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ABSTRACT: Single-molecule force spectroscopy has become a
powerful tool for the exploration of dynamic processes that involve
proteins; yet, meaningful interpretation of the experimental data
remains challenging. Owing to low signal-to-noise ratio, exper-
imental force-extension spectra contain force signals due to
nonspecific interactions, tip or substrate detachment, and protein
desorption. Unravelling of complex protein structures results in the
unfolding transitions of different types. Here, we test the
performance of Support Vector Machines (SVM) and Expectation
Maximization (EM) approaches in statistical learning from
dynamic force experiments. When the output from molecular
modeling in silico (or other studies) is used as a training set, SVM
and EM can be applied to understand the unfolding force data. The maximal margin or maximum likelihood classifier can be used to
separate experimental test observations into the unfolding transitions of different types, and EM optimization can then be utilized to
resolve the statistics of unfolding forces: weights, average forces, and standard deviations. We designed an EM-based approach,
which can be directly applied to the experimental data without data classification and division into training and test observations.
This approach performs well even when the sample size is small and when the unfolding transitions are characterized by overlapping
force ranges.

■ INTRODUCTION

Intra- and extracellular proteins use mechanical forces in diverse
cellular processes, ranging from replication, transcription, and
translation1 to protein degradation,2−4 to cytoskeleton sup-
port,5,6 to cell adhesion and cell motility,7,8 to formation of the
extracellular matrix,9 to muscle contraction and relaxation,10−14

and to blood clotting.15−20 Although considerable efforts have
been expended by experimentalists and theoreticians to
elucidate how proteins alter their shape and conformation in
response to the external mechanical factors, understanding the
interplay between the dynamics of proteins and their structural
changes continues to be one of the major frontiers of research.
Atomic Force Microscopy (AFM),21−25 optical tweezers,26−29

and magnetic tweezers30−34 have been employed to access
conformational transitions in proteins to mechanically unfold
proteins and to rupture protein complexes. These experiments,
in which the mechanical response of the protein is monitored by
pulling a proteinmolecule with a constant force (force clamp) or
constant force-loading rate (force ramp),35 yield information
about the dynamic transitions that occur on the nanometer
length scale under the influence of pico-Newton forces.35

In single-protein assays, the one end of a protein molecule is
tethered to a surface or microscopic tip while the other end
interacts with the tip or a surface. In the force-ramp assays, the
applied pulling force f(t) = rft used to induce the mechanical
unfolding reactions in proteins is linearly increasing in time t
with the force-loading rate rf = κvf that depends on the pulling
velocity vf. Each unfolding transition in protein domains is
accompanied by a tension drop in the polypeptide chain, and so
the force-extension profile (FX curve) exhibits the characteristic
sawtooth-like pattern. The FX curve displays multiple force
maxima (peak forces), f1(X1), f 2(X2), ..., f n(Xn), each peak
marking the unfolding transition in a particular protein domain.
Therefore, the force-extension spectra can be viewed as proteins’
mechanical fingerprints in dynamic force spectroscopy experi-
ments on proteins. For example, the peak-to-peak distances,
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which correspond to the force-induced elongation of a
polyprotein, carries information about the size and structure of
unfolded domains. The peak forces provide information about
the mechanical stability of protein domains and unfolding
energies. The interpeak distances and peak forces can be
combined to illuminate the details of free-energy landscape.25

Although single-molecule experiments are low throughput,
their main advantage over the more traditional bulk measure-
ments is that these experiments reveal the entire probability
distributions of molecular characteristics, such as the distribu-
tions of unfolding forces, rather than the average quantities. This
is important given that the protein folding and unfolding are
stochastic processes. The single-molecule experiments have
been used to provide insights into the mechanical stability and
unfolding pathways for a wide range of proteins involved, e.g., in
force generation in molecular motors,36,37 cell signaling,38−40

formation of cell adhesion complexes,41 and protein degrada-
tion.2,42,43 Nevertheless, accurate interpretation of the single-
molecule force experiments remains challenging. For example, it
is difficult to distinguish the unfolding transitions from the “non-
specific events” due to sample contamination and tip−surface
interactions, contributions to the force signal from several
unfolding transitions (rather than single transition) that occur
simultaneously, etc. An attractive option is to use protein
tandems of head-to-tail connected (identical or different)
protein domains, D1 − D2 − ... − Dn, but there are challenges
associated with the Order Statistics nature of the unfolding
forces.44−47

To improve the statistical significance of the protein unfolding
data, the force-extension spectra gathered together from
different single-molecule force measurements are filtered to
include only those spectra that (i) look appealing with minimal
tip−surface interactions, (ii) show a large number of unfolding
events (force peaks), and (iii) display the strong first and (or)
last detachment peak(s) due to protein desorption from the
substrate surface.48 These multiple quality assessments are at
most qualitative and subjective, which reduces the scope of
potential information gain. Experimentalists gather many
hundreds of the force-extension spectra, which contain
thousands of data points (peak forces and peak-to-peak
distances). However, due to data selection described above,
nearly 90−95% of experimental data are discarded, and only 5−
10% of data are analyzed, which creates a bias and introduces a
human error. In recent years, supervised and unsupervised
Statistical Learning (or Machine Learning) has emerged as a
collection of powerful quantitative tools, both for interpretation
and modeling of complex data sets.49 In the past two decades,
Statistical Learning has been increasingly more used in a variety
of scientific disciplines, including biology,50,51 material
science,52−55 and chemistry.56,57

Here, we explore the applicability of several powerful
approaches to unsupervised and supervised learning to classify
and characterize the experimental forced unfolding data from
single-molecule force-ramp assays. We propose an approach, in
which the results of mechanical testing experiments in silico (or
other studies) are used as training data. We compare the
performance of Support Vector Machines (SVM)- and Expect-
ation−Maximization (EM)-based methods to understand
complex unfolding force data for multidomain proteins and
polyproteins. As a prototype of a polyprotein formed by
connected protein repeats, we use a dimer (WW)2 formed by the
all-β-sheet domain WW.58−61 As a model of large multidomain
protein with complex structure, we use human fibrinogen

(Fg).62 To carry out various case studies, we use the output from
dynamic force experiments in silico for the dimer (WW)2 and for
the Fg monomer, as well as the experimental forced unfolding
data for the Fg monomer.63 We show that SVM and EM can be
used with success to understand the experimental forced
unfolding data. Tests of performance and accuracy reveal that
the SVM and EM approaches are suitable statistical learning
tools for describing the experimental FX spectra even when the
sample size is small. The developed SVM and EM approaches
perform well even when protein unfolding data are complex, i.e.,
characterized by multiple unfolding transitions of different
types, and when the FX spectra are noisy. We also propose a
simple EM-based approach to understanding the experimental
forced unfolding data. This approach does not involve
traditional data classification and data division into the training
and test observations, and it can be applied even when the
sample size is small and when the unfolding transitions of
different types are characterized by overlapping force ranges.
Taken together, the results obtained demonstrate that the SVM
and EM method allow for accurate interpretation of the
unfolding force data. Given their conceptual simplicity, the
SVM and EM based approaches can be easily implemented in
single-molecule experimental setting to model the single-protein
unfolding data.

