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Abstract—The paper presents techniques for analyzing the
expected download time in distributed storage systems that
employ systematic availability codes. These codes provide access
to hot data through the systematic server containing the object
and multiple recovery groups. When a request for an object
is received, it can be replicated (forked) to the systematic
server and all recovery groups. We first consider the low-traffic
regime and present the close-form expression for the download
time. By comparison across systems with availability, maximum
distance separable (MDS), and replication codes, we demonstrate
that availability codes can reduce download time in some settings
but are not always optimal. In the high-traffic regime, the system
contains multiple inter-dependent Fork-Join queues, making
exact analysis intractable. Accordingly, we present upper and
lower bounds on the download time, and an M/G/1 queue approx-
imation for several cases of interest. Via extensive numerical
simulations, we evaluate our bounds and demonstrate that the
M/G/1 queue approximation has a high degree of accuracy.

Index Terms— Distributed coded storage, availability, down-
load with redundancy.

I. INTRODUCTION

ISTRIBUTED systems implement reliable storage

despite failures by storing data objects redundantly
across multiple servers. Replication is traditionally preferred
for its simplicity. Maximum Distance Separable (MDS) codes
are used when replication is costly. Even though MDS codes
maximize storage efficiency, they incur large communication
overhead during object recovery. This has motivated coding
theorists to look for novel erasure codes that are recovery-
efficient, see, e.g., [3]-[5]. An important class of such codes
is Locally Recoverable Codes (LRCs) [4], [S]. LRCs enable
recovery of an object by accessing only a small group of
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servers, referred to as a recovery group. The number of
servers in the largest recovery group is referred to as the code
locality.

A special class of LRCs, known as availability codes,
have an additional property that each object has multiple,
disjoint recovery groups [6]-[9]. Separate recovery groups
allow simultaneous download of the same object by multiple
users. For instance, consider the binary Simplex code that
encodes {flvaﬂf?)} into [flv f27 f3a f1+f27 f1+f3a f2+
f3, f1+ fo+ f3]. This code is said to have availability three as
each of f1, fo and f3 has three disjoint recovery groups. For
example, f; can be recovered by reading both f5 and f; + fo,
or by reading both f3 and f1 + f3, or by reading f> + f3 and
f1+ fo + f3. This code furthermore has locality two as each
recovery group consists of at most two servers.

The notion of code availability was proposed with the goal
of making the stored data more accessible (see, e.g., [7]).
Having multiple disjoint recovery groups for an object enables
high data availability since each recovery group provides
an additional way to retrieve the object. Thus, availability
codes make it possible to assign multiple requests for the
same object to different servers without blocking any request.
Consequently, availability codes have a significant poten-
tial to provide low-latency access for hot data, i.e., objects
that are frequently and simultaneously accessed by multiple
users [7].

It is important to quantify to what extent availability codes
can reduce the download latency as compared to MDS and
replication codes. This is because accessing an object through
one of its recovery groups requires downloading one object
from each of the recovery servers. A retrieval from a recovery
group is therefore complete once the objects from all the
servers in the recovery group are fetched. This means that
the retrieval is slow even if the service is slow at only one
of the servers. In fact, service times in modern large-scale
systems are known to exhibit significant variability [10], [11],
and thus, the download time from a recovery group can
be significantly slower than that from a single server. As
an example, if service times at the servers are independent
and exponentially distributed, mean time to download from a
recovery group of size r will scale (approximately) by Inr
for large r. Motivated by this practical challenge of service
time variability, this paper presents techniques for analyzing
the download latency of availability codes by leveraging tools
from queuing theory.
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A. Contributions and Organization of the Paper

We present techniques for analyzing the download time
of individual data objects that are jointly encoded with a
systematic availability code. We assume the Fork-Join (FJ)
access strategy, under which requests are forked upon arrival
to the systematic server containing the requested object and all
its recovery groups. While other access schemes are possible,
we focus our attention to the FJ strategy for the following
reasons. First, request service time at a systematic server
is typically smaller than that at a recovery group. Thus,
a user whose request is assigned to a recovery group would
experience larger latency. FJ strategy treats all the requests
uniformly, resulting in a form of fairness. Second, FJ strategy
is widely adopted for download from coded storage systems
(see, e.g., [12]-[15]).

We consider two arrival regimes: (i) low-traffic regime
where each request is served before the new request arrives;
(ii) queuing regime where requests can possibly overlap at the
storage servers, which serve them through a first-in first-out
queue. First, for the low-traffic regime, we derive closed-form
expressions for the distribution and expected value of down-
load time for availability codes (Theorem 1), along with repli-
cation (Lemma 1) and MDS codes (Lemma 2). This enables
us to compare availability codes with state-of-the-art erasure
codes used in production systems, in particular the MDS code
used in the Google file system and the locally recoverable code
used in Windows Azure storage. Next, for the queuing regime,
we observe that the system consists of multiple inter-dependent
Fork-Join queues. This results in the infamous state space
explosion problem, which makes it intractable to perform an
exact analysis. Therefore, we establish upper and lower bounds
on the download time.

Our key idea is to consider special cases of our sys-
tem by carefully imposing restrictions, and use download
times of these restricted models to find the bounds. In par-
ticular, we consider the following two restricted models.
(1) Fork-Join Fixed Arrival (FJ-FA) model, in which every
request arrival asks for the same object. This will hold for
instance if the object popularities exhibit extreme skew, that
is when the probability that a request asks for a particular
object is one while it is zero for the rest of the objects.
(2) Fork-Join Split-Merge (FJ-SM): in which requests are
buffered upon arrival in a centralized First-come First-serve
(FCES) queue, and are fed to the system one by one only
when all the servers are idle. Leveraging these two models,
we find lower and upper bounds on the performance of our
Fork-Join system (Theorem 2 and Theorem 3). In addition,
via numerical simulations, we compare the expected down-
load time for availability codes with with various practical
coding schemes.

In addition to the bounds, we also propose an M/G/1 queue
approximation for FJ-FA systems with locality two. We then
proceed by refining our approximation for systems with avail-
ability one. In our analysis, we build on techniques from
Markov processes and Renewal theory. Combination of the
techniques we present is useful to study another type of
Fork-Join system that is defined by an (n,2) MDS code [16].
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B. Related Work

Literature on download from coded storage has focused on
downloading the complete set of data objects that are jointly
encoded with an MDS code. This is an important research
question and has been studied extensively, see e.g. [12], [15],
[17]-[21] and references therein. This paper differs from this
literature in two important aspects. First, we are concerned
with downloading individual objects. In practice, users are
typically interested in only a subset of the stored data, namely
hot data. This leads to skews in object popularities as shown
by traces collected from production systems [22]. Our model
for data access incorporates the skewed object popularities
and the notion of hot data. Second, we focus on storage
systems with availability codes. LRCs with availability have
recently replaced MDS codes in production, e.g. [23], [24].
It is important to understand the download performance when
these new codes are at use.

The paper is organized as follows: Section II explains the
storage and data access model. Section III analyzes the down-
load time under low-traffic regime. Section IV presents bounds
on the download time under queuing regime. Section V ana-
lyzes the FJ-FA and FJ-SM models to set up the background
for the proofs of our bounds, and the proofs are presented in
Section VI. Section VII presents an M/G/1 approximation for
the FJ-FA system. In Section VII-B and VII-C, we consider
the special cases with locality two and availability one, and
obtain close approximations for the average download time
for the FJ-FA model. We skip some of the technical details in
several proofs in Section VII due to the space limitations. For
the omitted details, we refer the reader to [25].

