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Abstract

This paper considers fast and provably accurate algorithms for approximating smooth
functions on the d-dimensional torus, f : T — C, that are sparse (or compressible)
in the multidimensional Fourier basis. In particular, suppose that the Fourier series
coefficients of f, {ck(f)}kezd, are concentrated in a given arbitrary finite set .# C 74
so that

: —2mik-o
min —
N e SEAOL <elfll2
keQ 2
holds for s <« |.#]| and € € (0, 1) small. In such cases we aim to both identify a
near-minimizing subset 2 C .# and accurately approximate its associated Fourier
coefficients {ck(f)}keq as rapidly as possible. In this paper we present both deter-
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ministic and explicit as well as randomized algorithms for solving this problem
using O(s%d log®(|.#|))-time/memory and € (sd log¢(|.#|))-time/memory, respec-
tively. Most crucially, all of the methods proposed herein achieve these runtimes while
simultaneously satisfying theoretical best s-term approximation guarantees which
guarantee their numerical accuracy and robustness to noise for general functions. These
results are achieved by modifying several different one-dimensional Sparse Fourier
Transform (SFT) methods to subsample a function along a reconstructing rank-1 lat-
tice for the given frequency set .# C Z¢ in order to rapidly identify a near-minimizing
subset Q C .# as above without having to use anything about the lattice beyond its gen-
erating vector. This requires the development of new fast and low-memory frequency
identification techniques capable of rapidly recovering vector-valued frequencies in
74 as opposed to recovering simple integer frequencies as required in the univariate
setting. Two different multivariate frequency identification strategies are proposed,
analyzed, and shown to lead to their own best s-term approximation methods herein,
each with different accuracy versus computational speed and memory tradeoffs.

Keywords Multivariate Fourier approximation - Approximation algorithms - Fast
Fourier transforms - Sparse Fourier transforms - Rank-1 lattices - Fast algorithms

Mathematics Subject Classification 65T40 - 65D15 - 42B05 - 65Y20 - 65T50

1 Introduction

This paper considers methods for efficiently computing sparse Fourier transforms
of multivariate periodic functions using rank-1 lattices. In particular, for a function
f:T¢ — C (where T := [0, 1] with the endpoints identified), our goal is to compute
the Fourier coefficients of f,

ck(f) = / Fx) e 27X gy,
Td

via samples of f at points in T¢. Here, we assume that f is from the Wiener algebra
W(TY) = (f € L"T): || flly(ray == Dkeza lex(f)] < oo}, and that f is well
approximated by just a few of the dominant terms in its Fourier expansion (i.e., has
an accurate sparse approximation in the Fourier basis).

One quasi-Monte Carlo approach which is especially popular in the context of
Fourier approximations is sampling along rank-1 lattices adapted to frequency spaces
of interest [17,20,23,24,26,29,30,35,36]. In the standard rank-1 lattice approach, a
one-dimensional, length- M discrete Fourier transform (DFT) is applied to samples of
f along a rank-1 lattice A(z, M) with generating vector z € Z¢ over T defined by

Az, M) :={%zmod1 |je[M]::{0,1,...,M—1}}.
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If we write these lattice samples as f := (f(jz/M mod 1)) ;¢ this DFT then has
the form

Fub, = % Z f <ﬁz mod 1) e 2miwi/M (1)

JElM]

Writing any function f € #/ (T¢) as a Fourier series, f = > kezd k(f) e ko the
lattice DFT, (1) is exactly equivalent to the DFT of the univariate function

a(t) = Y ck(f)e? ©)

keZd

using the equispaced samples (a( j/M ))jE[ M = f. Just as the DFT of equispaced
samples of a can be used to approximate its Fourier coefficients, so then can this
DFT be used to help approximate the original Fourier coefficients ck(f) of f. This
multivariate to univariate transformation allows us to carry over many standard one-
dimensional DFT results in a straightforward manner.

However, in order for our univariate DFT to be properly related to the original
multivariate Fourier coefficients ck (), any aliasing must not produce collisions which
disrupt the multivariate to univariate transformation. Specifically, after applying a
length-M DFT to the univariate function a in (2), all one-dimensional frequencies k - z
are aliased to their residues modulo M. To avoid the disruptive aliasing collisions, we
use a special class of rank-1 lattices. For the remainder of the paper, we will restrict our
attention to finding energetic Fourier coefficients in some chosen finite multivariate
frequency set . C Z<.

Definition 1 (Reconstructing rank-1 lattice) Given a finite multivariate frequency set
F C 74, we say that A(z, M) is a reconstructing rank-1 lattice for .# if the mapping
mgm 2 Y — [M] given by kK — k -z mod M is injective.

When sampling along a reconstructing rank-1 lattice, each coefficient produced by the
DFT of a can be uniquely mapped back to the corresponding multivariate frequency k
of f by inverting my .

With this setup in hand, we can now clarify the main two bottlenecks that this
paper addresses. First, in general, reconstructing rank-1 lattices require lengths M
satisfying || < M < |.¥ 12 (see e.g. [30, Theorem 8.16]). For large search spaces

of multivariate frequencies .# such as the full cube .¥ = ((— f%] , L%J] N Z)d, a
length-M DFT suffers from the curse of dimensionality. Even for frequency spaces
that depend moderately on the dimension such as a hyperbolic cross (see Sect. 5),
M may be significantly inflated in comparison to |.#|. For example, the well-chosen
rank-1 lattice for the hyperbolic cross in Sect. 5.1.1 is approximately 45 times the
cardinality of .#. See, e.g., [18, Section 5] for more information about oversampling
related to rank-1 lattices.

Our solution to intractable or over-inflated DFTs makes use of our assumption
that f is Fourier sparse or compressible. Since the rank-1 lattice mapping allows
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us to make use of one-dimensional results, one-dimensional sparse Fourier trans-
form (SFT) techniques [1,2,7,10-12,14-16,22,25,27,31,32,34] become particularly
appealing. In general, they are able to sidestep runtimes which depend polynomially
on the bandwidth, in this case M, and instead run sublinearly in the magnitude of the
underlying frequency space under consideration. Additionally, these techniques often
furnish recovery guarantees for Fourier compressible functions in terms of best s-term
approximations in the same vein as compressed sensing results [8,9].

Our second bottleneck is the fact that after we find the significant Fourier coefficients
of the one-dimensional function a, we must invert the frequency mapping m p; in
Definition 1 to relate these to the coefficients of f. In order to know or store this
inverse map we require the calculation of my p(-#). When we consider a function
with a sparse Fourier series however, any benefit in using an SFT to calculate the DFT
of samples along the lattice is lost in comparison to the &'(d |.#|) size and operation
count of the inverse computation.

The methods given in this paper instead use samples along possibly larger lattices
to produce a sparse approximation of the Fourier transform of f without directly
inverting my_ps. The two algorithms considered below are able to operate on SFTs of
manipulations of a in order to relate the univariate coefficients to their multivariate
counterparts in o(|.#|)-time. This allows the methods developed herein to run faster
and with less memory than it takes to simply enumerate the frequency set .# and/or
store my p (%) whenever f has a sufficiently accurate sparse approximation.

1.1 Prior work

Much recent work has considered the problem of quickly recovering both exactly
sparse multivariate trigonometric polynomials as well as approximating more gen-
eral functions by sparse trigonometric polynomials using dimension-incremental
approaches [5,6,33,37]. These methods recover multivariate frequencies adaptively

by searching lower-dimensional projections of .7 C ((— [5], 5 |]n Z)d for ener-
getic frequencies. These lower dimensional candidate sets are then paired together to
build up a fully d-dimensional search space smaller than the original one, which is
expected to support the most energetic frequencies (see e.g., [19, Section 3] and the
references within for a general overview).

In the context of Fourier methods, lattice-based techniques do a good job of support
identification on the intermediary, lower-dimensional candidate sets, and especially
recently, techniques based on multiple rank-1 lattices have shown success [19,21].
Though the total complexity in each of these steps is manageable and can be kept lin-
ear in the sparsity, these steps must be repeated in general to ensure that no potential
frequencies have been left out. In particular, this results in at least &(ds*>N) opera-
tions (up to logarithmic factors) for functions supported on arbitrary frequency sets
in order to obtain approximations that are guaranteed to be accurate with high prob-
ability. Though from an implementational perspective, this runtime can be mitigated
by completing many of the repetitions and initial one-dimensional searches in paral-
lel, once pairing begins, the results of previous iterations must be synchronized and
communicated to future steps, necessitating serial interruptions.

W Birkhauser
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Other earlier works include [16] in which previously existing univariate SFT results
[15,34] are refined and adapted to the multivariate setting. Though the resulting
complexity on the dimension is well above the dimension-incremental approaches,
deterministic guarantees are given for multivariate Fourier approximation in &'(d*s?)
(up to logarithmic factors) time and memory, as well as a random variant which drops
to linear scaling in s, leading to a runtime on the order of @'(d*s) with respect to s and
d. Additionally, the compressed sensing type guarantees in terms of Fourier compress-
ibility of the function under consideration carry over from the univariate SFT analysis.
The scheme essentially makes use of a reconstructing rank-1 lattice on a superset of

the full integer cube & = ((— [dTN—| , LdTNJ] N Z)d with certain number theoretic
properties that allow for fast inversion of the resulting one-dimensional coefficients
by the Chinese Remainder Theorem. We note that this necessarily inflated frequency
domain accounts for the suboptimal scaling in d above.

In [28], another fully deterministic sampling strategy and reconstruction algorithm
is given. Like [16] though, the method can only be applied to Fourier approximations
over an ambient frequency space .# which is a full d-dimensional cube. Moreover,
the vector space structure exploited to construct the sampling sets necessitates that
the side length N of this cube is the power of a prime. However, the benefits to this
construction are among the best considered so far: the method is entirely deterministic,
has noise-robust recovery guarantees in terms of best s-term estimates, the sampling
sets used are on the order of €'(d>s*N), and the reconstruction algorithm’s runtime
complexity is on the order of @'(d3s>N?) both up to logarithmic factors. On the other
hand, this algorithm still does not scale linearly in s.

Finally, we discuss [3,4], a pair of papers detailing high-dimensional Fourier recov-
ery algorithms which offer a simplified (and therefore faster) approach to lattice
transforms and dimension-incremental methods. These algorithms make heavy use
of a one-dimensional SFT [7,25] based on a phase modulation approach to discover
energetic frequencies in a fashion similar to our Algorithm 1 below. The main idea is
to recover entries of multivariate frequencies by using equispaced evaluations of the
function along a coordinate axis as well as samples of the function at the same points
slightly shifted (the remaining dimensions are generally ignored). This shift in space
produces a modulation in frequency from which frequency data can be recovered (cf.
(3) and Algorithm 1 below). By supplementing this approach with simple reconstruct-
ing rank-1 lattice analysis for repetitions of the full integer cube, the runtime and
number of samples are given on average as ¢ (ds) up to logarithmic factors.

However, due to the possibility of collisions of multivariate frequencies under the
hashing algorithms employed, these results hold only for random signal models. In
particular, theoretical results are only stated for functions with randomly generated
Fourier coefficients on the unit circle with randomly chosen frequencies from a given
frequency set. Additionally, the analysis of these techniques assumes that the algorithm
applied to the randomly generated signal does not encounter certain low probability
(with respect to the random signal model considered therein) energetic frequency con-
figurations. Furthermore, the method is restricted in stability, allowing for spatial shifts
in sampling bounded by at most the reciprocal of the side length of the multivariate
frequency cube under consideration, and only exact recovery is considered (or recov-
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ery up to factors related to sample corruption by gaussian noise in [3]). In addition,
no results given are proven concerning the approximation of more general periodic
functions, e.g., compressible functions.

1.2 Main contributions

We begin with a brief summary of the benefits provided by our approach in comparison
to the methods discussed above. Below, we ignore logarithmic factors in our summary
of the runtime/sampling complexities.

