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Abstract
We consider the existence and spectral stability of static multi-kink structures
in the discrete sine-Gordon equation, as a representative example of the fam-
ily of discrete Klein–Gordon models. The multi-kinks are constructed using
Lin’s method from an alternating sequence of well-separated kink and antikink
solutions. We then locate the point spectrum associated with these multi-kink
solutions by reducing the spectral problem to a matrix equation. For an m-
structure multi-kink, there will be m eigenvalues in the point spectrum near
each eigenvalue of the primary kink, and, as long as the spectrum of the pri-
mary kink is imaginary, the spectrum of the multi-kink will be as well. We
obtain analytic expressions for the eigenvalues of a multi-kink in terms of the
eigenvalues and corresponding eigenfunctions of the primary kink, and these
are in very good agreement with numerical results. We also perform numerical
time-stepping experiments on perturbations of multi-kinks, and the outcomes
of these simulations are interpreted using the spectral results.
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1. Introduction

The 1+ 1-dimensional nonlinear Klein–Gordon models have been one of the preeminent
platforms where ideas from integrable, as well as near-integrable, theory of nonlinear partial
differential equations and the corresponding solitary waves have been developed. This is by
now evidenced by numerous monographs [1, 2], specialized books for these models [3–5] and
reviews [6, 7]. Both continuum and discrete models of this kind have been of interest to phys-
ical applications, as well as to applied analysis, and their comparison as regards the transition
from discrete to continuum has been of interest in its own right [8].

The discrete Klein–Gordon equation

ün = d(Δ2u)n − f (un)

describes the dynamics of an infinitely long, one-dimensional lattice of particles which are
harmonically coupled to their neighbors through the discrete second difference operator Δ2

and are subject to an external, nonlinear, onsite potential P(u) such that f (u) = P′(u) [9]. The
quantity un represents the displacement of the particle at site n in the lattice, d is the strength
of the nearest neighbor coupling, and the dot denotes the derivative with respect to the time t.

A specific example is the discrete sine-Gordon equation

ün = d(Δ2u)n ± sin(un), (1)

in which the external potential is periodic. This equation is also known as the
Frenkel–Kontorova model, and was introduced in 1938 to describe the dynamics of a crystal
lattice near a dislocation core [3, 7]. This equation has since been used in numerous applica-
tions, including a mechanical model for a chain of pendula coupled with elastic springs [10,
11], arrays of Josephson junctions [12, 13], and DNA dynamics [14–16]. (See [3, chapter 2]
for more physical applications of this model.) Another example of substantial interest is the
discrete φ4 model

ün = d(Δ2u)n + 2un(1− u2n), (2)

which has a double well external potential, and has applications to conducting polymers [17].
In addition, the latter model has been a central point of focus as concerns the dynamics of
discrete breathers, i.e. time-periodic and exponentially localized solutions in space [18, 19].

Equation (1) is the discrete analogue of the continuum sine-Gordon PDE

utt = uxx ± sin(u), (3)

which hasmany physical (including, e.g., fluxons in Josephson junctions, charge density waves
in quasi-1D conducting materials, among many others) and biological applications [4, 20] and
has been extensively studied both in the mathematical and physics literature due to the fact that
it is integrable via the inverse scattering transform [21]. We note that if u(x) is a solution to
(3) with the ‘minus’ nonlinearity, u(x)− π is a solution with the ‘plus’ nonlinearity. The same
holds for (1). For symmetry reasons, which will be explained in section 2, we will consider
only the ‘plus’ nonlinearity here. Of particular interest are coherent structures such as kinks
(figure 1, left panel), exponentially localized stationary solutions which are heteroclinic orbits
that connect two adjacent minima of the potential P(u), and also continuum variants of the
breather solutions. Analytical waveforms are available via the integrable theory for both kinks
and breathers in the continuum sine-Gordon equation (see, for example, [8]). Kink solutions
exist for the continuum φ4 model as well, although that equation is not integrable [4, 22] and
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Figure 1. Kink solution to the sine-Gordon equation (left). Intersite spectrally stable
(center) and onsite spectrally unstable (right) kinks of the discrete sine-Gordon equation
for d = 0.5 and n = 60 lattice points.

the same is generically true for Klein–Gordon models with multiple degenerate energy min-
ima. Regular breather waveforms do not exist in the continuum φ4 model (and generically in
continuum Klein–Gordon settings aside from the integrable sine-Gordon case) as is known
from the work of [23].

When we move from the continuum realm to the discrete, there are two distinct kink
solutions: intersite kinks (figure 1, which connect two adjacent minima of the potential P(u)
directly, and onsite kinks (figure 1, right panel), which connect these states via a local maxi-
mum of P(u) which lies between the two minima [24]. This is similar to the discrete nonlinear
Schrödinger equation (DNLS), where there is both a site-centered and an intersite-centered
(pulse) soliton solution [25]. Corresponding to each kink solution is an antikink solution which
connects the two equilbria in the opposite order. By reversibility, if k(n) is a kink solution,
then k(−n) is an antikink. We will be concerned only with static kink solutions here, although
we note that there has been much interest in both moving kinks [26–28] and breather solu-
tions (see, for example, [4] as well as [29, 30] for results on multi-site breathers) in discrete
Klein–Gordon lattices.

In this paper, we look at multi-kinks, which are coherent structures resembling a sequence
of alternating kinks and antikinks spliced together end-to-end. The study of complex coher-
ent structures formed by joining multiple copies of a simpler coherent structure has a rich
mathematical history (see [31], and the references therein). In [31], for example, the exis-
tence and stability of multi-pulse solutions to semilinear parabolic equations, such as reaction
diffusion equations, is determined using Lin’s method [32, 33], an implementation of the Lya-
punov–Schmidt reduction. This method constructs multi-pulses by splicing together multiple,
well-separated copies of a single pulse using small remainder functions, and it is also used to
reduce the PDE eigenvalue problem to a matrix eigenvalue problem. These techniques have
been recently extended to Hamiltonian lattice systems, including DNLS [34]. In the case of
DNLS, multi-pulse solutions exist on the lattice which do not exist in the continuum equation
(although multi-pulses do exist in higher order NLS models [35]).

