mathematical models are stated next.

1) Small File Model: When a task is assigned to a storage
node, there is some random waiting time before the data trans-
mission starts (needed, e.g., for a general handshake and/or
acquiring the requested content). We assume the waiting time
follows an exponential distribution. Compared to the mean of
this distribution, the data transmission time is negligible.

The waiting times at nodes are independent ran-
dom variables, each following an exponential distribution
Exp(µ) with mean 1/µ. Thus the average service time
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Ts(α|ϕ(A)) = 1
µ(Hϕ(A) − Hϕ(A)−α), where Hα =

∑α
i=1 1/i

is the α-th harmonic number [23]. The corresponding service
rate achieved by the nodes in A (with ϕ(A) > α nodes
containing data) is

µs(α|ϕ(A)) =
1

Ts(α|ϕ(A))
=

µ

Hϕ(A) − Hϕ(A)−α
. (2)

It is not hard to see that

µs(α|ϕ(A)) ≤ µϕ(A). (3)

2) Large File Model: Here the download time scales with
the number of chunks being downloaded. We consider two
distribution/scaling models for the service time: scaled expo-
nential and scaled-shift exponential.

Scaled Exponential Service Time: We assume that a node
storing the whole file delivers all of its blocks in a random
time, exponentially distributed with the mean 1/µ, and that a
node storing 1/α fraction of the file delivers all of its blocks
in the random time exponentially distributed with the mean
1/(αµ). For this model, by applying the order statistics for
exponential distribution, we have Ts(α|ϕ(A)) = 1

αµ (Hϕ(A) −
Hϕ(A)−α), where 1/(αµ) comes from the service rate scaling
discussed above. The corresponding service rate from set A is

µs(α|ϕ(A)) =
αµ

Hϕ(A) − Hϕ(A)−α
. (4)

It is not hard to see that

µϕ(A) ≥ µs(α|ϕ(A)) ≥ µ(ϕ(A) − α + 1). (5)

Shifted Exponential Service Time: Here the data delivery
consists of two steps: first, the node takes an exponential
random time to process the request; second, it takes a constant
time, proportional to its number of the node’s stored data
blocks, to deliver them to the user. Therefore, the two-step
delivery time for a node storing 1/α fraction of the file can
be modeled by the shifted exponential distribution with rate
µ and the shift parameter ∆/α, denoted by S-Exp(∆/α, µ).
For this model, since shifted exponential distribution is a
combination of a constant and an exponential tail, we have
Ts(α|ϕ(A)) = ∆

α + 1
µ(Hϕ(A) −Hϕ(A)−α). The corresponding

service rate from set A is

µs(α|ϕ(A)) =
αµ

∆µ + α(Hϕ(A) − Hϕ(A)−α)
. (6)

As ϕ(A) ∈ [α, mα], it is not hard to see that

µϕ(A)
∆µ + α

≥ µs(α|ϕ(A)) ≥ αµ(ϕ(A) − α + 1)
∆µ(mα − α + 1) + α2

. (7)

D. DSS Performance Metrics

We consider two key performance metrics: probability of
successful data recovery and average service rate. In general,
both measures are of interest and should be simultaneously
taken into account. However, as we will see below, they are
often maximized by different allocations. In many applica-
tions, increasing the chance of successful download is desir-
able but should not come at the cost of intolerable delivery
delay.

1) Probability of File Recovery: For an α quasi-uniform
allocation, data recovery from this subset is successful iff
ϕ(A) ≥ α. The probability of successful file recovery under
α quasi-uniform allocation is

Ps(α) =
∑

A: i∈A si≥k

P (A) (8)

where P (A) is the probability of accessing A. Note that
the sum goes over all sets A that satisfy the condition (1).
It follows that P (A) =

( mα
ϕ(A)

)(N−mα
r−ϕ(A)

)
/
(N

r

)
for the fixed-size

access and P (A) =
( mα
ϕ(A)

)
(1 − p)ϕ(A)pmα−ϕ(A) for the

probabilistic access.
2) Service Rate: Under an α quasi-uniform allocation,

the service rate µs(α), found by averaging over the conditional
service rates, is

µs(α) =
∑

A: i∈A si≥k

P (A)µs(α|ϕ(A)) (9)

where µs(α|ϕ(A)) is the service rate when the set of accessed
nodes is A, given by (2), (4) or (6). When the set A does not
satisfy the condition (1), we define µs(α|ϕ(A)) = 0.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

N – number of storage nodes (DSS size)
m – mk is number of encoded blocks
A – accessed subset of nodes
ϕ(A) – number of nodes in A containing data
α – mα is the number of nodes with blocks
Ps(α) – probability of successful file recovery
µs(α) – DSS service rate
k – number of block in a file
r – number of accessed nodes (fixed-size model)
p – probability of failed access (probabilistic

model)

System parameters and notations are summarised in the
above list. Our goal is to characterize the DSS service rate
µs(α) for the access and service time models defined in
Sec. II-B and II-C. We are in particular interested in finding
which α maximizes µs(α). Recall that when α = 1, we have
the minimal spreading allocation, and when α = N/m,
we have the maximal spreading allocation. When 1 < α <
N/m, we have an α quasi-uniform allocation.

We conclude that the allocation that maximizes the service
rate µs(α) depends on the model. For the small file model,
the minimal spreading allocation, i.e. α = 1, is always optimal,
while for the large file model, this is not the case and it is
difficult to determine the optimal allocation. We summarize
the regimes where the minimal spreading allocation is optimal
and non-optimal for large files in Table I.

The probability of successful recovery, denoted by Ps(α),
is another important performance metric [11], [12]. Since
Ps(α) and µs(α) may exhibit different trends when varying α,
we also make comparisons between these two metrics in our
numerical analysis to find an overall optimal allocation.

We here put together the relevant results of [1], which
focuses on small files, and [2], which focuses on large files.
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TABLE I

CONDITIONS FOR THE MINIMAL SPREADING ALLOCATION BEING OPTIMAL/NON-OPTIMAL FOR LARGE FILES

Moreover, we compare the results of these papers and those
published in [12], which focuses on the probability of access
rather than the service rate as a performance metric. Further
contributions include the following:

• We provide a new numerical analysis for each access
model for small files to characterize how DSS service rate
and recovery probability change with α under different
r and p.

• We consider several examples for each access model for
large files. They are helpful in better understanding the
allocation problem. We provide an analysis that results
in finding the optimal α in the considered cases.

• We obtain the minimal spreading allocation (non) opti-
mality conditions for large files under each access model.

• We present a new numerical analysis for large files under
each access model to show the tradeoffs between DSS
service rate and recovery probability.