II. SYSTEM MODEL
A. Data Storage Model

We consider a system that encodes k equal sized objects
F={f1,..., fx} into n objects by an (n, k) linear systematic
erasure code, and then stores the n encoded objects across n
servers. Each object f; is a symbol in some finite field F. The
storage overhead of an (n, k) linear code is defined as the
inverse of the code rate, i.e., n/k.

We are interested in a special class of erasure codes for
which each systematic server has (r, t)-availability [6]-[9]. A
code is said to have (r,t)-availability if it ensures that failure
of any systematic server can be recovered using one of the ¢
disjoint recovery groups of size r, where typically r < k. We
denote such an LRC as an (n,k,r,t)-LRC or an (n,k,r,t)
availability code. We denote the /th recovery group for the ith
server as R!, where |R!| = r. The recovery group size 7 is
referred to as the code locality. The (r,t)-availability allows
retrieving an object f; in ¢t + 1 ways: either by downloading it
from the systematic server or by downloading all the symbols
in one of its ¢ recovery groups. In the example given in
Section I, we used the (n = 7, k = 3) binary Simplex code that
encodes {flvaﬂf?)} into [flv f27 f3a fl +f27 f1+f3a f2+
fa, f1+ fo+ f3]. This code has (r = 2,t = 3)-availability.
Object f1 can be accessed either at the systematic server or
by recovering it from any of the three pairs of coded symbols
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Fig. 1. Fork-Join access model for (n, k,r,t)-LRC. Each request is split

upon arrival into its systematic server and each of its ¢ recovery groups.

{2, it fobo {3, fut fod Ao+ fo, fr+ f2+ f3}. Similarly
for f5 or fs, there are one systematic server and three recovery
groups.

B. Content Access Model

We consider the Fork-Join (FJ) model for data access. FJ
model for a system with an (r,¢)-availability code consists
of two levels of FJ queues. In the first level, each request
upon arrival is forked (replicated) into ¢ + 1 copies, which
are sent to the systematic server that stores the requested
object and its ¢ recovery groups. The request completes as
soon as either its copy at the systematic server or a copy
at any one of its recovery groups finishes service. Once a
request is completed, all its outstanding copies are immediately
removed from the system. The second level of FJ queues is
formed at each recovery group. A request copy that is assigned
to a recovery group is forked into r sub-copies and each
enters the queue at its respective server. A request copy at
a recovery group finishes when all its r forked sub-copies
finish service and join. (See Fig. 1 for an illustration.) We
assume cancellation of the outstanding request copies (either
in queue or in service), or reconstructing an object from the
coded copies incurs negligible delay in comparison with the
overall data access latency. Indeed, it is observed in practice
that the latency of reconstructing an object is several orders of
magnitude smaller than the overall data access latency [23].

C. Request Arrival and Service Models

For tractability, request arrival process is assumed to be
Poisson with fixed rate \. We model object popularities as
follows: each request arrival asks for object f; independently
with probability p; for i = 1,...,k, where 0 < p; < 1 and
Zle p; = 1. We denote each request-j as a pair (t;,0;),
where ¢; is the arrival time and o; is the requested object. We
consider two arrival regimes:

Low-traffic regime in which the system completes serving
a request before the next one arrives, and can thus contain at
most one request at any time. This case serves as a starting
point for the download time analysis, and it is also useful to
understand the download performance under low offered load.

Queuing regime, in which subsequent requests might arrive
before the current request(s) is finished. In this case, system
resources needs to be shared across the requests, and multiple
requests sent to a storage server are queued at the server. We
model resource sharing at the servers with FCFS queues.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

Request copies are served at the servers by reading and
streaming the requested object. We model this by a random
service time. For tractability, service times are assumed to
be independently and identically distributed (i.i.d.) across
different requests and servers as Exponential random vari-
ables (r.v.’s) of rate p. Note that, as argued in [20],
the shifted-exponential distribution is a good model of service
times in data centers. However, the exponential distribution
is analytically tractable because it is memoryless, and is com-
monly used to model service times in queuing theoretic analy-
sis (see, e.g., [12], [17], [18], [26]). Insights derived from this
study can serve as a stepping stone towards understanding the
system performance under general service time distributions.

Our focus is on analyzing the download time T for an
individual object, which essentially is the response time (or
sojourn time) of a request. In particular, we define a request’s
download time as T" = {geparture — tarrival, Where tairival is the
time the request arrives to system and tqeparture 1S the time
the request download is completed. Since we consider multiple
coding schemes and variants of the FJ system, we typically
denote the download time in system x with r.v. 7).

Notation: S denotes an Exponential random variable (r.v.)
with rate p, i.e, S ~ Exp(p). Forrv.’s X and YV, X <Y if
and only if P{X > s} < P{Y > s} for all s. Notation X,.;
denotes the ith smallest of n i.i.d. samples of a r.v. X. The
beta function is given by 3(z,y) = fol v* (1 —v)Y " ld.

III. DOWNLOAD TIME UNDER LOW-TRAFFIC REGIME
A. Download Time Characterization for Availability Codes

In the following, we characterize the download time Ty, 1)
in the FJ system implemented by an (r, t)-availability code.
Theorem 1: Under the low-traffic regime,

P{Tpy(rpy > s} = exp(—ps) (1 — (1 - exp(—pus))")",
1
E [TFJ-(r,t)] = ﬁﬁ(t +1, 1/T)

Proof:  Tyy.(ry) = min{S, Ry,..., Ry} where S is the
service time at the systematic server and R; is the service time
at the ith recovery group. R; are independent and distributed as
S:.r, since the request copy at a recovery group finishes service
once all its copies at the r recovery servers finish service. We
have

P{Tyr(rr) > s} = P{min{S, Ry,..., R} > s}
Wprsssi(1-P{S<s})

D exp(—ps) (1 — (1 — exp(—ps)))’ (1)

where (a) follows from the independence of the service times
and (b) comes from substituting P{S > s} = exp(—pus).
Observing that T%y.(, ;) is a non-negative r.v., we obtain

o
/ P {TFJ-(T,t) > 8} ds
0

1t 1 1
- ,Ut(l_v)(l/rfl)dv (:b) —5<t+1,—)
0 ur r

ur
)

E [Ty (rp) =

—
S|
=
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Fig. 2. Average download time under the low-traffic regime with respect to
code locality r and availability ¢.

where (a) comes from (1) and 1 — (1 — exp(—pus))” = v, and
(b) follows from the definition of the beta function. [ |

Remark 1: Expression for E [TFJ,(M)} allows us to examine
the effect t on the average download time while fixing r. Using
the equality B(z,y + 1) = ﬁ (z,y), it is straightforward
to verify that the relative reduction in average download time
per increment in t is given by (r(t + 1) + 1)~ which is
approximately 1/rt for large t and r. Thus incrementing t
vields diminishing returns in reducing the average download
time. This can be observed in Fig. 2, which plots the average
download time with respect to r and t. Observe that increasing
the locality r significantly slows down the download.