— All variants, deterministic and random, of both algorithms presented in this paper
have runtime and sampling complexities linear in d with best s-term estimates for
arbitrary signals. This is in contrast to the complexities of dimension-incremental
approaches [5,6,19,21] and the number theoretic approaches [16,28] while still
achieving similarly strong best s-term guarantees.

— Both algorithms proposed herein have randomized variants with runtime and sam-
pling complexities linear in s with best s-term estimates on arbitrary signals
that hold with high probability. Thus, the randomized methods proposed in this
paper achieve the efficient runtime complexities of [3,4] while simultaneously
exhibiting best s-term approximation guarantees for general periodic functions
thereby improving on the non-deterministic dimension incremental approaches
[5,6,19,21].

— Both algorithms proposed herein have a deterministic variant with runtime and
sampling complexities quadratic in s with best s-term estimates on arbitrary sig-
nals that also hold deterministically. This is in contrast to all previously discussed
methods without deterministic guarantees, [3-6,19,21], as well as improving on
prior deterministic results [ 16,28] for functions whose energetic frequency support
sets .# are smaller than the full cube.

Overview of the methods and related theory

We will build on the fast and potentially deterministic one-dimensional SFT from [16]
and its discrete variant from [27] by applying those techniques along rank-1 lattices.
As previously discussed, the primary difficulty in doing so is matching energetic
one-dimensional Fourier coefficients with their d-dimensional counterparts. We are
especially interested in doing this in an efficient and provably accurate way. We
propose and analyze two different methods for solving this problem herein.

The first frequency identification approach, Algorithm 1, involves modifications
of the phase shifting technique from [3,4,7,25]. We make use of the translation to
modulation property of the Fourier transform (cf. (3) below) observed in these works
to extract out frequency data. Combining this with SFTs on rank-1 lattices gives a
new class of fast methods with several benefits. Notably, we are able to maintain error
guarantees for any function (not just random signals) in terms of best Fourier s-term
approximations. Additionally, we factor the instability and potential for collisions from
[3,4] into these best s-term approximations. The only downside in our estimates is an
additional linear factor of N multiplying the terms commonly seen in standard error
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bounds (cf. Corollaries 1, 2). However, we are able to maintain deterministic results
with runtime and sampling complexities that are quadratic in s, as well as results for
random variants with complexities that are linear in s. Additionally, the dependence
on the dimension d is reduced from ¢(d*) in [16] to only &' (d).

Our second technique in Algorithm 2 uses a different approach to applying SFTs
to modifications of the multivariate function along a reconstructing rank-1 lattice.
Effectively, we reduce f to a two-dimensional function. This is done by mapping
all but one dimension, say £, down to one using a rank-1 lattice, and leaving the ¢
dimension free. From here, we take a two-dimensional DFT (taking care to use SFTs
where possible). The locations of Fourier coefficients in this two-dimensional DFT
can then be used to determine the £th coordinate of the frequency data. This is then
repeated for each dimension ¢ € {1, ...d}.

This process is slower but more stable than Algorithm 1. In particular this produces
more accurate best Fourier s-term approximation guarantees without the extraneous
factor of N (cf. Corollaries 3, 4 ). The deterministic results still have a complexity
quadratic in s with random extensions that are linear in s. However, we incur an extra
quadratic factor of N in the complexity bounds (cf. Lemma 3).

We stress here that by compartmentalizing the translation from multivariate analysis
to univariate analysis into the theory of rank-1 lattices, our techniques are suitable for
any frequency set of interest .#. The only constraint is the necessity for a reconstruct-
ing rank-1 lattice for .# (and potentially projections of .# in the case of Algorithm 2).
This flexibility improves the results from [16], primarily with respect to the polynomial
factor of d in our runtime and sampling complexities. We remark that though the exis-
tence of the necessary reconstructing rank-1 lattice is a nontrivial requirement, there
exist efficient construction algorithms for arbitrary frequency sets via deterministic
component by component methods, see e.g., [18,23,30].

In terms of implementation, we note that the multivariate techniques we employ
are entirely modular with respect to the univariate SFT used. As such, the complexity
estimates and error bounds for our approaches in Sect. 4 are directly derived from
the chosen SFT. Finally, the methods we present are trivially parallelizable so that in
particular, a large majority of these univariate SFTs in Algorithm 1 or Algorithm 2
can occur in parallel.

1.3 Organization

The remainder of this paper is presented as follows: in Sect. 2, we set the notation,
the notions of the Fourier transform, and the various types of manipulations we will
be using in the sequel. Section 3 reviews and further refines the univariate SFTs from
[16,27] which we will use in our multivariate techniques. Section 4 presents our
main multivariate approximation algorithms and their analysis. In particular, Sect. 4.1
discusses the phase-shifting approach, while Sect. 4.2 discusses the two-dimensional
SFT/DFT combination approach. Finally, we implement these two algorithms numer-
ically and present the empirical results in Sect. 5.

) Birkhauser
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2 Notation and assumptions
2.1 Multivariate

We begin by defining a one-dimensional frequency band of length N as #By =
(— [%1 , L%J] N Z. For a potentially large but finite multivariate frequency set .#,
which we think of as containing the most significant frequencies of the function under
consideration, we choose N = maxe[4j(maxye ¢ k¢ —ming s lze) + 1 as the minimal
width such that .# C h + %’% for some h € Z“. By appropriately modulating any
multivariate function f : T9 — C under consideration, i.e., considering @~ 2rih-o f,
we shift the frequencies of Fourier coefficients of f originally in .# to . —h C @%.
Thus, we assume without loss of generality that . C %’7\, with N as above. Without
loss of generality, we will also assume that for a reconstructing rank-1 lattice A(z, M),
the generating vector satisfies z € [M]?.

To avoid confusion with the hat notation which will be reserved for univariate
functions below, we denote the sequence of all Fourier coefficients (i.e., the Fourier
transform) of a periodic function f : T¢ — C as ¢( f) = (ex(f))keza, also writing
this as simply ¢ when the function is clear from context. Its restriction to .# is denoted
c(f)l.ys = (ck(f))ke.s, and the best s-term approximation, that is, its restriction to
the support of the s-largest magnitude entries, is denoted c;" "or (c|.7)5" “onZ4 or .7,
respectively. We denote multiindexed vectors only defined on finite index sets (which
are not restrictions of infinitely indexed sequences) in boldface, e.g., b = (bk)ke.7,
as well as identify this multivariate vector as a one-dimensional vector b € Cc1 via
lexicographic ordering when dictated by context. Again dictated by context, we also
extend these multiindexed vectors to larger index sets by setting them to zero outside
of their original domain. For example, if b = (bk)ke.s and ¢ = (ck)gezd-

b—cllpza =Y Ibk—al+ Y lekl.

kes keZd\J
In the multivariate approaches which follow, we will also make use of the shift

operator S¢, in the Zth coordinate with shift « € R defined by its action on the
multivariate periodic function f : T¢ — C as

Sea (1,0 xa) == flxr, oo, xe—1, (e o) mod 1, xey, ..., Xa).
When necessary, we will separate out coordinate £ of a multivariate point x € T¢ or
frequency k € Z¢, denoting the remaining coordinates as X, € T or k, € /A

With a slight abuse of notation, we can rewrite the original point or frequency as
x = (x¢, X)) or k = (k¢, kj).

2.2 Univariate

For any univariate periodic function a : T — C, we define the vector a € C¥ as
the vector of M equispaced samples of a on T, that is, a = (a(j/M)) jem)- As in

W Birkhauser
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the multivariate case, we define the Fourier transform of a : T — C as the sequence
a= (aw)wEZ with

Gy 1= f a(t)e 7" 4y forall w € Z.
T

Additionally, we define the vector & € CM as the restriction of a to %y. If not
explicitly stated, the length of the discretized function a and Fourier transform a will
be clear from context. Note that a is not necessarily the discrete Fourier transform of
a, which we define as

. 1 —2riwj/M 1 J —2riwj/M
Fy a), = m Z aje : = m Z a m e , Where
JEIM] JEIM]

Fu = <®—2nﬁwj/M M)
M / JEIM], weBy

is the discrete Fourier matrix. Our convention here and in the remainder of the paper
is to use zero-based indexing which is always taken implicitly modulo the length of
the dimension, e.g., (Fa)o,—1 = Fm)om—1-

For any vector b € CM, we denote its best s-term approximation by’ ‘. where as
above, by?" is the restriction of b to its s largest magnitude entries. In the sequel, we
always assume that our sparsity parameters s are at most half the size of the vectors
under consideration so that, e.g., b;ft is well-defined. Additionally as above, vectors
can also be compared with other vectors on larger index sets than they are defined by
simply setting the smaller vectors to zero outside of their original domain.

As for one-dimensional approximations, we will be considering SFT algorithms
which, given sparsity parameter s and bandwidth M, produce an s-sparse approxima-
tion of the Fourier transform of a functiona € # (T)NC(T) restricted to 4, , where
C('TD) is the set of continuous functions on T' . Note that these are not necessarily dis-
crete algorithms which take in a as input. In particular, in addition to our assumption
that any function we wish to approximate is in the Wiener algebra % (T), we also
require continuity so that the SFT can make use of point samples of the function at
arbitrary locations in T. We denote these algorithms <7  : # (T)NC(T) — CM,
which produce .27 ya =: v € CM as approximations to 4 € CM using some fixed
number of samples of a.

Finally, the argument of a complex number will be used in the implementation and
analysis of Algorithm 1. We use the principal branch of the argument function so that
forw € C, arg(w) € (—m, 7].

3 One-dimensional sparse Fourier transform results
Below, we summarize some of the previous work on one-dimensional sparse Fourier
transforms which will be used in our multivariate algorithms. Rather than focus on

the inner workings of these SFTs, we highlight four main properties concerning their
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recovery guarantees and computational complexity. This compartmentalization allows
for any SFT satisfying these properties to be easily extended for multivariate Fourier
recovery simply by plugging into Algorithms 1 and 2.

We first review the sublinear-time algorithm from [16] which uses fewer than M
nonequispaced samples of a function. We refer the reader interested in its implemen-
tation and mathematical explanation to [16] as well as [15,34]. Below, we will use
slightly improved error bounds over those in its original presentation. The proof of
these improvements can be found in Appendix A.

Theorem 1 (Robust sublinear-time, nonequispaced SFT: [16], Theorem 7/[27],
Lemma 4) For a signal a € W (T) N C(T) corrupted by some arbitrary noise
uw T — C, Algorithm 3 of [16], denoted %sgu?w will output a 2s-sparse coeffi-
cient vector v.e CM which

1. reconstructs every frequency of 4 € CM, w € By, with corresponding Fourier
coefficients meeting the tolerance

~ aAopt
- ”a — a ”1 ~ ~
ol > (4+2v2) <f +la —al + llulo |
2. satisfies the €*° error estimate for recovered coefficients
A Aopt
~ la—ag [ | . .
18 = ¥ lsuppwy oo < V2 (f +lla —alli + Inllec |,

3. satisfies the (> error estimate

A ~opt
. . aopt (BV2+6)a—ar |,
1A —vll2 < & —ay [+ 7

+ (8V2 4 6)/s(lla — all1 + [l lloo),

4. and the number of required samples of a and the operation count for %i“ljw are

21004
log" M
o (L) ,
logs
The Monte Carlo variant of %}“'}W denoted (szs;ﬁ;[Mc, referredto by Corollary 4 of [16]

satisfies all of the conditions (1)—(3) simultaneously with probability (1—o) € [2/3, 1)
and has number of required samples and operation count

o (s log® (M) log (g)) .

The samples required by %Ssu %MC are a subset of those required by szzs;f?w.

