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Topological edge modes without symmetry in quasiperiodically driven spin chains
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We construct an example of a 1d quasiperiodically driven spin chain whose edge states can coherently
store quantum information, protected by a combination of localization, dynamics, and topology. In a sharp
departure from topological phases in static and periodically driven (Floquet) spin chains, this model does not
rely upon microscopic symmetry protection: Instead, the edge states are protected purely by emergent dynamical
symmetries. We explore the dynamical signatures of this emergent dynamical symmetry-protected topological
(EDSPT) order through exact numerics, time evolving block decimation, and analytic high-frequency expansion,
finding evidence that the EDSPT is a stable dynamical phase protected by bulk many-body localization up to (at
least) stretched-exponentially long timescales, and possibly beyond. We argue that EDSPTs are special to the
quasiperiodically driven setting, and cannot arise in Floquet systems. Moreover, we find evidence of a type of
boundary critical with no known static or Floquet analogue, in which the edge spin dynamics transition from
quasiperiodic to chaotic, leading to bulk thermalization.
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I. INTRODUCTION

Edge states of 1d topological phases can coherently store
quantum information in a manner that is protected against
stray fields, uncontrolled interactions, and cross talk, making
them promising candidates for quantum memory. In iso-
lated and many-body localized (MBL) systems [1–4], this
protection can extend to highly excited states [5–11], en-
abling topological quantum memories without the need for
cooling or ground-state preparation. However, both funda-
mental and practical considerations restrict MBL protection to
bosonic systems, which, for 1d time-independent and Floquet
systems, only admit a weaker form of symmetry-protected
topological (SPT) order, namely, (i) symmetry restrictions on
MBL preclude realizing fermionic topological phases [12]
and (ii) the atomic, molecular, and optical (AMO) platforms
capable of realizing the spatiotemporal control of interactions
required to synthesize complex phases (such as trapped ions
[13], Rydberg atoms [14,15], superconducting qubits, and
circuit QED systems [16]) all comprise bosonic degrees of
freedom (qubits, spins, or oscillators).

The prototypical example of an MBL-protected SPT phase
[17–19] is the Affleck-Kennedy-Lieb-Tasaki (AKLT) [aka
cluster state or Haldane phase] model [20,21], whose pro-
jective (spin half) edge states are protected by two Z2

spin-rotation symmetries; this Z2 × Z2 symmetry forbids any
symmetric coupling from dephasing or depolarizing the edge
states. However, this complicated symmetry is physically un-
natural in most AMO systems: achieving it would require fine
tuning, leaving the edge states vulnerable to many perturba-
tions.

Time-periodic (Floquet) driving can actually simplify the
symmetry requirements. In the analogous dynamical Floquet
SPT (FSPT), one of the microscopic Z2 symmetries is re-
placed by an emergent symmetry arising from the drive’s
discrete time translation invariance. This emergent dynamical
symmetry cannot be broken by local, time-periodic pertur-
bations. Formally, FSPT phases are classified by extending
the microscopic symmetry group to include time translation
symmetries, i.e., the group, Z, of translations by integer multi-
ples of drive period, T [22–25]. Physically, the Floquet cluster
state undergoes a repeating topological spin echo process that
dynamically decouples the edge spins from all perturbations
that respect the microscopic Z2 symmetry [26]. Crucially, un-
like an ordinary spin echo sequence, interactions collectively
stabilize the topological edge state motion against generic
symmetric perturbations.

This construction begs the question: Can one forego mi-
croscopic symmetries entirely and engineer absolutely stable
[27] dynamical topological phases protected only by emergent
dynamical symmetries? To this end, we consider general-
izing periodic (single-tone) drives to quasiperiodic drives
(comprising two tones with incommensurate periods; see,
e.g., Refs. [28–31]). In analogy to spatial quasicrystals, the
quasiperiodic drive can be viewed as a projection from a
higher-dimensional time torus with independent time trans-
lation directions for each drive tone. Recent work has shown
that quasiperiodic driving admits examples of dynamical sym-
metry breaking (e.g., time quasicrystals [29] and SPT phases
[31]), but has thus far overlooked the possibility of dynam-
ical topological phases without any microscopic symmetry
protection.
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Our strategy will be to replace both of the Z2 symmetries
protecting the static AKLT phase with emergent dynamical
symmetries enforced by the drive. We explicitly construct
a spin model with this property and demonstrate the sta-
bility of edge states to generic quasiperiodic perturbations
via numerical integration, time evolving block decimation
(TEBD), and analytical methods. We refer to invertible
(short-range entangled) dynamical topological phases pro-
tected solely by emergent dynamical symmetries (i.e., without
any microscopic symmetries) as emergent dynamical sym-
metry protected topological orders (EDSPTs). Interestingly,
EDSPTs lie outside of the previously proposed formal classi-
fication schemes for (quasi)periodically driven phases [31].

We argue that EDSPTs are special to quasiperiodically
driven systems and have no counterparts in either the static or
Floquet setting. Specifically, analogous Floquet phases can be
continuously deformed to a trivial phase without a bulk phase
transition by applying a counterdrive (CD) that neutralizes the
topological edge dynamics. In the quasiperiodic setting, such
CDs instead appear to induce a bulk delocalization transition:
We provide numerical evidence that attempting to cancel the
edge dynamics of the quasiperiodic EDSPT necessarily re-
sults in strongly overlapping, noncommuting pulses that cause
the edge dynamics to become chaotic and thereby heat up
and melt the MBL bulk. This behavior appears to be unique
to quasiperiodically driven systems, in which even a single
spin can exhibit a 0d transition from quasiperiodic to chaotic
motion [32–36].

II. NOTION(S) OF STABILITY IN QUASIPERIODIC MBL

Following Ref. [31], we define a p-tone quasiperiodic
drive, H (t ) = ∑

n∈Zp e−i ω·n t Hn (where the frequency vector,
ω, has components ωi = 2π/Ti , (i = 1 . . . p) with ωi/ω j /∈
Q), to be MBL if the time evolution operator, U (t ) =
T e−i

∫ t
0 H (t )dt , can be written in the form

UQ-MBL(t ) = Q(t ) e−i DMBL t Q†(0), (1)

where the unitary Q(t ) is quasiperiodic in t (and can be
interpreted as a quasiperiodic micromotion) and DMBL is a
static MBL Hamiltonian with a complete set of local inte-
grals of motion (LIOMs) [37–39]. Physically, there exists
some time-dependent frame (i.e., a particular choice of ba-
sis for the many-body Hilbert space) in which the evolution
appears static, and is governed by DMBL; the micromotion,
Q(t ), projects onto this frame and is quasiperiodic in t . In the
Floquet case, the micromotion is periodic, so evaluating U (t )
at integer multiples of the period leads to a time-independent
expression [since Q(nT ) = Q(0)]; in the quasiperiodic case,
Q(t ) never returns exactly to its t = 0 value.

If Q(t ) has the same quasiperiodicity as the drive
Hamiltonian, H (t ), we say that the system preserves the
dynamical symmetries. Another possibility is a time qua-
sicrystal with spontaneously broken dynamical symmetries
[29], wherein Q(t ) remains quasiperiodic but with an enlarged
quasiperiodicity compared to H (t ). Like FSPTs, with closed
boundary conditions, EDSPTs exhibit quasiperiodic MBL
dynamics that preserve the dynamical symmetries; in open
chains, the EDSPT’s edge modes exhibit time quasicrystalline
dynamics.

Unlike the static and Floquet settings, quasiperiodically
driving even a single spin can lead to chaotic dynamics
[32–36] that fail to reduce to the form of Eq. (1), instead
realizing a continuous frequency spectrum. This leads to an
altered notion of stability for quasiperiodically driven MBL,
since a single such chaotic spin can act as a continuous-
spectrum noise source, thermalizing many otherwise-MBL
spins.

In contrast to static systems [40], there is no rigorous
proof of stability of driven MBL phases. However, analytic
arguments [41–43] in favor of Floquet MBL (which can be
supplemented by infinite-time numerical simulations), apply
equally to smooth quasiperiodic drives (for which reaching
long times is numerically challenging). Recently established
analytic bounds [31,44] (see also Refs. [45–47] in the Floquet
case) show that quasiperiodically driven disordered systems
remain MBL at least up to stretched-exponentially long
preheating timescales, τph ∼ exp(v−γ ) (where v is the appro-
priately normalized drive strength and γ < 1 some exponent),
and perhaps indefinitely. Throughout this paper, we will as-
sume that either (i) quasiperiodically driven MBL is stable
to infinitely long times, or (ii) that we are operating in a
regime in which τph significantly exceeds relevant experimen-
tal timescales.

III. MODEL

Our starting point is an adaptation of the cluster state rep-
resentation of the AKLT phase, defined on a spin chain with
two sublattices (A and B), each with L spins,

HCS = −
L−1∑
j=1

∑
μ=x,z

Kμ
j σ

μ
B, jσ

μ
A, j+1 , (2)

where Kμ
i are independently and identically distributed

uniformly from [-K, -Kmin] ∪ [Kmin, K] [48]. Almost all eigen-
states of HCS exhibit an exact, fourfold degeneracy corre-
sponding to a pair of projective, zero-energy (spin half) edge
spin operators: σA,1 and σB,L. These zero modes are protected
by a pair of discrete Z2 spin-rotation symmetries generated by
gμ = ∏L

j=1 σ
μ
A, jσ

μ
B, j , for μ ∈ {x, z}; together, these generate

the symmetry group Z2 × Z2. The disordered couplings in
Eq. (2) ensure that the zero modes extend throughout a stable
MBL phase in the presence of generic (time-independent)
perturbations that respect this symmetry.