IV. STORAGE ALLOCATION FOR SMALL FILES

For the small file model, we assume the service time at each
node follows an exponential distribution with the mean 1

µ .
The service rate for an accessed set of nodes A is µs(α|A),
where µs(α|A) > 0 if ϕ(A) ≥ α, and 0 otherwise. Thus,
the DSS service rate µs(α) depends on all possible sets A,
which satisfy

∑
i∈A si ≥ k. In the following two subsections,

we determine the µs(α) for the two considered access models.
Some of results in this section were published in [1].

A. Fixed-Size Access Model

For the fixed-size access model and an exponential service
time, the DSS service rate in (9) becomes

µs(α) =
µ(
N
r

)
min(r, mα)∑

ϕ=α

1
Hϕ − Hϕ−α

(
mα

ϕ

)(
N − mα

r − ϕ

)
.

(10)

Using (8), the probability of successful file recovery is

Ps(α) =
min(r, mα)∑

ϕ=α

(
mα
ϕ

)(
N−mα

r−ϕ

)
(
N
r

) . (11)

Here and in the rest of the paper, use ϕ instead of ϕ(A). The
following lemma gives the minimal spreading service rate.

Lemma 1: Under the fixed-size access model with an expo-
nential service time, the service rate of minimal spreading
allocation, i.e. α = 1, is µs(1) = µmr/N .

Proof: From (10), we get

µs(1) =
µ(
N
r

)
min(r,m)∑

ϕ=1

1
Hϕ − Hϕ−1

(
m

ϕ

)(
N − m

r − ϕ

)
.

Notice that when ϕ > mα,
(mα

ϕ

)
= 0. Thus,

µs(1) =
µ

(N
r

)
r∑

ϕ=1

ϕ

(
m

ϕ

)(
N − m

r − ϕ

)

=
µm(
N
r

)
r∑

ϕ=1

(
m − 1
ϕ − 1

)(
N − m

r − ϕ

)
.

Using Vandermonde’s convolution, one can show that∑r
ϕ=1

(m−1
ϕ−1

)(N−m
r−ϕ

)
=

(N−1
r−1

)
. Therefore, µs(1) = µmr

N .

We next find an upper bound on µs(α) for any 2 ≤ α ≤ r
and compare this bound with µs(1).

Lemma 2: Under the fixed-size access model and an expo-
nential service time, µs(α) < µmr

N for 2 ≤ α ≤ r.
Proof: By applying (3) to (10) and using Vandermonde’s

convolution, we arrive at

µs(α) <
µ

α
(N

r

)
min(r,mα)∑

ϕ=α

ϕ

(
mα

ϕ

)(
N − mα

r − ϕ

)

<
µm(
N
r

)
r−1∑

ϕ=0

(
mα − 1

ϕ

)(
N − mα

r − 1 − ϕ

)

=
µm

(N−1
r−1

)
(
N
r

) =
µmr

N
.

Lemmas 1 and 2, give the following theorem on the opti-
mality of minimum spreading (α = 1).

Theorem 1: Under the fixed-size access and exponential
service, the minimal spreading maximizes the service rate.

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 13:58:08 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: DISTRIBUTED STORAGE ALLOCATIONS FOR OPTIMAL SERVICE RATES 6651

Fig. 2. Comparing the service rate µs(α) (upper, cf.(10)) and the successful
recovery probability Ps(α) (lower, cf.(11)) for a range of allocation para-
meters α, under the fixed-size access model. The number of nodes N is 40,
and the number of accessed nodes r is 10. The service time follows Exp(1).
When m ≤ 3, the minimal spreading allocation is optimal for both metrics.
When m = 4, the minimal spreading maximizes the service rate whereas the
maximal spreading maximizes the probability of success recovery.

Numerical Analysis: In Fig. 2, we evaluate (10) and
(11) to see how the DSS service rate µs(α) (upper) and the
successful recovery probability Ps(α) (lower) changes with
the allocation parameter α. We consider a system with N = 40
storage nodes and r = 10 accessed nodes for four different
levels of redundancy m ∈ {1, 2, 3, 4}. In the upper subfigure,
µs(α) reaches its maximum at α = 1, i.e. the minimal
spreading allocation is optimal. When m ≤ 3, µs(α) decreases
with increasing α and approaches 0. When m = 4, µs(α)
reaches its minimum at α = 9. In the lower subfigure, when
m ≤ 3, Ps(α) reaches its maximum at α = 1, thus the minimal
spreading allocation is optimal. When m = 4, Ps(α) reaches
1 at α = 10, i.e. the maximal spreading allocation (α =
N/m) is optimal. From the observations, we conclude that the
minimal spreading allocation is always optimal under the DSS
service rate, which is consistent with the result in Theorem 1.
The optimal allocation under successful recovery probability
is determined by the level of introduced redundancy.

In Fig. 3, we analyze µs(α) vs. α (upper) and Ps(α)
(lower) vs. α for different numbers of accessed node r ∈
{10, 11, 12, 13}. We consider a system with N = 40 storage
nodes and a redundancy level of m = 3. In the upper subfigure,
µs(α) reaches its maximum at α = 1, i.e. the minimal spread-
ing allocation is optimal. µs(α) decreases with increasing α
except for the scenario r = 14. In the lower subfigrue, when
r ≤ 13, Ps(α) reaches its maximum at α = 1, i.e. the minimal

Fig. 3. Comparing the service rate µs(α) (upper, cf. (10)) and the successful
recovery probability Ps(α) (lower, cf. (11)) for a range of allocation para-
meters α, under the fixed-size access model. The number of nodes N is 40,
and the redundancy level m is 3. The service time follows Exp(1). When
r ≤ 13, the minimal spreading allocation is optimal in both figures. When
r = 14, α = 12 allocation maximizes the successful recovery probability.

spreading allocation is optimal. When r = 14, Ps(α) reaches
its maximum at α = 12. From the observations, we conclude
that the minimal spreading allocation is always optimal under
the DSS service rate. However, it is no longer optimal under
the successful recovery probability as r increases.

B. Probabilistic Access Model

For probabilistic access model under exponential service
time, the DSS service rate (9) becomes

µs(α) =
mα∑

ϕ=α

µ

Hϕ − Hϕ−α

(
mα

ϕ

)
(1 − p)ϕpmα−ϕ. (12)

Using (8), the probability of successful file recovery is

Ps(α) =
min(r, mα)∑

ϕ=α

(
mα

ϕ

)
(1 − p)ϕpmα−ϕ. (13)

We have the following result on the minimal spreading.
Lemma 3: Under the probabilistic access model with expo-

nential service time, the service rate of the minimal spreading
allocation, i.e. α = 1, is µs(1) = µm(1 − p).

Proof: From (12), we get

µs(1) = µm(1 − p)
m−1∑

ϕ=0

(
m − 1

ϕ

)
(1 − p)ϕpm−ϕ−1

Using binomial expansion, we get µs(1) = µm(1 − p).

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 13:58:08 UTC from IEEE Xplore.  Restrictions apply. 