1) Comparison With Replication Codes: Replication
schemes are an important contestant of availability codes as
they are commonly deployed in production, see e.g., [27]. We
here consider a t,cp-replication code that stores t,., copies
for each of the k objects. For a fair comparison, we assume
the cumulative service rate (sum of the service rates across
all the servers) is fixed. The proof of the following lemma
follows from the order statistics, similar to the proof of
Theorem 1.

Lemma 1: In a system with t..,-replication code and ser-
vice times Li.d. as Exp(p), the average download time under
the low-traffic regime is E [Ty, | = 1/(twepp). If the
cumulative service rate of the system is the same as that of a
system with an (n,k,r,t)-LRC, then E [Tr4,.,] = k/(np).

Remark 2: When the cumulative service rate is equal to
that of an (n, k) code, the average download time in the tyep-
replication system depends only on k/n, and not on tyep.

2) Comparison With MDS Codes: An (n, k) code is said
to be MDS if any k of the n coded objects are sufficient to
reconstruct the original k& objects. Recent work have shown
that MDS codes are faster than replication in downloading the
entire set of k objects, see e.g., [12]. It is therefore natural to
evaluate MDS codes in downloading the individual objects.

In the FJ access model for MDS coded storage, each
request is replicated upon arrival into n copies, which are
then assigned across all the n servers. A request is completed
once either its copy at the systematic server finishes service
or any k out of the remaining n — 1 recovery servers jointly
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TABLE I

COMPARISON OF THREE COMMERCIAL CODES AND AN AVAILABILITY
CODE BASED ON THREE PERFORMANCE METRICS

Storage Fault
Erasure Code E[T]p Overhfad Tolerance
3-replication 0.33 (0.67) 3x 2
(9,6)-MDS code | 0.67 (0.67) 1.5% 3
(10,6,3,1)-LRC | 0.6 (0.83) 1.5x% 3
(14,6,2,3)-LRC | 0.45 (0.71) 2.33x 3

finish serving the request. The download time Tgy.(y, ) is given
by min{S, S(,—1):x}. This allows us to derive the average
download time under the low-traffic regime as follows. The
proof follows from the order statistics, similar to Theorem 1.

Lemma 2: In a system with an (n, k)-MDS code and service
times Li.d. as Exp(u), the expected download time under the
low-traffic regime is E [TFJ_(mk,)] =k/(nw).

Remark 3: The average download time in an (n,k)-MDS
coded system depends only on k/n, and is the same as that
in a tyep-replication coded system when the cumulative mean
service rates of both the systems are the same.

B. Performance Comparison of Erasure Codes

We here compare availability codes with the following
state-of-the-art erasure codes: (i) 3-replication, which is
commonly used in many distributed storage systems, e.g.,
Amazon’s Dynamo [27]; (ii) (9,6)-MDS code, which is used
in Google file system [28]; (iii) (10,6,2,1)-LRC, which is
used in Windows Azure Storage [23]; and (iv) (14, 6,2, 3)-
availability code obtained as a direct sum of two (7, 3,2, 3)-
Simplex codes. Binary Simplex code, which is a dual of the
Hamming code, forms a well-known class of availability codes
with locality two [29], and a direct sum of simplex codes
yields codes with availability [30]. We here adopt the same
data access and request service model introduced in Section II.
This means requests are replicated to all servers upon arrival,
and the request service times are ii.d. as Exp(u). We use
Lemma 2 and Theorem 1 to compute the average download
time for the systems with the erasure codes listed above.

In order to get a holistic performance comparison, we con-
sider the following metrics in addition to average download
time: (i) storage overhead and (ii) fault tolerance. In particular,
it is well-known that a coding scheme that encodes k objects
across n nodes with minimum distance d can tolerate any d—1
node failures. We refer to d — 1 as the fault tolerance of the
coded system.! We emphasize that, even though the storage
overhead and fault tolerance have been known to be important
metrics in evaluating real-world distributed storage systems
(see, e.g., [23], [24], [28]), the critical metric of (average)
download time is missing in the literature.

We present a detailed comparison in Table 1. The
(14,6,2,3)-LRC with (2,3) availability achieves smaller

"More generally, reliability analysis can be done in terms of mean time to
data loss (MTTDL) using standard techniques, see e.g., [23], [24], [28]. It
is well-known that MTTDL grows exponentially with the minimum distance.
For simplicity, we focus on the fault-tolerance instead of MTTDL.
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average download time as compared to the state-of-the-art
erasure codes, at the expense of worse storage overhead.
On the other hand, its storage overhead is smaller compared
to 3-replication, at the cost of slightly worse download
time. Indeed, it achieves a favorable trade-off between the
storage overhead and the average download time, with large
fault-tolerance. Availability codes are therefore attractive
for storing hot data that requires small download latency.
On the other hand, when the cumulative service rate in the
system is kept fixed, (9,6)-MDS code achieves the smallest
download time as well as the smallest storage overhead, with
high fault-tolerance. Hence, for storage systems with limited
cumulative service rate, MDS codes are favorable candidates.

IV. DOWNLOAD TIME UNDER QUEUING REGIME

In this section we remove the assumption that at most
one request is present in the system at any time. In this
case, multiple requests might be simultaneously present in the
system, hence queues might build up at the servers. In order
to highlight the structure of the queues in our system, let us
first review the notion of an (¢, m)-Fork-Join (FJ) queue [12].
In an (¢,m)-FJ queue, each request is forked into ¢ copies
upon arrival, and a request completes once any m out of its £
copies finish service. Once a request completes, its remaining
¢ —m copies are immediately removed from the system.

In the system that uses availability codes, there are two
levels of FJ queues present under the FJ access model. In the
outer level, each arriving request is replicated into ¢+ 1 copies,
which are then sent to the systematic server and its ¢ recovery
groups. A request completes as soon as any one of its copies
finishes service, hence forming a (¢ + 1,1)-FJ queue. In the
inner level, request copies sent to a recovery group fork into
r sub-copies and complete once all the forked copies finish
service. Thus, each recovery group acts as an (r, r)-FJ queue.
Note that FJ queues at the recovery groups are not independent
due to the cancellation of outstanding request copies.

Analysis of the FJ queues is a long standing open problem.
Its average response time is known only for the simplest
case of (2,2)-FJ queue [31], [32]. Moreover, the inner FJ
queues implemented by the recovery groups in our system
are inter-dependent. This inter-dependence makes it intractable
to exactly analyse our system. Our approach to understand
the system performance is therefore deriving bounds and
approximations on the download time.

A. Bounds on Download Time

We here present bounds on the download time by con-
sidering more restricted counterparts of our system. These
restrictions are carefully imposed on the system to make it
possible to find exact or approximate expressions.

1) Fork-Join General Arrival (FJ-GA): We refer to
our availability coded system under the Fork-Join access
model and object popularity probabilities (p1,...,px) as the
Fork-Join General-Arrival (FJ-GA) system.