■ MATEARIALS AND METHODS

Molecular Modeling. Coarse-Grained Models for (WW)2
and Fg. We used the Cα-based Self-Organized Polymer (SOP)
models64 for the dimer (WW)2 formed by two WW domains
(Figure 1) and for fibrinogen monomer (Figure 2). The WW
domain (34 amino acids) was studied experimentally58,59 and
computationally60,61 to describe folding and unfolding of the β-
sheet proteins.58,65 The dimer (WW)2 is constructed by
connecting the N- and C-termini of the adjacent WW domains
using linkers of four neutral residues (Figure 1). Fibrinogen Fg
(1925 residues) is a blood plasma protein, which consists of
pairs of Aα chains, Bβ chains, and γ chains, linked by the
disulfide bonds66 (Figure 3b). The two distal globular regions
and the central globular region of fibrinogen are connected by
the α-helical coiled coils; each globular region at both ends of the
molecule contains the β-nodule and the γ-nodule. The forced
unfolding transitions in human fibrinogen molecule have
studied both experimentally and theoretically.63

In the SOP models of (WW)2 and Fg, each amino acid is
represented by its Cα-atomwith the Cα−Cα bond distance of a =
3.8 Å, which corresponds to the length of a peptide bond. The
potential energy for protein conformation VMOL is given
by64,67,68
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where ri represent the coordinates of residues i = 1, 2, ..., Q. The
distance between interacting residues i and i + 1 is ri,i+1, and ri,i+1

0

is its value in the native (PDB) structure. The first energy term in
eq 1 is the finite extensible nonlinear elastic (FENE) potential
VNB
ATT, which describes the backbone chain connectivity; R0 = 2 Å

is the tolerance for the bond length change, and k = 14 N/m is
the force constant. The second term in eq 1 is the Lennard-Jones
potential VNB

ATT, which accounts for the native interactions that
stabilize the folded state. If the noncovalently linked residues i
and j (|i − j| > 2) are within the cutoff distance RC in the native
state, i.e., rij < RC, then Δij = 1, and zero otherwise. All the non-
native interactions described by the third term in eq 1 are treated
using the repulsive Lennard-Jones potential VNB

REP. Additional
constraint was imposed on the bond angles formed by residues i,
i + 1, and i + 2 by including the repulsive potential with
parameters εl = 1.0 kcal/mol and σ = 3.8 Å, which quantify,

respectively, the strength and the range of repulsion. To ensure
the self-avoidance of the polypeptide chain, we set σ = 3.8 Å in
third and fourth potential energy terms in eq 1.

Parameterization of SOP Models for (WW)2 and Fg. The
SOP model of (WW)2 was derived from the atomic structure
(Protein Data Bank (PDB) entry: 1PIN69). Two different
parametrizations were used. In modelM1, we used εh = 1.5 kcal/
mol to specify the strength of nonbonded interactions (see eq
1). In model M2, we set εh = 2.4 kcal/mol for the small loop
(Thr29−Gly39), and εh = 0.6 kcal/mol for the large loop
(Lys6−Ile28). The SOP model of human Fg was derived from
the atomic structure (PDB entry 3GHG62) and was para-
metrized as described in ref 63. The native contacts were divided
into the following groups: (1) contacts in the central β-sheet of
the γ-nodule, including residues γ189−197, γ243−284, and
γ380−389 in the C-terminal β-strand (group 1); (2) contacts in
the C-terminal part of the γ-nodule (γ284−380; group 2); (3)
contacts in the N-terminal part of the γ-nodule (γ139−189 and
γ197−243; group 3); (4) contacts in the α-helical regions in the

Figure 1. Forced unfolding transitions in dimer (WW)2. Panel a:
Schematic representation of (WW)2 formed by two C-terminal-to-N-
terminal connected WW domains (in blue and green colors) through
flexible linkers (in gray) in the folded state (snapshot 0), partially
unfolded conformations (snapshots 1−3), and unfolded state (snap-
shot 4) are shown. In mechanical testing in silico on (WW)2, the time-
dependent force f(t) = rtt is ramped up at the C-terminal end of the
second WW domain (right), while the N-terminus of the first WW
domain (left) is constrained. The forced unfolding transitions in WW
domains occur in two steps: unfolding of the small loop (residues
Thr29−Gly39; shown in light blue and light green) in WW domains
(transition type 1; snapshots 1 and 3) and unfolding of the large loop
(residues Lys6−Ile28; in blue and green) in WW domains (transition
type 2; snapshots 2 and 4). See Table S1 in the Supporting Information
for more detail. In snapshots 0−3, the intact (unfolded) structures are
shown in solid circles (dashed rectangles). Panel b: Representative FX
spectra for dimer (WW)2 (shown in black and red color), obtained from
dynamic force experiments in silico, are overlaid to demonstrate the
stochastic nature of unfolding transitions. The force peaks for unfolding
transitions of types 1 and 2, numbered 0−4, correspond to the
accordingly numbered snapshots in panel a.

Figure 2. Forced unfolding transitions in Fg monomer. Panel a:
Unfolding transitions of types 1−3 in Fg (summarized in Table SII)
shown for the right half of Fg molecule. The time-dependent force f(t)
= rtt is applied at the (right) C-terminal part of the γ chain (tagged
residue γGly395), while residue γIle394 is constrained in the other
(left) C-terminal part of the γ chain. The N-terminal (γ139−γ234) and
C-terminal (γ311−γ381) parts of the γ-nodule are shown in dark and
light green, respectively; the central region (γ234−γ311) is shown in
yellow. The folded state (snapshot 0) becomes destabilized, which
results in a series of unfolding transitions displayed using snapshots 0−
3. These snapshots, which correspond to the accordingly numbered
force peaks in the FX spectra in panel b, show the following unfolding
transitions: unraveling of the central part of the γ-nodule (transition
type 1; snapshot 1), unfolding of the C-terminal part of the γ-nodule
(transition type 2; snapshot 2), and unfolding of the N-terminal part of
the γ-nodule (transition type 3; snapshot 3). Panel b: Representative
FX spectra for Fg monomer (displayed in different color for clarity)
obtained frommechanical testing in silico. The force peaks numbered as
1−3 corresponding to the transitions of types 1−3 in panel a. The inset
shows structural details of Fg molecule: the central nodule, γ-nodules,
β-nodules, disulfide rings, and the γ−γ-cross-linking sites.
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coiled-coil connectors (α45−200, β76−197, and γ19−139;
group 4); and (5) contacts in the central nodule (α27−44, β58−
75, and γ14−18; group 5) and in the β-nodules (β198−461;
group 5). The following values of εh were used to describe these
contacts: εh = 0.7, 1.2, 1.6 kcal/mol for groups 1, 2, and 3,
respectively, and εh = 1.3 kcal/mol for groups 4 and 5.
Single-Molecule Dynamic Force Experiments in Silico. The

unfolding dynamics of dimer (WW)2 and Fg monomer was
obtained by integrating the Langevin equations of motion for
each amino−acid residue position ri in the overdamped limit,

ϑ = − +∂
∂ g t( )r

t
V
r i

d
d
i

i
, where V = VMOL − f X is the total potential

energyVMOL due to polypeptide chains (i.e., molecular potentials
for (WW)2 or Fg) and the potential energy f X due to applied
pulling force f, g(t) is the Gaussian distributed zero-centered
random force, which describes random collisions of amino acids
with solvent molecules, and ϑ is the friction coefficient. To
mimic the dynamic force-ramp measurement for dimer (WW)2

in vitro, the N-terminal Cα-atom of the left WW domain was
constrained and a time-dependent force f(t) = fn with the
magnitude f = rft was applied to the C-terminal Cα-atom of the
right WW domain in the direction n coinciding with the
direction of the end-to-end vector X (Figure 1). For the Fg
monomer, the left end of the molecule (γIle394) was
constrained and force f(t) was applied at the right end of the
molecule (γGly395) in the direction coinciding with the
direction of the end-to-end vector. The Langevin equations of
motion were propagated forward with the time step Δt = 20 ps.
Pulling simulations were carried out at room temperature (T =
300 K) using the bulk water viscosity, which corresponds to the
friction coefficient ϑ = 7.0 × 105 pN ps/nm. We used the
experimental values of the cantilever spring constant κ = 35 pN/
nm and the pulling speed vf = 10 μm/s, which translates to the
force-loading rate rf = κvf = 350 nN/s.