For the discrete Klein–Gordon equation, we follow a similar approach to [34] and use a
discrete adaptation of Lin’s method [36] to construct multi-kinks from a sequence of well-
separated kinks and antikinks. As with multi-pulses in DNLS, these multi-kinks do not exist
in the continuum equation. Indeed, it is the so-called Peierls–Nabarro barrier [24], the local
effective potential due to discreteness, that makes such configurations possible. Otherwise,
similarly to the DNLS case [37], the structures would purely interact exponentially through
their tails, being unable to form stationary patterns involving multiple waves. We also use
Lin’s method to reduce the spectral problem to a matrix equation. The most notable difference
here is that the system on the lattice is no longer translation invariant, thus there is not an
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eigenvalue at 0. Instead of locating eigenvalues in a small ball around the origin, this method
locates eigenvalues of the multi-kink in the neighborhood of each eigenvalue of the primary
kink. In particular, this means that there will be a different matrix reduction corresponding
to each eigenvalue of the primary kink; computing each of these matrices requires knowing
(or computing numerically) the point spectrum and the corresponding eigenfunctions of the
primary kink. We show that for an m-component multi-kink, there are m eigenvalues in the
point spectrum near each eigenvalue of the primary kink. We obtain analytic expressions for
these eigenvalues in terms of the tails of the eigenfunctions of the primary kink, in a similar
fashion to the expressions for DNLSwhich depend on the tails of the primary pulse [34]. These
expressions are in good agreement with numerical computations for intermediate values of the
coupling parameter d. Finally, we perform timestepping experiments on perturbations of the
primary kink and multi-kinks to illustrate the role of the point spectrum and its corresponding
eigenfunctions in explaining the evolution of these perturbations. We believe that this offers
a systematic understanding of such multiwave patterns, based on the existence and stability
properties of the corresponding building block, namely the single kink (or antikink).

This paper is organized as follows. In section 2, we present the mathematical background
for the discrete Klein–Gordon equation, together with a reformulation of the existence and
eigenvalue problems using a spatial dynamics approach. The main results concerning the exis-
tence and spectrum of multi-kinks are then given in section 3; the proofs of these results are
deferred to the end of the paper. In section 4, we present numerical results which corroborate
the main theorems, as well as results of timestepping simulations. The proofs of theorems 1
and 2 are given as appendices following a brief concluding section.

2. Mathematical background

We will consider the discrete Klein–Gordon equation with onsite nonlinearity f (u)

ün = d(Δ2u)n − f (un), (4)

where (Δ2u)n = un+1 − 2un + un−1 is the discrete second difference operator, and f (u) =
P′(u) for a smooth potential function P(u). The nonlinearity f has the following three
properties:

(a) f (u) is an odd function with f ′(0) < 0. This implies that f (0) = 0, so 0 is an equilibrium
of (4).

(b) There is a pair of nonzero equilibria±u∗ with f (±u∗) = 0 and f ′(u∗) = f ′(−u∗) > 0.
(c) There are no other equilibria in [−u∗, u∗].
Important versions include the discrete sine-Gordon equation, where f (u) = −sin(u) and

P(u) = 1+ cos(u), and the φ4 model, where f (u) = −u(1− u2) and P(u) = 1
4 (1− u2)2.

We note that the discrete sine-Gordon equation is typically written with the nonlinearity
f (u) = sin u, in which case the pair of stable equilibria in (b) are at 0 and 2π, and the unstable
one between them is at π. This is identical to the situation considered here except for a shift
of un by−π. Choosing f to have odd symmetry greatly simplifies the analysis, and allows the
result to apply to both the discrete sine-Gordon equation and the φ4 model. Equation (4) is
Hamiltonian, with energy given by [22]

H(u) =
∞∑

n=−∞

(
1
2
(u̇n)2 +

d
2
(un+1 − un)2 + P(un)

)
. (5)
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The equilibrium solutions we will study are standing waves which satisfy

d(Δ2u)n − f (un) = 0. (6)

Linearization about an equilibrium solution un yields the eigenvalue problem

d(Δ2v)n − f ′(un)vn = λ2vn. (7)

Letting ω = λ2, we obtain the eigenvalue problem for ω

d(Δ2v)n − f ′(un)vn = ωvn. (8)

The eigenvalues are given by λ = ±
√
ω. Equation (8) has the form of an infinite dimensional

matrix problem [38]. Since that matrix is real and symmetric, the linear operator defined by
the lhs of (8) is self-adjoint, thus ω must be real. This implies that the eigenvalues λ must be
either real or purely imaginary pairs. In particular, spectral instabilities can only develop when
a pair of eigenvalues passes through the origin [38].

Using a spatial dynamics approach as in [34], let un be an equilibrium solution to (6), and
let U(n) = (u(n), ũ(n)) = (un, un−1). Then equation (6) is equivalent to the lattice dynamical
system in R2

U(n+ 1) = F(U(n)), (9)

where

F

(
u
ũ

)
=

(
2u− ũ+

1
d
f (u)

u

)
.

Equation (9) has three fixed points of interest at 0 and S± = (±u∗,±u∗)T. (It may in fact have
more, depending on the specific form of f (u); this is the case for the discrete sine-Gordon
equation.) Linearizing about the fixed points S±, we obtain the matrix

DF(S±) =

(
2+

1
d
f ′(±u∗) −1

1 0

)
.

Since f ′(±u∗) > 0, this has a pair of eigenvalues {r, 1/r} with r > 0, where

r =
1
2d

(
f ′(u∗)+ 2d +

√
f ′(u∗)( f ′(u∗)+ 4d)

)
. (10)

Thus S± are hyperbolic saddle equilibria of the lattice dynamical system (9). The origin is a
nonhyperbolic equilibrium which has a pair of eigenvalues on the unit circle in the complex
plane. We take the existence of a stable, symmetric kink (stationary front) as a hypothesis.
From the spatial dynamics perspective, this kink solution is a heteroclinic orbit connecting the
saddle at S− to the saddle at S+.

Hypothesis 1. There exists a kink solution K(n) = (k(n), k̃(n)) to (9) which connects the
unstable manifoldWu(−u∗,−u∗) and the stable manifoldWs(u∗, u∗). These manifolds intersect
transversely in R2. The kink has the odd symmetry k(−n) = −k(n− 1). Finally, = the kink
K(n) is a minimizer of the t-independent energy functional

h[u] =
∞∑

n=−∞

(
d
2
(un+1 − un)2 + P(un)

)
(11)

1040



Nonlinearity 35 (2022) 1036 R Parker et al

among the class of heteroclinic connections between S− and S+.

Remark 1. The kink k(n) from hypothesis 1 has the odd symmetry k(−n) = −k(n−
1), and is known as an intersite kink, since it does not involve the equilibrium at 0.
For the sine-Gordon equation, an intersite kink at the anti-continuum (AC) limit d = 0 is
given by (. . . ,−π,−π, π, π, . . .). By contrast, an onsite kink, which has the odd symmetry
k(−n) = −k(n), involves the equilibrium at 0. For the sine-Gordon equation, an onsite kink at
the AC limit is (. . . ,−π,−π, 0, π, π, . . .).