W Birkhauser
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Remark 1 In the noiseless case, if the univariate function a is Fourier s-sparse, i.e.,
is a trigonometric polynomial and M is large enough such that supp(a) C %y, both
42/25;‘3,[ and 42%283“3,1 € will exactly recover a (the latter with probability 1 — o), and
therefore a. In particular, note that the output of either algorithm will then actually be
s-sparse.

Using the above SFT algorithm with the discretization process outlined in [27] leads
to a fully discrete sparse Fourier transform, requiring only equispaced samples of a.
However, rather than separately accounting for the truncation to the frequency band
PABu as above, the equispaced samples allow us to take advantage of aliasing, which
is particularly important when we apply the algorithm along reconstructing rank-1
lattices. Thus, instead of approximating a € CM | the restriction of a to %y, as above,
we prefer to approximate the discrete Fourier transform of a.

Eventually, we will consider techniques for approximation of arbitrary periodic
functions rather than simply polynomials. For this reason, we require noise-robust
recovery results for the method in [27]. The necessary modifications to account for
this robustness as well as the improved guarantees carried over from the previous
algorithm are given in Appendix B. The upshot is that we are able to state four
properties of this SFT analogous to those in Theorem 1 which allow for modular
proofs of the multivariate results later on.

Theorem 2 (Robust discrete sublinear-time SFT: see [27], Theorem 5) For a signal
a € W (T) N C(T) corrupted by some arbitrary noise u : T — C,and 1 <r < %,
Algorithm 1 of [27], denoted %‘lif]f,,, will output a 2s-sparse coefficient vector v.e CM
which

1. reconstructs every frequency of Fpra € CM, w € By, with corresponding aliased
Fourier coefficient meeting the tolerance

IFya— (Fya)d™ |
2s

|(Fa a)o| > 12(1 +v/2) ( +2(JlallccM™" + IIILIIoo)) ,

2. satisfies the €° error estimate for recovered coefficients

IFpa— (Fara) |y
2s

|(Fpa— V)|supp(v) loo < 3\/5 < +2(JlalleeM ™" + ”IL”oo)) s

3. satisfies the £* error estimate

IFpa— (Fyra) ™|y
IFya—vla < [Fya— (Fya)y o+ 38 7 d

+152¢/s([allcM ™" + [[1t]lc0)

4. and the number of required samples of a and the operation count for %‘?SXJ are

2,3/2100!1/2 g
ﬁ(s r/=log )
logs
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The Monte Carlo variant of ,szd“@, denoted <7, dlsc Mc , satisfies all of the conditions
(1)—(3) simultaneously with probability (1 — o) e 2/3 1) and has number of required
samples and operation count

7 <sr3/2 log”? (M) log (M>> .
o

4 Fast multivariate sparse Fourier transforms

Having detailed two sublinear-time, one-dimensional SFT algorithms, we are now
prepared to extend these to the multivariate setting. The general approach will be to
apply the one-dimensional methods to transformations of our multivariate function
of interest with samples taken along rank-1 lattices. The particular approaches for
transforming our multivariate function will then allow for the efficient extraction of
multidimensional frequency information for the most energetic coefficients identified
by univarate SFTs. In particular, our first approach considered in Sect. 4.1 succes-
sively shifts the function in each dimension, whereas our second approach considered
in Sect. 4.2 successively collapses all but one dimension along a rank-1 lattice and
samples the resulting two-dimensional function.

Since the two approaches in Algorithms 1 and 2 below can make use of any uni-
variate SFT algorithm, their analysis will be presented in a modular fashion below.
Each algorithm is followed by a lemma (Lemmas 1 and 3 respectively) which pro-
vides associated error guarantees when any sufficiently accurate univariate SFT o7
is employed. The lemmas are then each followed by two corollaries (Corollaries 1, 2,
3 and 4 respectively) where we apply the lemma to the two example univariate SFTs
reviewed in Sect. 3 specified by Theorems 2 and 1.

4.1 Phase encoding

We begin by noting that this section makes significant use of the property of the
Fourier transform that translation of a function modulates its Fourier coefficients. In
our notation, we have that for any dimension ¢ € [d] and shift « € IR, applying the
shift operator S¢ o to f : T9 — C will modulate the Fourier coefficients as

ck(Seaf) = ¥ ke o (f). 3)

The main idea of our phase encoding approach in Algorithm 1 is that by exploiting
this spatial translation property, we can separate out the components of recovered
frequencies in modulations of the function’s Fourier coefficients. Before stating the
algorithm in detail, we begin with a simple example.

Example 1 (Phase encoding on a trigonometric monomial) Let d = 2. Suppose that
f(x) = e¥ KX i5 a trigonometric monomial with single frequency k € .# C 7?2 for
some known, potentially large .#. Given A(z, M), a reconstructing rank-1 lattice for
#, we consider the one-dimensional restriction of f to the lattice a(t) := f(tz) as
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eZmi(kl zt+kpzat)

ISLI/N

2 eZﬂ:n(k] “+hozot)
A A 2k 1N G2mi(k 2y Hozar)
——
compute k|
from here
>>
1/N
—

Fig.1 The basic procedure for the phase encoding algorithm applied to the trigonometric monomial f(x) =
2mik-x
S

in (2). Since f is Fourier-sparse, a lattice DFT on a is unnecessarily expensive. Thus,
applying a much faster SFT to a returns dk.z mod # = 1. Our goal is to match this
coefficient of a to the correct Fourier coefficient of f without having to search all of
g

Figure 1 depicts the phase encoding method we use in Algorithm 1 below. In order
to compute a, we restrict f to the blue line in this figure, z¢. However, to get extra
information about k, we restrict Sy, 1,y f, a shift of f in the first coordinate by 1/N,
to the lattice. The shifted lattice that we effectively restrict f to, zt + (1/N,0), is
depicted in light blue.

The resulting modulation of f induced by this spatial shift (as described by (3))
is detailed in the remainder of Fig. 1. Thus, defining al@t) = S1,1/n f (zt), an SFT
would discover &é,z mod M = @27k1/N We then can extract ky from this modulation.

Repeating this process in the £ = 2 coordinate will recover k», and therefore,
the entirety of k is recovered by using d = 2 SFTs. From here, we can then match
Ak.z mod M = 1 to ck(f) in faster than &'(|.#]) time and memory as desired.

In the language of Algorithm 1, the original SFT of a occurs on Line 1. The SFTs
of the shifts of f, al, ..., a%, occur on Line 3. In this example, we considered a
function with only one significant Fourier mode, however, we will generally recover
s significant Fourier modes from the SFT algorithm. Thus, the for loop from Line 6
to Line 13 considers each of these recovered one-dimensional frequencies separately.
Line 8 computes the modulation induced by each of the d shifts, then extracts each
coordinate of the d-dimensional frequency. The remaining check on Line 10 is useful
for the theoretical analysis to ensure that only correctly recovered frequencies are
considered.
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Algorithm 1 Simple Frequency Index Recovery by Phase Encoding

Input: A multivariate periodic function f € # (T4)NC(T?) (from which we are able to obtain potentially
noisy samples), a multivariate frequency set . C %}‘f], a reconstructing rank-1 lattice A(z, M) for .7,
and an SFT algorithm o7 7.

Output: Sparse coefficient vector b = (bk)ke 9?31\/ (optionally supported on .7, see Line 10), an approxi-

mation to (cly)(;pt.

1: Apply '%,M to the univariate restriction of f to the lattice, a(t) = f(¢z), to produce v = gciS,Ma, a
sparse approximation of Fy;a € CM.
2: for all ¢ € [d] do
Apply /sy to at(r) = Se,1/N [f(t2) to produce vl = %’Ma[, a sparse approximation of F al e
cM.
. end for
:b <0
: for all w € supp(v) C %y do
for all £ € [d] do
(k)¢ < round(N arg(vé) /ve)/2m)
9:  end for
10: if Ky -z=w (mod M) (and optionally k,, € .#; see Remark 2) then
11: bk, < bk, +vo
12:  endif
13: end for

4.1.1 Analysis of Algorithm 1

Having seen the phase encoding approach of Algorithm 1 in action, we now provide
an error guarantee for its output. Notice that the assumptions on the SFT necessary
for this theoretical analysis are exactly those provided by Theorems 1 and 2 .

Lemma 1 (General recovery result for Algorithm 1) Let <7 p in the input to Algo-
rithm 1 be a noise-robust SFT algorithm which, for a function a € # (T) N C(T)
corrupted by some arbitrary noise u : T — C, constructs an s-sparse Fourier
approximation < y(a + p) =: v € CM which

1. reconstructs every frequency (up to s many) of Fyya € CM, w € By, with
corresponding Fourier coefficient meeting the tolerance |(Fy a),| > 1,
2. satisfies the L>° error estimate for recovered coefficients

” (Fpra — V) |suppv) “oo SN < T,
3. satisfies the (> error estimate
Fya—viy <mn,

4. and requires O(P (s, M)) total evaluations of a, operating with computational
complexity O(R(s, M)).

Additionally, assume that the parameters T and 1« hold uniformly for each SFT
performed in Algorithm 1.
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Let f, .7, and A(z, M) be as specified in the input to Algorithm 1. Collecting the
T-significant frequencies of [ into the set ; ;= {k € . | |ck(f)| > t}, assume that

|- < s, and set
B 142
=max | T, — .
o\ in (%)

Then Algorithm 1 (ignoring the optional check on Line 10) will produce an s-sparse
approximation b of the Fourier coefficients of f satisfying the error estimate

b —c(Nlle2zdy = m2+ (B + nco)y/max(s — [, 0)

+ llc(DNr = c(DOlzlleezay + le(f) —c(Dlrlle@a

requiring O (d - P (s, M)) total evaluations of f,in O (d - (R(s, M) + s)) total oper-
ations.

Proof We begin by assuming that f is a trigonometric polynomial with supp(c(f)) C
g

Since A(z, M) is a reconstructing rank-1 lattice for .#, there are no collisions
among the one-dimensional frequencies {k - z | k € .#} modulo M. Setting f(tz) =
a(t) as in (2) then ensures that for each k € %, cx(f) = ak,. Since there are
no frequency collisions in the lattice DFT, we also have cx(f) = (Fa a)k.z mod M-
Thus, by assumption 1 on the SFT algorithm <7 js, Lines 1 and 3 of Algorithm 1
will produce coefficient estimates of ck(f) for every k € .#;. We then write these
SFT approximations as vk.z mod ¥ = ¢k (f) + nk and vﬁ.l mod M = 2 ke/N (e (f) +
nf;) respectively, where we have made use of (3). Note that ||, |n£| < Noo. Now,
considering the estimate for k¢, we have

N U[ N . c + 4

27 Uk-z mod M Uk-z mod M

2
=k£+larg<ck(f)+’7k>

2w VUk-z mod M

N -
= k¢ + — arg e )
2w Vk-z mod M

We now only consider |ck| > B > max(z, 3n), thatisk € 5 C /7, and therefore,
the corresponding approximate coefficient satisfies |vk.z mod M| > B — Neo- Thus,
the magnitude of the fraction in the argument must be strictly less than 2_7’°° < 1.

Therefore, we consider the argument of a point lying in the right half of the cogmplex
plane, in the open disc of radius 2"f° centered at 1. The maximal absolute argument

of a point in this disc will be that of aocpoint lying on a tangent line passing through the
origin. This point, the origin, and 1 then form a right triangle from which we deduce

) Birkhauser



1 Page 16 of 45 C.Gross et al.

that

4
— 2
arg | 1+ e 7 N < aresin ( floc ) ,
Uk-z mod M B— N

and our choice of B > nso(1 + 2/sin(;r/N)) then implies that

4
- b
arg 1 + M < —.
Vk-z mod M N

Thus,

1

<,
2

¢
N v
— arg [ Kzmod M ) _ 4,
2 Uk.-z mod M

and so after rounding to the nearest integer, Algorithm 1 will recover k, for all £ € [d]
andk € .