To protect this phase dynamically (i.e., dispense with the
microscopic symmetry requirements), we apply a quasiperi-
odic drive consisting of two tones with irrationally related
periods, Tx = 1, Tz = ϕ = 1+√

5
2 , given by

H0(t ) = 1

2

L∑
j=1

(
fx(t )σ x

A, jσ
x
B, j + fz(t )σ z

A, jσ
z
B, j

)
,

fμ(t ) = π
∑
n∈Z

Gw(t − (n + φμ)Tμ), (3)

where Gw(x) = 1√
2πw2

e−x2/2w2
are normalized Gaussian

pulses with width w, and φ controls the phase of the drive
(which takes values on the unit torus, T2; unless other-
wise specified, we choose φx = φz = 1

2 ). Since all of the
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terms in H0 commute, the resulting time evolution, U0(t ) =
T e−i

∫ t
0 H0(s)ds, is straightforward to compute.

To motivate this drive construction, consider the single-
tone (Floquet) limit by omitting the fx drive, and
taking w → 0 (i.e., δ-function pulses). Here, H (t ) = H0(t ) +
HCS realizes a Floquet SPT phase protected by a microscopic
gx symmetry. Each z pulse in H0 has the same effect on
the system as applying the symmetry generator gz. Suppose
that we extend the model with a gx-preserving, gz-breaking
perturbation, V , with gzV gz = −V . Roughly speaking, the
net, gz-breaking effect of V averages to zero after an even
number of pulses, much like a spin echo pulse sequence.
This cancellation effectively restores the gz symmetry in a
periodically rotating frame.

Naïvely, one can expect the two-tone drive (with both fx,z
pulse trains) to operate similarly, with both x and z pulses spin
echoing away perturbations that are odd under gx or gz, effec-
tively imposing a dynamically enforced Z2 × Z2 symmetry.
This conclusion is not entirely obvious, since the x and z
pulses of the two-tone drive are quasiperiodically interleaved,
such that z pulses can come in between pairs of x pulses,
potentially interrupting the spin echo action. Despite this,
we will show that the naïve argument above turns out to be
essentially correct in practice.

IV. SOLVABLE LIMIT

Before addressing the general stability of the model, we
first examine a special, soluble limit that captures the charac-
teristic phenomenology. The model H = H0(t ) + HCS can be
solved exactly in the limit of infinitely thin (w → 0) pulses.
The perfectly localized bulk is characterized by an extensive
set of LIOMs [37–39], σ

μ
B, jσ

μ
A, j+1, that commute with the

pulses in H0. In contrast, the edge states, σA,1 and σB,L, are
flipped about the x and z axes by the fx,z pulses, respectively.
This edge motion results in a quasiperiodic sequence of spin
flips, which follow a Fibonacci sequence generated by

. . . (σ xσ zσ xσ xσ z )(σ xσ xσ z )(σ xσ z )(σ x ) , (4)

which includes the rotations due to all pulses up to the spec-
ified time, t , and where the parentheses show the Fibonacci
recursion structure. The cumulative effect of these pulse se-
quences is effectively to flip the edge spins about the x, y,
and then z axes in a quasiperiodic sequence that, on average,
cancels out the effect of local perturbations to the ideal drive
Hamiltonian, H0. Specifically, consider perturbing H0(t ) by
some local perturbation, v1(t ), near the left edge (e.g., a mag-
netic field acting on the leftmost site). In the quasiperiodically
rotating frame defined by Eq. (1), the edge spin flipping causes
the contribution of v1 to the time-averaged Hamiltonian, D,
to be twirled over the single-spin Pauli group, {1, σ x,y,z} (see
Appendix A). This Pauli twirling effect at the edge forces the
time-averaged contribution of any perturbation acting nontriv-
ially on the edge spin(s) to vanish and is directly responsible
for the dynamical topological protection of the edge spins.

We note that this quasiperiodic pattern of edge-spin flips
can be understood straightforwardly when examined at Fi-
bonacci times, tn ∼ Fn ≈ ϕFn−1, defined as the times where
t and t/ϕ are (locally) as close as possible to integers (the
deviation from integer decays exponentially with n). For times

t = tn, as a function of n, the edge spins are conjugated by a
repeating sequence of operators, σ x → σ y → σ z → σ x · · · ,
with periodicity three. This period tripling (in Fibonacci time)
reflects the fact that an even number of π pulses produce no
effect and that the Fibonacci numbers modulo two have a
threefold periodic structure. In simulations, this edge-flipping
pattern provides a convenient signature, similar to bulk sig-
natures of time quasicrystals previously studied by two
of us [29].

V. STABILITY TO GENERIC PERTURBATIONS

To establish the stability of the idealized model, we now
consider generic perturbations. The full model is given by

H (t ) = H0(t ) + HCS + V (t ), (5)

where V (t ) includes generic, local, quasiperiodic-in-time per-
turbations of strength v � K . We restrict to small, nonzero
pulse widths 0 < w � 1 to limit the high-frequency (HF)
content of the drive. While the analytic results presented are
valid for any V satisfying the above properties, for numerical
simulation we specialize to the particular choice

V (t ) = −λH0(t ) +
L∑

j=1

∑
ν=x,z

Jν
j σ

ν
A, jσ

ν
B, j +

L∑
j=1

∑
α=A,B

hα, j · σα, j

(6)

where λ is the deviation from perfect π pulses, Jν
j ∼ [−J, J]

terms compete with HCS to give a nonzero correlation length,
and the random fields, hx,y,z

α, j ∈ [−h, h], break any microscopic
symmetries. In all simulations, we take K = 0.3, J = h =
0.05, and λ = 0.05 (the deviation from the ideal π pulse).

Figure 1 shows TEBD [49,50] simulations of large
(50 spins, L = 25) chains to moderate times (t ∼ 102), and
Fig. 2 shows exact numerical integration of time evolution for
smaller (14 spins, L = 7) chains to longer times (t ∼ 104). To
contrast the edge and bulk behavior, we consider two-point
correlation functions Cμ

α,r (t ) = 〈σμ
α,r (t )σμ

α,r (0)〉, where (. . . )
denotes disorder and initial state averaging. The edge corre-
lations initially decay before saturating to a nonzero value
that persists up to the longest times simulated, indicating finite
overlap with topologically protected edge states. In contrast,
the (disorder averaged) bulk correlations quickly decay to zero
due to the random local couplings, signaling an absence of
topological protection. Plotting the same data at Fibonacci
times correctly accounts for the complicated quasiperiodic
micromotion, revealing an underlying periodic oscillation (in
Fibonacci time) due to the quasiperiodic twirling discussed
above.

VI. TOPOLOGICAL EDGE-STATE DYNAMICS

To understand these results, we employ the high-frequency
expansion formalism of Ref. [31], which intuitively can be
thought of as a quasiperiodic extension of the Magnus ex-
pansion in Floquet (periodic) systems. The utility of this
expansion is that it allows the time evolution operator to be
written (up to time t ∼ exp[(K/v)γ ] with γ � 2/3 in our case
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FIG. 1. Ising EDSPT phenomenology. Top: Schematic of the
EDSPT model in Eq. (5). Bottom: Time-evolving block decimation
(TEBD) simulations of this model in a 50-spin chain. Whereas the
bulk spin correlators rapidly decay, edge spins exhibit long-lived,
coherent, quasiperiodic oscillations indicative of their dynamical
topological protection. For reach realization, the initial (t = 0) state
is an independently chosen, random σ z-product state. We use time
steps 
t = 0.002, bond dimension χ � 1024, truncation error ε �
10−8, and average over 100 disorder realizations with K = 0.3 and
J = h = 0.05.

[31], see also Appendix A), as

U (t ) = T {e−i
∫ t

0 H (s)ds} = W † Q(t )U0(t ) e−iDt W , (7)

in which we have repackaged the expression in Eq. (1) in a
way that is physically convenient. This decomposition can
be interpreted physically as follows: W = Q(0) is a local,
finite-depth unitary that implements a basis transformation
from the laboratory frame to a locally dressed frame in which
the dynamics simplify. For example, in an MBL system, W
transforms the physical qubit operators into the quasilocal
LIOMs. In the transformed frame described by W , time evolu-
tion is realized by an effective, time-independent Hamiltonian,
D, which is quasiperiodically kicked by the micromotion op-
erator, Q(t ). To separate out the topological aspects of the
dynamics from nonuniversal quasiperiodic modulation, we
have decomposed the micromotion into two pieces: Q(t ) =
Q(t )U0(t ), where U0(t ) = T e−i

∫ t
0 H0(t ) implements the topo-

logical motion of the ideal drive, H0(t ) (and is responsible
for both the emergent dynamical symmetries and topological
edge spin dynamics), and Q(t ), the micromotion in the frame
set by W , which will prove to be more convenient than Q(t ).
We present a detailed derivation of this decomposition order
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FIG. 2. Topological edge response. Left: Numerical simulation
of σ x and σ z correlations for 14 spins with small, nonzero perturba-
tions of all types, averaged over disorder and initial random z-basis
product states. These simulations use Gaussian pulses with stan-
dard deviation of 5% of period, pulse area of 0.95π , K = 0.3, and
J = h = 0.05. The bulk correlations decay rapidly, while the edge
exhibits oscillations that saturate to ∼50% amplitude and persist
to the longest times simulated. Right: Plot of the same correlations
evaluated only at Fibonacci times; at successive Fibonacci times, U0

realizes a periodic sequence of operators σ x,y,z, resulting in periodic
edge response at Fibonacci times.

by order in the perturbation V (t ) to the ideal drive H0(t ) in
Appendix A.