Analysis of Simulation Output. For models M1 and M2,
WW domains undergo unfolding from the native (folded) state
(F) to the unfolded state (U) in two steps, F→ I→U, where I is
the intermediate (partially unfolded) conformation. The
unfolding transition of type 1 corresponds to unraveling of the
small loop (Thr29−Gly39; Figure 1). The unfolding transition
of type 2 corresponds to unraveling of the large loop (Lys6−
Ile28; Figure 1). A summarized description of unfolding
transitions in dimer (WW)2 is presented in Table SI in the
Supporting Information. The Fg molecule undergoes forced
unfolding in three steps, F→ I1→ I2→U, with two intermediate
structures I1 and I2, which correspond to the following types of
unfolding transitions (see Table SII): (1) separation of the C-
and N-terminal parts of γ-nodule (transition type 1), (2)
unfolding of the C-terminal part of γ-nodule (transition type 2),
and (3) unfolding of its N-terminal part of γ-nodule (transition
type 3). The force peaks for (WW)2 and Fg were sorted into two
and three groups, respectively, according to the type of
unfolding transition they represent. The peak forces and peak-
to-peak distances were evaluated for each transition types 1 and
2 for (WW)2 and for each transition types 1−3 for Fg. The
histogram-based estimates of the probability density functions
(pdfs) of unfolding forces for (WW)2 and Fg were constructed
using the Freedman−Diaconis rule for the bandwidth
selection.70,71 We used nonparametric density estimation63,64

with the kernel density φ = ∑ =
−( )f K( )K M i

M
h

f f

h
1

1
1 i , where h is

the bandwidth and π= −( )K f( ) exp / 2f
2

2

is the normalized

Gaussian kernel function. We set the bandwidth to h =M−1/5.72

Statistical Learning. Support Vector Classifier. We
employed the Support Vector Classifier (SVC) method to
classify the unfolding force data into the unfolding transitions of
types 1 and 2 for (WW)2 and types 1−3 for Fg. For a d-
dimensional space of input variables, one attempts to find a
hyperplane of the dimension d − 1, which has the largest
distance to the nearest data points, called the maximum margin,
in the training set.73 In the 2-dimensional case of the unfolding
force separated by the peak-to-peak distance, {( f1, x1), ( f 2, x2),
..., ( f MxM)}, a hyperplane is a one-dimensional subspace (line),
which has the maximum distance between the data points from
different classes (unfolding transition types). The maximal
margin classifier is defined by the equation of a line:

+ + =b b x b f 00 1 2 (2)

with constant parameters b0, b1, and b2. Equation 2 divides the
data into two halves, and so they define the SVC and the

Figure 3. Characterizing unfolding transitions in dimer (WW)2 and Fg
monomer with maximum margin classifier (Case Study 1). Shown are
scatterplots of the unfolding forces versus the peak-to-peak distances
from test sets Dtest characterizing the unfolding transitions in (WW)2
(panel a) and Fg (panel b). The separating hyperplanes (black lines)
divide the data into different classes: unfolding transitions of type 1
(green data points) and type 2 (red) for (WW)2 (panel a; see Figure 1)
and the unfolding transitions of type 1 (green data points), type 2 (red),
and type 3 (blue data points) for the Fg monomer (panel b; see Figure
2). Some of the misclassified data points are shown in solid circles. Also
shown are the separating hypersurfaces (blue curves) obtained using
SVM classifier with the polynomial kernel of degree 5 (see the
Supporting Information for more detail).
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decision rule, which assign a class (transition type) to which a
particular data point (unfolding force) belongs. If for any pair of
data points ( f i, xi) and ( f j, xj) the classifier b0 + b1 xi + b2 ( f i > 0)
while b0 + b1 xj + b2 ( f j < 0), then these data points end up on
different sides of the hyperplane (belong to different classes).
We also implemented Support Vector Machines using higher
order polynomials of a degree 2, 3, 4, and 5 (see the Supporting
Information).
Expectation−Maximization Method. Assume a bivariate

normal density μ σ σ σ|f x( , , , )j fj xj fxj, and prior probability πj for

each unfolding transition type j for the vector ( f, x) of unfolding
force f and peak-to-peak distance x. Let p denote the mixture
density for the vector ( f, x). Application of the EM method73,74

is based on specifying the initial values for the mean vectors μj,
standard deviations σf j and σxj, covariances σfxj, and prior
probabilities πj. In the first (expectation) step, the log-likelihood
of expectation

∑ ∑μ σ π π μ σ σ σ[ | ] = |
= =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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is calculated. Here, F, X = {( f1, x1), ....( f M, xM)}are pairs of
unfolding forces and peak-to-peak distances, μ = {μ1, ..., μJ } =
{(μf1, μx1), ..., (μf J, μxJ)}, σ = {(σf1, σx1, σfx1), ..., (σf J, σxJ, σfxJ)},
and π = {π1, ..., πJ} are, respectively, the average unfolding forces
and average peak-to-peak distances, standard deviations and
covariances, and prior probabilities for the unfolding transitions
of types j = 1, 2, ..., J. The log-likelihood ln[p(F,X|μ,σ,π)] for test
observations is calculated using the estimates for parameters
describing the unfolding transitions of type j. Next, the posterior
probabilities γi

j for each transition type j
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are calculated. In the second (maximization) step, one finds new
values of μj, σf j, σxj, σfxj, and πj for each transition type j that
maximize the log-likelihood:
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The expectation and maximization steps are repeated until
convergence is reached, i.e., when the difference between the old
and new values of the average unfolding force is less than 0.1 pN,
i.e., ∥μjnew − μj

old∥ < 0.1 pN, for all transition types j = 1, 2, ..., J.
We used the following two versions of EM algorithm. In the first

case, all parameters (i.e., πj, μj, σf j, σxj, σfxj, and γi
j) for all

transition types j = 1, 2, ..., J are allowed to change. In the second
case, all parameters except for the prior probabilities πj are
allowed to change (πj are kept at their initial values). Although
the EM method attempts to find πj, μj, σf j, σxj, and σfxj for
bivariate normal densities, in this work we are concerned with
the (marginal) distributions of unfolding forces characterized by
the univariate normal densities μ σ|f( , )fj fj with parameters πj,

μf j, and σf j.

■ RESULTS

Dynamic Force Experiments on (WW)2 and Fg. Inmodel
M1 for (WW)2, we used εh = 1.5 kcal/mol for all native contacts,
which sets the strength of the nonbonded interactions (eq 1).
The unfolding transitions are the two low and two high peaks as
observed in the FX profiles (Figure S1). Because one of the main
objectives of this study was to describe unfolding data
characterized by overlapping ranges of unfolding forces, we
increased the strength of native contacts in the small loop and
decreased the strength of contacts in the large loop (Figure 1). In
model M2, we set εh = 2.4 kcal/mol and εh = 0.6 kcal/mol for the
native contacts in the small and large loops, respectively. For
model M2, the FX profiles show four force peaks of nearly equal
height (two peaks per WW domain; Figure S1b). Using models
M1 and M2, we carried out Langevin simulations of the forced
unfolding for (WW)2, and construct a total of 100 FX spectra
(Figure S1c), each containing four unfolding forces separated by
peak-to-peak distances. The FX profiles for model M2 for
(WW)2 along with a schematic of mechanical testing in silico are
displayed in Figure 1, which also shows the native state, partially
unfolded structures, and the unfolded state. A schematic of
mechanical testing of Fg monomer is displayed in Figure 2a,
which also shows the native conformation for the right half of
fibrinogen monomer, stretched conformations with unraveled
central domain of the γ-nodule (transition type 1), with
unfolded C-terminal part of the γ-nodule (transition type 2),
and with unfolded N-terminal part of the γ-nodule (transition
type 3); see Table SII. The output from single-molecule
experiments and pulling simulations for Fg63 was used to
characterize the FX spectra (Figure 2b). Typical simulated FX
spectra for Fg monomer are displayed in Figure 2.

Constructing Data Sets for (WW)2 and Fg. Here, we
summarize all the data sets used in Case Studies 1−5 below.
Data sets for (WW)2-simulated FX curves (Figure 1b and Figure
S1) were used to form combined data set D (M = 400), which
was divided into data sets D1 (M1 = 200) and D2 (M2 = 200) for
the unfolding transitions of types 1 and 2. We randomly divided
the combined data setD into training setDtrain (Mtrain= 200) and
test set Dtest (Mtest= 200). Data from Dtrain were subdivided into
data subsetsDtrain,1 (Mtrain,1 = 100) andDtrain,2 (Mtrain,2 = 100) for
transitions of types 1 and 2. The maximal margin classifier
(SVC) was based on Dtrain and was applied to Dtest (Case Study
1; Figures 3 and 4). Dtrain,1 and Dtrain,2 were used to estimate the
average forces μf j and average peak-to-peak distances μxj and the
standard deviations σf j and σxj (EM; Case Study 3). SVC
classifier was used to divide Dtest into two classes: Dtest,1

SVM and
Dtest,2

SVM. These were used to construct themarginal histograms and
nonparametric densities of unfolding forces for transitions of
types 1 and 2, p1( f) and p2( f) (Case Study 3; Figure 4). Using
Dtrain, we classified unfolding forces in D1 and D2 for the
unfolding transitions of types 1 and 2. These data sets were used
to construct nonparametric densities of unfolding forces for
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transitions of types 1 and 2 (Figure S3). We used p1( f) and p2( f)
and the maximum likelihood estimation