Since K(n) is a minimizer of the energy functional (11), the spectrum of K(n) lies on the
imaginary axis [22, section 2.1.6]. For specific nonlinearities f (u), including those associated
with the discrete sine-Gordon equation and theφ4 model, the existence of a symmetric, intersite
kink which is a minimizer of (11) is known (see [8, 22] and references therein). On the other
hand, the onsite kinkwill in general be unstable. For the sine-Gordon equation, for example, the
onsite kink has a pair of real eigenvalues±λ and is thus unstable [39, theorem 4.4]. In addition,
the onsite kink can be shown to be unstable for the sine-Gordon equation when d < 1/4 and
the φ4 model when d < 1/2 using Gerschgorin’s theorem [8]. While the former result is an
asymptotic one, valid in the vicinity of the continuum limit, the latter is a rigorous one, but only
valid for the above-mentioned interval of d in the vicinity of the AC limit of d = 0. Hence, the
two results are complementary to each other. Since f (u) is an odd function, if un is a solution
to (6), so is −un. Thus for every kink solution K(n) to (9) there is a corresponding antikink
solution K̃(n) = −K(n).

The spectrum of the primary kink solution K(n) = (k(n), k̃(n)) can be decomposed into two
disjoint sets: the point spectrum consists of isolated eigenvalues for which the corresponding
eigenfunction is in �2(Z), and the continuous spectrum which consists of bounded, oscillatory
modes. Following [22], the continuous spectrum depends only on the background state of the
system and consists of the two symmetric intervals on the imaginary axis

σcont = ±i
[√

f ′(u∗),
√
f ′(u∗)+ 4d

]
. (12)

In particular, there is a gap in the continuous spectrum i
(
−
√
f ′(u∗),

√
f ′(u∗)

)
which contains

the origin. The continuous spectrumwill be the same for the linearization about any equilibrium
solution involving the asymptotics of u→±u∗.

The continuumKlein–Gordon equation utt = uxx − f (u) has an eigenvalue at 0 due to trans-
lation invariance which is referred to as the Goldstone mode. Since the discrete Klein–Gordon
equation does not possess any continuous symmetries, therewill be no eigenvalues at the origin.
Instead, there will be a symmetric pair of eigenvalues, which is either real or purely imaginary.
For the intersite kinkwe are considering, this pair will be imaginary since the entire spectrum is
imaginary (it will be real for the onsite kink). This pair of eigenvalues is often termedGoldstone
modes by extension of the Goldstone mode of the continuum equation, since these eigenvalues
approach the origin as the discrete equation approaches the continuum limit, i.e. d→∞. For
specific nonlinearities f (u) and certain values of the coupling parameter d, there may be addi-
tional eigenvalues, known as internal modes, which lie between the bands of the continuous
spectrum. For the kinks which are minimizers of (11), these will also be purely imaginary. (See
[22, 40] for a discussion of the spectrum of the kink solution, including the internal modes, for
the discrete sine-Gordon equation and the φ4 model.) We make the additional hypothesis that
all point spectrum for the primary kink K(n) lies in the continuous spectrum gap.

Hypothesis 2. |λ| <
√
f ′(u∗) for all eigenvalues (point spectrum) λ of the primary kink

K(n).
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3. Multi-kinks

We can construct multi-kink solutions by joining together an alternating sequence of kinks
and antikinks in an end-to-end fashion. By the symmetry of f (u), un is an equilibrium solution
if and only if −un is, thus we can always without loss of generality begin with a kink solu-
tion. We will characterize a multi-kink in the following way. Let m > 1 be the total number
of kinks and antikinks. Let Ni (i = 1, . . . ,m− 1) be the distances (in lattice points) between
consecutive kinks/antikinks. (As a mark of the position of the center of the kinks/antikinks, we
use the position of the corresponding zero-crossing). We seek a solution which can be written
piecewise in the form

U−
i (n) = ciK(n)+ Ũ−

i (n) n ∈ [−N−
i−1, 0] i = 1, . . . ,m

U+
i (n) = ciK(n)+ Ũ+

i (n) n ∈ [0,N+
i ] i = 1, . . . ,m,

(13)

where ci = (−1)i+1, N+
i = �Ni2 	, N

−
i = Ni − N+

i , and N−
0 = N+

m = ∞. We also define

N =
1
2
min{Ni} (14)

as a characteristic distance, which will be used in the estimates of the remainder terms in (16).
The individual pieces U±

i (n) are joined together end-to-end as in [31, 34, 36] to create the
multi-kink solution U(n), which can be written in piecewise form as

U(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U−
i

⎛
⎝n− i−1∑

j=1

Nj

⎞
⎠ i−1∑

j=1

Nj − N−
i−1 + 1 � n �

i−1∑
j=1

Nj

U+
i

⎛
⎝n− i−1∑

j=1

Nj

⎞
⎠ i−1∑

j=1

Nj + 1 � n �
i−1∑
j=1

Nj + N+
i

i = 1, . . . ,m,

(15)

where we define
∑0

j=1 Nj = 0. Since we are taking N−
0 = N+

m = ∞, this formula makes sense

for the two end pieces U−
1 (n) and U

+
m (n). The functions K̃±

i (n) in (13) are remainder terms,
which will be small. We then have the following existence theorem. The proof is deferred until
appendix A.

Theorem 1. Assume hypothesis 1. Then there exists a positive integer N0 with the following
property. For all m > 1 and distances Ni � N0, there exists a unique solution U(n) which is
composed of m alternating kinks and antikinks and can be written piecewise in the form (13).
For the remainder terms Ũ±

i (n), we have the estimates

‖Ũ±
i ‖ � Cr−N

|Ũ−
i (n)| � Cr−N

−
i−1r−(N−

i−1+n) n = 2, . . . ,m

|Ũ+
i (n)| � Cr−N

+
i r−(N+

i −n) n = 1, . . . ,m− 1

|Ũ−
1 (n)| � Cr−2Nrn

|Ũ+
m (n)| � Cr−2Nr−n.

(16)
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Remark 2. For the sine-Gordon equation, equation (9) has saddle equilibria at nπ for all
odd integers n. More general multi-kinks can be constructed comprising kinks and antikinks
which link any adjacent saddle equilibria. A specific example is a double kink, where a kink
connecting −π to π is followed by a kink connecting π to 3π. The existence of these general
multi-kinks is a straightforward adaptation of theorem 1.

To determine the eigenvalues of the linearization about a multi-kink, we again take a
spatial dynamics approach. We rewrite (8) as a lattice dynamical system by taking V(n) =
(v(n), ṽ(n)) = (vn, vn−1). Then (8) is equivalent to the lattice dynamical system in R2

V(n+ 1) = DF(U(n))V(n)+ ωBV(n), (17)

where

B =
1
d

(
1 0
0 0

)
.