We now know that the final loop of Algorithm 1 will properly map the one-
dimensional frequency @ = k - zmod M to k for all k € .#3. Thus, for these
same k € .#p, Line 11 ensures that we set b = Vk.zmod M. Additionally, the
max(s — ||, 0) many coefficients v,, for which w # k - z mod M for any k € .3
are still available for potential assignment. If any multivariate frequency k,, € .7 is
reconstructed and passes the mandatory check in Line 10 then the approximate Fourier
coefficient v, properly corresponds to (Fy a)k,,.z mod ¥ = ¢k, (f)-

On the other hand, if some error introduced in the SFT's reconstructs a multivariate
frequency k,, ¢ .7, the reconstructing property does not allow us to conclude anything
about a (k,, w) pair passing the check in Line 10. Thus, it is possible that v,, will
contribute to some component of b not corresponding to any frequency in .#. At the
least however, since we know that all entries of v corresponding to frequencies in .
are correctly assigned, the remaining ones satisfy |v,| < B + neo. Using these facts
allows us to estimate the error as

b — C||22(Zd) = ||b|Zd\,,¢||422(Zd) +|Ibly — C|supp(b)ﬂf||z2(Zd) +lle— CL}@ ||£2(Zd)
< (B + noo)y/max(s — [-L5], 0) + m2 + llc — ¢l ll 2.0y 4)

where we have additionally used the accuracy of the initial one-dimensional SFT and
the assumption that ¢ is supported on .#.

We now handle the case when f is not necessarily a polynomial with Fourier support
contained in .# . Rather than aiming to approximate ck ( f) foreveryk € Z¢, we restrict
attention to only frequencies in ., instead attempting to approximate the Fourier
coefficients of £y = Yy s ck(f)e* . We then have that f =: f, + fza\.7 and
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view potentially noisy input f + u to our algorithm as

fru=fs+ fzags+n.
——
w

Algorithm 1 applied to f + wu is then equivalent to applying it to f» + u/, where
Now T, 7o, and ny depend on 1/, and the output is an approximation of ¢| ». Since '
represents noise on the input to 27y in its applications to f, 7 (tz) and S¢ 1/n f.7 (t2)
we remark here that

14 loo < I fza s lloo + litllos < lle(f) = (O llerzay + Nitlioo (&)

so as to help us estimate 7, 1), and 1, in future applications of the lemma. Accounting
for the truncation to .# in the ¢ error bound and using (4) applied to c| ~, we estimate

b —cllz@zay < Ib—=clrllezey +lic =clollea

=< (B + noc)y/max(s — |51, 0) + m2 + llcls — clzy 274y

+ ”C —_ C|:¢||Z2(Zd).

Recalling that P(s, M) and R(s, M) are the sampling and runtime complexity
of @ u respectively, since 1 + d SFTs are required, the number of f evaluations
is 0 (d - P(s, M)) and the associated computational complexity is & (d - R(s, M)).
The complexity of Lines 6-13 is & (sd). O

Remark 2 Since the only possible misassigned values of v,, contribute to coefficients
in b outside the chosen frequency set .# for which A(z, M) is reconstructing, if it is
possible to quickly (e.g., in '(d) time) check a multivariate frequency’s inclusion in
& (e.g., ahyperbolic cross), entries outside of .# in b can be identified in the optional
check on Line 10 and remain (correctly) unassigned. This has the effect of removing

the (B + noo)y/max(s — ||, 0) term in the error bound while not increasing the
computational complexity. Additionally, this outputs an approximation to (c| j)ﬁp‘

which is supported only on our supplied frequency set .# as we may expect or prefer.

We now apply Lemma 1 with the discrete sublinear-time SFT from Theorem 2
to give specific error bounds in terms of best s-term approximation errors as well as
detailed runtime and sampling complexities.

Corollary 1 (Algorithm 1 with discrete sublinear-time SFT) Let N > 9. For . C 93%
with reconstructing rank-1 lattice A(z, M) and the function f € # (T9) N C(T9),
we consider applying Algorithm 1 where each function sample may be corrupted by
noise at most eso > 0 in absolute magnitude. Using the discrete sublinear-time SFT

algorithm %‘i{sﬁ[ or %‘?EMC with parameter 1 < r < 3—”(’), Algorithm I will produce
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b= (bk)ke@j{, a 2s-sparse approximation of ¢ satisfying the error estimate
llely = (el I

s

+ (188 + 16N) /s fllocoM ™" + llc — ¢l .z lI1 + €co)

Ib—cl2 < llc =clsl2+ (48 +4N)

albeit with probability 1 — o € [0, 1) for the Monte Carlo version. The total number
of evaluations of f and computational complexity will be

ds2r3/2 10! 1/2 M AM
ﬁ( ST o8 ) or@’(dsr3/2 log”/? M log (—))
logs o

disc disc,MC .
Jor @y Sy or <y respectively.

Proof For the definitions of T and B in Lemma 1 with associated values given by
Theorem 2, Lemma 4 applied with X = c| » implies that .”s can contain at most 2s
elements and the bound

t
lelr — el le2qzay < liels — (€l leaazay + BY2s

el — (el llor ) (6)
= 2s.
= 25 + BV 2s

Note that the last inequality follows from [9, Theorem 2.5] applied to c| # — (c| j)_(g)pt.
Lemma 1 then holds with s replaced by 2s for the 2s-sparse approximations given by
'Q{Z(il,sl(l:l or %il,SXJMC in Algorithm 1.

After treating the truncation error as measurement noise as well as accounting for
any noise in the input bounded by e, Theorem 2 gives the values

Pl

_ lcly = (clr)s
Noo = 3‘/§< 25

_120+VY)
= 3\/§ Noo-

Assuming N > 9,

ﬁ:max(r r]oo<1+2>> = Too (1+2> <7700(1+2N>'
) @) =\ v

Inserting the estimate for ||c| # — clyll2 from (6), this bound for 8, and the value for
n2 from Theorem 2 (where again we use [9, Theorem 2.5])

+2(1 flloeM ™" + llc = cl sl + eoo)) ;

pt
1

O
< Tllel.y = (clr)s

s + 15251 flloeM ™ + llc = ¢l #ll1 + eoo)
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into the recovery bound in Lemma 1 gives the final error estimate.
The change to the complexity of the randomized algorithm arises from distributing
the probability of failure o over the d 4+ 1 SFTs in a union bound. O

Though the nonequispaced SFTs discussed in Theorem 1 do not approximate the
discrete Fourier transform and therefore do not alias the one-dimensional frequencies
k -z into frequencies in %y, slightly modifying Algorithm 1 to use SFTs with a larger
bandwidth allows for the following recovery result.

Corollary 2 (Algorithm 1 with nonequispaced sublinear-time SFT) For .# C %’7\,

with N > 6, fix the new bandwidth parameter M := 2maxyc. ¢ |K - z| + 1. For
A(z, M), a reconstructing rank-1 lattice for & with M < M , and the function f €
# (T4 N C(T9), we consider applying Algorithm I where each function sample
may be corrupted by noise at most ex, > 0 in absolute magnitude with the following
modifications:

. o . sub sub,MC
1. use the sublinear-time SFT algorithm EQZZXM or ‘%s,]&[

2. and only check equality against w in Line 10 (rather than equivalence modulo M ),

to produceb = (bx)) . i a 2s-sparse approximation of c satisfying the error estimate

opt
lely — (el I

/5

Ib = cll 2z, < (24+3N)[ +slle = els Il +\/Eeoo}

+ llc —clsll2.

albeit with probability 1 — o € [0, 1) for the Monte Carlo version. For JA/ZS:?‘;[ and

sub,MC
2S,M
plexity will be

ds?log* M - dM
7 (ﬁ) or 0 (ds log® (M) log (—)) .
log s o

Proof The bandwidth specified ensures that Z; O {k-z | k € .#}. In the case where
f is a trigonometric polynomial with supp(c(f)) C -#, so long as there exists some
M< M such that A(z, M) is reconstructing for ., we are guaranteed that a length-M
DFT on a polynomial supported on {k - z | k € .#} will not suffer from aliasing
collisions. Thus, the one-dimensional Fourier transforms truncated to %,; coincide

respectively, the total number of evaluations of f and computational com-

with length M DFTs. Thus, we can view an approximation from the algorithm in
Theorem 1 as one of a length M DFT. The reasoning in the proofs of Lemma 1 and
Corollary 1 then holds with the SFT algorithms, parameters, numbers of samples, and
complexities of Theorem 1. O
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Remark 3 As in [13], we can estimate M above with two different techniques:

M = 1+ 2 max kezel < 1+2 max |k¢| = O(dNM),
dg;] 0ze| < eg{;]lzelkeﬂlel (dNM)

ke ¥ (]

W= 14 2max | 3 keze| < 14 2zl max [kl = 0 <Mkm€aj>§ ||k||1) .
The latter case is especially useful when .# is a subset of a known £! ball as it will
provide a dimension independent upper bound on M. Either of these upper bounds
may then be used in practice to avoid having to estimate M.

That being said however, if one is willing to perform the one-time search through
the frequency set .# to more accurately calculate M, one can go even further to use
the minimal bandwidth M’ = maxge s (K - z) — mingc # (K - z) + 1 so long as the
function samples are properly modulated to shift the one-dimensional frequencies

into %,. For example, running </ S;‘t/";l, or 4&7;:3;\,“ on a(t) = e f(rz) and

at(t) = eznﬁ‘b’Sg,l/Nf(tz) with ¢ = L%J — maxge ¢ (K - z) is acceptable so long
as this shift is accounted for in the frequency check on Line 10. Of course, these

improvements will only have the effect of reducing the logarithmic factors in the
computational complexity.

4.2 Two-dimensional DFT technique

Below, we will consider a method for recovering frequencies which, rather than shifting
one dimension of the multivariate periodic function f at a time, leaves one dimension
of f out at a time. We will fix one dimension £ € [d] of f at equispaced nodes
over T and apply a lattice SFT to the other d — 1 components. Applying a standard
FFT to the results will produce a two-dimensional DFT. The indices corresponding
to the standard FFT will represent frequency components in dimension ¢ while the
indices corresponding to the lattice SFT will be used to synchronize with known
one-dimensional frequencies k - z mod M.
Again, before stating Algorithm 2 in detail, we present an example.

Example 2 (Two-dimensional DFT technique on a trigonometric monomial)

As in Example 1, we let f be the trigonometric monomial f(x) := &*7* How-
ever, in this example, we let d = 3, so k € .# C Z? and the domain of f is T3
depicted in Fig. 2. We will consider the procedure to compute the £ = 1 component
of k.

First, we take a reconstructing rank-1 lattice A(z, M) for .# and restrict all but the
first component of f to the lattice. This produces a two-dimensional function of the
form

(x1,1) > e2ritkixi+kozat+kazat)
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Fig.2 An example of T3 X3
depicting the N projected rank-1
lattices on which f(x) is

sampled to compute the £ = 1 _ éf
component of each e [ /7
d-dimensional frequency A .'.....

\J
\
\J
2—

X1

We then sample this function at N equispaced points over T in the x; variable.
This produces N projected lattices spaced 1/N apart in the x; direction on which
we sample f, depicted in Fig. 2. Fixing x; at each equispaced point produces the N
univariate functions which are organized into the top array of Fig. 3. Notice that colors
of the entries in this array correspond to the lattices in Fig. 2 over which we sample f
to produce that entry.

The next step is to apply an SFT to each of the univariate functions in this array. Each
function has exactly one active frequency, k»z> + k3z3, with corresponding Fourier
coefficient @7 %1J/N Thus, collecting the results into a matrix, produces the left-most
matrix in Fig. 3 with only the k»z> + k323 mod M column filled. This column contains
N equispaced samples of the function @*7*1%¥1 and so finally applying a DFT to the
matrix will produce the right-most matrix in Fig. 3. We find only one entry in row
k; mod M corresponding to the only active frequency of @*7*1*1_ Thus, we can read
off the ¢ = 1 entry of k by determining which row contains the Fourier coefficient of
f of interest. Repeating this process forall £ = 1, ..., d we will be able to recover k.