= ̂ =̂B f p f j p f( ) ln ( ) and argmax ( )i j i
j

j i
(10)

to subdivide Dtest into data subsets Dtest,1
ML (Mtest,1

ML = 138) and
Dtest,2

ML (Mtest,2
ML = 62) for the transitions of types 1 and 2 (Case

Study 3; Figures 3 and 4). Using D1 and D2, we randomly
selected 100 unfolding forces to construct combined data set
D(WW)2, which was used to evaluate performance of EM
algorithm (Figure 7). Using this set, we constructed data sets
D(WW)2,1 (M(WW)2,1 = 50) and D(WW)2,2 (M(WW)2,2 = 50) for
transitions of types 1 and 2.
Data sets for Fg-Experimental FX spectra for Fg63 were used

to form combined data set Dexp (Mexp= 20 193; Figure S3a).
Using Dexp, we constructed data set D500 (M500= 15 023), which
excludes data that correspond to large unfolding forces >500 pN
and long peak-to-peak distances >100 nm (Case Study 4; Figure
5). Next, we constructed data set D200 (M200 = 4572), which
excludes forces below 30 pN and above 200 pN and distances
shorter than 9 nm and longer than 62 nm (Case Study 5; Figure
6). Simulated FX spectra for Fg63 were used to construct

combined data set Dsim (Msim= 82) and data subsets Dsim,1
(Msim,1 = 24), Dsim,2 (Msim,2 = 31), and Dsim,3 (Msim,3 = 27) for
unfolding transitions of types 1, 2, and 3. These were used to
assess performance of the EM method (Figure 7). Dsim was
randomly divided into training setDtrain (Mtrain = 41) and test set
Dtest (Mtest = 41). UsingDtrain, we created data setsDtrain,1 (Mtrain,1
= 12), Dtrain,2 (Mtrain,2 = 15), and Dtrain,3 (Mtrain,3 = 13) for
transitions of types 1, 2, and 3. These were used to obtain the
maximal margin classifier (SVM; Case Study 1; Figure 3). Using
Dtest, we created data sets Dtest,1

SVM (Mtest,1
SVM = 12), Dtest,2

SVM (Mtest,2
SVM =

16), and Dtest,3
SVM (Mtest,3

SVM = 14) for transitions of types 1, 2, and 3.
Dtrain was used to train the SVM classifier, which was applied to
Dtest (Case Studies 1 and 2; Figures 3, 5, and 6). The classifier
was applied to observations in D500 and D200. Using D500, we
constructed data sets D500,1

SVM (M500,1
SVM = 2165), D500,2

SVM (M500,2
SVM =

913), and D500,3
SVM (M500,3

SVM = 11 495) for transitions of types 1, 2,
and 3 (Case Study 4; Figure 5). UsingD200, we constructed data
sets D200,1

SVM (M200,1
SVM = 1571), D200,2

SVM (M200,2
SVM = 808), and D200,3

SVM

(M200,3
SVM = 2110) for transitions of types 1, 2, and 3 (Case Study 5;

Figure 6). When applying EM, we used Dtrain to estimate the

Figure 4. Performance of SVM and EM in modeling unfolding force
data for dimer (WW)2 (Case Studies 2 and 3): Compared for (WW)2
are the histograms (bars), nonparametric densities (thin curves), and
theoretical pdfs (thick curves) of unfolding forces (see Figure 1b and
Figure S1) obtained from the pulling simulations for (WW)2 using
SVM (panels a-c) and EM (panels d−f). The histograms are overlaid
with nonparametric density curves. The following data sets are shown
as gray histograms: combined data setDtest (Mtest = 200; panels a and d),
and data setsDtest,1

SVM (Mtest,1
SVM = 110; panel b),Dtest,2

SVM (Mtest,2
SVM = 90; panel c),

Dtest,1
ML (Mtest,1

ML = 138; panel e), and Dtest,2
ML (Mtest,2

ML = 62; panel f). We
compare the histograms and density estimates with theoretical pdfs of
unfolding forces for weighted superposition π μ σ∑ |f( , )j j i fj fj obtained

with SVM (panel a) and EM (panel d) and for the unfolding transition
of types j = 1 and 2, μ σ|f( , )i fj fj , obtained with SVM (panels b and c)

and EM (panels e and f): j = 1 (panels b and e), j = 2 (panels c and f). In
panels e and f, theoretical pdfs obtained with fixed prior probabilities
(solid curves) and variable prior probabilities (dashed curves) are
compared for unfolding transitions of types 1 and 2. In panels b and c
and e and f, the colored transparent histograms represent actual
unfolding force data for the transitions of type 1 (data setD1,M1= 200)
and type 2 (data set D2, M2= 200).

Figure 5. Performance of SVM and EM in modeling 0−500 pN
unfolding force data for the Fg monomer (Case Study 4). Compared
are the histograms (bars) of unfolding forces in the 500 pN range from
single-molecule experiments for Fg,63 nonparametric densities (thin
curves), and theoretical pdfs (thick curves) of unfolding forces obtained
with SVM (panels a−d) and EM (panels e−h). The following data sets
were used: combined data setD500 (M500 = 15 023; panels a and e), and
data sets D500,1

SVM (M500,1
SVM = 2165; panel b), D500,2

SVM (M500,2
SVM = 913; panel c),

D500,3
SVM (M500,3

SVM = 11 495; panel d), D500,1
ML (M500,1

ML = 1862; panel f), D500,2
ML

(M500,2
ML = 3837; panel g), and D500,3

ML (M500,3
ML = 9324; panel h). We

compare the histograms and density estimates with theoretical pdfs of
unfolding forces for weighted superposition π μ σ∑ |f( , )j j i fj fj obtained

with SVM (panel a) and EM (panel e), as well as for the unfolding
transition of types j = 1, 2 and 3, μ σ|f( , )i fj fj , obtained with SVM

(panels b−d) and EM (panels f−h): j = 1 (panels b and f), j = 2 (panels
c and g), and j = 3 (panels d and h). In panels e−h, theoretical pdfs
obtained with fixed (solid curves) and variable (dashed curves) prior
probabilities are compared for the unfolding transitions of type 1, type
2, and type 3.
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average forces μf j and average peak-to-peak distances μxj, and the
standard deviations σf j and σxj (Case Study 4; Figures 5 and 6).
We used Dsim,1, Dsim,2, and Dsim,3 to construct three non-
parametric density estimations of unfolding forces of types 1, 2,
and 3 and p1( f), p2( f), and p3( f) (see Figure S2) to classify data
sets D500 and D200 with the maximum likelihood estimation
(Case Study 4 and 5; Figures 5 and 6). Using D500, we
constructed data subsets D500,1

ML (M500,1
ML = 1862), D500,2

ML (M500,2
ML =

913), and D500,3
ML (M500,3

ML = 11 495) for transitions of types 1, 2,
and 3 (Case Study 4; Figure 5). UsingD200, we constructed data
subsets D200,1

ML (M200,1
ML = 1571), D200,2

ML (M200,2
ML = 808), and D200,3

ML

(M200,3
ML = 2110) for transitions of types 1, 2, and 3 (Case Study 5;

Figure 6).
Case Study 1. SVM-Based Classification of Unfolding

Transitions for (WW)2 and Fg. First, we assessed the
performance of SVM in classification of unfolding force data.
These can be characterized using the peak forces ( f i) and peak-
to-peak distances (xi) as input variables, i.e., {( f1, x1), ( f 2, x2), ...,
( f M, xM)}. From the simulations for (WW)2 and Fg, we know

exactly which unfolding transitions belong to which transition
types for allM = 400 unfolding events for (WW)2 and for allM =
82 unfolding events for Fg. We used training set Dtrain (Mtrain=
200) and test set Dtest (Mtest= 200) for (WW)2, and training set
Dtrain (Mtrain= 41) and test set Dtest (Mtest= 41) for Fg. The
scatterplots of f i versus xi for (WW)2 and Fg are displayed in
Figure 3, which also shows the separating hyperplanes. Although
the hyperplane is chosen to divide the training observations into
two classes (unfolding transitions of types 1 and 2) for (WW)2
and into three classes (transitions of types 1−3) for Fg, there are
data points that are misclassified. In Dtest for (WW)2, 9 and 17
data points for transitions of type 1 (9% error) and type 2 (17%
error) are misclassified. InDtest for Fg, 2, 6, and 1 data points for
transition of type 1 (16% error), type 2 (38% error), and type 3
(7% error) are misclassified. In Dtrain for (WW)2, 4 and 13 data
points for transitions of type 1 (4% error) and type 2 (13% error)