6652 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 10, OCTOBER 2021

Fig. 4. Comparisons between the service rate µs(α) (upper, cf. (12)) and the
successful recovery probability Ps(α) (lower, cf. (13)) as a function of the
allocation parameter α under the probabilistic access model. The number of
storage nodes is N = 40, and the probability of failed access is p = 0.3. The
service time follows Exp(1). When m = 1, the minimal spreading allocation
is optimal in both figure. When m ≥ 2, the minimal spreading allocation is
optimal considering µs(α), and performs the worst considering Ps(α).

Similar to Lemma 2, we find an upper bound on the DSS
service rate when α ≥ 2.

Lemma 4: Under the probabilistic access model with an
exponential service time, for any α quasi-uniform allocation,
its service rate satisfies µs(α) < µm(1 − p).

Proof: By applying (3) to (12), we arrive at

µs(α)

< µm(1 − p)
mα−1∑

ϕ=α−1

(
mα − 1

ϕ

)
(1 − p)ϕpmα−ϕ−1

< µm(1−p)
mα−1∑

ϕ=0

(
mα − 1

ϕ

)
(1−p)ϕpmα−ϕ−1=µm(1−p).

Using Lemmas 3 and 4, we have the following result on the
optimal storage allocation for the probabilistic access model.

Theorem 2: Under the probabilistic access model with an
exponential service time, the minimal spreading allocation
maximizes the DSS service rate.

Numerical Analysis: In Fig. 4, we respectively evaluate
(12) and (13) to see how the DSS service rate µs(α) (upper)
and the successful recovery probability Ps(α) (lower) changes
with the allocation parameter α. We consider a system with
N = 40 storage nodes and a failed access probability p = 0.3
for four different levels of redundancy m ∈ {1, 2, 3, 4}. In the

Fig. 5. Comparisons between the DSS service rate µs(α) (upper, cf. (12))
and the successful recovery probability Ps(α) (lower, cf. (13)) as a function of
the allocation parameter α under the probabilistic access model. The number
of storage nodes is N = 40, and the redundancy level is m = 3. The service
time follows Exp(1). minimal spreading allocation is optimal with regards
to µs(α). For p = 0.8, the minimal spreading allocation is also optimal for
Ps(α) while it performs the worst when p ≤ 0.4.

upper subfigure, µs(α) reaches its maximum at α = 1,
i.e. the minimal spreading allocation is optimal, and decreases
with increasing α. In the lower subfigure, when m = 1,
Ps(α) reaches its maximum at α = 1, i.e. the minimal
spreading allocation is optimal. When m ≥ 2, Ps(α) reaches
its maximum at α = 10, approaching 1 for m = 3 and
4 when α ≥ 4. From the observations, we conclude that the
minimal spreading allocation is always optimal under the DSS
service rate, which is consistent with the result in Theorem 2.
The optimal allocation under successful recovery probability
is determined by the level of introduced redundancy.

In Fig. 5, we analyze µs(α) vs. α (upper) and Ps(α) (lower)
vs. α for p ∈ {0.2, 0.4, 0.6, 0.8}. We consider a system with
N = 40 storage nodes and a redundancy level of m = 3. In the
upper subfigure, µs(α) reaches its maximum at α = 1, i.e. the
minimal spreading allocation is optimal. µs(α) decreases with
increasing α. In the lower subfigrue, when p ≤ 0.4, Ps(α)
increases with α, and reaches 1 at about α ≥ 6. When p = 0.6,
Ps(α) takes values around 0.8. When p = 0.8, Ps(α) reaches
its maximum at α = 1. From the observations in Fig. 5,
we conclude that the minimal spreading allocation is always
optimal under the DSS service rate. However, the optimal
allocation under the successful recovery probability depends
on the probability of failed access.
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V. STORAGE ALLOCATION FOR LARGE FILES WITH

SCALED EXPONENTIAL SERVICE TIME

For the large file model, we assume that the service time at
each node follows a scaled exponential distribution with the
mean 1

αµ , i.e. the allocation parameter α changes the scale of
an exponential distribution. In the following two subsections,
we determine the µs(α) for the two considered access models.
Some of the results in this section were published in [2].

A. Fixed-Size Access Model

For the fixed-size access model under a scaled exponential
service time, the DSS service rate (9) becomes

µs(α) =
µα(
N
r

)
min(r,mα)∑

ϕ=α

1
Hϕ − Hϕ−α

(
mα

ϕ

)(
N − mα

r − ϕ

)
.

(14)

By comparing (10) and (14), we expect the minimal spread-
ing to not always be optimal. We prove that the maximal
spreading performs better under some system parameters’
values.

Lemma 5: Under fixed-size access model with a scaled
exponential service time, the service rate of the maximal

spreading allocation, i.e. α = r, is µs(r) = µr(rm
r )

Hr(N
r ) . The

service rate of the minimal spreading allocation, i.e. α = 1,

is µs(1) = µm(N−1
r−1 )

(N
r ) = µmr

N .

Proof: From (14), for the maximal spreading allocation,
we get µs(r) = µr

(N
r )

∑min(r,rm)
ϕ=r

1
Hϕ−Hϕ−r

(
rm
ϕ

)
·
(N-rm

r−ϕ

)
. Since

m ≥ 1 and H0 = 0, µs(r) = µr

(N
r )

1
Hr

(
rm
r

)(N-rm
r−r

)
= µr(rm

r )
Hr(N

r ) .

For the minimal spreading allocation, we get µs(1|ϕ) =
µϕ. Thus, by applying the same approach as in the proof of

Lemma 1, we get µs(1) = µmr
N = µm(N−1

r−1 )
(N

r ) .

With Lemma 5, we obtain the following result.
Theorem 3 (Minimal vs. Maximal Spreading): Under the

fixed-size access model with a scaled exponential service time,
when rm ≥ N , the maximal spreading allocation outperforms
the minimal spreading allocation, i.e. µs(r) ≥ µs(1).

Proof: Lemma 5 with rm ≥ N and r ≥ Hr gives µs(r) =
µr(rm

r )
Hr(N

r ) = µrm(rm−1
r−1 )

Hr(N
r ) ≥ µmHr(N−1

r−1 )
Hr(N

r ) = µmr
N = µs(1).

Remark 1: Under the fixed-size access model with a scaled
exponential service time, the minimal spreading allocation
does not always maximize the DSS service rate.

1) Optimal and Non-Optimality Conditions for the Minimal
Spreading Allocation: Considering the complexity of (14),
finding the α that maximizes µs(α) is hard. Instead, we find
the optimality and non-optimality conditions for the minimal
spreading allocation in the following.

Theorem 4 (Minimal Spreading Optimality Condition):
Under the fixed-size access with a scaled exponential service,
the minimal spreading maximizes the service rate µs(α) when
r ≤ min2≤α≤r{1 + N−1

α−1 α(mα−1
α−1 )

}.