With these choices, the modified micromotion, Q(t ), is a
unitary with the same quasiperiodicity as H (t ) [unlike Q(t ),
whose quasiperiodicity is enlarged compared to H (t ), as ex-
plained in Appendix A]; additionally, we have Q(0) = 1, so
at Fibonacci times we find Q(tn) ∼ 1 + O(ϕ−n) and U0(t n) ∼
gFn

x g
Fn−1
z + O(ϕ−n) (with ϕ the golden mean), leading to the

edge sequence Eq. (4). Explicit forms for D, Q, W can be
computed order by order in K, v, and resemble those of more
familiar Magnus expansions (see Appendix A).

For our model D ≈ HCS + V sym, resulting in a symmetrized
Hamiltonian that commutes with gx and gz, and for v � K
takes the form of an MBL SPT Hamiltonian in the same phase
as HCS (weakly perturbed by local symmetric terms V sym, an
effective perturbation derived from terms with typical norm
∼v). Thus, U (t ) is equivalent to an MBL SPT evolution in
a quasiperiodically rotating frame, where the protecting sym-
metries are entirely emergent (i.e., may be completely broken
by the microscopic Hamiltonian, H (t ), that generates U (t )).
Specifically, the emergent protecting symmetry is generated
by g̃x,z = W gx,z W † (i.e., locally dressed versions of gx,z with
the same Z2 × Z2 group structure, whose precise form de-
pends on the details of H (t )).

Crucially, weakly perturbing H (t ) by terms that do not
commute with the naïve Z2 × Z2 generators, gx,z, merely
modifies the time-independent change-of-frame unitary, W ,
without undoing the existence or group structure of the emer-
gent dynamical symmetries. In the frame set by W , one still
has a time-independent effective Hamiltonian, D, that com-
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mutes with gx,z and realizes edge modes. Alternatively, by
conjugating all quantities by the initial change of frame, W
according to Ã = W †AW , one can write

U (t ) = Q̃(t ) Ũ0(t ) e−i D̃ t , (8)

where Ũ0(t ) realizes the symmetry generators g̃x,z, where
[ D̃ , g̃x,z ] = 0, and the aforementioned properties of Q(t ) all
hold for Q̃(t ) as well.

The primary signature and utility of this phase is its robust
edge modes with topologically protected coherence. When D
Eq. (A1) lies in the SPT phase, it hosts edge modes, �L/R,
that both transform projectively under the (emergent) Z2 ×
Z2 symmetry (generated by g̃x,z) and are stable against any
quasiperiodic perturbation to H (t ) [51]. As with equilibrium
SPTs, for V sym �= 0, the edge modes, �L/R, are no longer sim-
ply the single-site operators, σA,1, σB,L , but rather, are dressed
by nearby operators whose support decays exponentially with
distance, r, into the bulk as e−r/ξ (where ξ is the localization
length).

However, unlike equilibrium SPTs protected by micro-
scopic symmetries, the EDSPT edge modes are obscured
both by the frame transformation, W , and the quasiperiodic
micromotion, Q(t ). Since W is a finite depth, static unitary,
it merely smears out the edge modes while leaving finite
overlap with the original edge spins. The time-dependent
micromotion, however, encrypts the information encoded in
the edge modes in a quasiperiodically rotating frame. The
question is then how to recover information stored in �L/R
without explicit knowledge of the quasiperiodically rotating
frame, Q(t ).

FSPT phases face a similar issue, but the periodicity offers
a simple solution: Since Q(nT ) = Q(0) = 1, one can extract
the edge state information at integer multiples of the drive
period, T . In contrast, the quasiperiodic micromotion never
exactly repeats itself: Q(t ) does, however, come arbitrarily
close to 1 at special Fibonacci times, tn ∼ Fn ≈ ϕFn−1, for
which ωxtn and ωztn are both exponentially (in n) close to
integer multiples of 2π ; namely, Q(tn) ≈ 1 + O(ϕ−n).

This has two important consequences. First, measuring
the edge spin at Fibonacci times allows for the recovery
of information with finite fidelity, even at very long times
by which nontopological bulk modes have fully decohered.
Second, since Q(t ) quasiperiodically returns (close) to 1 [and
U0(t ) returns precisely to 1], the long-time envelope of the
dynamics is effectively controlled by the time-independent
Hamiltonian, D̃ = W †DW , which has a pair of emergent dy-
namical symmetries generated by g̃x,z = W †gx,zW . We use the
term “emergent” because (i) the precise form of g̃x,z depends
on H (t ) and (ii) arbitrary perturbations to H (t ) simply alter
the form of W without removing the symmetry.

Because g̃2
μ = 1, the corresponding emergent symmetry is

Z2 × Z2. The compactness of the emergent symmetry group
is essential for the existence of the EDSPT phase, since
the group cohomology classification with a pair of integer-
time-translation symmetries would be trivial [i.e., H2(Z ×
Z,U (1)) = Z1]. The topological protection of the edge can
be understood in the usual way: The generators g̃x,z locally
anticommute acting on the topological edge spin (flipping
along either the x or z axis in the W frame), whereas globally,

[g̃x, g̃z] = 0. Formally, the emergent symmetry has projective
action on the edge modes of D̃. Since these projective repre-
sentations are discrete, they cannot be continuously changed
by perturbations that preserve the structure of Eq. (A1) [i.e.,
any sufficiently weak, local, and quasiperiodic perturbation to
H (t )], which explains the stability of the edge mode dynamics
observed in our numerical simulations.

VII. DYNAMICAL ANOMALY

An essential characteristic of ordinary d-dimensional SPTs
is the anomalous, local action of the symmetry generators
on the (d − 1)-dimensional topological edge states, which
cannot be implemented in a truly (d − 1)-dimensional, sym-
metric system without the accompanying higher-dimensional
bulk. Similarly, in FSPTs, every drive period executes an
anomalous unitary evolution that cannot be generated by a
(symmetric) (d − 1) Hamiltonian acting exclusively on the
edge [22–24].

These features are essential to the stability of ordinary and
Floquet SPTs: Without an anomaly obstruction to realizing
the edge symmetry and dynamics, one could apply local per-
turbations to trivialize the boundary (without breaking any
protecting symmetries). In turn, the ability to trivialize the
edge would provide a continuous, symmetry-preserving path
to deforming the putative SPT to a trivial phase. For example,
in the absence of an edge anomaly obstruction, one could
break the system into disconnected pieces, while trivializing
the interface between different sections, all the while main-
taining a (mobility or energy) gap.

This naturally begs the question: What is anomalous about
the edge dynamics of the putative EDSPT model above? Or,
equivalently, is it possible to undo the edge dynamics with
a local drive acting purely at the boundary? Specifically, we
consider applying a counter drive (CD),

HCD(t ) = −λCD

2

∑
j∈edge

(
fx(t )σ x

j + fz(t )σ z
j

)
, (9)

to the boundary spins (A, 1 and B, L). For λCD = 1 (perfect
π -pulses), and in the artificial limit wherein the pulse width
vanishes (δ-function pulses), this CD would exactly counter-
act the putative topological edge dynamics.

However, this δ-pulse limit is incompatible with MBL
(or its metastable, prethermal cousin), which requires smooth
pulses [52] with limited low- and high-frequency content. For
any finite pulse width, the CD results in quasiperiodically
recurring overlaps between the strong and noncommuting x
and z CD pulses. Below, we give numerical evidence that these
unavoidable pulse overlaps result in a local transition from
quasiperiodic to chaotic (thermalizing) dynamics for the CD
edge, as the CD strength, λCD, is increased beyond a critical
value, λ∗

CD ∼ 0.25. Further, we find that the chaotic edges
thermalize the entire bulk (somewhat analogously to 2d static
or Floquet MBL systems with a thermal boundary, except in
one dimension lower due to the peculiarity of quasiperiodic
systems). This suggests that the edge dynamics of our EDSPT
model exhibits a form of dynamical anomaly that is special
to quasiperiodic systems and that it is not possible to realize
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FIG. 3. Boundary thermalization from counterdriving. (a) Destruction of edge correlations for sufficiently strong counterdrives. (b),
(c) Long time, quasiperiodic evolutions of Czz(r, t ) [see Eq. (11)] versus time (b) and position (c) show saturating decay for λCD = 0.0 (upper
panels), but thermalize from the boundary in for λCD = 1.0 (lower panels). Results are averaged over 200 disorder and state realizations for
(a) and 1000 realizations for (b), (c). These simulations use Gaussian pulses with standard deviation of 5% of period, pulse area of 0.95π ,
K = 0.3, and J = h = 0.05.

a pair of emergent anticommuting dynamical symmetries by
locally driving a 0d system.