Figure 6. Performance of SVM and EM in modeling 30−200 pN
unfolding force data for Fg monomer (Case Study 5). Compared are
the histograms (bars) of unfolding forces in the 200 pN range from
single-molecule experiments for Fg,63 nonparametric densities (thin
curves), and theoretical pdfs (thick curves) of unfolding forces obtained
with SVM (panels a−d) and EM (panels e−h). The following data sets
were used: combined data set D200 (M200 = 4572; panels a and e), and
data sets D200,1

SVM (M200,1
SVM = 1691; panel b), D200,2

SVM (M200,2
SVM = 856; panel c),

D200,3
SVM (M200,3

SVM = 1941; panel d), D200,1
ML (M200,1

ML = 1571; panel f), D200,2
ML

(M200,2
ML = 808; panel g), and D200,3

ML (M200,3
ML = 2110; panel h). We

compare histograms and density estimates with theoretical pdfs of
unfolding forces for weighted superposition π μ σ∑ |f( , )j j i fj fj obtained

with SVM (panel a) and EM (panel e), as well as for the unfolding
transition of types j = 1, 2, and 3, μ σ|f( , )i fj fj , obtained with SVM

(panels b−d) and EM (panels f−h): j = 1 (panels b and f), j = 2 (panels
c and g), and j = 3 (panels d and h). In panels e−h, theoretical pdfs
obtained with fixed (solid curves) and variable (dashed curves) prior
probabilities are compared for the unfolding transitions of type 1, type
2, and type 3.

Figure 7. Performance of EM in resolving distributions of unfolding
forces for (WW)2 and Fg without data classification and data division
(Case Study 6). Compared are the histograms (bars) of unfolding
forces obtained from the pulling simulations for dimer (WW)2 and the
Fg monomer, nonparametric densities (thin curves), and theoretical
pdfs (thick curves) of unfolding forces obtained with EM. The
following data sets were used: for (WW)2, combined data set D(WW)2

(M(WW)2 = 100; panels a and d) and data sets D(WW)2,1 (M(WW)2,1 = 50;

panel b) and D(WW)2,2 (M(WW)2,2 = 50; panel c); for Fg, combined data
setDFg (MFg = 82) and data setsDsim,1 (Msim,1 = 24),Dsim,2 (Msim,2 = 31),
and Dsim,3 (Msim,3 = 27). We compare the force histograms and density
estimates with theoretical pdfs of unfolding forces for weighted
superposition π μ σ∑ |f( , )j j i fj fj (j = 1 and 2 for (WW)2 and j = 1, 2, and

3 for Fg) obtained with EM (panels a and d), as well as for the unfolding
transitions of types j = 1 and 2, μ σ|f( , )i fj fj obtained with EM for

(WW)2 (panel b for j = 1 and panel c for j = 2), and the unfolding
transitions of types j = 1, 2, and 3, μ σ|f( , )i fj fj obtained with EM for Fg

(panel e for j = 1, panel f for j = 2, and panel g for j = 3). Theoretical pdfs
obtained with fixed (solid curves) and variable (dashed curves) prior
probabilities are compared.
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are misclassified. In Dtrain for Fg, 2, 5, and 3 data points for
transition of type 1 (16% error), type 2 (31% error), and type 3
(21% error) are misclassified. We also applied SVM to classify
the unfolding transitions for (WW)2 and Fg using higher order
polynomials of degree 2, 3, 4, and 5 (see the Supporting
Information). The results obtained are displayed in Figure 3.
The test errors obtained using SVM with the polynomial kernel
of degree 5 were roughly the same as the errors obtained with the
linear classifier (eq 2). For this reason, we used the linear
classifier in Case Studies 2−5 below.
Case Study 2. Resolving Distributions of Unfolding

Forces for (WW)2 with SVM. Next, we tested how accurately
SVM resolves the distributions of unfolding forces for (WW)2
using the simulated FX spectra. The Gaussian-like symmetric
shape of the marginal histograms of unfolding forces for
combined data set D (Figure 4a) reveals broad but unimodal
distribution of unfolding forces due to the overlapping 37.4−
77.8 and 42.6−82.2 pN force ranges, which characterize,
respectively, the unfolding transitions of type 1 (data set D1)
and type 2 (data set D2). We used the Gaussian ansatz

μ σ|f( , )i fj fj to describe the marginal distributions of unfolding

forces in terms of the average forces μf j and standard deviations
σf j for the unfolding transitions of types j = 1 and 2. To perform
classification, we applied SVM to the unfolding data inDtrain, and
used the maximal margin classifier to divide the data inDtest into
data subsets for transition types 1 (Dtest,1

SVM) and 2 (Dtest,2
SVM). Using

these subsets, we constructed nonparametric densities pj( f) and
calculated the average forces μf j and standard deviations σf j for
the transitions of types j = 1 and 2 (Table 1). Then, values of μf j
and σf j were substituted into the Gaussian ansatz to obtain the
theoretical curves of μ σ|f( , )i f f1 1 and μ σ|f( , )i f f2 2 and

weighted superposition π μ σ π μ σ| + |f f( , ) ( , )i f f i f f1 1 1 2 2 2 .

We set the weights (prior probabilities) to be equal, i.e., π1 =
π2 = 1/2. The histograms and nonparametric densities, and
theoretical pdf curves of the unfolding forces obtained with SVM
for combined data set Dtest, and data subsets Dtest,1

SVM (transition
type 1) and Dtest,1

SVM (transition type 2) are compared in Figure 4.
To quantify the difference between theoretical pdfs

(constructed for training data) and nonparametric densities
(constructed for test observations) of the unfolding transition of
type j, we used the L1-norm:

∑ π ψ= | − |Δ
=

L y w fj
i

M

j i j i
1

1 (11)

where yi is the value of probability density corresponding to the
unfolding force f i, i.e., μ σ= |y f( , )i i j j predicted by SVM (or

EM), ψi is the value of kernel density estimate corresponding to
the same force value f i, i.e., ψi = φK ( f i), and Δf is the force
interval. In eq 11, πj is the prior probability estimated
theoretically. For example, for (WW)2 πj = 1/2 for both
transition types 1 and 2 (Table 1). In eq 11,wj is the weight of jth
transition type, which in the case of (WW)2 is also equal to 1/2.
The obtained values of L1-norm were L1

1 = 0.07 and L2
1 = 0.09 for

the unfolding transitions of types 1 and 2 (Table 1).
Case Study 3. Resolving Distributions of Unfolding

Forces for (WW)2 with EM. We tested how accurately EM
resolves the distributions of unfolding forces for (WW)2. First,
using data sets D1 and D2 we constructed nonparametric
densities of the unfolding forces for unfolding transitions of type
1 and type 2, p1( f) and p2( f), and then carried out classification
of unfolding forces based on Dtrain using maximum likelihood
estimation (eq 10). We constructed subsetsDtest,1

ML (Mtest,1
ML = 138)

andDtest,2
ML (Mtest,2

ML = 62) for transitions of types 1 and 2. Next, we
applied the EM algorithm and used the bivariate Gaussian ansatz
with the average forces μj = (μf j, μxj) and standard deviations σj =
(σf j, σxj). We set initial values of μf j for transitions of types j = 1
and 2 to be equal to the average unfolding forces estimated from
Dtrain,1 (57.4 pN) and Dtrain,2 (62.0 pN); initial values of μxj were
estimated from Dtrain,1 (3.4 nm) and Dtrain,2 (5.0 nm); initial
values of standard deviations of unfolding forces σf j and peak-to-
peak distances were set to be equal to σ / 2f and σ / 2x (σf =

7.8 pN and σx = 1.2 nm are the standard deviations of unfolding
forces and peak-to-peak distances obtained for data from Dtest).
We considered cases of fixed and variable πj for the unfolding
transitions of types j = 1 and 2.

Fixed Prior Probabilities. We set π1 = π2 = 0.5 and varied μj
and σj. The convergence was reached in 15 steps. Final values of
μf j and σf j are compared with the values of these quantities from
subsets D1 and D2 in Table 1. Because we used the results of
simulations, we know the actual values of μf j and σf j, and so the
predicted and actual values can be directly compared. We
constructed the marginal histograms and nonparametric
densities p( f), p1( f), and p2( f) of unfolding forces using Dtest,
Dtest,1

ML , and Dtest,2
ML for unfolding transitions of types j = 1 and 2.