2) Fork-Join Fixed Arrival (FJ-FA): In this restrictive
model, every request arrival within a busy period asks for
the same object. A busy period refers to the time interval
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during which there is at least one request in the system.
This will hold for instance if the object popularities exhibit
extreme skew, i.e., when requests ask for a particular object
with probability one. In general, the FJ-FA model is useful
to understand the performance of the FJ model under highly
skewed object popularities, which is typical in practice [22].
3) Fork-Join Split-Merge (FJ-SM): In this restrictive model,
requests are buffered in a centralized FCFS queue, and are sent
to service one by one only when all the servers are idle.
Recall that each download request-i is of the form (¢;, 0;)
where t¢; is the arrival time and o; is the requested object.
The download time refers to the steady state system response
time, i.e., the time spent by an individual request in the system.
In the following, we denote the download time in system x
under an aggregate arrival rate of A as T, . We avoid writing
A explicitly when the arrival rate is clear from the context.
Theorem 2: Download time distributions for the FJ-GA,
FJ-FA, FJ-SM systems satisfy the following inequalities:

(@) &
P{Trican >t} > Zpi P{Trmp; >t}

i=1

® &
> pi exp (= ((t+Du—piA)t), 3)
=1

(c)
P{Trrcar >t} < P{Tprsmux > 1},

(d)
P{Trimx >t} < P{Trrsmux > t}. “4)

Lemma 3: When code locality is two, P{Trj.cax >t} <
P{Trspa >t} for all X and t.

Remark 4: It is possible to interpret the lower bound (a)
as the response time in a system of k separate FJ-FA’s, which
are fed by splitting the Poisson arrival process across with the
probabilities p1,...,pg. In fact, this lower bound is derived
using this interpretation as outlined later in Section VI. In
this system of k FJ-FA’s, minimum response time is achieved
when the load is perfectly balanced across the FJ-FA’s, that
is when p; = 1/k for i = 1,... k. The response time will
increase (p1,...,pr) becomes skewed. This means the lower
bound (a) will take its minimum possible value when p; = 1/k

for i =1,...,k The value of the lower bound will increase
as (p1,...,pk) becomes skewed, e.g., when p1 > p; for
i = 2,...,k. Lemma 3 together with the upper bounds (c)

and (d) says that, when the code locality is two, the lower
bound (a) becomes equal to the upper bound (c) when the
object popularities are polarized, i.e., when every arrival asks
for the same object. Then, when code locality is two, the upper
bound (c) suggests that the performance of FJ-GA becomes
worst when the object popularities are highly skewed. The
bounds in Theorem 2 become looser as the request arrival
rate gets larger. Figure 9 shows this for the system with
availability one and locality two. For this reason, we also
find an approximation for the download time in Section VII.
Theorem 2 gives us the following bounds on the average
download time in the FJ-GA system. We note that the bounds
on A in the theorem statement are due to stability constraints.
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Theorem 3: The average download time in the FJ-GA sys-
tem E [Try.ga] is bounded as follows.

E [Trrcal > Z ma
AT o0 () (1Y S (D! () 4+ 1) 2
(1 = An) ’
(5)
where 1 = H%ﬁ(t + 1, %) The lower bound holds for N <

(t+1)pu/ max{p1, ..., pr}, and the upper bound, for X < 1/n.

We defer proving Theorem 2 and Theorem 3 to Section VI
after we establish the characteristics of the FJ-FA and FJ-SM
systems in Section V-A and V-B, which are used in the proofs.

k
p
i=1

E [Try.ca) <n+

B. Simulation Results

Fig. 3 shows the average download time vs. request arrival
rate for the coding schemes given in Table I. Note that all the
four coding schemes used here store 6 objects. However the
number of servers n dictated by the code varies across the
schemes. For a fair comparison, we also plot results when the
cumulative service rate is fixed at 10, which is evenly allocated
across the servers. For instance, server service rate is 1 in the
system with (10, 6,3,1)-LRC while it is 10/14 in the system
with (14, 6, 2, 3)-Availability code. For high arrival rates, these
systems are ordered in terms of their average download time as
(18,6)-Replication < (14,6, 2, 3)-Availability < (10,6, 3, 1)-
LRC < (9,6)-MDS. Notice that this is the same ordering
given by their storage efficiency. This means availability
codes in the Fork-Join access model serve as an intermediate
point in the storage vs. download time tradeoff between the
two extremes: MDS and replication codes. This observation
holds regardless of the skews in object popularities.

V. VARIANTS OF THE FORK-JOIN SYSTEM
A. Fork-Join System in the Fixed-Arrival Model (FJ-FA)

Recall that, in the FJ-FA model, all request arrivals within a
busy period ask for the same object. Therefore, each server in
the system acts either as the systematic server or as a recovery
server within the same busy period. Further, only one server
takes the role of systematic server in the busy period.

Leading and Slow Servers: A request copy is forked into r
sibling servers once it arrives to a recovery group. Some of
the servers within the recovery group can be ahead of their
siblings in service at any given time. We refer to such servers
as leading, and to those behind with service as slow servers.
For instance, in the example shown in Fig. 6 (in Section VII-
O), the server that hosts a + b is ahead of its sibling (the one
that hosts b) by one request copy. In this case, we say the
server hosting a + b is leading while the server hosting b is
slow.

Observe that up to 1 + (¢t — 1) requests can be served
simultaneously, and different copies of the same request can
start service at different times. These properties significantly
complicate the system analysis. In order to address this chal-
lenge, we redefine the request service start times as follows.
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Fig. 3. Average download time versus A for the coding schemes in Table I.
At the top, all objects have equal popularity. At the bottom, 1/3 of the objects
have 90% of the popularity and the rest share 10% of popularity equally, e.g.,
p1 = p2 = 0.45, and p3 = pa = p5 = 0.05 for (14, 6, 2, 3)-availability.

Definition 1: We say that a request is at the head of the
line (HoL) once all its copies remaining in the system are in
service, and the request starts service once it moves to HoL.

Under this definition, we have the following observation.

Observation 1: In the FJ-FA system, requests depart the
system in the order they arrive and there can be at most one
request in service at any time.

The first part follows from the fact that request copies depart
in the order of arrival both at the systematic server and at any
recovery group. To see the second part, note that, for two
requests to be simultaneously in service, all remaining copies
of each must be in service simultaneously, which is impossible
given that requests depart in the first-in first-out order.

At each recovery group, a request can have up to r — 1 of
its copies depart before the request moves to HoL. We refer
to these as early departing copies. If d copies of a request
depart early at a recovery group, service time of the request
copy at that recovery group will be distributed as S,_g.r—q.
More generally, let d; denote, for a request, the number of
its early departing copies at the ith recovery group. Then the
service time for the request, once it moves to HoL, is given
soydy, = min {S, Sr—dyir—dy s . Sr—dt:r—dt}- For a
multiset {di,...,d;} and each d; € {0,1,...,r — 1}, let
vg denote the number of occurrences of d in the multiset.
Given that the recovery groups are indistinguishable, Sg, .. 4,
is solely determined by the vector v = (vg, vy, ..., V—1), and
we say in this case that the request has type-v service time,
and denote it as S,,. The set of all possible v is given by

r—1

N:{(VO’Vl""’VT_l)|ZO:Vi:t’ Vq;EZZQ,} (6)
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where Zx is the set of non-negative integers. We formalize
these observations in the following lemma.