Figure 3(a) shows the evolution of the edge correlations
as a function of CD strength. As a baseline, we note that,
after a short transient, the bulk correlation functions exhibit
disorder-dependent oscillations, whose average value decays
to zero with the number of disorder configurations, Ndis,
as ∼1/

√
Ndis. Without the CD, the disorder-averaged edge

correlation plateaus at a nonzero, Ndis-independent value, indi-
cating the presence of a topological edge mode (with nonzero
overlap with the edge spin) that is dynamically decoupled
from the local disorder. Turning on a weak CD (λCD � 25%)
gradually reduces the value at the plateau without destroying
its presence.

For stronger drives, up to λ∗
CD ≡ 0.25 � λCD � 1, the

topological protection of the edge mode is destroyed and the
CD leads to vanishing disorder-averaged edge correlations.
These behaviors are separated by a characteristic CD strength
λ∗

CD ≈ 0.25. However, the destruction of correlations is not
confined to the system boundary. To explore the bulk behavior,
we examine correlation functions,

Czz(r, t ) = |〈n|�z
r (t )�z

r (0)|n〉| , (10)

of the LIOMs of HCS, averaged over a number of disorder
realizations, starting from a different random σ z-product state
for each realization (note that absolute values are taken to
prevent cancellation of oscillatory terms with disorder aver-
aging), where

�z
r =

⎧⎪⎪⎨⎪⎪⎩
σ z

A,1, r = 1

σ z
B,r/2σ

z
A,r/2+1, r even, 1 < r < 2L

σ z
B,L, r = 2L,

(11)

which have nonnegligible overlap with the emergent LIOMs
of the quasiperiodic system in the absence of the CD. Here,
r indexes position along the spin chain (without regard to
the A/B sublattice structure) and �z

r=1,L correspond to topo-
logical edge-spin operators for HCS, whereas the remainder

correspond to bulk LIOMs. We observe that for λCD > λ∗
CD,

both the bulk and edge correlators Czz(r, t ) eventually decay
to zero (instead of saturating as for λCD < λ∗

CD), suggesting
that both the bulk and boundary are thermalizing. Moreover,
by examining the spatial dependence of Czz(r, t ) for different
times [Figs. 3(b) and 3(c)], one clearly observes that bulk
spins thermalize later than edge spins, with the thermalization
time increasing with distance into the bulk. This suggests that
λ∗

CD marks a boundary phase transition between quasiperiodic
and chaotic edge dynamics, with the chaotic edge spin serv-
ing as a continuous-spectrum noise source that thermalizes
the bulk.

VIII. BOUNDARY THERMALIZATION IN FLOQUET
APPROXIMANTS

Due to the absence of energy conservation or well-defined
eigenstates in quasiperiodically driven systems, ordinary met-
rics of thermalization cannot be utilized. To assess the
boundary CD thermalization scenario, we instead introduce
a sequence of Floquet proxies for the quasiperiodic drive,
wherein we replace Tz = ϕ with a rational approximant of
ϕ ≈ Fn+1/Fn, with Tx = 1, resulting in overall drive period
T = Fn+1. During each period, the x pulse is applied Fn+1
times and the z pulse Fn times. In the limit n → ∞, Tz → ϕ,
and the system becomes truly quasiperiodic (T → ∞). By ex-
amining a sequence of finite-n approximants, we numerically
probe the level statistics of the Floquet evolution operator and
half-chain entanglement entropy of its eigenstates to diag-
nose thermalization versus MBL, and examine both infinite
time correlations and stroboscopic evolution of correlation
functions.

Before discussing the numerical results, it is worth pausing
to consider the relation between the Floquet approximants
and truly quasiperiodic drives. The nth Floquet approximant
drive approximately agrees with the quasiperiodic evolution
up to time t ∼ Fn. However, the eigenstates of the Floquet
approximant reflect infinite-time behavior for times well be-
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FIG. 4. Boundary thermalization in Floquet approximants.
Spectral signatures of localization and thermalization for the n =
10th Floquet approximant to the quasiperiodic drive. (a) Finite-
size crossing in the normalized half-system entanglement at critical
edge counterdrive (CD) strength, λ∗

CD ≈ 0.25, which separates the
localized and thermal regimes. (b) The corresponding behavior in
level-statistics. (c) The n dependence of these quantities saturates for
large n, and is well saturated by n = 10 near λ∗

CD ≈ 0.25. Each result
reflects an average over the full spectrum of 240 disorder realizations.
These simulations use Gaussian pulses with standard deviation of 5%
of period, pulse area of 0.95π , K = 0.3, and J = h = 0.05.

yond t ∼ Fn, where the drives no longer (even approximately)
agree. In particular, the bipartite entanglement entropy of the
Floquet eigenstates of the approximant drives should not be
confused with the dynamical entanglement entropy produced
in a quench from a generic initial state (i.e., not an eigenstate
of the evolution) to final time tn. Despite this, we expect that
the localization properties of the Floquet eigenstates predict
those of the quasiperiodic drive. Specifically, if the quasiperi-
odic system is MBL and has an extensive set of LIOMs,
then up to time t ∼ Fn, one can approximately construct these
LIOMs by time averaging local operators [53], with error
∼1/poly(t ). Hence, if each of the Floquet approximants is
MBL, then the LIOMs will converge as n → ∞ to coincide
with the LIOMs of the fully quasiperiodic drive. In contrast,
if the approximants thermalize, this implies that the quasiperi-
odic drive also thermalizes. However, we caution that while
the localization properties of the approximants extend to the
quasiperiodic drive, the stroboscopic dynamics of the Floquet
approximants beyond the first period are not directly related
to the quasiperiodic time evolution.

Figure 4 shows the r ratio [54] for the Floquet quasienergy
spectrum and the (normalized) half-system eigenstate entan-
glement entropy, s = S/L (taken log2, with L half the total
number of spins) for Floquet approximants. In the absence of
a CD, we observe MBL-like behavior (r ratio close to Poisson
and low entanglement) for all n and L, providing evidence
that our model is indeed in the MBL regime. Observing that
the n dependence of these quantities quickly saturates, we
henceforth focus on the n = 10 approximant and turn to the
physics of the CD. Though the system sizes are limited (due

to the long time integration needed to construct each Floquet
approximant), we find evidence that the half-system entangle-
ment, s, exhibits a finite-size crossing from MBL (area law)
to thermal (volume law) scaling by λ∗

CD ≈ 0.25, signaling a
potential thermalizing phase transition at this CD strength,
consistent with the correlation function observations for the
full quasiperiodic drive. Similarly, the r ratios are Poisson
(MBL) below λ∗

CD and Gaussian (chaotic) for stronger drives
λCD > λ∗

CD, but do not show a sign of a finite-size crossing.
We attribute this unconventional scaling behavior to the un-
usual boundary thermalization driving this transition, in which
thermalization is induced entirely at the edge: When the edge
spin transitions from quasiperiodic to chaotic, it becomes a
continuous-spectrum noise source that melts the bulk MBL.
Consequently, we do not expect to see conventional scaling
of r with L, since adding additional bulk MBL degrees of
freedom does not effect the boundary criticality (note that the
scaling behavior in s is explained by the ∼1/L normalization,
which trivially causes a finite-size scaling of s ∼ 1/L in the
area-law regime).

We note that, while our numerical observations are con-
sistent with the scenario in which 0d criticality of the edge
spin thermalizes the bulk, the achievable system sizes are
somewhat limited and we are unable to rule out the possibility
that this trend is ultimately a finite-size artifact. For example,
it could be that the CD makes a moderate sized (e.g., five to
six spins) thermal puddle near the end of the chain, which
does not ultimately spread and drive a bulk phase transition.
To this end, analytic insight into the ultimate fate and nature
of the boundary thermalization transition are highly desirable
targets for future inquiry.

Here we have analyzed the eigenstate entanglement en-
tropy of a set of Floquet drives that form a sequence of rational
approximants to the true quasiperiodic drive. Alternatively, in
principle, one could explore the entanglement dynamics S(t )
of the quasiperiodic drive directly. While we do not study S(t )
in this paper, we can make predictions based on the definition
of quasiperiodic MBL in Eq. (1). For bulk entanglement cuts
in an infinite chain, we expect entanglement dynamics to fol-
low standard behavior for MBL (i.e., S(t ) ∼ log t , saturating
to a subthermal volume-law steady state, i.e., with < log 2
entanglement per spin for a driven system) versus thermal-
izing systems [where S(t ) ∼ poly(t ), saturating to a thermal
volume-law steady state with log 2 entanglement per spin].

In the boundary thermalization scenario, the bulk spin at
distance r from the edge would not thermalize without the
chaotic boundary. Since this spin interacts with the bound-
ary only by tunneling through the MBL bulk, the time, t (r)
for said spin to thermalize is given by log t (r) ∼ r. Hence
we expect that the boundary thermalization scenario ex-
hibits entanglement dynamics S(t ) ∼ log t saturating to the
infinite temperature (log 2 entanglement entropy per spin)
volume-law value at long times (log t � L). In this sense, the
boundary thermalization dynamics displays characteristics of
both MBL (logarithmically slow entanglement growth) and
thermal (infinite-temperature steady state) systems. However,
we label this outcome as thermalizing since the ultimate
long-time steady state is thermal (infinite temperature) rather
than MBL.
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IX. DISCUSSION

To summarize, we have constructed a two-tone quasiperi-
odic drive protocol that produces a pair of long-lived,
dynamically protected edge modes, which are (at least)
exponentially insensitive to generic perturbations, with no
symmetry constraints. Whether this results in a long-lived but
ultimately metastable preheating phenomenon or a genuine,
infinitely long-lived phase is a challenging but interesting
question for future theoretical work. However, in practice, we
note that this issue is likely to be largely academic, given
that preheating times often vastly exceed finite experimental
lifetimes over a wide range of parameters. Moreover, our
numerical evidence is consistent with the scenario that this is a
genuine MBL phase, with nontrivial topological edge dynam-
ics that cannot be removed without a bulk phase transition.