These are compared in Figure 4 with theoretical marginal pdfs of
unfolding forces derived by substituting the final values of μf j and
σf j obtained with EM (Table 1) into the superposition
π μ σ π μ σ| + |f f( , ) ( , )i f f i f f1 1 1 2 2 2 (Dtest; Figure 4d), into

μ σ|f( , )i f f1 1 (Dtest,1
ML for transitions of type 1; Figure 4e), and

into μ σ|f( , )i f f2 2 (Dtest,2
ML for transitions of type 2; Figure 4f).

The agreement between the histograms and density estimates,

Table 1. Performance of SVM and EM in Describing Unfolding Force Data for (WW)2 (Case Studies 2 and 3)a

SVM method EM method

methods/quantities type 1 type 2 type 1 type 2

μf j, pN 58.4/57.4 59.6/62.0 57.8 (56.6)/57.4 65.3 (64.0)/62.0
σf j, pN 7.6/8.0 7.9/8.4 7.7 (7.5)/8.0 6.9 (7.2)/8.4
πj 0.5/0.5 0.5/0.5 0.5 (0.52)/0.5 0.5 (0.48)/0.5
Lj
1 0.07 0.09 0.15 (0.20) 0.17 (0.20)

aCompared for unfolding transitions of types 1 and 2 in WW domains are the theoretical predictions for the average unfolding forces μf j, standard
deviations σf j, and prior probabilities πj, obtained with SVM and EM, and values of these quantities obtained from the pulling simulations
(separated by the slash). For EM, values of μf j, σf j, and πj obtained with fixed and variable (in parentheses) prior probabilities πj are compared. Also
shown are the values of Lj

1-norm obtained with fixed and variable (in parentheses) prior probabilities. The total error (L1-norm for combined
dataset Dtest (Mtest = 200)) is 0.06 for SVM, and it is 0.13 (0.13) for EM with fixed (variable) prior probabilities. The following data sets were used:
Dtest,1

SVM (Mtest,1
SVM = 110), Dtest,2

SVM (Mtest,1
SVM = 90), Dtest,1

ML (Mtest,1
ML = 138), and Dtest,2

ML (Mtest,2
ML = 62).
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and theoretical pdf curves is very good: L1
1 = 0.15 and L2

1 = 0.17
for the unfolding transitions of types 1 and 2 (Table 1).
Variable Prior Probabilities. We varied πj, μj, and σj. We set

initial values of μf j to be equal to the average unfolding forces
from Dtrain,1 (57.4 pN) and Dtrain,2 (62.0 pN). Initial values of μxj
were set to the peak-to-peak distances corresponding to the
unfolding forces estimated from 3D histogram of bivariate data
(not shown): 2.2 and 5.8 nm. Initial values of the prior
probabilities were set to 0.5 and standard deviations were set to
be equal to σ σ σ= = / 2f f f1 2 for unfolding forces and

σ σ σ= = / 2x x x1 2 for peak-to-peak distances (σf = 7.8 pN
and σx = 1.2 nm are the standard deviations for data from Dtest).
We applied the EM algorithm to bivariate data from Dtest. The
convergence was reached in 15 steps. Final values of πj, μf j, and
σf j are compared with the values of these quantities for data sets
D1 and D2 in Table 1. The predicted and actual values of μf j and
σf j show good agreement, but values π1 = 0.52 and π2 = 0.48
deviate from 0.5 (Table 1). The histograms and nonparametric
densities for combined data setD and for data setsD1 andD2 for
transitions of types j = 1 and 2, p( f), p1( f), and p2( f), are
compared in Figure 4 with theoretical pdf curves of weighted
superposit ion π1 N( f i |μ f1 ,σ f 1) + π2 N( f i |μ f 2 ,σ f 2)
π μ σ π μ σ| + |f f( , ) ( , )i f f i f f1 1 1 2 2 2 (D t e s t ; F i g u r e 4 d ) ,

μ σ|f( , )i f f1 1 (Dtest,1
ML for transitions of type 1; Figure 4e), and

μ σ|f( , )i f f2 2 (Dtest,2
ML for transitions of type 2; Figure 4f).

Theoretical curves were derived using final values of πj, μf j, and
σf j from Table 1. The agreement between the histograms and
density estimates, and theoretical pdf curves of the unfolding
forces is very good: L1

1 = 0.20 and L2
1 = 0.20 for the unfolding

transitions of types 1 and 2 (see Table 1).
Case Study 4. Resolving Distributions of 500 pN

Unfolding Forces for Fg with SVM and EM. Next, we
compared the performance of SVM and EM using the
experimental unfolding force data from combined data set
D500, which excludes large unfolding forces >500 pN that
correspond to protein desorption and/or cantilever tip detach-
ment.63

Classification. SMV classification of unfolding data for Fg
was performed using the results of simulations as described in
Case Studies 1 and 2. We obtained the maximal margin classifier
based on Dtrain (Figure 3b) and applied the classifier to test
observations in D500, {( f1, x1), ( f 2, x2), ..., ( f MxM)}, which
contains the experimental peak forces in the 0−500 pN range
and peak-to-peak distances in the 0-100 nm range. Combined
data set D500 was subdivided into subsets for the unfolding

transitions of types 1−3,D500,1
SVM,D500,2

SVM , andD500,3
SVM. The results are

displayed in Figure 5, which shows the histograms and
nonparametric densities p( f), p1( f), p2( f), and p3( f) for
combined data set D500 (Figure 5a) and for subsets D500,1

SVM

(transitions of type 1; Figure 5b), D500,2
SVM (type 2; Figure 5c),

and D500,3
SVM (type 3; Figure 5d). EM classification for Fg was

performed using the results of simulations as described in Case
Study 3. Using data sets Dsim,1, Dsim,2, and Dsim,3 we constructed
nonparametric densities p1( f), p2( f), and p3( f) for the unfolding
transitions of types 1−3 (Figure S2). These were used in
maximum likelihood estimation to classify data from combined
data set D500 into data subsets D500,1

ML , D500,2
ML , and D500,3

ML for
transitions of types 1−3. Figure 5 shows the histograms and
nonparametric densities of unfolding forces obtained using data
fromD500 (Figure 5a),D500,1

ML (Figure 5b),D500,2
ML (Figure 5c), and

D500,3
ML (Figure 5d).
Regression. Resolving the distributions of unfolding forces

for Fg with SVMwas performed as in Case Study 2. We used the
Gaussian ansatz μ σ|f( , )i fj fj to approximate the pdfs of

unfolding forces. For each subset D500,1
SVM , D500,2

SVM , and D500,3
SVM

(transition types j = 1−3), we calculated the values of μf j and
σf j. These were substituted into theGaussian ansatz to obtain the
theoretical pdfs of unfolding forces for each transition type,

μ σ|f( , )i f f1 1 , μ σ|f( , )i f f2 2 , and μ σ|f( , )i f f3 3 , and the pdf for

w e i g h t e d s u p e r p o s i t i o n ,
π μ σ π μ σ π μ σ| + | + |f f f( , ) ( , ) ( , )i f f i f f i f f1 1 1 2 2 2 3 3 3 . T h e

weights πj were evaluated by dividing the number of data points
Mj for transition type j in subset D500,j

SVM by the total number of
data points in D500 (M500 = 15 023), πj = Mj/M500. The
theoretical pdf curves are compared with the histograms and
nonparametric densities of unfolding forces in Figure 5. We
obtained L1

1 = 0.03, L2
1 = 0.01, and L3

1 = 0.26 for the unfolding
transitions of types 1, 2, and 3 (Table 2).
EM regression was carried out as in Case Study 3. We used

EM to divide data in combined data set D500 into the unfolding
transitions of types 1−3. We tested EM algorithm for two cases:
with fixed prior probabilities, π1 = 0.29, π2 = 0.38, and π3 = 0.33,
and with variable prior probabilities (see Case Study 3). In the
latter, initial values of πjwere set to πj =Mj/M500, whereMj is the
number of data points in data sets D500,1

ML , D500,2
ML , and D500,3

ML for
transitions of types j = 1−3 obtained with maximum likelihood.
In both cases, we set initial values of μf j for transitions of type j to
be equal to positions of three highest bins in the histogram of
unfolding forces of combined data D500 (Figure 5), i.e., 61, 173,
and 207 pN, respectively; initial values of μxjwere set to be equal
to the peak-to-peak distances estimated from 3D histogram of