Proof: We need to find the condition ensuring µs(1) ≥
µs(α) for all 2 ≤ α ≤ r. Consider µs(α) in (14). By (5),
we have µs(α|ϕ) < µϕ when α ≥ 2, and thus

µs(α) <
µ

(N
r

)
min(r,mα)∑

ϕ=α

ϕ

(
mα

ϕ

)(
N − mα

r − ϕ

)

=
µmα(

N
r

)
min(r,mα)∑

ϕ=α

α−2∏

i=0

mα − 1 − i

ϕ − 1 − i

(
mα − α

ϕ − α

)

×
(

N − mα

r − ϕ

)
.

Since ϕ goes from α to mα, we further have

µs(α)

<
µmα
(N

r

)
min(r,mα)∑

ϕ=α

(
α−2∏

i=0

mα − 1 − i

α − 1 − i
)
(

mα − α

ϕ − α

)

×
(

N − mα

r − ϕ

)

=
µmα

(mα−1
α−1

)(N−α
r−α

)
(
N
r

) (by Vandermonde’s convolution).

According to Lemma 3, we have µs(1) = µm(N−1
r−1 )

(N
r ) . To

satisfy µs(α) ≤ µs(1), we have

µmα
(mα−1

α−1

)(N−α
r−α

)
(
N
r

) ≤
µm

(N−1
r−1

)
(
N
r

) ⇔ α

(
mα − 1
α − 1

)

≤
α−1∏

i=1

N − i

r − i
. (15)

As N−i
r−i < N−1−i

r−1−i for N > r, it can be shown that∏α−1
i=1

N−i
r−i > (N−1

r−1 )α−1, and as a result, (15) holds when

α

(
mα − 1
α − 1

)
≤ (

N − 1
r − 1

)α−1 ⇔ r ≤ 1 +
N − 1

α−1
√

α
(

mα−1
α−1

) .

(16)

If (16) holds for all 2 ≤ α ≤ r, µs(1) is optimal.
Theorem 5 (Minimal Spreading Non-Optimality Condi-

tion): Under the fixed-size access model with a scaled expo-
nential service time, the minimal spreading allocation does
not maximize the DSS service rate µs(α) when r ≥
min2≤α≤r{ α−1

√
m

mα−α+1 (N − α + 1) + α − 1}.
Proof: To prove the theorem statement, we need to find the

condition ensuring µs(1) ≤ µs(α) for at least one α ∈ [2, r].
The expression of µs(α) is given in (14). According to (5),
we have µs(α|ϕ) > µ(ϕ − α + 1) when α ≥ 2. Thus,

µs(α) >
µ(
N
r

)
min(r,mα)∑

ϕ=α

(ϕ − α + 1)
(

mα

ϕ

)(
N − mα

r − ϕ

)

=
min(r,mα)∑

ϕ=α

µ(ϕ − α + 1)(N
r

)
α−2∏

i=0

mα − i

ϕ − i

×
(

mα − α + 1
ϕ − α + 1

)(
N − mα

r − ϕ

)
.
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Since ϕ goes from α to mα, we further have

µs(α)

>
µ(
N
r

)
min(r,mα)∑

ϕ=α

(ϕ − α + 1)
(

mα − α + 1
ϕ − α + 1

)(
N − mα

r − ϕ

)

=
µ(mα − α + 1)

(N−α
r−α

)
(N

r

) (Vandermonde’s convolution).

According to Lemma 3, we have µs(1) = µm(N−1
r−1 )

(N
r ) , hence,

to satisfy µs(α) ≥ µs(1), we need to have

µ(mα − α + 1)
(
N−α
r−α

)
(N

r

) ≥
µm

(
N−1
r−1

)
(N

r

)

⇔ mα − α + 1
m

≥
α−2∏

i=0

N − 1 − i

r − 1 − i

(17)

Since N−1−i
r−1−i < N−2−i

r−2−i for N > r, we have∏α−2
i=0

N−1−i
r−1−i < (N−α+1

r−α+1 )α−1. Hence, if mα−α+1
m ≥

(N−α+1
r−α+1 )α−1 ⇔ r ≥ α−1

√
m

mα−α+1 (N − α + 1) + α − 1,

the inequality (17) holds, meaning that µs(α) ≥ µs(1) and
µs(1) is not optimal.

From Theorems 4 and 5, we see that both conditions depend
on the number of accessed nodes r. Roughly speaking, when
r is small, α = 1 is optimal while an α > 1 is optimal when r
is large. Based on these theorems, we conjecture the following
about the value of α that maximizes µs(α).

Conjecture 1: The following assertions are true:
1) Under the fixed-size access model, given the number of

nodes N and the redundancy level m, the optimal α
increases as r increases.

2) For every N and m, there exists a γ ∈ (1, N), such that
for all r ≤ γ, the minimal spreading is optimal.

3) For every N and m, there exists a ζ ∈ (1, N), such that
for all r ≥ ζ, the maximal spreading is optimal.

2) Numerical Analysis: In Fig. 6, we evaluate the expression
of µs(α) given in (14) to see how the DSS service rate changes
with the allocation parameter α. We consider a system with
N = 40 storage nodes. Using Theorems 4 and 5, we can
easily calculate the optimality and non-optimality conditions.
For example, when m = 2, the minimal spreading allocation
is optimal when r ≤ 7.5 and is non-optimal when r > 27.
These conditions provide some knowledge of the optimal
allocation and further insight on the optimal allocation can
be found from Fig. 6. The upper graph shows µs(α) vs. α
for four different level of redundancy m ∈ {1, 2, 3, 4}, and
the number of accessed nodes r = 10. The lower graph
shows µs(α) vs. α for different numbers of accessed nodes
r ∈ {8, 10, 12, 13}, and the redundancy level m = 3. In the
upper subfigure, when m ≤ 2, µs(α) reaches its maximum
at α = 1 and decreases with increasing α, i.e. the minimal
spreading allocation is optimal. When m = 3, µs(α) reaches
its maximum at α = 3. When m = 4, µs(α) increases with
α and reaches its maximum at α = 10, i.e. the maximal
spreading allocation (α = N/m) is optimal. In the lower

Fig. 6. The DSS service rate µs(α) for the fixed-size access model with
scaled exponential service time as a function of the allocation parameter α
(cf. (14)). The number of storage nodes is N = 40, and the service time
follows Exp(1/α). (upper) µs(α) vs. α with r = 10 accessed nodes for
four values of m. (lower) µs(α) vs. α with m = 3 redundancy for four
values of r. Given r (or m), the optimal allocation changes from the minimal
spreading allocation to the maximal spreading allocation as m (or r) increases.

subfigure, when r = 8, the minimal spreading allocation is
optimal, while this is not the case for r ≥ 10. Since the
redundancy level is m = 3, which means N/m is not an
integer, we cannot apply the maximal spreading allocation.
When r = 13, the optimal allocation is at α = 13, where we
allocate the file into 39 of 40 nodes. From the observations
in Fig. 6, we conclude that the minimal spreading allocation is
optimal only when m or r is sufficiently small. By increasing
either of the parameters, an α ≥ 2 quasi-uniform allocation
becomes optimal, and when m or r is sufficiently large,
the maximal spreading allocation is optimal.