Apart from its dynamically protected edge-state phe-
nomenology, perhaps the most intriguing implication of this
example is that it is missing from previously conjectured
topological classification schemes. Naïvely, one could also
attempt to apply our construction to produce Floquet EDSPTs.
Specifically, starting from an exactly solvable model realizing
an SPT with symmetry group G × Zn1

× . . .ZnN
(this plays

the role of HCS above), one could attempt to replace the
microscopic symmetry, G, with a corresponding emergent
dynamical symmetry by applying an N-tone quasiperiodic
pulse train, à la H0(t ), but replacing gx,z with the generators
of the Zn1 × . . .ZnN symmetry factors. The minimal example
would be a 2d EDSPT version of the Levin-Gu (LG) SPT
phase, whose single Ising (Z2) symmetry is traded for an
emergent dynamical symmetry enforced by the periodic drive.
However, this model can actually be trivialized by applying
an appropriate counter drive to undo the edge motion, without
causing a thermalization transition (unlike the quasiperiodic
example we discuss; see Appendix B for further details).

These results suggest that EDSPTs are special to
quasiperiodic drives, and show that there exist dynamical
phases in quasiperiodically driven systems that are not simply
extensions of those possible in Floquet systems.
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APPENDIX A: QUASIPERIODIC DRIVING AND
HIGH-FREQUENCY EXPANSION

Here we discuss details of the quasiperiodic drive and the
recovery of Eq. (1):

U (t ) = T {e−i
∫ t

0 H (s)ds} = W † Q(t )U0(t ) e−iDt W . (A1)

1. Cut and project method

It is often useful to view a quasiperiodic function as a
projection of a slice through a higher-dimensional periodic
function: A two-tone quasiperiodic drive can be Fourier ex-
panded as H (t,φ) = ∑

n∈Z2 e−in·(ωt+φ) Hn, where ω1/ω2 /∈
Q; consequently, we can view H (t ) by evaluating a periodic
function of a two-dimensional vector, θ, projected onto the
trajectory θ(t,φ) = (ωt + φ), i.e.,

H (t,φ) ≡ H[θ(t,φ)] , (A2)

where, in a slight abuse of notation, we use H to refer to both
of the equivalent t and θ parametrizations. The drive, H (θ), is
periodic under two independent time translation symmetries:
θ → θ + 2π êμ, where êμ is a unit vector in the xz plane (for
N-tone drives, ω, n, θ generalize to N-component vectors).

In general, the resulting time evolution, U (t ), is not
quasiperiodic in t . However, in many instances, a multimode
extension of Floquet’s theorem applies [55] and allows U (t )
to be reduced to a quasiperiodic modulation accompanied by
a static Hamiltonian evolution, and several techniques [31,56]
have been introduced to approximately construct the effective
Hamiltonian in the weak driving or high-frequency limit.

Such perturbative methods do not directly apply to our
model, due to the requirement of strong pulses with weight
near π . A recent work [31] shows that this obstacle can be
circumvented for drives that are sufficiently close to a solvable
limit [e.g., H0(t ) as defined in the main text] by first transform-
ing into the interaction picture of H0(t ) to exactly account
for the strong part of the dynamics. Then an appropriate
high-frequency expansion can be performed in this rotating
frame. For these cases, U (t ) can be broken down into the form
shown in the main text, consisting of a time-independent MBL
evolution, D (which simply rotates localized bulk degrees of
freedom by an overall phase), and a quasiperiodic micromo-
tion generated by Q and U0. An important caveat is that, while
Q has the same quasiperiodicity as H , U0(t ) has a doubled
periodicity,

Q(θ + 2π êμ) = Q(θ), (A3)

U0(θ + 2π êμ) = U0(θ) gμ, (A4)

where a single time translation about the μ = x, z axis has the
effect of transforming the system by gμ, which is a symmetry
of the effective quasi-Floquet Hamiltonian, D. In Ref. [31],
Eq. (A4) is referred to as twisted-time translation symmetry.

In this sense, the emergent dynamical symmetry can be
thought of as arising from (the projection of) a multitime
translation symmetry, with an independent time direction
(êx,z) for each incommensurate tone of the drive (ωx,z).

2. High-frequency expansion

Here we briefly review the interaction picture high-
frequency expansion approach developed in Ref. [31] to com-
pute W, Q, D in Eq. (A1) approximately (i.e., to some speci-
fied order). We illustrate this approach for the model described
in the main text. The first step is to split the full quasiperiodic
Hamiltonian H (t ) = H0(t ) + H ′(t ) into the ideal (unper-
turbed) drive, H0(t ), and the remaining terms H ′

S = HCS +
V (t ), and transform the Schrödinger picture Hamiltonian, H ′

S ,
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into the interaction picture of H0:

H ′
int (t ) = U †

0 (t ) H ′
S(t )U0(t ). (A5)

This interaction frame Hamiltonian inherits the enlarged
quasiperiodicity of U0 [see Eq. (A4)]—i.e., in the time-torus
parametrization, we have H ′

int (θ + 4π êμ) = H ′
int .

We can write the full evolution operator, U (t ) as U (t ) =
U0(t )Uint (t ), where Uint satisfies i ∂t Uint (t ) = H ′

int (t )Uint (t ),
and where all terms can be regarded as functions of θ(t ).
The goal will be to identify a quasiperiodic frame transfor-
mation, P(θ(t )) = e−i�(θ), that reduces Uint to an effective,
time-independent Hamiltonian evolution, e−iDt , i.e.,

Uint[θ(t )] ≡ P[θ(t )]e−iDt P†[θ(0)]︸ ︷︷ ︸
≡W

, (A6)

where we define the t = 0 frame rotation operator, W , for
convenience.

The operator P is not 2π periodic in θx,z; rather, 2π shifts
in the components of θ conjugate P by the corresponding
emergent symmetry: P(θ + 2π êμ) = gμP(θ) gμ [31] (i.e., P
is covariant under the time-translation symmetries).

We find it convenient to depart from the conventions of
Ref. [31] instead of regrouping terms to define a quasiperiodic
micromotion operator, as in Eq. (A1),

Q ≡ W U0 P U †
0 . (A7)

Note that the noninvariance of P under 2π shifts of θ is
precisely compensated by the inverse behavior in U0, so the
micromotion, Q, is 2π -periodic in both components of θ (i.e.,
Q has the original quasiperiodicity of H (t ), rather than the
enlarged, twisted quasiperiodicity of U0).

3. Effective quasi-Floquet Hamiltonian

For drives close to H0—i.e., those for which TxH ′
int is

small—may be treated perturbatively in a high-frequency
(or equivalently weak-coupling) approximation. Denoting the
size of the local Hamiltonian terms scaled by Tx as v, Ref. [31]
derives expressions for D and P [reproduced in Eq. (A6)]
order by order in v in terms of nested commutators of Fourier
components,

H ′
n =

∫∫ 4π

0

d2θ

(4π )2
e−i n·θ/2 H ′

int (θ), (A8)

of the interaction-frame perturbation terms. The enlarged
range of integration accounts for the doubled time translation
symmetry (i.e., 4πeμ and not 2πeμ). We use this form for
notational convenience: One could alternatively implement a
change of variables on θ or allow half integer n to recover a
more typical expression.

These Fourier components define the quantities

D =
∞∑

q=1

D(q), P = e−i� = exp

[
−i

∞∑
q=1

�(q)

]
, (A9)

where the qth term is of size O(vq+1), and solving order
by order in v in Eq. (A6) recovers the expressions for the
components at each order [31], as we show below.

a. Effective Hamiltonian

The contributions to the effective time-independent
Hamiltonian, D(q), are obtained by considering

D = P†(t ) H ′
int (t ) P(t ) − i P†(t ) ∂t P(t ), (A10)

order by order in v, and demanding that D be independent
of θ(t ).

The leading two terms closely resemble those of the
Magnus expansion for Floquet systems,

D(1) = H ′
n=0, (A11)

D(2) =
∑

n∈Z2 �=0

1

2ω · n
[H ′

n, H ′
−n] , (A12)

and the qth correction, D(q), comprises q nested commutators
of H ′

n j
, subject to the condition

∑q
j=1 n j = 0. The fact that the

Fourier indices sum to 0 is necessary and sufficient for D to
be static, as we show in Appendix A 4.