For the primary kink K(n) = (kn, k̃n), let v0(n) be an eigenfunction with corresponding eigen-
value λ0, let ω0 = λ2

0, and let V0(n) = (v0(n), ṽ0(n)) = (v0(n), v0(n− 1)). Then V0(n) solves
the equation

V0(n+ 1) = DF(K(n))V0(n)+ ω0BV0(n), (18)

which we rewrite as

V0(n+ 1) = A(n;ω0)V0(n), (19)

where

A(n;ω) = DF(K(n))V0(n)+ ωB. (20)

By the stable manifold theorem,

|A(n;ω0)− A0| � Cr−|n|, (21)

where A0 is the constant matrix

A0 = DF(S+)+ ω0B. (22)

A0 has eigenvalues {r0, 1/r0}, where

r0 =
1
2d

(
f ′(u∗)+ ω0 + 2d +

√
( f ′(u∗)+ ω0)( f ′(u∗)+ ω0 + 4d)

)
. (23)

Since λ0 is on the imaginary axis by hypothesis 1, ω0 < 0, thus it follows from hypothesis 2
that A0 is hyperbolic. It also follows from hypothesis 2 that 1 < r0 < r, thus the eigenfunctions
decay to 0 slower than the kink solution decays to the equilibria at ±S.

For a multi-kink composed ofm components, each eigenvalue of the primary kinkK(n) will
split into m eigenvalues. The following theorem locates these eigenvalues for the multi-kink
U(n). The proof is deferred until appendix B.

Theorem 2. Assume hypothesis 1 and 2. Let U(n) be an m-component multi-kink con-
structed as in theorem 1 with distances Ni, and let N = 1

2 min{N1, . . . ,Nm−1}. Let ±λ0 be
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a pair of purely imaginary eigenvalues for the primary kink with corresponding eigenfunc-
tion V0(n), and let ω0 = λ2

0. Then for N sufficiently large, the multi-kink U(n) has m pairs of
imaginary eigenvalues {±λ1

0, . . . ,±λm0 } which are close to ±λ0 and are given by

λ j
0 =

√
ω j, ω j = λ2

0 +
dμ j

M
+O(r−3N

0 ) j = 1, . . . ,m, (24)

where r0 is defined in (23), {μ1, . . . , μm} are the real, distinct eigenvalues of the symmetric,
tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 a1
a1 0 a2

a2 0 a3
. . .

. . .
am−1

am−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

with

ai = v0(N
+
i )v0(−N−

i − 1)− v0(N
+
i − 1)v0(−N−

i ), (26)

and M is the Melnikov sum

M =

∞∑
n=−∞

v0(n)
2 = ‖v0‖�2 . (27)

Remark 3. The results of theorem2 hold as well formulti-kinks constructed using the unsta-
ble, onsite kink. In that case, the multi-kinkU(n) would have m pairs of real eigenvalues close
to each real eigenvalue pair ±λ0 of the onsite kink.

Remark 4. The estimates in theorem 2, and in particular the matrix (25), require knowledge
of both the eigenvalue λ0 of the primary kink and its corresponding eigenfunction v0(n). The
matrix A will be different for each eigenvalue λ0 of the primary kink. In particular, note that
the decay rate of the remainder term in (24) depends on λ0 via r0.

For m = 2 and m = 3, we can compute the eigenvalues of A exactly.

Corollary 1. For m = 2,

ω1 = λ2
0 +

d
M
a1 +O(r−3N

0 )

ω2 = λ2
0 −

d
M
a1 +O(r−3N

0 ).

For m = 3,

ω1 = λ2
0 +O(r−3N

0 )

ω2 = λ2
0 +

d
M

√
a21 + a22 +O(r−3N

0 )

ω3 = λ2
0 −

d
M

√
a21 + a22 +O(r−3N

0 ).

1044



Nonlinearity 35 (2022) 1036 R Parker et al

Figure 2. Spectrum of the primary spectrally stable intersite kink (right) and of
the spectrally unstable onsite kink (left) for the discrete sine-Gordon equation with
d = 0.50.

Remark 5. Theorem2 can be easily adapted to the case of generalmulti-kinks in the discrete
sine-Gordon equation (see remark 2). The matrix (25) will have a similar form. The spectrum
of all general multi-kinks will be purely imaginary as long as the multi-kink comprises only
stable, intersite kinks.

4. Numerical results

The results we present here are from the discrete sine-Gordon equation ün = d(Δ2u)n +
sin(un). We start by constructing the primary, intersite kink solution kn by using MATLAB
for numerical parameter continuation from the AC limit (d = 0) in the coupling parameter d,
starting with the solution (. . . ,−π,−π, π, π, . . .) (figure 1, center). (The right panel of figure 1
shows the onsite kink). We then compute the spectrum of the linearization about the primary
kink kn using MATLAB’s eig function (figure 2). As expected [22, 38], the spectrum of the
intersite kink is imaginary,whereas the spectrumof the onsite kink contains a symmetric pair of
real eigenvalues, thus it is unstable. Most of the remaining numerical results will only concern
stable, intersite kinks.

The continuous spectrum lies within the interval given by (12), and the pair of Goldstone
mode eigenvalues is clearly visible in the continuous spectrum gap. For approximately d >
0.265, there is an additional internal mode eigenvalue for the intersite kink (not discernible in
the left panel of figure 2), which is known as an edge mode since it arises from the continuous
spectrum (see [22, section 2.2], noting that we are using d in place of d2 in that paper.) The
eigenfunctions corresponding to the Goldstone mode and the edge mode are shown on the left
and middle panels of figure 3. The semilog plot on the right panel shows the exponential decay
of the primary kink to π and the eigenfunctions to 0 as the lattice site index n increases. These
decay rates are predicted to be r−|n| for the primary kink, and r−|n|

0 for the eigenfunctions,where
r is given by (10) and r0 (which depends on the eigenvalue) is given by (23). The decay rates
computed from the least squares linear regression lines have a relative error of order 10−4 for
the kink and the Goldstone mode and a relative error of 10−2 for the edge mode.

We construct a kink–antikink (figure 5, middle panel) by parameter continuation in the
coupling parameter d from the AC limit using the software package AUTO. As an initial con-
dition, we use a kink–antikink composed of two intersite kinks, which at the AC limit has
the form (. . . ,−π,−π, π, π, . . . , π,−π,−π, . . .), where there are N1 sites in the middle of the
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Figure 3. Goldstone mode eigenfunction (λ = ±0.5718i, left) and edge mode eigen-
function (λ = ±0.9941i, center). Semilog plot of decay of primary kink to±π and decay
of Goldstone and edge modes to 0 (right). Lines are least-squares linear regressions.
d = 0.50 and n = 60 lattice points.