In Fig. 7, we analyze Ps(α) vs. µs(α) as α increases from
1 to r. We consider a system with N = 40 storage nodes and
two values for each parameter, i.e. m ∈ {3, 4} and r ∈ {8, 10}.
Some observations can be made from the figure: when both m
and r are sufficiently small, the minimal spreading allocation
is optimal for both Ps(α) and µs(α). When both m and
r are sufficiently large, the maximal spreading allocation is
optimal for both performance metrics. Otherwise, we cannot
find an optimal allocation to simultaneously optimize both
performance metrics. For example, when m = 4 and r = 8,
Ps(α) reaches its maximum at α = 1, while µs(α)
reaches its maximum at α = 4. A performance tradeoff
can be achieved by choosing α = 2 to obtain acceptable
Ps(α) and µs(α).
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Fig. 7. Successful recovery probability Ps(α) vs. the DSS service rate µs(α)
for the fixed-size access model as a function of α for different values of m and
r (cf. (11) and (14)). The number of storage nodes is N = 40, and the service
time follows Exp(1/α). The minimal (or maximal) spreading allocation is
optimal when m and r are sufficiently small (or large). Otherwise, the optimal
allocation is different for different performance metrics.

B. Probabilistic Access Model

For probabilistic access model under scaled exponential
service time, the DSS service rate (9) becomes

µs(α) =
mα∑

ϕ=α

µα

Hϕ − Hϕ−α

(
mα

ϕ

)
(1 − p)ϕpmα−ϕ. (18)

By comparing (12) and (18), we expect that the minimal
spreading allocation may not be always optimal. To this end,
we first present the following result on the optimal α to
maximize the service rate when no redundancy is used.

Theorem 6 (Optimal α): Under the probabilistic access
model with a scaled exponential service time and considering
a no redundancy scenario, i.e. m = 1, the optimal α which
maximizes the DSS service rate µs(α) is located in the range
[(1/2 − p)/p, (1 − p)/p].

Proof: Since the value of α is an integer, µs(α) as a
function of α is discrete. To prove the optimal α is located in
the range [(1/2 − p)/p, (1 − p)/p], we need to show µs(α)
increases with α when α ≤ (1/2−p)/p (i.e. µs(α) ≤ µs(α+
1)) and decreases with increasing α when α ≥ (1 − p)/p
(i.e. µs(α) ≥ µs(α + 1)). For α ≥ 1, the DSS service rate
is µs(α) = µα

Hα
(1 − p)α, resulting in µs(α)/µs(α + 1) =

(αHα+1)/((α + 1)Hα(1 − p)). Thus,

µs(α)
µs(α + 1)

≥ 1 ⇔ αHα+1

(α + 1)Hα(1 − p)
≥ 1

⇔ α

α + 1
≥ (1 − αp − p)Hα. (19)

Since α
α+1 > 0, (19) is satisfied when (1−αp−p)Hα ≤ 0,

resulting in α ≥ (1 − p)/p. Similarly,

µs(α)
µs(α + 1)

≤ 1 ⇔ α

α + 1
≤ (1 − αp − p)Hα. (20)

On the other hand, since 1
2Hα− α

α+1 = 1
2 (Hα+1 + 1

α+1 )−
1 = 1

2 (
∑α+1

i=2
1
i + 1

α+1 )− 1
2 ≥ 1

2 ( α
α+1 + 1

α+1 )− 1
2 = 0, we have

α
α+1 ≤ 1/2Hα. Thus, if (1 − αp − p) ≥ 1/2, or equivalently
α ≤ (1/2 − p)/p, (20) holds.

From Theorem 6, it is easy to see that p is small, the optimal
α is greater than 1. Then we have the following remark on
the minimal spreading allocation.

Remark 2: Under the probabilistic access model with a
scaled exponential service time, the minimal spreading allo-
cation (α = 1) does not always maximize the service
rate.

1) Optimality and Non-Optimality Conditions for Minimal
Spreading Allocation: From Remark 2, we know that the min-
imal spreading allocation is not always optimal. Considering
the complexity of (18), finding the α that maximizes µs(α)
is hard. Similar to the fixed-size access model in Sec. V-A.1,
we find the optimality and non-optimality conditions for the
minimal spreading allocation.

Theorem 7 (Minimal Spreading Optimality Condition):
Under the probabilistic access model with a scaled
exponential service time, the minimal spreading
allocation maximizes the DSS service rate µs(α) when
p ≥ maxα≥2{1 − 1

α−1 α(mα−1
α−1 )

}.

Proof: To prove the theorem statement, we need to find
the condition ensuring µs(1) ≥ µs(α) for all α ≥ 2. Using
(18) and considering that µs(α|ϕ) < µϕ for α ≥ 2 according
to (5), we have

µs(α)

< µ
mα∑

ϕ=α

ϕ

(
mα

ϕ

)
(1 − p)ϕpmα−ϕ

= µmα
mα∑

ϕ=α

(
α−2∏

i=0

mα − 1 − i

ϕ − 1 − i
)
(

mα − α

ϕ − α

)
(1 − p)ϕpmα−ϕ.

Since ϕ goes from α to mα, we have

µs(α)

< µmα

(
mα − 1
α − 1

)
(1 − p)α ·

mα−α∑

ϕ=0

(
mα − α

ϕ

)
(1 − p)ϕpmα−α−ϕ

= µmα

(
mα − 1
α − 1

)
(1 − p)α (by binomial expansion).

From (18), µs(1) = µ
∑m

ϕ=1 ϕ
(

m
ϕ

)
(1 − p)ϕpm−ϕ =

µm(1 − p). Now, to satisfy µs(α) ≤ µs(1), we have
µmα

(
mα−1
α−1

)
(1−p)α ≤ µm(1−p) ⇔ (1−p)α−1 ≤ 1

α(mα−1
α−1 ) .

Thus, if p ≥ 1− 1
α−1 α(mα−1

α−1 )
holds for all α ≥ 2, µs(1)

is optimal.
Theorem 8 (Minimal Spreading Non-Optimality Condi-

tion): Under the probabilistic access model with a scaled
exponential service time, the minimal spreading allocation
does not maximize the DSS service rate µs(α) when p ≤
maxα≥2{1 − α−1

√
m

mα−α+1}.