The leading term, D(1), is simply the average value
of H ′

int. For the model described in the main text, D(1)

∼ HCS + ∑L
i=1

∑
ν=x,z Jν

i σ ν
A,iσ

ν
B,i, which, for J < K , is in an

AKLT/cluster state phase. Notice that the single-spin field
terms ∼h · σ drop out of D(1), as they are twirled over the
emergent symmetry group upon computing the average over
θ. General expressions for higher-order terms quickly become
cumbersome and are not particularly illuminating, other than
to note that they all necessarily commute with gx,z (as shown
in Appendix A 4), and come with small coefficients that are
appropriately suppressed by powers of K, h, . . . , and die off
rapidly with |n| > 1.

b. Micromotion

The leading order contributions to the generator of micro-
motion are

�(1)(θ) =
∑

n∈Z2 �=0

ein·θ/2

iω · n
H ′

n, (A13)

�(2)(θ) =
∑

n∈Z2 �=0
m �=n

ein·θ/2

iω · n

1 + δm,0

2 ω · (n − m)
[H ′

n−m, H ′
m]. (A14)

Using Eq. (A7), this implies

Q(θ) = ei� = ei
∑

n �(n)
,

�(1) = U0�
(1)U †

0 − �(1)(0),

�(2) = U0�
(2)U †

0 − �(2)(0) − i

2

[
U0�

(1)U †
0 , �(1)(0)

]
,

(A15)

where �(q) is evaluated at θ(t ) unless otherwise stated.

c. Terms for the AKLT model

Most of the terms in H ′
S = HCS + V (t ) [where the full

Hamiltonian is given by H (t ) = H0(t ) + H ′(t )] are modified
by shifting to the interaction picture of H0(t ). However, two
of the terms in V (t ) commute with all terms in H0 and their
Fourier components can be found analytically.
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For the random AB terms,
∑

j

∑
ν=x,z Jν

j σ
ν
A, jσ

ν
B, j (where

we take the couplings to be time independent for simplicity),
we have from Eq. (A8),

H ′
n = δn , 0

L∑
j=1

∑
ν=x,z

Jν
j σ

ν
A, jσ

ν
B, j , (A16)

i.e., there is no change to this term and only the n = 0 term is
nonzero.

The corrections to the H0(t ) pulses (i.e., deviation from a π

pulse) can also be computed exactly. Again, there is no change
going to the interaction picture, and the correction to the pulse
ν = x, z has the form

H ′
n = λ

4π

L∑
j=1

∑
ν=x,z

ων e−w2n2
ν/8σ ν

A, jσ
ν
B, j . (A17)

if nν is even and nν = 0, and is zero otherwise; these terms
fall off as e−κn2

.
The other terms in H ′

S (i.e., HCS and the random fields)
are modified upon going to the interaction picture, where
they show nontrivial time dependence. Because of this, their
Fourier coefficients can only be evaluated numerically, though
they still appear to fall off at least exponentially in n (Fourier
components for nν � 20 are zero to numerical precision, and
decay faster than 2−n for the parameters used for numerical
simulation).

The random x fields H ′
S = hx

α, jσ
x
α, j (where α = A, B labels

the sublattice), upon going to the interaction picture of H0(t )
become

H ′
int = hx

α, j

(
cos [Fz (t )] σ x

α, j − sin [Fz (t )] σ
y
α, jσ

z
α, j

)
, (A18)

where A = B and vice versa, and

Fν (t ) =
∫ t

0
ds fν (s) , (A19)

with fν (s) the Gaussian pulse defined in the main text.
Similarly, for the random z fields, H ′

S = hz
α, jσ

z
α, j , going to

the interaction picture gives

H ′
int = hz

α, j

(
cos [Fx(t )] σ z

α, j + sin [Fx(t )] σ
y
α, jσ

x
α, j

)
, (A20)

and random y fields, H ′
S = hy

α, jσ
y
α, j , which fail to commute

with both pulses in H0, are more complicated:

H ′
int = hy

α, j

(
cx

t cz
t σ

y
α, j + sx

t sz
t σ

y
α, j

+ cx
t sz

t σ
x
α, jσ

z
α, j − sx

t cz
t σ

z
α, jσ

x
α, j

)
, (A21)

where cν
t is a shorthand for cos[Fν (t )] (and sν

t for sin[Fν (t )]).
The x field terms are zero unless nz is odd and nx = 0; the

z field terms are zero unless nx is odd and nz = 0; the y field
terms are zero unless nx,z are both odd. We demonstrate this
property analytically in Appendix A 4.

The interaction picture form of the stabilizer terms, HCS,
can be recovered from Eqs. (A18) and (A20). Each term
Kν

j σ
ν
B, jσ

ν
A, j+1 contains σ ν terms in two neighboring unit cells;

going to the interaction picture results in four terms: for
the Schrödinger term σ x

B, jσ
x
A, j+1, the dominant term in the

interaction picture is of the same form, σ x
B, jσ

x
A, j+1; other

(smaller) corrections include σ x
B, jσ

y
A, j+1σ

z
B, j+1, σ z

A, jσ
y
B, jσ

x
A, j+1,

and σ z
A, jσ

y
B, jσ

y
A, j+1σ

z
B, j+1. Similar terms emerge for the Kz

j
terms. Because the stabilizer terms commute with gx,z, they
are nonzero only for even Fourier indices.

When the pulse width (w) is much smaller than the pe-
riod (e.g., w = 0.05T as used for numerical simulation), the
Fourier transforms of the cosine terms above are roughly 0.9
to 0.95 (for the smallest Fourier coefficients, n = 0,), and
the sine terms are roughly 0.05 to 0.1. Subsequent Fourier
coefficients (n � 0) will be exponentially smaller. Regard-
ing Eqs. (A18) through (A21), it is apparent that narrow
pulses minimize the new terms (i.e., those different from
the Schrödinger picture form of the operators), and most
of the physics can be understood from the Schrödinger form
of the operator and the suppression in corrections to D. This
holds for both the field and stabilizer (cluster) terms.

d. AKLT effective Hamiltonian

We can now examine the contribution of the terms in H ′
int

to D, starting with the lowest order terms, D(1).
This term consists of the n = 0 components of H ′

n. First,
we have the intracell AB terms,

∑
j

∑
ν=x,z Jν

j σ
ν
A, jσ

ν
B, j , exactly

as they appear in the Schrödinger picture. Additionally, we
have a contribution from the pulse correction,

λ/2
L∑

j=1

∑
ν=x,z

T −1
ν σ ν

A, jσ
ν
B, j , (A22)

where λ captures the deviation from a π pulse. The field
terms are zero for nx = nz = 0. The final contribution to D(1)

comes from the stabilizer terms, and for w = 0.05T (the value
used for numerical simulations), the primary contribution is
roughly 0.9 × ∑

k

∑
ν Kν

j σ
ν
B, jσ

ν
A, j+1 (i.e., 90% of the bare

Schrödinger term), plus corrections spanning both j and j + 1
with prefactors of roughly 0.1Kν

j .
For K � J , w � 1, and small deviation, λ, from a π pulse,

this D(1) will correspond to a Hamiltonian in the AKLT phase.
Increasing the strength of the J couplings or the deviation, λ

from a π pulse, or decreasing the strength of the cluster terms,
K , can result in D(1) realizing the trivial phase.

The next order correction, D(2), consists of sums over com-
mutators of H ′

n and H ′
−n, for n �= 0. The intracell terms (with

coefficients Jν j) do not contribute, as they only have n = 0
coefficients. However, the field terms, hμ

α, jσ
μ
α, j , do contribute

to D(2).
However, the contribution of the field terms is limited.

First, the symmetry restrictions mean that the only terms
entering the summand in Eq. (A12) are of the form hμ

α, j hμ

α′, j
(i.e., same type of field and acting on the same cell). The
x field terms, e.g., generate terms of the form σ z

A, jσ
z
B, j and

σ
y
A, jσ

y
B, j , which have an effect similar to the Jν

j terms. How-
ever, summing over Fourier coefficients results in an overall
suppression of O(10−2), in addition to the small perturbative
factor of O(h2). Hence, for small fields, h, these terms are not
particularly harmful on their own.

The remaining terms have only even Fourier components,
and are somewhat restricted in that most terms have one of
nx,z zero (with the other even). The pulse corrections do not
produce new terms on their own. The stabilizer terms, Kν

j
produce new intercell terms, which may act like the original
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K terms or as more complicated hopping or interaction terms
(in terms of the cluster LIOMs). Additionally, the stabilizers
and pulse correction will produce additional such terms.

However, due to the number of terms and inability to
compute their coefficients analytically, we resorted to con-
structing D to second order numerically. For the parameters
used for numerical simulation, we find exact commutation of
D with gx,z (to numerical precision), Poisson statistics, and
edge modes. This is further supported by time evolution and
numerical diagonalization of Floquet rational approximants of
the quasiperiodic drive.

e. Convergence

As in the Floquet-Magnus expansion, the qth order terms
in D and � are each suppressed by ∼vq, but grow in number
combinatorially as ∼q!. Thus, the expansion is asymptotic—
rather than truly convergent—and should be truncated to
some optimal order, with weight of truncated terms ∼te−1/vγ

(with γ � 2/3, see below), indicating that the approximations
become inaccurate for t � e1/vγ

; beyond this time, the expan-
sion is not necessarily predictive [31]. In strongly disordered
Floquet systems, there is numerical evidence that stable MBL
can persist beyond the timescale set by the asymptotic high-
frequency expansion, at least in 1d (and possibly also higher
d , either ignoring rare thermal region effects, or in the case
of spatially quasiperiodic disorder). However, analytical evi-
dence of such stability remains elusive.