Figure 4. The left panel shows the bifurcation diagram for a kink–antikink wave-
form with N1 = 8, plotting the �2 norm of solution versus coupling parameter d. The
three branches shown correspond intersite–intersite, intersite–onsite, and onsite–onsite
kink–antikinks. The inset details the intersection points of the three branches. The right
panel shows six example solutions, corresponding to the labeled points on the bifurca-
tion diagram. The insets are cartoons of the Goldstone eigenvalues for these solutions;
a single marker at the origin represents a double eigenvalue at 0.

solution which take the value π. The bifurcation diagram for the parameter continuation is
shown in figure 4. Notably, there is a turning point at a critical value d0 (label 4 in the inset),
where the kink–antikink does not exist for d > d0. Indeed, this is natural to expect as, in the
continuum limit of the model, the attractive interaction between the kink and antikink [41] can-
not be countered by discreteness and the associated Peierls–Nabarro barrier, and hence such
a bound, stationary state cannot exist. The top branch of the bifurcation diagram in figure 5
is a kink–antikink comprising two intersite kinks, and the bottom branch is a kink–antikink
comprising two onsite kinks. However, a direct eigenvalue count illustrates that these branches
cannot ‘collide’ with each other at a turning point (i.e., at a saddle-center bifurcation). This
because the intersite kink state is stable, while the onsite one contains two unstable eigen-
value pairs. Hence, there must exist also an intermediate branch with one unstable eigenvalue
pair. Indeed, such a middle branch exists, and is an asymmetric kink–antikink comprising one
intersite kink and one onsite kink, which meets the bottom branch at a pitchfork bifurcation
point (indeed, there are two realizations of the intersite–onsite kink which are mirror images of
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Figure 5. The left panel shows a kink–antikink solution with N1 = 8 for d = 0.5. The
right panel shows the turning point d0 vs N for kink–antikink waveforms together with
least squares linear regression line.

each other, as discussed in more detail below) at a value of d slightly smaller than d0. The cen-
ter branch of the bifurcation diagram in figure 4 is composed of two branches: solutions on one
branch are an intersite kink followed by an onsite antikink (label 2), and solutions on the other
branch are an onsite kink followed by an intersite antikink (not shown in the figure). Solutions
on these two branches are left-right mirror images of each other and have the same �2 norm at
the same value of d. Insets in the right panel of figure 4 show the Goldstone eigenvalue pat-
tern for the kink–antikink solutions. Pairs of Goldstone eigenvalues collide at the origin at
the turning point and the pitchfork bifurcation points. First, the collision of the asymmetric
intersite–onsite branch with the onsite–onsite one takes place: as a result of this pitchfork
bifurcation, the asymmetric branch disappears, and the symmetric waveform emerging there-
after has only a single pair of unstable eigenvalues. Then, at the turning point, it collides in
turn with the intersite–intersite branch, and the branches disappear past this critical point d0
of the collision. The parameter continuation suggests a linear relationship between the critical
value of the coupling parameter d0 and the separation distance N, which is shown in the right
panel of figure 5.

The spectrum of the kink–antikink is similarly computed (figure 6, left panel) using
MATLAB’s eig function. As predicted by theorem 2, each element of the point spectrum
splits into two eigenvalues. The eigenfunctions corresponding to the split Goldstone modes
resemble two copies of the Goldstone eigenfunction of the primary kink, spliced together both
in-phase and out-of-phase (figure 6, center panel). A similar phenomenon occurs with the split
edge mode eigenfunctions (figure 6, right panel).

We can compare the eigenvalues obtained from numerical computation with those pre-
dicted by corollary 1. The left panel of figure 7 plots the log of the relative error |λtrue −
λpredicted|/|λtrue| of the two Goldstone eigenvalues vs the separation distance N; the value
for λ computed with MATLAB from the linearization around the numerically computed
kink–antikink solution is used as the true value of λ. The slope of the least square linear regres-
sion line suggests that this error is order O(r−2N

0 ). The right panel of figure 7 plots the log of
the relative error of the two Goldstone eigenvalues vs the coupling parameter d. For intermedi-
ate values of d, the relative error is less than 10−3. The error is a minimum for approximately
d = 0.2, and increases with increasing d and as the continuum limit is approached. (See [34,
figure 4] for a similar phenomenon which occurs in the error plot for eigenvalues associated
with double pulses in DNLS.) Since the results of the theorem 2 are not uniform in d, i.e. they
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Figure 6. The left panel shows the spectrum of the kink–antikink, with an inset showing
splitting of the Goldstone mode. The edge mode is also split (not shown). The center
panel shows the eigenfunctions corresponding to the split Goldstone modes. The right
panel shows the eigenfunctions corresponding to the split edge modes. d = 0.5, N = 4.

Figure 7. The left panel shows the log of the relative error in eigenvalue computation
vs N for the two Goldstone eigenvalues for the kink–antikink with d = 0.25 together
with least square linear regression lines. Blue dots and solid line denote one Goldstone
eigenvalue, while red dots and dashed line the other Goldstone eigenvalue. The right
panel shows log10 of the relative error in the eigenvalue computation vs d for the two
Goldstone eigenvalues for a kink–antikink waveform with N = 4.

hold for sufficiently large N once d has been chosen, we indeed expect a growth of the relative
error for large d.

We can obtain similar results for higher ordermulti-kinks.An example of a three-component
multi-kink is shown in the left panel of figure 8.We can again compare the eigenvalues obtained
from numerical computation with those predicted by corollary 1. The right panel of figure 8
shows the relative error of the eigenvalue computations for the three Goldstone eigenvalues.
One can again observe the particularly good agreement of the theory and the computation,
especially so for larger values of N.

In addition, for the sine-Gordon equation, we can have generalized multi-kink solutions,
in which each kink or antikink in the sequence connects two adjacent saddle equilbria (see
remark 2). An example of a kink–kink is shown in figure 9. The spectrum is almost identical
to that of the kink–antikink with the same parameters in figure 6.

Finally, we perform timestepping simulations of the multikink states. The topic of the evo-
lution of a single (primary) kink was touched upon in the work of [22], where dynamical
evolution experiments were performed in the case of a single kink with the Goldstone and/or
edge modes excited. It was found that a mechanism of resonance of the point spectrum mode
harmonics (i.e., 2λ, 3λ etc, where λ is the Goldstone or edge eigenvalue) with the continuous
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Figure 8. The left panel shows a three-component multi-kink (kink–antikink–kink)
with N1 = N2 = 8 and d = 0.25. The right panel shows the log of the relative error in
eigenvalue computation vs N for the three Goldstone eigenvalues of three-wave multi-
kink with N1 = N2 = 2N and d = 0.25. The lines are least square linear regression fits.
Each line among the 3 very proximal solid, dashed and dash-dotted lines corresponds to
one of the three Goldstone eigenvalues.

Figure 9. The left panel shows a kink–kink solution withN1 = 8. The right panel shows
the spectrum of the kink–kink waveform, with the inset showing splitting of Goldstone
mode. The edge mode is also similarly split (not shown). d = 0.25.

spectrum led to nonlinearity-induced power law decay of relevant mode amplitudes. Here, we
instead focus on the evolution of the central nodes of the kinks (e.g. nodes−1 and 0 for a kink
located at the origin) for the realm of multi-wave, kink–antikink structures. For a timestepping
scheme, since the spatial component is already discretized, we use a symplectic and symmetric
implicit Runge–Kuttamethod [42], as suggested in [43, section 2.5], to preserve the symplectic
structure of theHamiltonian equation (1). Specifically,we use theMATLAB implementationof
the irk2 scheme of order 12 from [44]. For boundary conditions, we use the discrete analogue
of Neumann boundary conditions.