Lemma 4: In the FJ-FA system, the set of all possible
request service time distributions is S = {S,, | v € N}, where
N is given in (6) and |S| = |N| = (H;:l) The distribution
function for the type-v service time is

r—1
P{S, > s} = exp(—ps) [] (1= (1 —exp(—ps))" %)™
d=0

Observe from the expression of P{S, > s} that the more
copies of a request depart early (before the request moves to
HoL), the faster its service will be. Recall that Zi v, = t
for any v € N. Distribution P {S,, > s} gets smaller as the
mass ¢ of v is shifted on v; with larger 7. Thus, we have
the following partial ordering between the possible request
service time distributions: S,, > S,/, if there exists a j such
that v; < v/ for all ¢ > j. This ordering implies that S, is the
fastest and the slowest when v is equal to (0,...,0,t) and
(£,0,...,0) respectively. We refer to S(g,... 0,+) @S Stastest> and
S(t,0,...,0) S Sslowest. Their distributions are

P{Sfastest > S} = e_”(t"‘l)s,

P{Sslowest > 5} = e_'us(l - (1 - e_'us)T)t- @)

B. Fork-Join System in the Split-Merge Model (FJ-SM)

Recall that in the FJ-SM system, requests wait in a central-
ized FCFS queue and are admitted to service one at a time.
FJ-SM therefore does not introduce any dependence between
the service time distributions of different requests. In fact, it is
straightforward to see that the FJ-SM system implements an
M/G/1 queue with an arrival rate of A and the service time
distribution Tgy_(,. ;) given in Theorem 1.

In FJ-SM, all servers are blocked until the request at the
HoL finishes service, whereas in FJ-GA or FJ-FA, each server
can independently start serving from their queues. FJ-SM
therefore performs slower than both FJ-GA and FJ-FA. This
serves us to find an upper bound on the download time in
FJ-GA and FJ-FA as stated below. It should be noted that
the Split-Merge model is also used in [12] for deriving upper
bounds on the response time of (n, k)-FJ queue.

Lemma 5: The download time in FJ-SM is stochas-
tically dominant over that in FJ-FA and FJ-GA, i.e.,
P{TFJ_GA > f,} < P{TF_].SM > t} and P{TF_].FA > t} <
P {TFJ,SM > t}

Fast-Split-Merge Model: Observe that the request service
time distribution in FJ-SM, given in Theorem 1, is the same as
P {Ssiowest > s} in (7). Recall that Sgowest denotes the slowest
possible request service time distribution in the FJ-FA system.
In other words, FJ-SM is a modification of FJ-FA such that it
forces every request to have the slowest possible service time.

We next consider the Fast-Split-Merge model, denoted as
FJ-FSM, which operates at the other extreme of FJ-SM and
serves every request with the fastest possible service time
Stastest 10 (7). Using Observation 1, it is straightforward to show
that the FJ-FSM model implements an M/M/1 queue with an
arrival rate of A and service time distribution Exp((¢t + 1)u).

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

Just as we used FJ-SM to find an upper bound on Tgypa
(Lemma 5), we next use FJ-FSM to find a lower bound.
Lemma 6: P{Tprpm >z} > exp(— ((t+ 1)p— N x) for
A< (t+1)p
Proof: FJ-FA implements a FCFS queue (Observation 1),
and each request is served with one of the (777"} dis-
tributions given in Lemma 4. In FJ-FSM, all requests are
served with the fastest possible service time. Response time
of FJ-FSM therefore serves as a lower bound for Tgjpa. As
the FJ-FSM model implements an M/M/1 queue with arrival
rate A\ and service time distribution Exp((¢+ 1)), we get the
result. |
The immediate corollary of Lemma 6 gives a lower bound
on the average download time in FJ-FA as E [Trpa| >

1/ ((t+1)p—A) for A < (t+1)p.

VI. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2 Lower bounds (a) and (b): Consider
an enlarged system that consists of k& copies, system-: for ¢ =
1,..., k, of the original FJ system. Let us forward the requests
for object ¢ only to system-i. Then, system-¢ is equivalent to
a FJ-FA operating under the arrival rate of p;\. Each request
will experience a smaller response time in this enlarged system
than in the original. Hence the lower bound (a). The Fast-
Split-Merge model gives a lower bound on the response time
of system-i (Lemma 6), which together with (a) gives (b).
Upper bounds (¢) and (d) follow from Lemma 5. [ |

Proof of Theorem 3: Lower bound (a) given on Tgpga in
(3) is a mixture distribution with components distributed as
Exp((t + 1) — piA) for i =1,..., k. Expected value of this
mixture distribution is the lower bound for E [Tgygal. By (d)
given in (4), average response time E [Trysm| in FJ-SM sys-
tem yields an upper bound on E [Trrga]. FJ-SM implements
an M/G/1 queue with the service time distribution Sgjowest
(Section V-B). Then the Pollaczek-Khinichin formula [33]
gives

AE [S2
[ slowest] (8)

2 (]- —AE [Sslowest])
E [Ssiowest] is given in Theorem 1. We find E [S 2

slowest

E [TFJ—SM] =E [Sslowest] +

]as

E [S s%owesl} (:’L)

/ 25 P {Ssiowest > s} ds

0
© [ peesp(ope) (1 (1 —explop)) ) s

£ (V) g(_w(rlj) T
)

where (i) holds because E [X?| = [ 2s P{X > s}ds for
a non-negative r.v. X, (ii) comes from (7), and (iii) follows
from the binomial expansion of (1 — (1 — exp(—pus))")" and
interchanging the order of integration and summation. Finally,
substituting in (8) the first and second moments of Sgowest
gives us the upper bound in (5). |

Proof of Lemma 3: Consider a sample arrival sequence L
of requests in the FJ-GA system. Each request-i denotes a
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pair (¢;,0;) where ¢; is the arrival time and o; is the requested
object. Let ¢ be the index of the first request in L that is asking
for an object different from the first requested object o;. Let
I’ be an operator such that I'(L) returns a copy of L with
only one modification: the object being asked by request-£ is
changed to the first requested object o1. Note that I" keeps the
request arrival times t; the same. Let L(™ be the sequence
obtained by applying I' on L repeatedly m times.

Let T, be the download time under L and 77 1) under LW,
System under L™ behaves as FJ-FA for requests-(< £), that
is, requests-(< ¢) depart the system in order. However, under
L, request-¢ might finish early at the leading servers. This
implies that request-¢ might depart before even reaching HoL.
Conditioned on the event that request-¢ does not have an early
departure, it is not difficult to show that T is stochastically
the same as 77, when code locality is two. Further, conditioned
on the event that that request-¢ has an early departure, it is not
difficult to show that 77, < T ) stochastically when code
locality is two. We skip showing these two observations here
due to space constraints. This overall gives us 7, < Ty ).