Table 2. Performance of SVM and EM in Describing 500 pN Experimental Unfolding Forces for Fg (Case Study 4)a

SVM method EM method

methods/quantities type 1 type 2 type 3 type 1 type 2 type 3

μf j, pN 77.8/98.0 132.6/124.0 288.8/164.0 136.9 (62.7)/71.2 239.9 (184.54)/125.0 358.6 (330.2)/282.3
σf j, pN 25.5/20.3 12.3/15.3 93.7/13.8 57.2 (16.0)/19.9 46.7 (58.6)/9.6 66.1 (89.6)/94.4
πj 0.14/0.29 0.06/0.38 0.80/0.31 0.29 (0.07)/0.11 0.38 (0.454)/0.07 0.31 (0.49)/0.82
Lj
1 0.03 0.01 0.26 0.33 (0.07) 0.45 (0.47) 0.70 (0.37)

aCompared unfolding transitions of types 1−3 in Fg are theoretical predictions for the average unfolding forces μf j, standard deviations σf j and prior
probabilities πj obtained with SVM and EM, and values of these quantities obtained from the experimental data (separated by the slash). For EM,
values of μf j, σf j, and πj obtained with fixed and variable (in parentheses) prior probabilities are compared with the same quantities obtained from
experiment (separated by the slash). Also shown are values of Lj

1-norm. For EM, values of Lj
1-norm obtained with variable prior probabilities are

shown in parentheses. The total error (L1-norm for combined dataset D500) is 0.27 for the SVM method, and it is 0.17 (0.13) for the EM method
with fixed (variable) prior probabilities. The following data sets were used: D500 (M500 = 15 023) and data sets D500,1

SVM (M500,1
SVM = 2165), M500,2

SVM (M500,2
SVM

= 913), D500,3
SVM (M500,3

SVM = 11 945), D500,1
ML (M500,1

ML = 1862), D500,2
ML (M500,2

ML = 3837), and D500,3
ML (M500,3

ML = 9324)
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bivariate data (not shown), which correspond to these forces,
i.e., 26, 22, and 27 nm, respectively. We set initial values of σf j to
be equal to σ / 2f for unfolding forces and σ / 2x for peak-to-
peak distances (σf = 115.7 pN and σx = 21.3 nm are obtained on
the basis of data from D500). The convergence of EM algorithm
was reached in 37 and 34 steps, respectively. Final values of πj, μj,
and σj obtained with EM are compared with actual values of
these quantities in Table 2. The histograms and nonparametric
densities p( f), p1( f), p2( f), and p3( f) for the combined data set
D500 and for data sets D500,1

ML , D500,2
ML , and D500,3

ML for transitions of
types j = 1−3 are compared in Figure 5 with the theoretical pdfs
o f unfo ld ing forces for weighted superpos i t ion
π μ σ π μ σ π μ σ| + | + |f f f( , ) ( , ) ( , )i f f i f f i f f1 1 1 2 2 2 3 3 3 for D500

(Figure 5e), μ σ|f( , )i f f1 1 for D500,1
ML (transition of type 1; Figure

5f), μ σ|f( , )i f f2 2 for D500,2
ML (type 2; Figure 5g), and

μ σ|f( , )i f f3 3 for D500,3
ML (type 3; Figure 5h). The theoretical

curves were derived using πj, μf j, and σf j obtained with EM
(Table 2). For fixed (variable) prior probabilities, we obtained
L1
1 = 0.33 (0.07), L2

1 = 0.45 (0.47), and L3
1 = 0.70 (0.37) for the

unfolding transitions of types 1, 2, and 3 (Table 2).
Case Study 5. Resolving Distributions of 30−200 pN

Unfolding Forces for Fgwith SVMand EM. Last, we applied
SVM and EM to resolve the distributions of unfolding forces for
Fg using the experimental unfolding data from combined data
set D200, which excludes the unfolding forces below 30 pN, due
to nonspecific interactions, and above 200 pN, which
correspond to several unfolding transitions that occur
simultaneously (Table SII).
Classification. SMV classification of unfolding force data for

Fg was performed using the results of simulations as described in
Case Study 4. The maximummargin classifier was based on data
from Dtrain and applied to data in D200. The results are displayed
in Figure 6, which compares the histograms and nonparametric
densities of unfolding forces for D200 (Figure 6a), and for data
setsD200,1

SVM (Figure 6b),D200,2
SVM (Figure 6c), andD200,3

SVM (Figure 6d)
for unfolding transitions of types 1−3. EM classification of
unfolding forces was performed using data sets Dsim,1, Dsim,2, and
Dsim,3 as described in Case Study 4. The nonparametric densities
p1( f), p2( f), and p3( f) for transitions of types 1−3 (Figure S2)
and maximum likelihood estimation were used to subdivide
combined data set D200 into subsets D200,1

ML , D200,2
ML , and D200,3

ML for
transitions of types 1−3. In Figure 6, the histograms and
nonparametric densities are compared with the theoretical pdfs
of unfolding forces for D200 (Figure 6a), and for D200,1

ML

(transitions of type 1; Figure 6b), D200,2
ML (type 2; Figure 6c),

and D200,3
ML (type 3; Figure 6d).

Regression. Resolving the distributions of unfolding forces
for Fg with SVM was performed as described in Case Study 4.

For each subsetD200,1
SVM,D200,2

SVM, andD200,3
SVM, we calculated the values

of μf j and σf j, which were substituted into the Gaussian ansatz to
obtain the theoretical pdfs of unfolding forces for transitions of
types j = 1, 2, and 3, μ σ|f( , )i f f1 1 , μ σ|f( , )i f f2 2 , and

μ σ|f( , )i f f3 3 , a n d f o r w e i g h t e d s u p e r p o s i t i o n

π μ σ π μ σ π μ σ| + | + |f f f( , ) ( , ) ( , )i f f i f f i f f1 1 1 2 2 2 3 3 3 , w i t h

the weights πj = Mj/M200 (M200 = 4572 and Mj is the number
of data points in subsets D200,1

ML , D200,2
ML , and D200,3

ML ). The
theoretical pdf curves are compared with the histograms and
nonparametric densities of unfolding forces in Figure 6, which
shows good agreement: L1

1 = 0.09, L2
1 = 0.05, and L3

1 = 0.12 for
the unfolding transitions of types 1, 2, and 3 (Table 3).
EM regression was carried out as described in Case Study 4.

We applied EM to divide data in combined data set D200. We
tested EM with fixed and variable prior probabilities; in the first
case, we set π1 = 0.29, π2 = 0.38, and π3 = 0.33; in the second
case, we varied πj starting from πj =Mj/D200. In both cases, we set
initial values of μf j for the unfolding transitions of types j = 1−3
to be equal to the positions of three highest bins in the histogram
of D200 (Figure 6), 59, 145, and 172 pN, respectively; initial
values of μxj were set to be equal to the peak-to-peak distances
estimated from the 3D histogram of bivariate data (not shown),
which correspond to these forces, i.e., 22, 36, and 30 nm,
respectively. We set initial values of σf j to be equal to σ / 2f for

unfolding forces and σ / 2x for peak-to-peak distances (σf =
47.7 pN and σx = 12.6 nm are based on data from D200). The
convergence of EM algorithm was reached in 30 and 28 steps,
respectively. Final values of πj, μf j, and σf j obtained with EM are
compared with the actual values of these quantities in Table 3.
The force histograms and nonparametric densities for combined
data set D200 and for subsets D200,1

ML , D200,2
ML , and D200,3

ML for the
transitions of types j = 1−3 are compared in Figure 6 with the
t h e o r e t i c a l p d f s o f u n f o l d i n g f o r c e s f o r
π μ σ π μ σ π μ σ| + | + |f f f( , ) ( , ) ( , )i f f i f f i f f1 1 1 2 2 2 3 3 3 (Figure

6e), μ σ|f( , )i f f1 1 (transition of type 1; Figure 6f),

μ σ|f( , )i f f2 2 (type 2; Figure 6g), and μ σ|f( , )i f f3 3 (type 3;

Figure 6h). The theoretical pdf curves were derived using πj, μf j,
and σf j obtained with EM (Table 3). For fixed (variable) prior
probabilities, the L1-norms were L1

1 = 0.14 (0.16), L2
1 = 0.35

(0.37), and L3
1 = 0.23 (0.22) for the unfolding transitions of

types 1, 2, and 3 (Table 3).