For a kink–antikink constructed from two intersite kinks, the pair of Goldstonemode eigen-
functions suggests that there will be two corresponding normal modes of oscillations for the
central nodes of the two kinks: an in-phase mode and an out-of-phase mode. These can be
seen in the left and right columns of figure 10. In addition, we plot the energy of the solution
H(u(n, t)) as t evolves (figure 10, bottom row). The relative deviation of the energy from its
initial value is less than 10−15 over the time interval of the simulation. There will similarly be
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Figure 10. Timestepping of perturbations for a kink–antikink solution. The left column
shows an in-phase perturbation, where the central nodes of both kinks are perturbed by
0.1 in the same direction. The right column shows an out-of-phase perturbation, where
the central nodes of the left kink are perturbed by 0.1, and the central nodes of the right
kink are perturbed by −0.1. First and second rows plot deviations from the stationary
kink solution of the two central nodes for the left and right kinks (respectively). The
third row is a semilog plot of the relative difference of the energy H(u(n, t)) from the
starting energyH(u(n, 0)). d = 0.5, N = 400 grid points, timestepping using symplectic
and symmetric implicit Runge–Kutta method irk2 with step size 0.01.

two normal modes corresponding to the pair of edge mode eigenfunctions. These panels are
representative of the possible in- and out-of-phase motion of the multiple coherent structures.

We can similarly construct a kink–antikink from two onsite kink structures (figure 11, top
left). The spectrum corresponding to this solution is shown in the top right panel of figure 11,
in which we see the split Goldstone modes on the real axis, confirming the instability of
this bound state. The corresponding Goldstone eigenfunctions are shown in the bottom left
panel of figure 11. Finally, we perform timestepping experiments for perturbations of this
kink–antikink. If we perturb the two central nodes (both of which have values un = 0) by
a small amount, the solution develops oscillatory behavior about the neutrally stable intersite
kink–antikink (figure 11, bottom). The solution departs from the corresponding energy maxi-
mum and performs oscillations around the nearby energyminimum, namely the stable intersite
kink–antikink state. The energyH(u(n, t)) is again verywell conserved as t evolves (figure 11),
with a relative deviation from its initial value of less than 10−15. We note that for timestepping
simulations on long time intervals, energy is very well conserved until boundary effects come
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Figure 11. Kink–antikink solution constructed from two onsite kinks with N1 = 8 (top
left). Spectrum of onsite kink–antikink bearing two unstable near-identical Goldstone
modes (top right); see also the inset discerning between the two modes. Eigenfunctions
corresponding to the split Goldstone modes (middle left). Remaining plots show time
evolution of perturbation u(n, t) of onsite kink–antikink; initial condition obtained by
adding 0.1 to the two central nodes with un = 0, leading to the destabilization of the
structure. Middle right is semilog plot of the relative difference of the energy H(u(n, t))
from the starting energy H(u(n, 0)). Bottom left is energy difference between the per-
turbed onsite kink–antikink u(n, t) and the neutrally stable static intersite kink–antikink
u2(n). Bottom right shows left central node of perturbed onsite kink–antikink u(n, t)
(blue solid line) oscillating about left central node of static intersite kink–antikink
u2(n) (horizontal, dotted orange line). N = 400 grid points, d = 0.5, timestepping using
symplectic and symmetric implicit Runge–Kutta method irk2 with step size 0.01.
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into play. ForN = 200 andN = 400 grid points, these boundary effects occur at approximately
t = 200 and t = 450, respectively; enlarging the spatial grid delays these boundary effects.

5. Conclusions and future challenges

In this paper, we used Lin’s method to construct multi-kink solutions to the discrete
Klein–Gordon equation by splicing together an alternating sequence of kink and antikink solu-
tions with small amplitude remainders. These solutions exist as long as the distances between
adjacent kinks and antikinks are sufficiently large. We then used Lin’s method again to reduce
the eigenvalue problem for multi-kinks to an effective, low-dimensional matrix eigenvalue
equation. This matrix equation is different for each eigenvalue of the primary kink, and we
find that for an m-component multi-kink, there are m eigenvalues near each eigenvalue of the
primary kink. Most notably, if the spectrum of the primary kink is imaginary, the spectrum of
a multi-kink constructed from these primary kinks can be shown through this explicit calcula-
tion to be imaginary as well. These eigenvalues can be computed numerically, and the result is
in good agreement with the theory; this approach explicitly illustrates the spectral stability of
these multi-soliton solutions.

Further avenues of research include exploringmulti-kinks in other models. One such model
is the Ablowitz–Ladik type discretization of the φ4 model (AL-φ4) [45]

ün =
1
h2

(Δ2u)n + 2un − u2n(un+1 + un−1), (28)

which has an exact static kink solution un = tanh(an+ ξ), where a = 1
2 cosh

−1[(1+ h2)/(1−
h2)] and ξ is arbitrary. Another is an alternative discretization of the sine-Gordon equation [46]

ün cos

(
un+1 − un−1

4

)
=

4
h2

sin

(
un+1 − 2un + un−1

4

)

− sin

(
un+1 + 2un + un−1

4

)
, (29)

which has an exact static kink solution

un(t) = 4 arctan

[
exp

(
kn− vt√

1− v2

)]
, (30)

where k is defined implicitly by

sinh

(
k
2

)
=

1√
1− v2

h√
4− h2

− 1 < v < 1. (31)

Here, h is the lattice spacing, which is connected to our parameter d via h = 1/
√
d, while v

denotes the kink’s speed. Although we do not expect these equations to have kink–antikink
equilibrium solutions, since the stable and unstable manifolds of the two equilibria do not
intersect transversely, we expect that a kink–antikink state will be an approximate equilibrium
solution. We may then be able to explain the time evolution of the kink–antikink dynamics in
terms of interactions between their exponentially decaying tails. In this context, it would be
interesting to explore the potential mathematical relevance of the corresponding spectral cal-
culation. While we have already mentioned that similar findings to the ones presented herein
are applicable to other Klein–Gordon models, such as, e.g., the discrete φ4 model, it would
be of interest to study such ideas in more complex model variants such as the sine lattice
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studied in the work of [47]. Generalizing such ideas to the context of higher-dimensional
Klein–Gordonmodels where the kinks are typically also dynamically robust would be another
direction of interest. We could also explore the time evolution using initial conditions which
have the same asymptotics at ±∞ as a multi-kink. Finally, it remains open to explore whether
similar techniques can be used to study multi-site breathers in discrete Klein–Gordon lattices.
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Appendix A. Proof of theorem 1

The proof is an adaptation of the proofs of theorems 1 and 3 in [34]. First, we rewrite the system
as a fixed point problem. Expanding F(u) in a Taylor series about ciK(n), we get

F(U±
i (n)) = F(ciK(n)+ Ũ−

i (n)) = DF(ciK(n))Ũ±
i (n)+ G(Ũ±

i (n)), (32)

where G(Ũ±
i (n)) = O(|Ũ±

i |2) with G(0) = 0 and DG(0) = 0. Since f (u) is odd, f ′(u) is even,
thus DF(ciK(n)) = DF(K(n)), and equation (32) becomes

F(U±
i (n)) = DF(K(n))Ũ±

i (n)+ G (Ũ±
i (n). (33)

Since the pieces U±
i in the ansatz (13) must match at their endpoints, we obtain the following

system of equations for the remainder functions Ũ±
i

˜
U±
i (n+ 1) = DF(K(n))

˜
U±
i (n)+ G(

˜
U±
i (n)) (34)

Ũ+
i (N

+
i )− Ũ−

i+1(−N−
i ) = ci+1K(−N−

i )− ciK(N
+
i ) (35)

Ũ+
i (0)− Ũ−

i (0) = 0. (36)

Let Φ(m, n) be the evolution operators for the linear difference equation

V(n+ 1) = DF(K(n))V(n).