We now generalize the procedure demonstrated in Example 2 in a lemma. In partic-
ular, we must account for functions which have more than one significant frequency.
For theoretical simplicity, we use a length M-DFT in the first step rather than an SFT.

Lemma 2 Fix some finite multivariate frequency set & C %ld\,, let A(z, M) be a
reconstructing rank-1 lattice for {k — keep | K € 7} for all £ € [d], and assume that
f has Fourier support supp(c) C .Z. Fixing one dimension £ € [d], and writing the
generating vector as z = (2¢, Z,) € 74, define the polynomials

af(t) = f (%,tzz) forall j € [N],
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@2l S +hont+kszsn)

<B27!1'1(I<| §,+k212r+k3131)

2tk N2t kyzpt+kszat)

e2mil Yl +kozpt+kszar)

Apply SFT o7 p to rows

0 .. 0 kY o ... 0 - : :
! Apply Do -
e 27k
0 0 @ N0 0 F}\; to ‘ 0 000 0
columns 0--010--0 |<—rowk modN

c 0 000 0

0 ... 0 &2k o ... 0
0 0 &Y g g L
0000 -0

column k25 + k3z3 mod M
column k25 + k3z3 mod M

Fig.3 Oneround of the basic procedure for the two dimensional DFT algorithm applied to the trigonometric
monomial f(x) = e2rikx sampled over the sets depicted in Fig. 2. Notice that each row corresponds to
samples of f(x) on the shifted lattice of the corresponding color

that is, fix coordinate £ at j/N and restrict the remaining coordinates to dimensions
[d]\ {£} of the rank-1 lattice. Then for all one-dimensional frequencies w € [M],

F a‘z-)
(Fuaf),
3y @riihe/N Chay(f) ifIk € S witho =k} -z, (mod M),
hge._%’/vs.t.
(hg,ké)ef
0 otherwise.

Moreover;, defining the matrix A* = ((FM af. , we have

; )w)je[N],we[M]

i = Ik e .7,
<N )kzmodN,kz.z ck(f) forallk €

, mod M

E(CNXM

and the remaining entries of the matrix Fy A* are zero.

Proof Using the Fourier series representation of f, we have

af(t) — Z () ®2nﬁ(%+kz»zﬁzt>.

ke ¥
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We calculate for w € [M]

F ‘.)
(Furaj),

2 jhy 27111(1121’[ —w)i

%ZZ@ Voen(fre W

ie[M]he.s

2 jhy
Y@ v en(f) 8o,z —w mod M)
he.s

When there exists some k € .# such that kz . ZZ = w (mod M), the fact that A(z, M)
is a reconstructing rank-1 lattice for {k — ke, | k € .#} ensures that such k;, satisfying
this equivalence is unique. Then, we can simplify this sum to

2 jhy
(FMaf)wZ Z e Ny k) ()

hge%’N s.t.
(heK)es

When no k € . exists such that kj, - z, = w (mod M), this sum is instead zero as
desired. Applying Fy to A¢ then allows us to compute

27rn(hz —kp mod N)j

14
(FNA )k( mod N, k;-z, mod M -N Z Z Clhe, k/)(f)e " - Ck(f)'

]heEﬁN
O

Example 2 and Lemma 2 explain the procedure in Lines 1 through 10 of Algo-
rithm 2. However, some care must be taken when we assign rows of nonzero entries
in the resulting matrix to coordinates of significant frequencies. The solution is the
minimization problem in Line 14. This step uses column information as well as the
values of the entries in the matrix to ensure that we are properly matching frequency
components with the correct Fourier coefficient v,,.

The remainder of the algorithm is the same as Algorithm 1. Line 16 consists of the
same check to ensure that recovered frequencies are correct, and if this check passes,
the one-dimensional Fourier coefficient is assigned to its matched d-dimensional fre-
quency.

Remark 4 We bring special attention to the fact that Algorithm 2 requires as input a
rank-1 lattice A(z, M) which is reconstructing for not only .#, but also the projections
of .# of the form {k — k¢e; | k € #} for any £ € [d]. For frequency sets .
which are downward closed, that is, if .# is such that for any k € .# and h € 74,
lh| < |k| component-wise implies that h € .#, any reconstructing rank-1 lattice for
# is necessarily one for the considered projections as well. Thus, for many frequency
spaces of interest, e.g., hyperbolic crosses (cf. Remarks 2 and 3 as well as Sect. 5
below), any reconstructing rank-1 lattice for .# will suffice as input to Algorithm 2.
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Algorithm 2 Frequency Index Recovery by Two Dimensional DFT

Input: A multivariate periodic function f € # (T4)NC(T?) (from which we are able to obtain potentially
noisy samples), a multivariate frequency set . C 24, arank-1 lattice A(z, M) which is reconstructing
for .# and {k — kge; | k € .#} forall £ € [d], and an SFT algorithm .27 ;.

Output: Sparse coefficient vector b = (bk)ke 9?31\/ (optionally supported on .7, see Line 16), an approxi-

mation to (cly)(;pt.

1: Apply .27 ) to the univariate restriction of f to the lattice, a(t) := f(tz), to produce v := o/ ya, a
sparse approximation of Fy;a € CM.

2: for all ¢ € [d] do

forall j € [N]do )
Apply < to af () = f(ﬁ, tzZ) to produce V§ =g ma

»w

f, a sparse approximation of F; aﬁ.

RowjofV‘3 evf.

5

6:  end for
7 for all nonzero columns o of V¢ do

8 Apply Fy to column w of Vi to produce Fy Ve
9:  end for

10: end for

11: b <0

12: for all w € supp(v) do

13: for all ¢ € [d] do

14: (k) ¢, ~) < argmin{|v,—(Fy Ve)h.wzl | (h, @) € By x[M] with hzp+o' = @ (mod M)}
15: end for

16: ifk, -z= o (mod M) (and optionally k,, € .#) then

17: bk, < bk, + vo

18: end if

19: end for

4.2.1 Analysis of Algorithm 2

With the conceptual explanation of Algorithm 2 complete, we now provide error
guarantees for its output.

Lemma 3 (General recovery result for Algorithm 2) Let f, .#, and A(z, M) be as
specified in the input to Algorithm 2. Additionally, let <f y be a noise-robust SFT
algorithm satisfying the same constraints as in Lemma 1 with parameters T and 1
holding uniformly for each SFT performed in Algorithm 2.

Collect the t-significant frequencies of f into the set ; .= {k € & | |ex(f)| > 1}
and assume that |./;| < s. Then Algorithm 2 (ignoring the optional check on Line 16)
will produce an s-sparse approximation of the Fourier coefficients of f satisfying the
error estimate

Ib = cll2zay < M2+ (4T + Noo)y/max(s — |F4¢|. 0)
+llely = el ey + lle = clsll ey,

requiring O (dN - P (s, M)) total evaluations of f, in O (dN(R(s, M) + sN log N))
total operations.
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Proof We begin by assuming that f is a trigonometric polynomial with supp(c(f)) C
#. Since A(z, M) is a reconstructing rank-1 lattice for .#, the DFT-aliasing ensures
that Line 1 of Algorithm 2 will return approximate coefficients uniquely corresponding
to all r-significant frequencies k € .#; which we can label vk.; moq »7- Additionally,
Line 4 recovers approximations to all t-significant frequencies of F, aﬁ. which have
the form given in Lemma 2. In particular, if k € ., we have

T < |ek(f)I

(Fwa)
k¢ mod N kj-z, mod M
1 F ¢ —2mi jkg mod N
= |— . N
TN Z ( Ma/)k’~z’ modMq3
I

JEIN]
()
J kj-z, mod M

1
Sy 2
l
max ’(FM )k, .z, mod M’ :

J€EIN]

IA

Thus, there exists at least one Fyy a§ with k% . ZZ mod M recovered as a t-significant

frequency in the SFT of Line 4, and k|, - z, mod M will be a nonzero column in vt
forallk € .%;.

Analyzing these SFTs in more detail for any k € .# such that kj, - z; mod M is a
nonzero column of Vz, we write

i moa = (B ()

v =(Fya; + f

( J kj-zj, mod M J kj -z, mod M j kj -z, mod M
where, by the £°° and recovery guarantees for .27 s, the error satisfies

£0

<T.

Moo if (vf.
J

T if (vt =0
J k2~12 mod M

< )k;Z -z, mod M

¢
‘ (nj)ké-zz mod M
Thus, in the application of Fy to column k% . zz mod M of V¢, we have

74
(FN \Y% )kg mod N .kj -z, mod M

= (Fva’) E (1))
( N k¢ mod N K-z, modM+< N ( 77] kj-z, mod M jelN]

tek(f) + i

k¢ mod N
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with

—2mi jkp mod N

1
¢ ¢ SEEL IR
- |— g e N < max
Il N _;V] (7’/)19;-z;Z mod M ~ jelN]
J

<7

()
J kj-z, mod M

These same calculations apply to the computed columns of Fy V¢ which do not
correspond to values of kZ -z} mod M forsomek € .7 since we assume supp(c(f)) C
#, and so at worst, these columns are filled with noise bounded in magnitude by t.

Restricting our attention to k € .%4; C %7, we know that Line 14 will be run with
o =k-zmod M and (ky mod N, kz ~z/g mod M) as an admissible index in the mini-
mization. By the reconstructing property of A(z, M), no other h € .# will correspond
to an admissible index (h; mod N, h% . Z/e mod M), and so the only remaining values
of (Fy V%) h.« 10 the minimization correspond to pure noise 7 bounded in magnitude
by 7. Analyzing the objective at (k¢ mod N, k|, - z, mod M), we find

¢
lvkzmod M — (FN V)i, mod v K2, mod M| = 2T < |ek ()l =27 < [vkzmod M — 7l

and so the value for (k)¢ will in fact be assigned k. Thus, after all d components of
k., = k have been recovered, bk will be assigned vk.z mod M-

The remaining max (s — |.%4|, 0) nonzero entries of v can be distributed to entries
of b possibly correctly but with no guarantee; at the very least however, these values
must be at most 4t + 7o, in magnitude. We split b as b = beorect 4 pincorrect ¢
account for the values of v respectively assigned correctly and incorrectly and note
that supp(b®™t) 5 %4, . We then estimate the error as

< ”bcorrect _ C|supp(b°°“eCl)||(2(Zd) + ||bmcorreCt”g2(Zd)

”b — C”eZ(Zd)
—+ ||C — C|Supp(bcorrecl) “[2(Zd>

<M+ (47 + Noo)v/max(s — [ L4, 0) + llc — el 270y

As in the proof of Lemma 1, we note that the mandatory check in Line 16 helps
ensure that all misassigned values v,, which contribute to bt correspond to
reconstructed K, outside of .#, with the optional check in this line (see Remark 2)
eliminating bt and the corresponding term in the error estimate entirely.

Now, supposing that the Fourier support of f is not limited to only .7, just as in
the analysis for Algorithm 1, we treat f as a perturbation of f », and use the robust
SFT algorithm and the previous argument to approximate c| . Note again that in
each SFT, the noise added when using measurements of f as proxies for those of
f.7 is compounded by || fz4\ s llsc and is bounded by [lc — c|.# |41 (7). Applying the
guarantees above gives

b —cllzzay < IIb—clalleg + llc —clzlleams
< M2+ (4T + 1oo)y/max(s — [ F4¢ |, 0)
+ llcly — el N zay + lle — el llezay-
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Employing fast Fourier transforms for the at most ds N DFTs, the computational
complexity of Lines 2-10is & (d(N - R(s, M) 4+ sN*log N)) (which dominates the
complexity of the remainder of the algorithm). Since 1 4+ d N SFTs are required, the
number of f evaluations is O(dN - P(s, M)). O

Remark 5 Though the number of nonzero columns of V¢ can be theoretically at most
sN, in practice with a high quality algorithm, each of the N SFTs should recover
nearly the same frequencies, meaning that there are actually &'(s) columns. This
would remove a power of N in the second term of the runtime estimate.