In addition to these concerns, unlike the Floquet expan-
sions, in the quasiperiodic setting one also must consider
small denominators, ω · n ∼ 0, which occur for rational ap-
proximates of the ratio of the base periods. For our model
with ωx/ωz = ϕ, this occurs for n given by successive Fi-
bonacci numbers, i.e., nk = (Fk,−Fk−1), such that ω · nk =
Fk − ϕ Fk−1 ∝ ϕ−k . Generally, accurate convergence of the
expansion requires that the numerator of these terms decays
sufficiently rapidly with |n|.

For the Gaussian-pulse model presented above, all Fourier
amplitudes decay ∼e−n2

k ∼ e−ϕ2k
, which tend to zero much

more quickly with k than nk · ω ∼ ϕ−k . Additionally, terms
that commute with the x [z] pulse necessarily have nx = 0
[nz = 0]; thus, only perturbations that fail to commute with
both pulses pose a risk in the sense of small denominators.
Following the logic of Ref. [31] for Gaussian pulses, and
assuming that the system can rearrange itself to absorb the
energy from the drive (which is not the case if the system is
MBL), we find a heating timescale t ∼ e(K/v)γ with γ � 2/3.
Note that the actual heating timescale is potentially much
larger in the presence of strong disorder, and possibly infinite
if the system is truly many-body localized.

The most natural perturbation of this type corresponds to
random σ

y
α, j terms, which have nx and nz both odd. How-

ever, numerical evaluation of the Fourier coefficients suggests
that they fall off with nx,z > 1 as e−n2

or faster; addition-
ally, the varying sign with nx,z leads to further suppression
a upon summation. Note that σ

y
A, jσ

y
B, j terms commute with

both pulses, and while σ
y
B, jσ

y
A, j+1 terms do not commute with

the generators of the pulses, they have strictly even nx and nz
components—because successive Fibonacci numbers cannot
both be even, these terms will not have vanishing denomina-
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FIG. 5. Entanglement growth from noncommuting pulses.

TEBD simulations of the dynamics with finite-width, noncommuting
x and z pulses. We use a static Hamiltonian consisting of ran-
dom fields only, with hx, hy, hz ∈ [−W,W ] with W = 0.5. The drive
pulses are triangular, perfect π pulses consisting of nearest-neighbor
ZZ and XX interactions, with width T/10 (where T the period of
each pulse). The TEBD parameters are dt = 0.01, ε = 10−8, and
the data were averaged over three disorder realizations. Top: Spin
correlation functions. Middle: Half-chain entanglement entropy.
Bottom: Pulse sequence (x pulses in blue, z pulses in orange, and
their product in black, indicating when the x and z pulses overlap).
The entanglement entropy increases rapidly whenever the noncom-
muting pulses overlap, signaling that they are incompatible with
MBL and lead to thermalization.

tors. While we do not consider them numerically, terms such
as σ x

A, jσ
z
B, j have the same properties as σ

y
α, j perturbations, in

terms of decay of Fourier components and overall magnitude
(in fact, these terms transform into one another in part upon
changing to the interaction frame of H0). Thus, for this model,
for sufficiently narrow pulses (w � T/10), we do not expect
to see divergences due to small ω · n denominators at finite
order in the expansion.

f. Commuting structure of pulses

We note that, unlike the single-tone Floquet case, smooth
time dependence for multitone pulses necessarily requires
different pulses to overlap in time. For this reason, it is es-
sential that we chose pulse terms in H0 that all commute
with each other. For example, one could have regrouped
the terms in the x,z pulses as single-spin terms: H ′

0 =∑
α=A,B

∑L
i=1 fx,z(t )σ x,z(t ). For a full pulse train (either x

or z, but not both), this results in the same π pulse of gx,z.
However, the quasiperiodic sequence of finite-width pulses
results in overlap of strong, noncommuting σ x and σ z terms,
which we observe (Fig. 5) tend to produce rapid jumps in the
entanglement entropy, signaling that these disrupt MBL.
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4. Emergent symmetry properties

Intuitively, each term in D consists of terms that are
averaged over the θ torus to have net frequency 0. These
terms are twirled over the twisted time translations, {gμ}. One
can confirm explicitly that D commutes with the emergent
symmetries, gx,z Eq. (A7) through analysis of the Fourier
transformed quantities, H ′

n. Since the pulses commute, we
may consider a corresponding integral over one of the θν

directions, i.e.,∫ 4π

0

dθν

4π
e−inν θν/2 U †

ν (θν ) H ′
S(θν, θν )Uν (θν ), (A23)

where an integral of the above form over both θx,z defines
H ′

nx,nz
.

Defining φν = θν − 2π , we note that H ′
S has the same pe-

riodicity as H0, i.e., H ′
S(θν + 2π ) = H ′

S(θν ), and that Uν (θν +
2π ) = Uν (θν ) gν . Hence, Eq. (A23) can be rewritten as∫ 2π

−2π

dφν

4π
eiπnν e−inνφν/2 gν U †

ν (φν ) H ′
S(φν, θν )Uν (φν ) gν,

(A24)

and extracting the factor of (−1)nν and the two factors of
gν from Eq. (A24) leads to an integrand that is identical
to Eq. (A23). Because both integrands are periodic on the
interval of integration, they are equal to one another, i.e.
H ′

nν
(θν ) = eiπnν gν H ′

nν
(θν ) gν .

Integrating both Eqs. (A23) and (A24) over θν [following
Eq. (A23)], we recover

H ′
n = eiπnν gν H ′

n gν, (A25)

for either ν = x, z. Fourier terms with nν even then satisfy
H ′

n = gν H ′
n gν or, equivalently,

[H ′
n, gν] = 0 . (A26)

Importantly, since the Fourier components of the H ′
n factors in

Dq must sum to 0, if terms with odd nν appear, there must be
an even number of them, ensuring that

[D, gν] = 0 , ν = x, z . (A27)

For example, D(2) contains the sum over [H ′
nν

, H ′
−nν

], with
nν odd; we can then use Eq. (A25) to write [H ′

nν
, H ′

−nν
] as

[(−1)nν gν H ′
nν

gν, (−1)−nν gν H ′
−nν

gν]. The factors of (−1)nν

for any D(q) can be written as (−1)
∑q

j=1 nν, j ≡ 1 as a defining
property of D(q). Since g2

ν = 1, all internal gν terms cancel,
and [[H ′

n1,ν
, . . . ], H ′

nq,ν
] = gν [[H ′

n1,ν
, . . . ], H ′

nq,ν
] gν , and thus

[D(q), gν] = 0.
A similar argument can be used to show that P obeys

twisted time translation symmetries. In particular, we note
that P = e−i� , where each term in �(q)(θ) can be written in
the form

�(q)(θ) ∼
∑

n∈Z �=0

ein·θ/2 . . . , (A28)

where the . . . consist of q denominators involving ω

and, importantly, nested commutators involving q copies
of H ′

m j
, i.e., [[

H ′
m1

, . . .
]
, H ′

mq

]
,

with n = ∑q
j=1 m j . In this case, we are interested in �(q)(θ +

2πeν ), which compared to �(q)(θ) imbues the summand in
Eq. (A28) with a factor of (−1)nν = ∏q

j=1(−1)mj,ν .
Just as for D(q), we use the fact that

[[(−1)m1,ν H ′
m1,ν

, . . . ], (−1)mq,ν H ′
mq,ν

] is equivalent to

gν [[H ′
m1,ν

, . . . ], H ′
mq,ν

] gν by Eq. (A25), which means that

�(q)(θ + 2πeν ) = gν �(q)(θ) gν , (A29)

since P = exp(−i
∑

q=1 �(q) ), we have

P(θ + 2πeν ) = gν P(θ) gν , (A30)

at any given order (i.e., P obeys twisted time translation sym-
metries).

However, because U0(θ + 2πeν ) = U0(θ)gν , we find that

Q(θ + 2πeν ) = W U0(θ)g2
νP(θ)g2

νU †
0 (θ) = Q(θ), (A31)

i.e., Q has the time translation properties of the original
Hamiltonian.

APPENDIX B: ABSENCE OF FLOQUET EDSPTs

Here we provide a simple argument that any gapped phase
without an anomalous edge states is continuously (without
a gap closing) connected to a trivial insulator (product-state
ground state), and similarly any MBL system (including pe-
riodic and quasiperiodically driven ones) without anomalous
edge states is continuously connected to a trivial MBL system
(with all eigenstates being product states). We then show
how this mechanism can be used to trivialize an attempted
Floquet EDSPT construction, whose generalization to general
group-cohomology classes suggests that Floquet EDSPTs are
impossible and that EDSPTs are special to quasiperiodically
driven settings.

1. SPTs without anomalous edges can be trivialized

Consider a gapped (or MBL) system that lacks anoma-
lous edge states, i.e., for which it is possible to continuously
deform the edge to a trivial product state with edge-local
perturbations or counter drives. Denote the correlation length
or localization length of the initial system by ξ . Then, con-
sider selecting a regular array of finite size blocks of linear
dimension � ∼ ξ , where each block is separated from the
others by distance x � ξ , and continuously interpolating the
local Hamiltonian within those blocks to a trivial one. Since
the blocks have fixed finite size and are well separated, this
does not result in a phase transition (for sufficiently large
x). This results in a Swiss-cheese-like arrangement of holes,
filled with trivial unentangled matter. By assumption, we can
trivialize the interface of each hole since there is no anomaly
obstruction. By repeating this process, we can trivialize more
and more parts of the system, until eventually [in O(x/�)d

steps, where d is the spatial dimensionality], the entire system
is trivial. This process provides a continuous path to trivialize
the initial system, while maintaining a (mobility) gap through-
out, i.e., proves that the initial system was in a trivial phase. In
contrast, with anomalous edge states, this procedure produces
a finite density of gapless interface states that will percolate
through the sample at some step in the process, resulting in
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a phase transition. Note that, for intrinsic topological orders,
this procedure would result in a very high-genus surface with
extensive ground-state degeneracy, and would also fail even in
the absence of gapless interfaces.