Using the same arguments given in the previous paragraph,
we can show that 77y < Tprny for all 2. Let L™ denote
a sequence after applying I' on L sufficient number of times
such that L) has all requests asking for the same object.
Notice that L*) is a sample arrival sequence for FI-FA. The
previous inequality we showed implies 17, < T7a) < T <

. < Ty . Let us also define L (resp. L™) as the set of
all request arrival sequences for FJ-GA (resp. FJ-FA). Every
L in L will be transformed into an L*) in L*) by repeated
application of operator I'. Thus, I' is a surjective function from
L to ("), Let us define the subset of all L in L that map to
LX) as T=1(L™)). Then it is easy to see

P{L<*>} - ¥

LET-1(L(")
where P{L} (resp. P {L(*)}) denotes the probability of sam-
pling L (resp. L)) from L (resp. L()).
The FJ-GA download time distribution can be written as

P{L}. (10)

P{Trrca > 1} 2 ST P{LYP{TL > 1}
Lell

AP DY

LM eL™) Ler—1(L()
(¢)

SDIEDY

L™ eL™) LeT—1 (LX)

P{L}P{Ty >t}

P{L}P{TL(*) > t} ,

(1)

where (a) follows from the law of total probability, (b) follows
from the discussion previously given on I'"'(L(*)), and (c)
follows by using 77, < T} () Then, we find

()
P{Triga >t} < > P{Tpw >ty >  P{L}
L) el Lel'=1(L()
S P{L(*)}P{TL<*)>1§},
L) eL(x)
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where (a) follows from (11) and (b) follows from (10).
The proof concludes by observing that the right hand side
ZL(*)E]L(*) P {L(*)}P{TL(*) > t} = P{TFJ_FA > t}. |

VII. M/G/1 QUEUE APPROXIMATION FOR FJ-FA

A. Background

While discussing the FJ-FA system, we re-defined the
request service start times (see in Section V-A, Definition 1).
That allowed us to dissect the system dynamics and lead
us to make two important observations: i) requests depart
the FJ-FA system in the order they arrive (Observation 1),
and ii) there are (“7" ') possible request service time
distributions, as given in Lemma 4. These two observa-
tions, together with a the one we make below, allow us
to argue that the FJ-FA system can be approximated as
an M/G/1 queue.

The service time distribution for a request is dictated by
the system state at its service start time. Queue lengths carry
memory between the service starts of the subsequent requests.
For instance, as request-: starts service, if the difference
between the queue lengths across all the servers is at least 2,
then this difference will be at least 1 as request-(¢ + 1)
starts service. Therefore in general, service times are not
independent across the requests. However, very importantly,
request service times are only loosely coupled. Once a request
is finished, its outstanding redundant copies get removed from
service. This helps the slow servers to catch up with the
leading servers. It is “hard” for the leading servers to keep
leading as they compete with every other server. Queues across
all the servers are therefore expected to frequently level up.
Every time the queues level up while they are non-empty
corresponds to an epoch at which a request start service
(i.e., moving to HoL) with type-O service time distribution.
Given a time epoch ¢ at which the queues level up, requests
that move to HoL before ¢ or those that move after ¢ have
independent service time distributions. Therefore, queue lev-
elling time epochs break the dependence between the service
times. Given that such time epochs occur frequently, request
service times constitute a series of independent small-size
batches.

Observation 2: The FJ-FA system experiences frequent time
epochs across which request service times are independent.

The observations we have made so far lead to an approxi-
mate method for analyzing the FJ-FA system. Requests depart
the system in the order they arrive (Observation 1), hence the
system as a whole acts as a FCFS queue. There are (“7"7")
possible distributions for the request service times (Lemma 4).
Although request service times are not independent, they are
loosely coupled (Observation 2). Putting all these together,
we propose the following approximation for the FJ-FA system.

Approximation 1: The FJ-FA system can be approximated
as an M/G/1 queue, and it holds that

AE 5]

E [Trrm] = E [Twon] = E[S] + 2(1 - AE[S])

(12)
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Here, the moments of S are given as

E[S] = Z P {Type-vservice} E[S,],
veN

E[S?] = Z P {Type-vservice} E [S7] ,
veN

13)

where the set N is defined in (6), P{Type-v service} is the
probability that the service time of an arbitrary request is
sampled from S,,, whose distribution is in Lemma 4.

Note that (12) follows from the Pollaczek-Khinichin for-
mula [33], and (13) follows from Lemma 4. Moreover,
the approximation becomes exact for the system with locality
one, that is, when the Fork-Join content access model is
implemented on the system with replicated storage [12].

In the M/G/1 approximation given above, the only unknown
quantity is P {Type- v service}. Recall that we study the sys-
tem dynamics in steady state. Given that, P {Type- v service}
denotes the probability of serving request ¢ with type-v
distribution in the limit ¢ — oo. By ergodicity the limiting
value of this probability is equal to the limiting fraction f,, of
the requests served with type-v distribution [34]. We rely on
fu in the derivations presented in the sequel.

B. FJ-FA With Locality Two

We next focus on the FJ-FA model for availability codes
with locality two. This class of codes is of interest because
they are minimally different from replication with locality one.

Given that recovery groups consist of two servers, there can
be at most one leading server in each. Hence a request can have
at most one early departure at each of the recovery groups.
(See Section V-A for the definition of early departing request
copies.) Request service type vector v in this case is given by
(vo, 1) where v (resp. v1) denotes the number of recovery
groups at which the request has no (resp. one) early departing
copy. Given that 1+ is fixed and equal to ¢, it is sufficient to
only keep track of v to determine the service time distribution
of a request. In other words, service time distribution for a
request is defined by its number of early departing copies, i.e.,
number of recovery groups at which the request had one early
departure. Given that 14 lies in [0, ¢], the set S of all possible
service time distributions is of size ¢ + 1. If a request has an
early departing copy at ¢ recovery groups before it moves to
HoL, i.e., v; = i, then the request will be served with type-
i service time distribution. (Here, we follow the convention
introduced on service types in Section V-A.) Type-i service
time distribution is given by

P{S; > s} = exp(—pus)"** (1 —(1- exp(—us))Q)t_z

for i = 0,1,...,t. We have P{S;11 > s} /P{S;>s} < 1
for s > 0. This implies that .S; are stochastically ordered as
So > Sy > --- > S;. Recall from Section V-A that for the
code with general locality, we have a partial ordering between
the service time distributions. This partial ordering turns into
a complete ordering in this case with locality of two.
Deriving the request service time probabilities f; requires
an exact analysis of the system, which is intractable due to the
state explosion problem. We next conjecture a relation between

(14)
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Fig. 4. Simulated request service time probabilities f; for systems with (3,
2,2, 1)- and (7, 3, 2, 3)-availability codes. Here p is the average system load.

fi for the system with locality two. This relation will be used
later to derive several estimates for f;.

Conjecture 1: In the FJ-FA system with locality two,
fici> fifori=1,...t

We next briefly discuss the reasoning behind the conjecture.
Observation 2 states that the queues at the servers frequently
level up. This is because the leading servers in the recovery
groups compete with every other server in the system to keep
leading. For a request to have type-: distribution for service,
it needs to have one early departure at exactly ¢ recovery
groups. This requires one server in each of the i recovery
groups to be leading, which gets less likely for larger i. We
have validated the conjecture with extensive simulations. Fig. 4
shows the simulated values for f; in a system that employs the
binary Simplex code with availability one or three, and locality
two. Furthermore, we found a strong pointer for the conjecture
(can be found in [25]). This pointer says that given a request
is served with type-: distribution, the subsequent request is
more likely to be served with type-j distribution for 57 < <.
We prove the conjecture for the system with availability one
and locality two. This is implied by the bounds given on f;
in Theorem 6.