Note however, that even with near exact SFT algorithms, recovering exactly s
total frequencies is not a certainty. There can be cancellations for certain terms in
Fuy af depending interactions between the coefficients sharing the same values on

their [d] \ {¢} entries, which makes it possible that an SFT on Fy, a§ will miss coeffi-
cients. If required to output s-entries, an SFT algorithm could favor some noisy value
corresponding to a frequency outside the support.

Remark 6 Though we perform an exact FFT of the nonzero columns of V¢ in Line 8
of Algorithm 2, Lemma 2 implies that the resulting matrix will be as sparse as the
original function’s Fourier transform. Thus, for a truly compressible function, an SFT
down the columns of V¢ would be feasible as well. However, in especially higher
dimensions, even small N can allow for large frequency spaces .#. In these large
frequency spaces, what is perceived as relatively sparse can therefore quickly surpass
N, rendering an s-sparse, length N SFT useless.

As a simple example, consider .# to be the cube of side length N = s, %’f . For d
large enough, any frequency support of size s will be small in comparison to |.# | = 5.
However, using an s-sparse SFT instead of a length-s DFT in Algorithm 2 will actually
be more expensive.

Applying the discrete sublinear-time SFT from Theorem 2 to Lemma 3 analogously
to the derivation of Corollary 1 from Lemma 1 allows for the following recovery bound
for Algorithm 2. In particular, we observe asymptotically improved error guarantees
over Corollary 1 at the cost of a slight increase in runtime.

Corollary 3 (Algorithm 2 with discrete sublinear-time SFT) For . C Z with recon-
structing rank-1 lattice A(z, M) and the function f € # (T%) N C(T?9), we consider
applying Algorithm 2 where each function sample may be corrupted by noise at most
eco > Oinabsolute magnitude. Using the discrete sublinear-time SFT algorithm 42{2‘?’5;,
or szzilf;,}MC with parameter 1 < r < % will produce b = (bk)ke{;?% a 2s-sparse
approximation of ¢ satisfying the error estimate

llels — (el )™ I _
b — clle2(zay <206 7 S 482035l fllooM ™"+l — cls Il + eco)
+lle —clslla

albeit with probability 1 — o € [0, 1) for the Monte Carlo version.
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The total number of evaluations of f and the computational complexity will be

sr3/2 logll/zM
O|ldsN| ———— + NlogN
log s

dNM
or O <dsN <r3/2 log”? (M) log (—) + Nlog N))
o

disc disc,MC .
Jor 3%y or by respectively.

Again, the same strategy from Corollary 2 of widening the frequency band and
shifting the one-dimensional transforms accordingly allows us to use the nonequis-
paced SFT algorithm from Theorem 1 in Algorithm 2. Note here that the widening and
shifting occurs on a dimension by dimension basis so as to account for the differing
one-dimensional frequencies of the form k|, - z fork € ..

Corollary 4 (Algorithm 2 with nonequispaced sublinear-time SFT) For .# C %9,
let M be the larger one-dimensional bandwidth parameter from Corollary 2, and
additionally define M* := 2 maxyc_ s |k}, -z, |+1. For A(z, M), a reconstructing rank-1
lattice for 7 with M < min{M, minge(q) MY, and the function f € # (T4)NC(TY),
we consider applying Algorithm 2 where each function sample may be corrupted by
noise at most eso > 0 in absolute magnitude with the following modifications:

1. use the sublinear-time SFT algorithm </>*®. or < sub-MC i) Line 1 and /5™, or
2s,M 2s,.M 2s,M*

ﬂsub'MC
2S,M[
2. and only check equality against w in Line 14 (rather than equivalence modulo M),

in Line 4
to produce b = (bx) . ga a2s-sparse approximation of c satisfying the error estimate
»4

opt
llely — (el Il

b — cll2(za) =98< NG +slle —clzlh +\/§eoo> + lle —clsll2

albeit with probability 1 — o € [0, 1) for the Monte Carlo version.
Letting M = max (M, maX¢e[q] M?Y), the total number of evaluations of f will be

dNs*log* M _ dNM
7 <—S °g ) or 0 <st log® M log (—))
log s o

with associated computational complexities

log* M _ dNM

o <st (& + NlogN)) or0 <st <log3 M log (—) + NlogN))
logs o

for %}“b and %Ssu I?’MC respectively.
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Remark 7 The bounds in Remark 3 will still hold for M? as well; thus one of these
upper bounds can be used as the effective bandwidth parameter for every SFT without
having to calculate the d 4+ 1 bandwidths by scanning .#. Again however, if this
scan is tolerable, one can reduce the overall complexity by using analogous minimal
bandwidths discussed in Remark 3 along with corresponding frequency shifts.

5 Numerics

We now demonstrate the effectiveness of our phase encoding and two-dimensional
DFT algorithms for computing Fourier coefficients of multivariate functions in a
series of empirical tests. The two techniques are implemented in MATLAB, with
the code for the algorithms and tests in this section publicly available.! The results
below use a MATLAB implementation® of the randomized univariate sublinear-time
nonequispaced algorithm %S;’b’MC (cf. Theorem 1) as the underlying SFT for both
multivariate approaches as this allows for the fastest runtime and most sample efficient
implementations.

In the univariate code, all parameters but one are qualitatively tuned below theo-
retical upper bounds to increase efficiency while maintaining accuracy and are kept
constant between tests below. In particular, we fix the values C := 1, sigma := 2/3,
and primeShift := 0 (see the documentation and the original paper [16] for more
detail). The only parameter we vary is randomScale which affects the rate at which

the deterministic algorithm %??M is randomly sampled to produce the Monte Carlo

version %s;t;[Mc. This parameter represents a multiplicative scaling on logarithmic

factors of the bandwidth which determines how many prime numbers are randomly
selected from those used in the deterministic SFT implementation. Therefore, lower
values of randomScale will result in using fewer prime numbers, decreasing the
number of function samples and overall runtime at the risk of a higher probability of
failure. We consider values well below the code default and theoretical upper bound
of 21 given in [16].

5.1 Exactly sparse case

In the beginning, we consider the case of multivariate trigonometric polynomials with
frequencies supported within hyperbolic cross index sets. We define the d-dimensional
hyperbolic cross frequency set

d
jfl\‘,i =1k e 7¢: l—[max(l, |kel) <
=1

N N
5 and max kg<5 C%ﬁi\,

=1,...,

where the second condition ensures that j‘f]\‘,l is of expansion N € N. For a given
sparsity s, we choose s many frequencies uniformly at random from jf]\‘,’ , and we

I Available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier.
2 Available at https://gitlab.com/grosscra/SublinearSparseFourierMATLAB.
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randomly draw corresponding Fourier coefficients ck from [—1, 1]4+1[—1, 1], |ck| >
1073, For each parameter setting, we perform the tests 100 times.

Over these tests, we will determine the success rate as the percentage of times
that all frequencies were correctly identified in the output. We focus on frequency
identification since this is the core issue that Algorithms 1 and 2 solve, with the coef-
ficient estimates carrying over directly from the SFT algorithm. Moreover, with the s
most significant frequencies identified, any alternative method for quickly computing
the corresponding Fourier coefficients (if those from .27 j; are not tolerable) can be
performed. Nevertheless, see the experiments following those in Sect. 5.1.1 for exam-
ples where we compute £2 errors in the coefficient vectors rather than just comparing
frequencies.

5.1.1 Random frequency sets within 10-dimensional hyperbolic cross and
high-dimensional full cuboids

We set the spatial dimension d := 10, the expansion N := 33, and use .¥ := %’5130
as set of possible frequencies with cardinality |.#| = 45548 649. Then, the rank-1
lattice with generating vector

z :=(1, 33, 579, 3628, 21944, 169230,

1105193, 7798320, 49768 670, 320 144 128) " @
and lattice size M := 2040484 044 is a reconstructing one. We apply Algorithms 1
and 2 with the SFT algorithm %S:%MC.
In Fig. 4a, the success rate over 100 test runs is plotted against the sparsities
s € {10, 20, 50, 100, 200, 500, 1000} for Algorithm 1 and s € {10, 20, 50, 100} for
Algorithm 2. In Fig. 4b, the average numbers of samples over 100 tests are reported.
The magenta line with circles corresponds to Algorithm 1 with bandwidth param-
eter M = dNM ~ 6.7 - 10" and randomScale := 0.3. We observe that the
number of samples grow nearly linearly with respect to the sparsity s. Moreover,
the success rate is at least 0.99 (99 out of 100 test runs), where we define success
such that the support of output (sparse coefficient vector) contains the true frequen-
cies. Next, we reduce the bandwidth M to 1 + 2||z] s maxke.s |k[l1 ~ 1.6 - 1010,
see also Remark 3, and visualize this as solid blue line with squares. This smaller
bandwidth causes a decrease in the number of samples of up to 50 percent while
only mildly decreasing the success rates to values not below 0.90. Increasing the
randomScale parameter to 0.5, denoted by dashed blue line with squares, raises
the success rate to 1.00 while achieving still fewer samples than bandwidth parameter
M =dNM =~ 6.7-10"! and randomScale = 0.3 (solid magenta line with circles).
The numbers of samples for Algorithm 2 are plotted as solid and dashed red lines with
triangles for randomScale := 0.3 and 0.5, respectively, choosing the bandwidth
M =1+ 2|z]lso maxyc # |k|[1 &~ 1.6 - 10'9. We observe that Algorithm 2 requires
much more samples, more than one order of magnitude, compared to Algorithm 1,
while achieving similar success rates. For comparison, in case of sparsity s = 100
and randomScale = 0.5, Algorithm 2 takes almost M = 2 040484 044 samples,
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denoted by “phase”, and Algorithm 2 with ,Qizsu';’;lMC, denoted by “2dim”, on random multivariate trigono-
A

Fig. 4 Success rates and average number of samples over 100 test runs for Algorithm 1 with szfzsu
S,

5

metric polynomials, setting randomScale := rs. Random frequencies are chosen from hyperbolic cross
S = 9?%130 “bw£” and “bwel” correspond to bandwidth parameters M = dNM =~ 6.7 - 101! and

M= 1+\2||z\|oo maxge ¢ k|l ~ 1.6 - 1010, respectively
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Fig.5 Average number of samples over 100 test runs for Algorithm 1 with %;UEMC, denoted by “phase”,
A

and Algorithm 2 with QI; u';’;IMC, denoted by “2dim”, on random multivariate trigonometric polynomials,
s,

setting randomScale := rs. Random frequencies are chosen from full cuboid ¥ of cardinality | 7] ~
10!2 with corresponding lattice of size M = |.#| and bandwidth parameter M = M

where the latter would be required by a non-SFT approach which uses all rank-1 lattice
nodes.

In Fig. 5b, we investigate the dependence of the required number of samples of
Algorithms 1 and 2 on the spatial dimension d, where we consider the values d €
{10, 11, ..., 20}. As before, the success rates are reported in Fig. 5Sa. For this, we use
a slightly different setting, where we choose s = 100 random frequencies from a full
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cuboid of cardinality ~ 1012, Note that a cuboid with edge lengths N1, Na, ..., Ng
has the rank-1 lattice construction

d
-1
z=(1,Ni,Ni-Na,...,Ny-Na---Ny_1) = HN,/
j=1

=1

with lattice size M = ]_[‘ézl Ny = |.#]|. The main benefit of this construction is that
the map k — Kk - z is a bijection between .# and %),. Thus, the one-dimensional
bandwidth parameter M=2 maxge s |K - z| + 1 (which is usually larger than M) in
this case coincides with M = |.#|. By choosing cuboids in this experiment which
have approximately the same cardinality, we remove any dependence on M in our
experiments, allowing us to focus on the dependence on d.