By the stable manifold theorem, |K(n)− S+| � Cr−|n| for n � 0 and |K(n)− S−| � Cr−|n|

for n � 0, thus |DF(K(n))− DF(S±)| � Cr−|n|. Since S± are hyperbolic fixed points, we can
decompose the evolution operatorΦ(m, n) in exponential dichotomies onZ± by [34, lemma 2].
The proof then follows that of [34, theorems 1 and 3]. Briefly, we write equation (34) in fixed-
point form using the discrete variation of constants formula together with projections on the
stable and unstable subspaces of the exponential dichotomy. As long as N is sufficiently large,
we use the implicit function theorem to solve for the remainder functions Ũ±

i as well as the
matching conditions (35) and (36). Since Wu(S−) and Ws(S+) intersect transversely, we have
the decompositionR2 = TK(0)Wu(S−)⊕ TK(0)Ws(S+), thus, as in the proof of [34, theorem 3],
solving (36) does not involve jump conditions. The estimates (16) follow from the proof of
[34, theorem 3] (see in particular [34, lemma 4]).
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Appendix B. Proof of theorem 2

For the multi-kink solution U(n), we will take an ansatz which is a piecewise perturbation of
V0(n). (This ansatz is suggested in [31, section 7]). Let

V±
i (n) = siciV0(n)+W±

i (n), (37)

where si ∈ R, s = (s1, . . . , sn), and ci = (−1)i+1. Substituting this into (17) and simplifying
using (18), the eigenvalue problem becomes

W±
i (n+ 1) = DF(K(n))W±

i (n)+ ω0BW
±
i (n)

+ [G±
i (n)+ (ω − ω0)B](siciV0(n)W±

i (n)),
(38)

where

G±
i (n) = DF(U±

i (n))− DF(K(n)), (39)

and we used the fact that DF(ciK(n)) = DF(K(n)) from the previous section. Using (20), we
rewrite (38) as

W±
i (n+ 1) = A(n;ω0)W±

i (n)+ [G±
i (n)+ (ω − ω0)B](siciV0(n)+W±

i (n)). (40)

In addition to solving (40), the eigenfunction must satisfy matching conditions at n = ±Ni

and n = 0. Thus the system of equations we need to solve is

W±
i (n+ 1) = A(n;ω0)W

±
i (n)+ [G±

i (n)+ (ω − ω0)B](siciV0(n)+W±
i (n))

W+
i (N+

i )−W−
i+1(−N−

i ) = Sis

W+
i (0)−W−

i (0) = 0,

(41)

where

Sis = si+1ci+1V0(−N−
i )− siciV0(N

+
i ). (42)

Let Φ(m, n) be the evolution operator for the variational equation

V(n+ 1) = A(n;ω0)V(n). (43)

Since we have the exponential decay (21), by [34, lemma 2], we can decompose the evolution
operator Φ(m, n) in exponential dichotomies on Z±. In particular, we have the estimates

|Φs
+(m, n)| � Cr−(m−n)

0 0 � n � m

|Φu
+(m, n)| � Cr−(n−m)

0 0 � m � n

|Φs
−(m, n)| � Cr−(m−n)

0 n � m � 0

|Φu
−(m, n)| � Cr−(n−m)

0 m � n � 0,

(44)

for the evolution operator on the stable and unstable subspaces of the exponential dichotomy.
Furthermore, letting Es/u be the stable and unstable eigenspaces ofA0, and P

s/u
0 the correspond-

ing eigenprojections, we have the decay rates

|Ps/u
± (n)− Ps/u

0 | � Cr−|n|, (45)
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where Ps/u
± (n) = Φ

s/u
± (n, n) are the stable and unstable projections for the exponential

dichotomy. We note that the decay rates in (44) involve the eigenvalues for the matrix A0,
whereas those from (45) come from (21).

The variational equation (43) has a bounded solution V0(n) = (v0(n), v0(n− 1)), and the
adjoint variational equation

Z(n) = A(n;ω0)∗ Z(n+ 1) (46)

has a bounded solution

Z0(n) = (−v0(n− 1), v0(n)), (47)

which is orthogonal to Z0(n). By the stable manifold theorem,

V0(n) � Cr−|n|
0

Z0(n) � Cr−|n|
0 .

(48)

As in [31, 34], we will not in general be able to solve the system (41). Instead, since
R

2 = span{V0(0), Z0(0)}, we relax the third equation in (41) to obtain the system of equations

W±
i (n+ 1) = A(n;ω0)W

±
i (n)+ [G±

i (n)+ (ω − ω0)B](siciV0(n)+W±
i (n))

W+
i (N+

i )−W−
i+1(−N−

i ) = Sis

W+
i (0)−W−

i (0) ∈ CZ0(n).

(49)

Using Lin’s method, we will be able to find a unique solution to this system, but this solution
will generically havem jumps at n = 0 in the direction of the adjoint solution Z0(0). A solution
to (49) is therefore an eigenfunction if and only if the m jump conditions

ξi = 〈Z0(0),W+
i (0)−W−

i (0)〉 = 0 (50)

are satisfied. Since G±
i (n) = O(Ũ±

i (n)), we have the same estimates for G±
i (n) as we do for

Ũ±
i in (16). The terms in (49) are the same as in [34], with the addition of a term of the form

G±
i (n)V0(n). To estimate that term, we combine the estimates (16) and (48). For the interior

pieces, we have

|G−
i (n)V0(n)| � Cr−N

−
i−1r−(N−

i−1+n)rn0

� Cr−2N−
i−1

(
r
r0

)−n

� C

(
r
r0

)max{N1,...,Nm}
r−2N

� Cr−2N ,

where in the last step we used the fact that r0 is fixed (it depends only onω0), as are the distances
Ni. The constantC will be larger as r0 decreases, which occurs as the eigenvalue λ0 gets closer
to the continuous spectrum boundary. The estimate forG+

i (n)V0(n) is similar, and the estimates
for the two exterior pieces are stronger. Thus we have the two uniform estimates

‖G±
i ‖ � Cr−N

‖G±
i V0(n)‖ � Cr−2N.