Fig. 4 shows that, as the offered load increases, the fre-
quency of type-: service time increases for larger ¢, which
agrees with the discussion above. To have type-¢ distribution,
a request needs to have one early departure at ¢ recovery
groups. This is possible only if there are 7 leading servers.
Recovery servers can go ahead of their peers only if their
queues are non-empty. The queues are more likely to build up
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Fig. 5. Average download time versus A for FJ-FA with locality two. Sim
refers to the simulated values. UB (resp. LB) refers to the upper (resp. lower)
bounds in Lemma 5 (resp. 6). Approx refers to Approximation 2.

under greater offered load. This allows the leading servers to
progress even further than they could under smaller offered
load. Using Conjecture 1, we find estimates for f;. ( see
[25] for details). Then substituting these estimates in the
M/G/1 approximation (cf. (12)), we derive the following
approximation.

Approximation 2: The FJ-FA system with locality two is
approximately an M/G/1 queue with service time distribution

t oi—1 ¢ i—1
P{S>S}:<1+ZHP]‘) ZP{Si>S}HPj,
i=0 j=0

i=1j=0

where p; are recursively computed as (i =1,...,1)
__E[Y]

PO A= AEV])

1= (L= XEV]) (1+ Y6 T )
(1= AE V) (t — i) [Tizo s
where E[V] = H—Ll ZE:O E [S;] and S; are defined in (14).

Comparison of the Approximations and Bounds: Fig. 5 gives

a comparison between the M/G/1 approximation (Approxima-
tion 2) and the bounds presented in Section V-A.

pi =

)

C. FJ-FA With Locality Two and Availability One

We here focus on availability codes with locality two
and availability one. This represents the simplest possible
availability code, i.e., objects a, b are stored together with
a + b over three servers. The corresponding FJ system is thus
the simplest of all FJ systems with availability codes. Requests
in this case are served with either type-0 or type-1 service time
distribution. Although the exact analysis is still formidable,
the system state is simple enough to find tighter bounds on the
request service time probabilities fp and f;. Substituting these
into Approximation 2 leads to a tighter M/G/1 approximation.

The simplicity of the setting here allows us to address a
more general service time model than identical Exp(u) r.v.’s.
We continue assuming the service times to be independent
across different servers and request copies. However this time,
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Fig. 6. FJ-FA with availability one and locality two. Snapshot on the left
(resp. right) illustrates the time epoch at which request 1 (resp. 2) starts service
and its service time distribution Sg (resp. S1).
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Fig. 7. Markov state process for the FJ-FA system with availability one and
locality two (top), and its high traffic approximation (bottom).

we let the service time at the systematic server to be distributed
as Exp(7), and the service times at the recovery servers to be
distributed as Exp(«) and Exp(/3). In the following we refer
to server with service rate = as server-z.

The system state at time 7 can be described with a
triple s(7) = (N(7), (na(7),n3(7))). N(7) denotes the total
number of requests in the system at time 7. This is given
by the number of request copies present in the systematic
server. no (1) (resp. ng(7)) denotes by how many request
copies server-« (resp. server-() is leading the other recovery
server. In other words, denoting the queue length at server-x
at time 7 with len-z(7), we can express 1, (7) and ng(7) as

na(7) = max{len-a(7r) — len-3(7), 0},
ng(7) = max{len-3(7) — len-a(7), 0}. (15)

It follows that n,(7)ng(7) = 0 for all 7. This is because
there can be only one leading recovery server at any time since
the system has one recovery group of two servers (availability
one, locality two). (Recall the definition of leading server from
the second paragraph of Section V-A.) The system state is
illustrated in Fig. 6 with two different snapshots of the system.

The system state s(7) at time 7 is a Markov process as
illustrated in Fig. 7 (top). Let us refer to P {s(7) = (k,4,5)}
by pr.i,; (7). Suppose that the system stability is imposed and
lim; o0 Pr,i,;(T) = P, ;. Balance equations for the system
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are summarized for k,7,j5 > 0 as

(YL(k > 1) + al(i > 1) + B1(j > 1)) pr,i;
=AL(k>1,9 >1,5>1) pr—tim1,j—1 + 7 Phtl,itl,j+1
+(v + O)prt1it1,5 + (v + B)Prgii -

These balance equations do not permit exact analysis of the
system’s steady state behavior, because the state space is
infinite in two dimensions. We use two methods to analyse
the process approximately: 1) the local balance method with
a guess-based analysis [35, Chapter 17], and 2) the matrix
analytic method [35, Chapter 21], which involves truncating
the process and numerically finding py;; with an iterative
procedure. The analysis is given in [25]. The matrix analytic
method gives the following upper bound on the average down-
load time. This bound is provably tighter than the Split-Merge
upper bound previously given in Theorem 3. This is because
the Split-Merge model truncates the pyramid process and
keeps only the central column, while in our application of
the matrix analytic method, we keep the five central columns.
Theorem 4: In the FJ-FA system with availability one and
locality two, the average data download time is bounded as

1
E [Trym] < N (7"015 — 70,(0,0)

+m (I-R)2+I-R)™) 1{).
Here 19 = [1,1,1,1], 1; = [1,1,1,1,1]. and 1% and 17 refer
to their transpose. Vectors mq and ; are given as

Ty = [7T0,(0,0)7 T1,(0,1)» T1,(0,0)» 7T1,(1,0)],
T = [772,(0,2)7 T2,(0,1)> 72,(0,0)> 72,(1,0)> 772,(2,0)],

where T, (n..ng) IS the steady-state probability that queue
lengths at the servers are len-y = n,, len-a = n, and
len- = ng. Matrices I and R are 5 x 5. I is the identity
matrix. R is numerically computed in terms of the arrival
rate A\ and service rates vy, « and (3. The algorithm is
described in [25].

1) High-Traffic Approximation: We next present a method
to approximately analyze the system. As in Section V-A,
we first find estimates for the request service time probabilities
fo and f1, and then substitute these in the M/G/1 approxima-
tion (cf. (12)). Here we are able to find tighter estimates for
fo and f1 by exploiting the simplicity of the system state.

Suppose that the system operates close to its stability limit,
such that the servers are always busy serving a request copy.
This reduces the system complexity, as we can now describe
the system state keeping track of n(7) = (no(7),ng(7))
defined in (15). System state in this case implements a
birth-death Markov process as shown in Fig. 7 (bottom).
Referring to lim, .. P{n(7) = (4,7)} as p; ;, and using the
balance equations « p; o = (v + B)piv10 and 5 po,; =
(v+a)po,i+1 fori > 0, we find the limiting state probabilities

as
R el Gl p.O:( a )"poo
T oy(a+ B4y T8 B4~/
7
poﬂ.:( s )pO,O for i > 1.
a+y
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We next use these expressions to find bounds on the fraction
of the requests completed by the systematic server, ws, or by
the recovery group, w,. Recall that a request completes as soon
as either its copy at the systematic server or both copies at the
recovery group finish service. For the sake of simplicity, let
the service rates «v and (3 at the recovery servers be u. We keep
the service rate at the systematic server fixed at +.

Theorem 5: In FJ-FA system with avallablllty one and
locality two, ws > W and w, < W+2u 5 for v ="y+2u.