In our examples, the cuboids are constructed by manually tuning the edge lengths
for each dimension so that the total cardinality is &~ 10'2. One way to start this
procedure is by computing (10'2)!/¢ and then choosing d edge lengths that approx-
imately average to this value. From here, the edge lengths can be qualitatively
tweaked to arrive at a cuboid of the desired size. For instance, we utilize the cuboid
I ={=8,=7,..., 7 x{=7,—6,...,7},|.#| ~ 1.03-10'2, in the case d = 10 and
I o=1{=2,—1,...,2}x{=2,—1,0, 1}'8x{—1,0, 1},|.7| ~ 1.03-10'2, ford = 20.
Since the expansion N is a factor in the number of samples of Algorithm 2, cf. Corol-
lary 4, and we want to concentrate on the dependence on the spatial dimension d, we
now fix this parameter to N := 16 independent of d. Moreover, the randomScale
parameter is set to 0.3. The plots indicate that the numbers of samples grow approx-
imately linearly with respect to the dimension d as stated by Corollaries 2 and 4 for
Algorithms 1 and 2, respectively. The success rates are slightly better compared to the
tests from Fig. 4a.

5.1.2 Random frequency sets within 10-dimensional hyperbolic cross and noisy
samples

In this section, we again consider random multivariate trigonometric polynomials
with frequencies supported within the hyperbolic cross index set %?30 of expansion
N = 33 and use the reconstructing rank-1 lattice with generating vector z as stated
in (7) and size M := 2040484 044. Similarly as in [21, Section 5.2], we perturb
the samples of the trigonometric polynomial by additive complex (white) Gaussian
noise ¢; € C with zero mean and standard deviation o. The noise is generated by
gj = a/ﬁ (81, j +1ie, j) where €1, £2,; are independent standard normal dis-
tributed. Since the signal-to-noise ratio (SNR) can be approximately computed by

SIS T EDE/M . Yo 1k ()

SNR ~ s
Y e 2/ M o’

this leads to the choice o := \/ Zkesupp( o lek (f)]%/~/SNR for a targeted SNR value.
The SNR is often expressed in the logarithmic decibel scale (dB), with SNRqg =
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Fig. 6 Average success rates (all frequencies detected) and relative £2 errors over 100 test runs for Algo-

rithm 1 with %;ulj";lMC, denoted by “phase”, and Algorithm 2 with M;u%MC, denoted by “2dim”, on random
S, s,

multivariate trigonometric polynomials within hyperbolic cross .# := J?fggo, setting randomScale :=

s € {0.3, 0.5} and bandwidth parameter M =1+2|zll0o maxge ¢ |[Kl[] ~ 1.6+ 1010

10 log;o SNR and SNR = 105NRaB/10 j o 3 linear SNR = 102 corresponds to a
logarithmic SNRgg = 20 and SNR = 103 corresponds to SNRgg = 30. Here, our tests
use sparsity s = 100 and signal-to-noise ratios SNRgg € {0, 5, 10, 15, 20, 25, 30}.
Moreover, we only use the bandwidth parameter M=1+2|zls maxke ¢ ||K|1 ~
1.6 - 10'°. Besides that, we choose the algorithm parameters as in Fig. 4.

In Fig. 6a, we visualize the success rates in dependence on the noise level. For
randomScale € {0.3, 0.5} and both algorithms, the success rates start at less than
0.12 for SNRgg = 0 and grow for increasing signal-to-noise ratios until at least 0.90
for SNRgg = 30. The success rates of Algorithm 2 with JZ%;)U?QMC (“2dim”) are often

higher than for Algorithm 1 with @/21 'll'}[MC (“phase”), which may be caused by the

larger numbers of samples for Algorithm 2 and the noise model used. Note that the
numbers of samples correspond to those in Fig. 4b for s = 100 independent of the
noise level. For Algorithm 2 with randomScale = 0.3, the increase of the success
rate seems to stagnate at SNRqg = 20, while this does not seem to be the case for
randomScale = 0.5 or Algorithm 1. In particular, this behavior can also be observed
in Fig. 6b, where we plot the average relative ¢> error of the Fourier coefficients
against the signal-to-noise ratio. Here, we observe that for randomScale = 0.3,
the decrease of the errors for increasing SNRgp values almost stops once reaching
SNRg4g = 20 for both algorithms. Initially, the average error of Algorithm 2 is smaller,
but at SNRgg = 15 and higher, the average error of Algorithm 1 is smaller. In case
of randomScale = 0.5, we observe a distinct decrease for growing signal-to-noise
ratios for both algorithms.
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Fig. 7 Average success rates (all frequencies detected) and relative £2 errors over 100 test runs for Algo—
rithm 1 with sz/ wb ;MC , denoted by “phase”, and Algorithm 2 with cz{ SUb :MC , denoted by “2dim”,

multivariate mgonometrlc polynomlals with (deterministic) trequenmes on weighted hyperbolic cross
within hyperbolic cross .# := J7’33 , setting randomScale :=rs € {0.3, 0.5} and bandwidth parameter

M =1+ 2||z] 0o maxge s K[ ~ 1.6 - 1010

5.1.3 Deterministic frequency set within 10-dimensional hyperbolic cross and noisy
samples

Next, instead of randomly chosen frequencies, we now consider frequencies on a
d-dimensional weighted hyperbolic cross

>4

d
%ﬂ[ff’“ =1k e7: nmax(l,Z“ lke|) <

and max k; < >
(=1

2 t=1,....d

Here, we use d = 10, N = 33, . := %”33 ,and @« = 1.7, which yields
s = |%”310 B 7| = 101. Again, the Fourier coefficients ck are randomly chosen from
[—1, 114+ 1[-1,1], || = 10~ 3. We use the same lattice and bandwidth parameter
as in the last subsection as well as the same noise model and parameters.

In Fig. 7, we depict the obtained results. In particular, the results in Fig. 7a are
very similar to the ones for randomly chosen frequencies in Fig. 6a. For the case
of deterministic frequencies in Fig. 7a, the success rates are slightly better. More-
over, we do not observe the “stagnation” of the success rates for Algorithm 2 with
randomScale = 0.3. Correspondingly, the relative £2 errors, as shown in Fig. 7b,
decrease distinctly for growing signal-to-noise ratios. Algorithm 2 performs slightly
better than Algorithm 1, but also requires more than one order of magnitude more
samples, similar to the results shown in Fig. 4b for s = 100.
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5.2 Compressible case in 10 dimensions

In this section, we apply the methods on a test function which is not exactly sparse
but compressible. In addition, we also consider noisy samples as in Sect. 5.1.2. We
use the 10-variate periodic test function f: T'0 — R,

f@:= ] Mmeo+ [] Meo+ J] Neo. ®)

£e{0,2,7} £e{l1,4,5,9} £e{3,6,8}

from [33, Section 3.3] and [21, Section 5.3] with infinitely many non-zero Fourier
coefficients ck (), where N, : T — IR is the B-Spline of order m € N,

Ny (x) :=Cyp, Z sinc (%k)m (_1)k eZnikx’

keZ

with a constant Cy, > 0 such that [| Ny || .2y = 1. We remark that each B-Spline N,
of order m € N is a piece-wise polynomial of degree m — 1. We apply Algorithm 1
with 7" SUb MC and use the sparsity parameters s € {50, 100, 250, 500, 1000, 2000},
which corresponds to2s € {100, 200, 500, 1000, 2000, 4000} frequencies and Fourier
coefficients for the output of Algorithm 1. We use the frequency set .# := %@]30 and
randomScale :=rs € {0.05, 0.1}. Moreover, we work with the same rank-1 lattice
as in Sect. 5.1.2.

The obtained basis index sets supp(b) should “consist of” the union of three
lower dimensional manifolds, a three-dimensional hyperbolic cross in the dimen-
sions 1, 3, 8; a four-dimensional hyperbolic cross in the dimensions 2, 5, 6, 10; and a
three-dimensional hyperbolic cross in the dimensions 4, 7, 9. All tests are performed
100 times and the relative L? approximation error

If— Zkesupp(b) by ek 22
112
122 = Skesupoy 16N + Lcesappivy 1Bk = k(NP
- WE

is computed each time.

In Fig. 8a, we visualize the average number of samples against the sparsity 2s of
the approximation. We observe an almost linear increase with respect to 2s. In Fig. 8b,
we show the average relative errors for randomScale € {0.05, 0.1} in the noiseless
case as well as randomScale = 0.1 for SNRg, € {10, 20, 30}. In general, for
increasing sparsity, the errors become smaller. For randomScale = 0.05 in the
noiseless case and randomScale = 0.1 with SNRg, = 10, the average error are
similar and stay above 3 - 1072 even for sparsity 2s = 4000. For higher signal-to-
noise ratio, the error decreases further. For SNRy, = 30, the obtained average error
is 6.1 - 1073 for 25 = 4000, which is only approximately twice as high as the best
possible error when using the 2s largest (by magnitude) Fourier coefficients ck (f)
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sparsity 2s of the approximation

sparsity 2s of the approximation

(a) samples vs. sparsity 2s
(b) relative L2 errors vs. sparsity 2s

Fig.8 Average number of samples and relative L2 errors over 100 test runs for Algorithm 1 with d;ulj";lMC
A

on 10-dimensional test function (8) consisting of tensor products of B-Splines of different order. Search
space is unweighted hyperbolic cross .% := . f#) with SFT parameters randomScale :=r1s € {0.05, 0.1}

and M = 1 + 2||z[|co maxgc ¢ ||K[|; ~ 1.6 1010

with the restriction k € . := %@130. The latter is plotted in Fig. 8b as dashed line
without markers.

6 Conclusion

In this paper, we have presented two different methods for combining rank-1 lattices
with univariate sparse Fourier transforms. By strategically transforming known recon-
structing rank-1 lattices A(z, M), these techniques quickly and accurately manage the
inversion of the frequency mapping k — k-z mod M. As such, we are able to transfer
the error bounds and fast runtime from any suitably accurate sparse Fourier transform
to problems in high-dimensional Fourier approximation.

In particular, we theoretically and numerically observe s-sparse recovery of d
dimensional signals with computational complexities linear in s and d. These compu-
tational complexities paired with our techniques’ flexibility with respect to a frequency
set of interest rival the state of the art in high-dimensional Fourier analysis. And indeed,
the extensibility of our techniques allow for new, and potentially more efficient results
when joined with other univariate sparse Fourier transform algorithms.

We hope to observe the benefits of these algorithms in future applications. One such
approach currently being investigated is extending standard Fourier spectral methods
for solving partial differential equations. Replacing traditional Fourier techniques on
grids with our faster, more flexible approaches allow us to sparsify the spectral method
matrix equations to be solved. The size of this sparser matrix equation then has greatly
reduced dependence on the dimension, and we expect our methods to be able to
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approximate solutions to partial differential equations in much higher dimensions
than have been feasible by traditional methods.
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A Proof of Theorem 1

We begin with a lemma which will be used to slightly improve the error bounds in
Theorems 1 and 2 from their original statements.