Proof: We are interested in finding a condition that
guarantees the existence of an α ≥ 2, such that µs(1) ≤
µs(α). The expression for µs(α) is given in (18). According
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to (5), we have µs(α|ϕ) > µ(ϕ − α + 1) when α ≥ 2, then

µs(α) > µ
mα∑

ϕ=α

(ϕ − α + 1)
(

mα

ϕ

)
(1 − p)ϕpmα−ϕ

= µ
mα∑

ϕ=α

(ϕ − α + 1)
(

mα − α + 1
ϕ − α + 1

)

× (1 − p)ϕpmα−ϕ

×
α−2∏

i=0

mα − i

ϕ − i

Since ϕ goes from α to mα, thus

µs(α) > µ
mα∑

ϕ=α

(ϕ − α + 1)
(

mα − α + 1
ϕ − α + 1

)
(1 − p)ϕpmα−ϕ

= µ(mα − α + 1)(1 − p)α
mα−α∑

ϕ=0

(
mα − α

ϕ

)

× (1 − p)ϕpmα−α−ϕ

= µ(mα − α + 1)(1 − p)α.

Since µs(1) = µm(1 − p), to satisfy µs(α) ≥ µs(1), it is
sufficient to have µ(mα − α + 1)(1 − p)α ≥ µm(1 − p) ⇔
(1− p)α−1 ≥ m

mα−α+1 . Thus, if p ≤ 1− α−1

√
m

mα−α+1 holds
for an α ≥ 2, µs(1) is not optimal.

From Theorems 7 and 8, we see that both the optimality
and non-optimality conditions for the minimal spreading allo-
cation depend on the probability of failed access p. Roughly
speaking, when p is close to 1, then α = 1 is optimal while for
p close to 0, an α > 1 is optimal. Based on these theorems,
we conjecture the following about α that maximizes µs(α).

Conjecture 2: The following assertions are true:
1) Under the probabilistic access model, given the redun-

dancy level m, the optimal α increases as p decreases.
2) For every m, there exists a γ ∈ (0, 1), such that for all

p ≥ γ, the minimal spreading is optimal.
3) For every m, there exists a ζ ∈ (0, 1), such that for all

p ≤ ζ, the maximal spreading is optimal.
Remark 3: The derived bounds on p that guarantee the

optimality or non-optimality of minimal spreading are not
tight. Thus, there exists a gap between these bounds. Consider,
for example, the probabilistic access model and m = 2.
By applying the conditions in Theorem 7 and 8, we arrive
at an optimality sufficient condition of p ≥ 0.83 and a
non-optimality sufficient condition of p ≤ 0.33.

2) Numerical Analysis: In Fig. 8, we evaluate the expression
in (18) for µs(α) to see how the DSS service rate changes
with α. We consider a system with N ≥ mα storage nodes.
Using Theorems 7 and 8, we can easily calculate the optimality
and non-optimality conditions. For example, when m = 2,
the minimal spreading allocation is optimal when p ≥ 0.83 and
is non-optimal when p ≤ 0.3. These conditions provide some
knowledge of the optimal allocation and further insight on the
optimal allocation can be found from Fig. 8. The upper graph
shows µs(α) vs. α for four different levels of redundancy
m ∈ {1, 2, 3, 4}, and the failed access probability p = 0.3.

Fig. 8. The DSS service rate µs(α) for the probabilistic access model with
scaled exponential service time as a function of the allocation parameter α
(cf. (18)). The number of storage nodes is N ≥ mα, and the service time
follows Exp(1/α). (upper) µs(α) vs. α with the failed access probability
p = 0.3 for four values of m. (lower) µs(α) vs. α with redundancy of
m = 2 for four values of p. Given p (or m), the optimal allocation changes
from the minimal spreading allocation to the maximal spreading allocation as
m increases or p decreases.

The lower graph shows µs(α) vs. α for four different values
of p ∈ {0.5, 0.55, 0.65, 0.7}, and the redundancy level m = 2.
In the upper subfigure, when m = 1, µs(α) decreases with
increasing α and reaches its maximum at α = 1, i.e. the
minimal spreading allocation is optimal. When m ≥ 2, µs(α)
increases with α and reaches its maximum at α = 10, i.e.
the maximal spreading allocation is optimal. In the lower
subfigure, when p ≤ 0.55, the maximal spreading allocation
is optimal. When p = 0.65, α = 2 allocation is optimal.
When p = 0.7, the minimal spreading allocation is optimal.
Therefore, the optimal allocation changes with p.

In Fig. 9, we analyze Ps(α) vs. µs(α) as α increases from
1 to 10. We consider a system with N ≥ mα storage nodes and
two values for each parameter m ∈ {2, 3} and p ∈ {0.45, 0.7}.
When m is sufficiently small and p is sufficiently large,
the minimal spreading allocation is optimal for both Ps(α)
and µs(α), while for sufficiently large m and sufficiently
small p, the maximal spreading allocation is optimal for both
performance metrics. For a general scenario, the optimal α
for maximizing the service rate may be different from that for
maximizing the probability of recovery. For example, when
m = 3 and p = 0.7, Ps(α) reaches its maximum at α = 1,
and µs(α) reaches its maximum at α = 10.
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Fig. 9. The successful recovery probability Ps(α) vs. the DSS service rate
µs(α) for the probabilistic access model as a function of α for different values
of m and r (cf. (13) and (18)). The number of storage nodes is N ≥ mα,
and the service time follows Exp(1/α). The optimal allocation is affected
by both m and r values.

VI. STORAGE ALLOCATION FOR LARGE FILES WITH

SHIFTED EXPONENTIAL SERVICE TIME

Here the service time follows a shifted exponential distrib-
ution with the shift ∆/α and the rate µ, i.e., S-Exp(∆/α, µ).
We determine the µs(α) for the two considered access models.
Some of the results in this section were published in [2].

A. Fixed-Size Access Model

For fixed-size access model under shifted exponential ser-
vice time, the DSS service rate (9) becomes

µs(α) =
µα(N
r

)
min(r,mα)∑

ϕ=α

(
mα
ϕ

)(
N−mα

r−ϕ

)

∆µ + α(Hϕ − Hϕ−α)
(21)

According to (21), the minimal spreading allocation may not
be always optimal. In fact, we find a special scenario where
there exists an optimal α ≥ 2 that maximizes the service rate.

Let us start by assuming a constant service time of ∆
for k block. In this case, µs(α|ϕ(A)) = α/∆ for a set
A. Therefore, for the maximal spreading allocation, we have

µs(r) = r(rm
r )

∆(N
r ) . For the minimal spreading allocation, i.e. α =

1, using Vandermonde’s convolution, we arrive at µs(1) =
1
∆(1 − (N−m

r )
(N

r ) ).
Theorem 9 (Minimal vs. Maximal Spreading): Under the

fixed-size access model and a constant service time ∆,
the maximal spreading allocation outperforms the minimal
spreading allocation when rm ≥ N .