(51)
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The proof then follows as in [31, 34]. First, we write equation (38) as a fixed point problem
using the discrete variation of constants formula together with projections on the stable and
unstable subspaces of the exponential dichotomy.Let δ > 0 be small, and chooseN sufficiently
large so that r−N < δ. Define the spaces

VW = �∞([−Ni−1, 0])⊕ �∞([0,Ni])

Va =
n−1⊕
i=0

Eu ⊕ Es

Vb =
n−1⊕
i=0

range Pu
−(0)⊕ range Ps

+(0)

Vλ = Bδ(ω0) ⊂ C

Vs = R
m.

Then for

W = (W−
i ,W

+
i ) ∈ VW a = (a−i , a

+
i ) ∈ Va

λ ∈ Vλ b = (b−i , b
+
i ) ∈ Vb,

the fixed point equations for the eigenvalue problem are

W−
i (n) = Φ−

s (n,−N−
i−1)a

−
i−1 +

n−1∑
j=−N−

i−1

Φ−
s (n, j+ 1)

[
G−
i ( j)

+ (ω − ω0)B
]
(siciV0( j)+W−

i ( j))+Φ−
u (n, 0)b

−
i

−
−1∑
j=n

Φ−
u (n, j+ 1)[G−

i ( j)+ (ω − ω0)B](siciV0( j)+W−
i ( j))

W+
i (n) = Φ+

s (n, 0; θi)b
+
i +

n−1∑
j=0

Φ+
s (n, j+ 1)

[
G+
i ( j)

+ (ω − ω0)B
]
(siciV0( j)+W+

i ( j))+Φ+
u (n,N

+
i )a

+
i

−
N+
i −1∑
j=n

Φ+
u (n, j+ 1)[G+

i ( j)+ (ω − ω0)B](siciV0( j)+W+
i ( j)),

where a−0 = a+m = 0, and the sums are defined to be 0 if the upper index is smaller than the
lower index.We now follow the procedure in the proof of [34, theorem 2] and invert the system
(49) in the following steps. First, we solve for the remainder functions W±

i (n) in the fixed
point equations. Then, we use the second equation in (49) to solve for the initial conditions
a±i . Finally, we use the third equation in (49) to solve for the b±i . The procedure is identical to
that in the proof of [34, theorem 2], with both λ and λ2 replaced by ω − ω0, H̃±

i (n) replaced
by ciV0(n), and the presence of additional terms of the form G±

i (n)V0(n), which will be small
using the second estimate in (51) and will therefore be incorporated into the remainder term.
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Thus, we obtain a unique solution to (36) which generically has n jumps in the direction of
Z0(0). These jumps are given by

ξi = 〈Z0(N+
i ),P

u
0Sis〉+ 〈Z0(−N−

i−1),P
s
0Si−1s〉 − (ω − ω0)siciM + R(ω − ω0)i(s), (52)

whereM is the Melnikov sum

M =

∞∑
j=−∞

〈Z0( j+ 1),BV0( j)〉,

and the remainder term has uniform bound

R(ω − ω0)i(s) � C
(
r−Nr−2N

0 + |ω − ω0|) (r−N0 + |ω − ω0|)
)
. (53)

For the terms in the Melnikov sum,

〈Z0( j+ 1),BV0( j)〉 =
1
d

〈
(−v0( j), v0( j− 1))T, (v0( j), 0)T

〉
= −1

d
v0( j)2,

thus it follows that

M =

∞∑
j=−∞

v0( j)2 = ‖v0‖�2 , (54)

which is always positive. It follows from (45) that

Pu0Sis = si+1ci+1V0(−N−
i )+O

(
r−Nr−N0

)
Ps0Sis = −siciV0(N

+
i )+O

(
r−Nr−N0

)
.

Substituting these into (52), we have

ξi = 〈Z0(N+
i ),V0(−N−

i )〉si+1ci+1 − 〈Z0(−N−
i−1),V0(N

+
i−1)〉si−1ci−1

+
1
d
(ω − ω0)siciM + R(ω − ω0)i(d),

where the bound on the remainder term is unchanged. Since ci and ci+1 have opposite signs,
this simplifies to

ξi = 〈Z0(N+
i ),V0(−N−

i )〉si+1 − 〈Z0(−N−
i−1),V0(N

+
i−1)〉si−1

− 1
d
(ω − ω0)siM + R(ω − ω0)i(s).

Let

ai = 〈Z0(N+
i ),V0(−N−

i )〉 = v0(N
+
i )v0(−N−

i − 1)− v0(N
+
i − 1)v0(−N−

i ).

Using equation (47),

〈Z0(−N−
i ),V0(N

+
i )〉 = v0(N

+
i − 1)v0(−N−

i )− v0(N
+
i )v0(−N−

i − 1) = −ai,

which we substitute above to obtain

ξi = aisi+1 + ai−1si−1 −
1
d
(ω − ω0)siM + R(ω − ω0)i(s). (55)
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The ai can be simplified further based on symmetries of the eigenfunction v0(n). For even,
intersite eigenfunctions, v0(−n) = v0(n− 1), thus we have

ai = v0(N
+
i )v0(N

−
i )− v0(N

+
i − 1)v0(N−

i − 1). (56)

For odd, intersite eigenfunctions, v0(−n) = −v0(n− 1), and so

ai = v0(N
+
i − 1)v0(N

−
i − 1)− v0(N

+
i )v0(N

−
i ). (57)

This can be written as the matrix equation(
A− 1

d
(ω − ω0)MI + R(ω − ω0)

)
s = 0, (58)

where A is defined by (25), which has a nontrivial solution if and only if

E(ω − ω0) = det

(
A− 1

d
(ω − ω0)MI + R(ω − ω0)

)
s = 0. (59)

Let {μ1, . . . , μm} be the eigenvalues of A, which are real since A is symmetric. They are also
distinct by [48, corollary 2.2.7], since the eigenvalue problem (A− μI)v = 0 is equivalent to
the Sturm–Liouville difference equation with Dirichlet boundary conditions

∇(pjΔs j)+ q j = μs j j = 1, . . . ,m

s0 = 0

sm+1 = 0,

where pj = aj, qj = aj + aj−1,Δ is the forward difference operator (Δ f ) j = f j+1 − f j and∇
is the backward difference operator (∇ f ) j = f j − f j−1.

Following the proof of [34, theorem 5], we can use the implicit function theorem to solve
for ω − ω0 to get the m solutions

ω j = ω0 +
dμ j

M
+O(r−3N

0 ) j = 1, . . . ,m.

Since μ j = O(r−2N
0 ), ω0 < 0, and ω must be real, ω j < 0 for sufficiently small N. The

corresponding eigenvalues are λ j = ±√
ω j, which are on the imaginary axis.
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