Lemma4 Forx € CK and %, = {k € [K] | |x| > 7}, if v > X2 lh XS , then
|72 < 2s and

opt
Ix — x| ll2 < X — x50 ]2 + Tv/2s

Proof Ordering the entries of x in descending order (with ties broken arbitrarily) as
[Xk, | > [xk,| > ..., we first note that

2s

opt
= x> Y x| = sl |-
j=s+1

By assumption then, T > |xg,, |, and since ., contains the |.#7|-many largest entries
of x, we must have .%; C supp(ngt). Note then that |.#;| < 2s. Finally, we calculate
Ix = Xl ll2 < X = x5 12 + 150 =X, ll2

<lx- qu ||2 +

kesupp(xz)p N-Tr

< [Ix = x5% I + /25

completing the proof. O

We now give the proof of Theorem 1. For convenience we restate the theorem.
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Theorem 1 For a signal a € # (T) N C(T) corrupted by some arbitrary noise  :
T — C, Algorithm 3 of [16], denoted %}“5’”, will output a 2s-sparse coefficient vector

v € CM which

1. reconstructs every frequency of 4 € CM, w € By, with corresponding Fourier
coefficients meeting the tolerance

~ Aopt
. la—ag[ | . .
ol > (4+2V2) <f +la—al+ llnlo |
2. satisfies the °° error estimate for recovered coefficients

A ~Opt
A la—a™ L .
ll(a— V)|supp(v)||oo = \/5 (—Y +lla—ali +lInlleo | »

N

3. satisfies the (> error estimate

A Aopt
. A aopt (BV2+6)la—ar |,
a—v[<J|Ja—a +
18— vz < 14— 45 |12 7

+ V2 + 6)/s(lla — all1 + lI12lloo),

4. and the number of required samples of a and the operation count for %SS“?W are

21004
log® M
o (L) ,
logs
The Monte Carlo variant of (5272?34, denoted ,Qf;u %MC, referredto by Corollary 4 of [16]

satisfies all of the conditions (1)—(3) simultaneously with probability (1—o) € [2/3, 1)
and has number of required samples and operation count

7 (s log (M) log (g)) .

The samples required by %SR%MC are a subset of those required by 4&7255“34

Proof We refer to [16, Theorem 7] and its modification for noise robustness in [27,
Lemma 4] for the proofs of properties (2) and (4). As for (1), [16, Lemma 6] and its
modification in [27, Lemma 4] imply thatany w € 2y with |dg| > 4(|a—a™ || /s +
la — a1 + l|nlloo) =: 48 will be identified in [16, Algorithm 3]. An approximate
Fourier coefficient for these and any other recovered frequencies is stored in the vector
x which satisfies the same estimate in property (2) by the proof of [16, Theorem 7] and
[27, Lemma 4]. However, only the 2s largest magnitude values of x will be returned
in v. We therefore analyze what happens when some of the potentially large Fourier
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coefficients corresponding to frequencies in %45 do not have their approximations
assigned to v.

For the definition of .%; in Lemma 4 applied to a, we must have | 45| < 25 =
| supp(v)|. If € F4s \ supp(v), there must then exist some other @’ € supp(v) \ S4s
which was identified and took the place of w in supp(v). For this to happen, |a.y | < 48
and |x,/| > |x,|. But by property (2) (extended to all coefficients in x), we know

45 4+ V28 > i | + V28 > x| = 1%0] = 1a0] — V/26.

Thus, any frequency in .%; not chosen satisfies |d,| < (4 + 2+/2)8, and so every
frequency in 5”( 4+272)8 is in fact identified in v verifying property (1).

As for property (3), we estimate the ¢> error using property (2), Lemma 4, and the
above argument as

la —vl2 < [la — alsuppw) 12 + 1@ = V) lsuppw) 12
< 114 — &l.75nsuppew) 12 + V26325
< 11a — &l ll2 + 18175\ suppvy 12 + 28+/5
< [1d — &5%"|I2 + 48+/2s + (4 + 2v/2)8v/2s +28/5
= [1d — &3 [l + (8V2 + 6)/56

as desired. O

B Proof of Theorem 2
We again restate the theorem for convenience.

Theorem 2 For a signal a € # (T') N C(T) corrupted by some arbitrary noise i :
T—Candl <r < % Algorithm 1 of [27], denoted (sz‘?’sjf,[, will output a 2s-sparse
coefficient vector v.e CM which

1. reconstructs every frequency of Fyy a € CM, w € By, with corresponding aliased

Fourier coefficient meeting the tolerance

[Fya— (Fya)l
2s

|(Fy a)o| > 12(1++/2) (' +2(JlallceM™" + IIILIIoo)) ,

2. satisfies the €°° error estimate for recovered coefficients

IFpa— (Faa)™ |y
2s

1 (Far a — V) lsuppw) lloo = 3xf2< +2(lalloM ™" + IIII«Iloo)) :
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3. satisfies the (* error estimate

IFyra— (Fpra)s™ |l

75

IFyva—vi2<|Fya— (Fya)s 438

+ 1525 (lallooM ™" + [l o)

4. and the number of required samples of a and the operation count for <, d“]f,[ are

2,3/215011/2 g
ﬁ<s r>/<log )
log s

The Monte Carlo variant of %dlsjf,l, denoted %dlsx,[MC satisfies the all of the conditions
(1)—(3) simultaneously with probability (1—o) € [2/3, 1) and has number of required
samples and operation count

7 <sr3/2 log”/?> (M) log <%>> .
1o

Proof All notation in this proof matches that in [27] (in particular, we use f to denote
the one-dimensional function in place of a in the theorem statementand N = 2M +1).
We begin by substituting the 27 -periodic gaussian filter given in (3) on page 756 with
the 1-periodic gaussian and associated Fourier transform

2 2
_ @m)*(x—n) 1 c%wz

(x) = e 261 , B = e 7 .
8 Z 8w Nz

n=—oo

Note then that all results regarding the Fourier transform remain unchanged, and since
this 1-periodic gaussian is a just a rescaling of the 2w -periodic one used in [27], the
bound in [27, Lemma 1] holds with a similarly compressed gaussian, that is, for all

x € [=3.5]

()<<3 o ) = ©)
X — ——a NG .
#9 =1 2

Analogous results up to and including [27, Lemma 10] for 1-periodic functions then
hold straightforwardly.
Assuming that our signal measurements f = (f (y«i))§= =(f ( ))2 Z, are cor-

rupted by some discrete noise @ = (u j)?go’ we consider for any x € 'Jl‘ a similar
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bound to [27, Lemma 10]. Here, ;' := argmin; [x — y;| and x := [y In N7 + 1 for
some y € R to be determined. Then,

2M 1 J

Zf(yj)g(x D DR CHETRHCESN

Jj=0 J =j'-«
Jl J'+K

<5 N —y)— Y. fekx—y)) +— > owigx—y))
j=j'—« Jj=Jj'—x

2M Jltr

<L Zf(y,)g(x W= 2 FOpele - yp| + 1 3 =y

j=j'—« k=—«

We bound the first term in this sum by a direct application of [27, Lemma 10]; however,
we take this opportunity to reduce the constant in the bound given there. In particular,
bounding this term by the final expression in the proof of [27, Lemma 10] and using
our implicit assumption that 36 < N, we have

Jtx

1
Z fpgx —yj) —— Z () +upgkx—yj)
J =0 =j'—« (10)
3 1 [In36 -
= (E T 36 ) IfllccN™" + _”IL”ook;Kg(x = Vj'+k)-

We now work on bounding the second term. First note that for all k € [—«, k] N Z,

k
— i’ = — P! :l: —_— .
gx —yjrar) = & (x yj N)

Assuming without loss of generality that 0 < x — y -, we can bound the nonnegatively
indexed summands by (9) as

k 300 20\ -ww
v+ — )<= )e 2V 11
g<x y,+N)_<Cl+ Tn) (In
For the negatively indexed summands, the definition of j* = argmin; |x — y;| implies
that x — y;» < 5. In particular,

k 1 -2k

YTV TN = TN

<0

implies
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giving

2.2 2
k 3 2 .
_ L= < = 2(‘1N 4L‘1N' 12
g(x 3 N)—<cl+—7n)@ e (12)

We now bound the final exponential. We first recall from [27] the choices of param-
eters

=0 sy, y=;§n=fj; B=06vr

withl <r < X, For k € [1, k] N 7Z then,

— 36"
. (27)3%k —e (2m)%k
X X —_—
P 4C%N2 = P 4c2N2

72 (6:}1N T 2)

36rIn N

< exp

T 7T2
= &P (@”L 18r1nN)
<exp (L_FT[—Z) —
642 | 181036

Combining this with our bounds for the nonnegatively indexed summands (11) and
the negatively indexed summands (12), we have

1 K @m)2k2
— — 1 1+ A 262N
Z gx = yjrak) < ( =t Tﬂ)( +A+HY e )

k——K k=1

Expressing the final sum as a truncated lower Riemann sum and applying a change of
variables on the resulting integral, we have

N —ee BN (*® . BJ/InN

e 2hN < e dx

Pt - V2r Jo N

Making use of our parameter values from [27], and the fact that 1 <r < §V—6,

—Zg( yj’+k)§( 5,1 )(1+1+A,3 lnN)
= BInN = N27 227

o3 3044 1 144 36
T 6vIn36  2v2r  36v2r 4m V36
< 2. (13)
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With our revised bound for (10) above, we reprove [27, Theorem 4] to estimate
g * f by the truncated discrete convolution with noisy samples. In particular, we apply
[27, Theorem 3], (10), (9), and finally our same assumption that 1 <r < % to obtain

-/ 6r
j J{ z- lnN-‘+1

1
(g* H) =+ > (FO) + e —y))

j=i=[ S mn]-1

1—r

N thooN ™ 4 (e /) e 20
6/rv/InN N A o Hlloo

(L 3 L 36 Mllee oy <2 (Moo
“\6vm36 2r 27V 36 | Nr - N* 2

Replacing all references of 3||f||coc N ™" by 2(||f||cocN ™" + |[#]lco) in the remainder
of the steps up to proving [27, Theorem 5] gives the desired noise robustness (with a
slightly improved constant).

Using the revised error estimates of the nonequispaced algorithm from Theorem 1
and redefining 8 = 3(|If — £;™"11 /25 + 2(If looN ™" + [|tlloc)) as in the proof of [27,
Theorem 5] (which also contains the proof of property (2)), the discretization algorithm
[27, Algorithm 1] will produce candidate Fourier coefficient approximations in lines
9 and 12 corresponding to every | fw| > (4 4 24/2)8 in place of 48 in Theorem 1.
The exact same argument as in the proof of Theorem 1 then applies to the selection
of the 2s-largest entries of this approximation with the revised threshold values and
error bounds to give properties (1) and (3).

Indetail, [27, Lemma 13] and the discussion right after its statement gives that prop-
erty (2) holds for any approximate coefficient with frequency recovered throughout
the algorithm (which, for the purposes of the following discussion, we will store in x
rather than R defined in [27, Algorithm 1]), not just those in the final output v := x?pt.
Additionally, by the same lemma and our revised bounds from Theorem 1, any fre-
quency @ € [N] satisfying | f,| > (4 + 24/2)8 will have an associated coefficient
estimate in X.

By Lemma 4, |‘5ﬂ(4+2~/§)3| < 2s = |supp(v)|, and so if w € 5ﬂ(4+2ﬁ)3 \ supp(V),
there exists some o’ € supp(Vv) \5”( 4+22)8 such that v, took the place of v, in .. In

particular, this means that |x,/| > |x,|, | fur| < (4+2+/2)8, and | f| > (4 + 24/26).
Thus,

IA

(4 +2V2)8 + 328 > | furl + V28 > [xur| = |x0] = | fol — /26,

implying that | fw| < 4(1 + +/2)6 and therefore proving (1).
Finally, to prove (3), we use Lemma 4, and consider

If—vl2 <|If - f|supp(v) l2 — II(F — V)|supp(v)”2

Nsupp(v) ll2 + \/E(SV 2s

<IF_F.
—”f fly(4+2ﬁ)a
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<t =flo, , 5,02+ Ifl5, ., 5 \suppco 12 + 2875

< I = EP)l2 4 (4 + 2v2)8v/25 + 4(1 + V2)5/25 + 264/5
< [If — £ (12 + (14 4 8v2)54/5

which finishes the proof. O
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