Proof: Since rm ≥ N and
(
N−m

r

)
≥ 0, µs(r) = r(rm

r )
∆(N

r ) ≥
(rm

r )−(N−m
r )

∆(N
r ) ≥ (N

r )−(N−m
r )

∆(N
r ) = µs(1).

Remark 4: Under the fixed-size access model with a con-
stant service time ∆, the minimal spreading allocation (α = 1)
does not always maximize the service rate.

The constant service time is a special case of the shifted
exponential service time. We next find the optimality and
non-optimality conditions for the minimal spreading allocation
under shifted exponential service time. Our findings show that
Remark 4 is also true for the shifted exponential service time.

Fig. 10. Service rate µs(α) for the fixed-size access model with shifted
exponential service time as a function of the allocation parameter α (cf. (21)).
The number of storage nodes is N = 40, and the service time follows
S-Exp(3, 1). (upper) µs(α) vs. α with r = 10 accessed nodes for four values
of m. (lower) µs(α) vs. α with m = 2 redundancy for four values of r.
Given r (or m), the optimal allocation changes from the minimal spreading
allocation to the maximal spreading allocation as m (or r) increases.

1) Optimality and Non-Optimality Conditions for the Min-
imal Spreading Allocation: finding the optimal α that maxi-
mizes µs(α) in (21) is difficult. The proofs of the following
theorems are similar to the proofs of Theorem 4 and Theo-
rem 5; see the supplementary Appendix.

Theorem 10 (Minimal Spreading Optimality Condition):
Under the fixed-size access model a shifted exponential
service time, the minimal spreading allocation maximizes the
DSS service rate µs(α) when

r ≤ min
2≤α≤r

{1 + α−1

√
∆µ + α

α(∆µm + 1)
(mα−1

α−1

) (N − 1)}.

Theorem 11 (Minimal Spreading Non-Optimality Condi-
tion): Under the fixed-size access model and a shifted
exponential service time, the minimal spreading allocation
does not maximize the DSS service rate µs(α) when r ≥
min2≤α≤r{ α−1

√
∆µm(mα−α+1)+mα2

α(∆µ+1)(mα−α+1) · (N − α + 1) + α− 1}.

The conditions in Theorems 10 and 11 depend on the number
of accessed nodes r. For the shifted exponential service,
we have Conjecture 1, providing guidelines on finding the
optimal α for maximizing µs(α).

2) Numerical Analysis: In Fig. 10, we evaluate the expres-
sion (21) for µs(α) to see how the DSS service rate changes
with α. We consider a system with N = 40 storage nodes.
Using Theorems 10 and 11, we can easily calculate the
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Fig. 11. Successful recovery probability Ps(α) vs. the DSS service rate
µs(α) for the fixed-size access model as a function of α for different values
of m and r (cf. (11) and (21)). The number of storage nodes is N = 40, and
the service time follows S-Exp(3, 1). The minimal (or maximal) spreading
allocation is optimal when m and r are sufficiently small (or large). Otherwise,
the optimal allocation is different for different performance metrics.

optimality and non-optimality conditions. For example, when
m = 2, the minimal spreading allocation is optimal when
r < 6 and is non-optimal when r > 36. These conditions
only provide limited knowledge of the optimal allocation and
further insight on the optimal allocation can be found from
Fig. 10. The upper graph shows µs(α) vs. α for four different
redundancy levels m ∈ {1, 2, 3, 4} where the number of
accessed nodes is r = 10. The lower graph shows µs(α)
vs. α for r ∈ {10, 13, 17, 20}, and the redundancy level
m = 2. In the upper subfigure, when m ≤ 2, the minimal
spreading allocation is optimal. When m = 3, µs(α) reaches
its maximum at α = 3. When m = 4, the maximal
spreading allocation is optimal. In the lower subfigure, when
r ≤ 13, the minimal spreading allocation is optimal, while
for r = 17, the allocation with α = 2 is optimal. When
r = 20, although the allocation with α = 4 is optimal,
the maximal spreading allocation provides a local maximum
value which is close to the global maximum value. From
the observations, we conclude that the minimal spreading
allocation is optimal only when m or r is sufficiently small.
Otherwise, an allocation with α ≥ 2 is optimal.

In Fig. 11, we analyze Ps(α) vs. µs(α) as α increases from
1 to r. We consider a system with N = 40 storage nodes,
m ∈ {3, 4}, and r ∈ {8, 10}. Some observations can be made
from the figure: when both m and r are sufficiently small,
e.g. m = 3 and r = 8, the minimal spreading allocation
is optimal for both Ps(α) and µs(α). When both m and r
are sufficiently large, e.g. m = 4 and r = 10, the maximal
spreading allocation is optimal. Otherwise, e.g. m = 3 and
r = 10, there is no optimal α that maximizes both Ps(α) and
µs(α) simultaneously.

B. Probabilistic Access Model

For the probabilistic access and a shifted exponential ser-
vice, service rate (9) becomes

µs(α) =
mα∑

ϕ=α

(
mα

ϕ

)
µα · (1 − p)ϕpmα−ϕ

∆µ + α(Hϕ − Hϕ−α)
. (22)

From (22), one can expect that the minimal spreading
allocation may not be always optimal. To this end, we present

the following result on the optimal α to maximize the service
rate when no redundancy is used to store the data.

Assume a constant service time of ∆ for k block. In this
case, µs(α|ϕ(A)) = α/∆ for a set A. Therefore, for no
redundancy scenario, i.e. m = 1, we have µs(α) = α

∆(1−p)α.
Theorem 12 (Optimal α): Under the probabilistic access

model, a constant service time ∆, and no redundancy case
in data storage (m = 1), the DSS service rate µs(α) reaches
its maximum when α = 'p/(1 − p)( or α = )p/(1 − p)*.

Proof: Given an integer α ≥ 1, the DSS service rate
µs(α) = α

∆(1 − p)α is discrete. Then we find the optimal α
by comparing the ratio µs(α)/µs(α + 1) = α/(α + 1(1− p))
with 1. Thus, µs(α)

µs(α+1) ≥ 1 ⇔ α
α+1(1−p) ≥ 1 ⇔ α ≤ p

1−p .

Similarly, µs(α)
µs(α+1) ≤ 1 ⇔ α ≥ p

1−p . Since α is an integer,
µs(α) reaches the maximum at ' p

1−p( or ) p
1−p*.

Remark 5: Under the probabilistic access model with a
constant service time ∆, the minimal spreading allocation
(α = 1) does not always maximize the DSS service rate.

Now, we go one step further and find the optimality and
non-optimality conditions for the minimal spreading allocation
when service time follows a shifted exponential distribution.

1) Optimality and Non-Optimality Conditions for the Min-
imal Spreading Allocation: Considering the complexity of
(22), finding the optimal α that maximizes µs(α) in a general
scenario is difficult.