Proof: Suppose the system operates close to its stability
limit. Under this high-traffic assumption, let us refer to the
values of w, and w, as ws and w,. The recovery servers
regularly go idle under stability. Therefore, fraction of the
request completions at the recovery group is smaller under
high-traffic approximation than it is under stability. Hence
wy < Wy, and wy = 1 — w, implies wg > Ws.

Next, we derive ws and ), from the steady state proba-
bilities of the Markov chain embedded in the state process
n(7) (Fig. 7, bottom). System stays at each state for an
exponential duration of rate v = = + 2u. Therefore, steady
state probabilities p; of n(7) (i.e., the limiting fraction of the
time spent in state ) and the steady state probabilities m; of
the embedded Markov chain (i.e., the limiting fraction of the
state transitions into state ¢) are equal. This is easily seen by
Zizo biV = Pi.

Let f; be the limiting fraction of the state transitions that
represent request completions by the systematic server. Let f,
denote the same quantity for the recovery group. We have

the equality m; = p;v

o0 o0
fs = 7T0,0’Y/V+Z7Ti,0 V/V‘FZ?T(M V/v="/v,

i=1 i=1
fr=> (moi+mio)p/v=2 (/v)*
i=1

The limiting fraction of the state transitions that correspond to
request departures is fq = fs+ f = (yv+2u?)/v?. Thus the
fraction of requests completed by the systematic server and
the recovery group are

PO . L N s
T fa w2u¥ fa  w+2u®
|
Fig. 8 shows the general tightness of the high traffic bounds
given in Theorem 5, which increases with the offered load as
expected. We next find bounds on the request service time
probabilities fo and f; using the high-traffic approximation.
Note that bounds given below prove Conjecture 1 for the
system with locality two and availability one.
Theorem 6: In the FJ FA system wzth avallablllty one and
locality two, fo > V+2 > and f1 < V+2 —E— forv=~vy+2pu.
Proof: Suppose that the system operates close to its
stability limit. Under this high-traffic assumption, let us refer
to the values of fy and f7 as fo and fl. Under stability, system
has to empty out regularly. Every request that finds the system
empty, makes type-0 service start. However, such idle periods
never happen under high-traffic approximation. That is why f,
under the high traffic approximation is smaller than its value
under stability. Thus we conclude fy > fo and f; < fl.

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 14:02:46 UTC from IEEE Xplore. Restrictions apply.



AKTAS et al.: DOWNLOAD TIME ANALYSIS FOR DISTRIBUTED STORAGE CODES WITH LOCALITY AND AVAILABILITY

Replicate-to-allt=1, y=a=8=1

o
o
a

o
o
=3
T
1
1
1
1
]
1
1
]
1
1
]
1
1
1
1
]
1
1
]
1
1
]
1
1
1
1
!
I
1
'
1

-== Lower-bound, wsg

—== Upper-bound, w,
Simulation, wg

@ Simulation, w,

=4
n
o

o
IS
o

o
Y
¢
¢

°
W
G

.‘...-'.

OTZ 0.4 0?6 0?8 1?0 1?2 1?4 1?6
Arrival rate A

Fraction of request completions
o]
s

Fig. 8.  Simulated fraction of the request completions by the systematic
server, ws, and by the recovery group, w;. The lower and the upper bound
are computed using the expressions given in Theorem 5.

Next, we derive fo and fl using the steady state prob-
abilities of the Markov chain embedded in n(r) (Fig. 7,
bottom). State transitions towards state (0, 0) represent request
completions. Let f; be the fraction of such state transitions.
Under high-traffic, every time the request at HoL departs there
is a subsequent request that starts service. Thus, every time
system transitions into (0,0) (or any other transition towards
it), a new request makes a type-0 (resp. type-1) service start.
Let fo and f_; be the fraction of state transitions that
represent type-0 and type-1 service starts. Then

fa

(o]
T0,07/v + Y (m0,i + mi0) (1 +7) /v
1=1
(24 + 2uy + %) /V°
f=0 = m0,07/v+ 10k +7)/v+Toa(n+7)/v
2p pty

_ Ty st
_WO’O(V—’—M-F’Y y

= 7T = .
) 0,0 S+ 2

Thus, the limiting fraction fo (resp. fl) of the requests that
make type-0 (type-1) service start are, for v = v + 2,

S v : ; 2p°
Jo= fa  yv+2u?’ hi=1=fo= Y+ 2p2
|
2) Comparison of Approximations: We approximate the
FJ-FA system as an M/G/1 queue (Approximation 1), which
together with the PK formula gives us an approximate expres-
sion for the average download time (12). This approximation
requires the first and second moments of the service time
distribution (13). Substituting the bounds in Theorem 6 in
place of the actual probabilities fy and f; yields the following
lower bounds on the service time moments:

1/ 2 1 2 1
E[S]> - (— - — 42—
[]_3<7+u 7+2u) 3yt
1 4 2 2 2
E[s?] > - - 22
)2 (G~ mrar) tinew

Substituting these bounds in (12) gives a lower bound on the
download time. However, this lower bound can only be treated
as an approximation since (12) is not exact but an approx-
imation. As shown in Fig. 9, this approximation performs
very well in predicting the actual average download time,
especially compared to the Split-Merge and Fast-Split-Merge
bounds given in lemmas 5 and 6.
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Fig. 9. Comparison of the bounds on average download time versus A for
FJ-FA with availability one and locality two. Split-Merge and Fast-Split-Merge
bounds are given in lemmas 5 and 6. Matrix analytic bound is given in
Theorem 4. High-traffic approximation comes from substituting in (12) the
bounds given in Theorem 6.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Storage systems with availability codes allow simultaneous
downloads of each data object from multiple recovery groups.
However, downloading an object from a recovery group
requires fetching the coded objects from all the servers in
the group. Such downloads are slower than those from a
single server because of straggling servers. In this paper,
we asked if availability codes improve hot data download
performance. We adopted the Fork-Join (FJ) access scheme
that employs redundant requests to mitigate stragglers’
impact.

We found that availability codes lie between replication and
MDS codes in the storage overhead vs. download latency
tradeoff. Also, we found that availability codes achieve a
favorable tradeoff between the storage overhead and down-
load latency compared with the state-of-the-art erasure codes.
We made these observations by deriving expressions for the
download latency. An exact analysis was possible under the
low traffic regime. Otherwise, availability codes give rise
to multi-layer inter-dependent FJ queues. The state space
explosion makes the exact analysis intractable in this case.
Here, we derived bounds and approximations on the download
time by devising systems that are tractable variants of the
FJ system. For the case of locality two, which is minimally
different from replication (i.e., locality one), we conjectured
an order relationship between the service time probabilities,
and derived approximations on the download time based on
this conjecture. We demonstrated, via simulations, that these
approximations are close to the download time.

We considered the FJ access model that replicates every
request to all the servers upon arrival. This redundancy strategy
treats all the requests uniformly, resulting in fairness. However,
it aggressively adds redundant load on the system, which might
be suboptimal. An interesting future direction is to investigate
strategies that employs redundancy selectively based on the
system state such as the current load offered on the system.
Another future direction is to devise redundancy policies that
are provably optimal for systems employing a given availabil-
ity code. Overall, the ultimate goal is to design, for a given set
of parameters, coding schemes and accompanying redundancy
strategies that are optimal in terms of the download delay.
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