This argument shows that an edge anomaly is essential for
the stability of a nontrivial invertible topological phase. As
an immediate corollary, to demonstrate that a phase is trivial,
it is sufficient to show that its edge can be deformed to a
trivial one by local interactions. In the next section, we will
use this strategy to analytically show that a Floquet analog of
our construction in the main text fails to produce a nontrivial
EDSPT.

2. Reminder: Levin-Gu phase

In a pioneering work [57], Levin and Gu constructed a
model of a 2d bosonic SPT protected by a single Z2 symmetry
(henceforth referred to as the LG model). The LG model
consists of spins-1/2 on a triangular lattice, with Hamiltonian

H = −
∑

i

λiσ̃
x
i ,

σ̃ x
i =

∏
<kl>∈�i

i
1
2 (1−σ z

k σ z
l )σ x

i , (B1)

where the product in the second line ranges over the links on
the hexagon of nearest neighbors to site i, and we have al-
lowed for spatially dependent coupling constants λi to permit
MBL-stabilization of excited state SPT order. The argument
of the phase-factor exponent counts the number of domain
walls (DWs) on the perimeter of the hexagonal plaquette sur-
rounding i, which is necessarily even, we can write the phase
as (−1)#DWs/2.

This model has an ordinary microscopic Z2 symmetry
generated by g = ∏

i σ
x
i . The effect of the phase factors in

the second line of Eq, (B1) can be understood by gauging this
symmetry, in which case Z2-symmetry fluxes become Abelian
anyons (semions), whose Abelian braiding statistics is mani-
fest in the fusion rules for the intersection of Z2-DWs with the
sample boundary in the original, ungauged SPT model.

For sites near an open boundary, Eq. (B1) is ambiguous
due to incomplete hexagonal plaquettes. Following Ref. [57],
one can define σ̃ x

i for boundary sites by adopting the conven-
tion that all sites j, k lying outside the system are taken to
have nondynamical ghost spins that are pointing up in the z
direction. This choice clearly hides the Z2 symmetry, and will
result in a nontrivial symmetry-transformation of boundary
degrees of freedom,

g σ̃ x
i∈bdy g = −σ z

i+1σ̃
x
i σ z

i−1, (B2)

where we have ordered the indices, i, i ± 1 along the bound-
ary (the choice of orientation is not important in for this Z2

example). Note also that σ z has the same commutation rela-
tions, {σ z

i , σ̃ x
i } = 0, with σ̃ x as with σ x. Connoisseurs of SPT

will recognize this transformation as implementing a duality
transformation between the trivial paramagnetic terms σ̃ x and
the 1d cluster state terms.

The same transformation can be implemented by a unitary
acting only in a finite strip near the edge:

g σ̃ x
i∈bdy g = V σ̃ x

i V †,

V =
∏

i∈bdy

ei π
4 σ z

i (1−σ z
i−1σ

z
i+1 ). (B3)

V acts only on unit cells that overlap the system boundary and
is trivial in the bulk. For future use, note that gV g = V †.

3. (Failed) prototype of a Floquet EDSPT

We attempt to promote the static LG model to a Floquet
model, where the symmetry is dynamically enforced by π

pulses of g. Consider a stroboscopic Floquet lattice model
defined on an open domain �, whose Floquet operator (time-
evolution for one period, T ) is

U (T ) = ge−i(H�+H∂� ), (B4)

where we have separated Eq. (B1) into bulk, H� = ∑
i∈Int(�)

λiσ̃
x
i , and boundary, H∂� = ∑

i∈∂� λiσ̃
x
i , where

Int(�) and ∂�, respectively, denote the interior and
boundary of �.

By inspection, one can see that this particular bound-
ary termination yields a nontrivial (thermal or spontaneous
dynamical symmetry-breaking) boundary by considering evo-
lution for two periods:

U (2T ) = e−i2H� e
∑

i∈∂� λi σ̃
x
i e

∑
i∈∂� λiσ

z
i−1σ̃

x
i σ z

i+1 . (B5)

The latter two terms are related by a generalized Kramers-
Wannier duality that exchanges paramagnet and SPT phases,
such that the resulting boundary theory is self-dual. As dis-
cussed in Ref. [58] and building on results from Refs. [59,60],
this self-duality produces a local symmetry-enforced degen-
eracy on the boundary, which prevents the boundary from
obtaining a trivial, symmetric MBL state.

So far, we have considered a fine-tuned version of this
model with a microscopic Z2 symmetry. Now consider break-
ing this symmetry by arbitrary but weak perturbations. The
high-frequency expansion outlined above implies that, up to
some prethermal timescale, the above-outlined physics sur-
vives, with an emergent dynamical symmetry enforced by the
g pulses. In the next section, we consider strong deformation
of the edge drive (beyond the purview of the high-frequency
expansion), which we can analytically show destroys the edge
model at a special solvable point.

4. Absence of edge anomaly in a Floquet Levin-Gu phase
without symmetry

To trivialize the edge, we consider applying an extra step
of stroboscopic evolution which undoes the duality transfor-
mation on the edge spins implemented by g:

U ′(T ) = V ge−i(H�+H∂� ). (B6)

Notice that only the edge has been modified, and the bulk
remains the same.

To analyze the spectrum of this model, it is again conve-
nient to consider the two-period evolution operator:

U ′(2T ) = e−i2H�V ge−iH∂�V ge−iH∂�

= e−i2H�V ge−iH∂� gV †e−iH∂�

= e−i2(H�+H∂� ), (B7)
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where in the second line we have inserted g2 = 1, and used
that gV g = V †, and in the last line we have noted that conjuga-
tion by g and V have compensating effects on σ̃ x

i for boundary
spins: V gσ̃ x

i∈∂�gV † = σ̃ x
i∈∂� .

Examining the final line, we see that the resulting edge
terminates with a trivial, MBL paramagnetic phase, which,
in the absence of any microscopic symmetry, can be dis-
entangled with a finite-depth local unitary acting only the
boundary. Together with the above arguments of the previous
sections, this demonstrates that the g-pulses are insufficient to
dynamically enforce a Z2 symmetry that protects anomalous
edge behavior, and that the putative Floquet EDSPT is, in fact,
trivial.

Compared to the 1d quasiperiodic example described in the
main text, this Floquet example has the crucial distinction that
the counter drive can be applied as a separate stroboscopic
step, without requiring non-smooth δ-function pulses (e.g.,
the extra stroboscopic step can be applied with a smooth
bump function time-profile which has stretched-exponentially
decaying frequency content), and without resulting in overlap
of non-commuting pulses (which we saw, in the quasiperiodic
case, led to thermalization).

While we have worked out the case explicitly for the LG
model, this model is indicative of the structure of other exactly
solvable models of phases classified by group cohomology
[61], and a similar construction works more generally to trivi-
alize putative Floquet SPTs in all cohomology classes. Since,
beyond-cohomology classes do not permit MBL due to the
presence of chiral surface modes [9], this exhausts the possi-
bilities for bosonic SPTs and shows that Floquet EDSPTs are
not possible for interacting bosonic systems.

5. Contrasting periodic and quasiperiodic drives

For static or Floquet systems, we argued above that the
ability to turn on edge interactions to trivially gap out or

localize the edge of a system led to a route to trivialize the
bulk without a phase transition by punching out a sequence
of nonoverlapping trivial holes and healing the interface with
the edge-trivializing procedure. Importantly, this mechanism
enabled the bulk to be trivialized even when the boundary
trivialization procedure necessarily passes through a boundary
phase transition en route to the trivial edge. Namely, at any
stage in the process, the bulk Swiss cheese version of this
procedure only ever modifies on finite-size 0d chunks of the
system. In static and Floquet systems, finite-size 0d systems
cannot undergo criticality, and hence the gapless/delocalized
critical modes that might be encountered upon trivializing an
infinite boundary, are avoided when trivializing the bulk.

In contrast, in the quasiperiodic system analyzed in the
main text, we find evidence that turning on the edge counter
drive induces a 0d quasiperiodic-to-chaotic dynamical tran-
sition. Let us assume for the moment that our numerical
evidence reflects a true 0d phase transition rather than a
finite-size artifact. That would imply that attempting to triv-
ialize the bulk via this mechanism would require introducing
chaotic spins that produce a bulk delocalization transition, so
the bulk-trivialization procedure fails to smoothly deform the
quasiperiodic EDSPT to a trivial phase without encountering
a bulk phase transition. Ironically, while this mechanism high-
lights the relative fragility of localization in quasiperiodically
driven signatures, it would actually protect a finer distinction
among quasiperiodic dynamical phases of matter!

We close by noting that regardless of whether or not there
is a true boundary phase transition, the high-frequency expan-
sion above shows that weak perturbations from any solvable
drive lead to (stretched-)exponentially long-lived phenom-
ena, which in a practical sense can be stable on very long
timescales that greatly exceed experimental lifetimes or other
more pressing dangers to localization (like inevitable weak
coupling to the environment).
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