Theorem 13 (Minimal Spreading Optimality Condition):
Under the probabilistic access model with a shifted
exponential service time, the minimal spreading allocation
maximizes the DSS service rate µs(α) when

p ≥ max
α≥2

{
1 − α−1

√

(∆µ + α)/α(∆µm + 1)
(

mα − 1
α − 1

)}
.

Proof: Similar to the proof in Theorem 7. For details,
please refer to the supplementary Appendix.

Theorem 14 (Minimal Spreading Non-Optimality Condi-
tion): Under the probabilistic access model with a scaled
exponential service time, the minimal spreading allocation
does not maximize the DSS service rate µs(α) when

p ≤ max
α≥2

{
1 − α−1

√
m(∆µ(mα − α + 1) + α2)
α(∆µ + 1)(mα − α + 1)

}
.

Proof: Similar to the proof in Theorem 8. For details,
please refer to the supplementary Appendix.

From Theorems 13 and 14, we see that whether the min-
imal spreading is definitely optimal or definitely not optimal
depends on the probability of failed access p. The derived
bounds on p that guarantee the optimality or non-optimality
of minimal spreading are not tight (cf. Remark 3). However,
they help us develop an insight about α that maximizes µs(α),
which is stated in Conjecture 2.

2) Numerical Analysis: In Fig. 12, we evaluate the expres-
sion for µs(α) given in (22) to see how the DSS service
rate changes with α. We consider a system with N ≥
mα storage nodes and the service time follows a shifted
exponential distribution with ∆ = 3 and µ = 1. Using
Theorems 13 and 14, we can easily calculate the optimality
and non-optimality conditions. For example, when m = 2,
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Fig. 12. Service rate µs(α) for the probabilistic access with scaled
exponential service as a function of the allocation parameter α (cf. (22)).
The number of storage nodes is N ≥ mα, and the service time follows
S-Exp(3, 1). (upper) µs(α) vs. α for the access failure probability p = 0.3
and four values of m. (lower) µs(α) vs. α for m = 2 and four values of p.
Given p (or m), the optimal allocation changes from the minimal spreading
allocation to the maximal spreading allocation as m increases or p decreases.

the minimal spreading allocation is optimal when p > 0.88 and
is non-optimal when p < 0.08. These conditions provide only
limited knowledge of the optimal allocation and further insight
on the optimal allocation can be found from Fig. 12. The upper
graph shows µs(α) vs. α for four different redundancy levels
m ∈ {1, 2, 3, 4}, and the failed access probability p = 0.3. The
lower graph shows µs(α) vs. α for four different failed access
probabilities p ∈ {0.4, 0.5, 0.6, 0.7}, and the redundancy level
m = 2. In the upper subfigure, when m = 1, the minimal
spreading allocation is optimal. When m ≥ 2, the maximal
spreading allocation is optimal. In the lower subfigure, when
p = 0.4, the maximal spreading allocation is optimal, while for
p = 0.7, the minimal spreading allocation is optimal. For the
other two cases, an allocation with α ≥ 2 is optimal. As can
be seen, the optimal allocation changes with the redundancy
level m and the access failure probability p.

In Fig. 13, we analyze Ps(α) vs. µs(α) as α increases
from 1 to 10. We consider a system with N ≥ mα
nodes and two values for each parameter: m ∈ {2, 3} and
p ∈ {0.45, 0.7}. Observe that when m is sufficiently small
and p is sufficiently large, the minimal spreading maximizes
both Ps(α) and µs(α). On the other hand, for sufficiently large
m and sufficiently small p, the maximal spreading maximizes
both performance metrics. For other cases, there is no optimal
α that maximizes both Ps(α) and µs(α) at the same time.
For example, when m = 3 and p = 0.7, Ps(α) reaches
its maximum at α = 1, and µs(α) reaches its maximum at
α = 10.

Fig. 13. Successful recovery probability Ps(α) vs. the DSS service rate
µs(α) for the probabilistic access model as a function of α for different values
of m and r (cf. (13) and (22)). The number of storage nodes is N ≥ mα, and
the service time follows S-Exp(3, 1). The optimal allocation is determined
by both m and r.

VII. CONCLUSION AND FUTURE DIRECTIONS

We considered service rates in distributed storage systems,
and focused on two access models (fixed-size and probabilistic
access) and two download service models (small and large
file). Under the fixed-size access model, a user can access a
random fixed-size subset of nodes; under probabilistic access,
a user can access each node with a fixed probability. In the
small file download model, the randomness associated with the
file is negligible; in the large file download model, the random-
ness is associated with both the file size and inherent system’s
operations. The primary performance metric of interest is the
service rate of the system. Since redundancy for each file is
fixed, the allocation of redundancy is essential for improving
the system’s performance. The general allocation problem is
hard to solve. We adopted the common model of quasi-uniform
allocation, where coded content is uniformly spread among
a subset of storage nodes. Thus the subset size completely
specifies the allocation.

Minimal spreading concentrates coded chunks to a
minimum-size subset. Maximal spreading allocates coded
chunks to each node. For the small file model, the minimal
spreading is always optimal. For the large file model, that is not
the case. It is not easy to find the optimal allocation. We found
the conditions under which the minimal spreading allocation
is optimal. We considered scaled exponential and shifted
exponential service times. Our numerical results showed that
the optimal allocation under these two service models depends
on the redundancy level, the number of accessed nodes, and
the probability of failed access. As a general rule, one should
spread the data blocks to more nodes when the redundancy
level is high, the number of accessed nodes is large, or the
probability of failed access is small. This work sets the stage
for many problems of interest to be studied in the future.
We briefly describe three directions of immediate interest.

A. Optimal Allocations for Non-MDS Codes

Our system model and analysis approach are not limited
to MDS codes. If an [n, k] code with minimum distance d is
used, then the file can be recovered when any % = n− (d−1)
out of n blocks are downloaded. The Singleton bound imposes
the constraint % ≥ k, where the equality holds for MDS codes.
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When % > k, the successful recovery condition in (1) becomes∑
i∈A si ≥ %, which means that more storage nodes must be

accessed to recover the file. Thus, the exact optimal allocation
values we derived may change.

B. Optimal Allocations for Other Service Models and
Performance Metrics

We analyzed the most common service time and scaling
models. Other distributions, e.g., heavy tail Pareto and Weibull,
are also of interest. For large files, it is often appropriate to
model download time as the sum of the i.i.d. chunk download
times (see [9], [10] for additive service time scaling models).
Besides, some other performance metrics, e.g., the expected
download time, are also important.

C. Minimal Spreading Optimality Conditions

We found regions of system parameters within which the
minimal spreading is optimal. We expect these regions to go
beyond the bounds we derived. Finding tighter bounds would
help us to better decide on when to use the minimal spreading
allocation.
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