■ DISCUSSION
Over the past several decades, single-molecule spectroscopy has
become a powerful approach to explore the dynamic processes
that involve proteins at the single-molecule level of detail. A
number of experimental techniques, including AFM21−25 and

Table 3. Performance of SVM and EM in Describing 30−200 pN Experimental Unfolding Forces for Fg (Case Study 5)a

SVM method EM method

methods/quantities type 1 type 2 type 3 type 1 type 2 type 3

μf j, pN 74.5/98.0 127.1/124.0 172.6/164.0 65.3 (64.4)/70.9 136.7 (127.8)/124.7 177.7 (171.3)/170.4
σf j, pN 23.3/20.3 13.3/15.3 15.5/13.8 17.3 (16.8)/19.7 20.7 (15.2)/9.6 13.7 (17.1)/16.8
πj 0.38/0.29 0.19/0.38 0.33/0.31 0.29 (0.27)/0.35 0.38 (0.40)/0.18 0.33 (0.33)/0.47
Lj
1 0.09 0.05 0.12 0.14 (0.16) 0.35 (0.37) 0.23 (0.22)

aCompared for unfolding transitions of types 1−3 in Fg are theoretical predictions of the same quantities as in Table 2 obtained with SVM and EM
methods, but for the unfolding forces in the 30−200 pN range of forces. The total error (L1-norm for combined dataset D200) is 0.19 for SVM
method, and 0.15 (0.14) for EM with fixed (variable) prior probabilities. The following data sets were used: D200 (M200 = 4572) and data sets D200,1

SVM

(M200,1
SVM = 1691), D200,2

SVM (M200,2
SVM = 856), D200,3

SVM (M200,3
SVM = 1941), D200,1

ML (M200,1
ML = 1571), D200,2

ML (M200,2
ML = 808), and D200,3

ML (M200,3
ML = 2110).
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magnetic30−34 and optical tweezers,26−29 have been used by
researchers to subject proteins tomechanical forces and to probe
conformational transitions in proteins. The force-induced
extension of a polypeptide chain leads to an increase in the
restoring force, which results in the protein unraveling when the
applied force exceeds the limits of protein mechanical stability
and chain elongation, which in turn leads to a decrease in the
restoring force due to loss of tension. This process of the gradual
force increase followed by the sudden force drop is repeated over
again until all protein domains have become unfolded, which
results in a repeated sawtooth-like pattern of the unfolding force
as a function of the end-to-end distance. For example, in the FX
spectra for dimer (WW)2 (Figure 1), the force maxima
corresponding to the unfolding transitions of types 1 and 2 are
due to unraveling of the small loop (Thr29−Gly39) and the
large loop (Lys6−Ile28), respectively. In the FX spectra for Fg
monomer (Figure 2), the peak forces are due to unfolding
transitions in the left and right γ-nodules and elongation of the
coiled coils in the Fg molecule.
Meaningful interpretation of the results of single-molecule

experiments on biomolecules (RNA, DNA, and proteins)
remains challenging. In addition, due to the nonspecific events
that contribute to the force signal, the FX spectra show first and
last force peaks due to protein desorption from the substrate
and/or tip detachment. In experiments on complex multi-
domain proteins, such as fibrinogen oligomers (Fg)n, the
desorption peaks might appear in the middle portion of the
FX spectrum. The cantilever tip might pick up and desorb one
end of (Fg)n, then stretch and unfold a half of the (Fg)n chain,
and then desorb, stretch, and unfold the other half of (Fg)n.
Furthermore, several unfolding events might occur simulta-
neously (i.e., in one step), and so the FX spectra might display
force signals owing to several unfolding transitions (rather than
single transition). For example, the unfolding transitions of types
1 and 2 in dimer (WW)2 occur in the strongly overlapping∼30−
80 and ∼40−90 pN ranges of unfolding forces (see Figure S2),
and so these unfolding transitions might occur simultaneously.
Hence, it is difficult to extract the “physically relevant data” (due
to single unfolding transitions), from the “raw experimental
data”, which always includes a large amount of noise
(nonspecific interactions, protein desorption, tip detachment,
simultaneous unfolding events, etc.) using the experimental
force-extension spectra alone.
We tested several statistical modeling approaches to under-

standing the forced unfolding data based on Support Vector
Machines and ExpectationMaximization. SVM is widely used in
supervised data classification,49 whereas EM is broadly used in
unsupervised learning to describe a mixture of several
distributions. We proposed an approach, in which the results
of mechanical testing experiments in silico are used as training
data. Statistical models are, first, trained using the output from
the pulling simulations, and then applied to understand the
experimental data. In this context, “understanding experimental
data” includes (i) correctly assigning an observation (peak
force) to the type of unfolding transition it represents
(classification) and (ii) accurately resolving the distribution of
unfolding forces for each transition type (regression). On the
one hand, outputs from the simulations have a relatively small
size (from tens to a hundred of data points) because of a large
computational cost, but trajectories of forced protein unfolding
are free from noisy force signals discussed above. On the other
hand, the experimental single-molecule data are characterized by

a large sample size (thousands of data points), but the
experimental raw data are noisy.
Here, we carried out Case Studies 1−5, in which we compared

the accuracy of SVM- and EM-based methods in solving
classification and regression problems for the forced unfolding
data for proteins. We demonstrated that, although the
experimental and simulated force-extension data might disagree,
computer simulations can provide accurate information about
the types of unfolding transitions (e.g., prior probabilities for
unfolding transitions of types 1 and 2 for (WW)2, and types 1−3
for Fg) but might not be accurate in terms of the statistics of
unfolding forces (average forces and standard deviations).
Hence, results of computational molecular modeling can be
used as a good starting point to train statistical models and to
separate the unfolding data from noise. When the input from
computational molecular modeling is not available, single-
molecule forced unfolding experiments on proteins can be
complemented by the results from thermal unfolding assays or
analysis of structures of the protein in question. A good
understanding of the number and types of unfolding transitions
in proteins can be gathered by analyzing the differential scanning
calorimetry data in conjunction with the tertiary structure of
proteins available from the X-ray crystallography.
Although the distributions of unfolding forces are slightly

skewed and asymmetric, in Case Studies 1−5 carried out in this
work we assumed that the probability density functions of
unfolding forces can be described by the normal distribution

π μ σ∑ |f( , )j j i fj fj specified in terms of the prior probabilities πj
(weights), the average forces μf j, and the standard deviations σf j.
Our use of the normal distribution is fully justified for these
proof-of-concept studies, and the extension of the developed
formalism to describing asymmetric skewed distributions of
unfolding forces is possible, but beyond the scope of this work.
In addition, the EM algorithm converges rapidly numerically
when it is used in conjunction with the normal distribution
(∼10−20 steps). In Case Studies 2−5, we used the L1-norm to
quantify the difference between the “theoretical predictions”
(pdfs of unfolding forces) and the “actual data” (histograms and
nonparametric densities of unfolding forces). The L1-norm is an
upper-bounded metric, and it is widely used to compare a pair of
distributions. There are other ways to quantify the difference
between any two distributions, such as the L2-norm or KL
divergence, but these quantities do not have an upper bound.
Also, the L2-norm is dominated by contributions from large
values of a random variable (e.g., strong unfolding force signals).
In Case Study 1, we assessed the performance of SVMmethod

in data classification for (WW)2 and Fg (Figure 3) using only the
simulation data, because in the simulations we can associate the
unfolding events with the types of transitions they represent, and
so the SVM predictions can be tested to assess performance. In
Case Studies 2 and 3, we tested SVM and EM in a simpler
problem of characterizing the statistics of unfolding forces for
dimer (WW)2. Here, the unfolding data for the training and test
sets were extracted from the simulations. In Case Studies 4 and
5, we took a step further; we compared performance of SVM and
EM at describing the experimental unfolding data for Fg
monomer. Here, theoretical models were trained on the basis of
the unfolding data from the simulated FX curves; these models
were then applied to the unfolding data from the experimental
FX spectra. The other steps of SVM and EM algorithms were
same as in Case Studies 2 and 3. Because most of the
experimental data (∼90−95%) are noisy force signals and in
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order to increase the signal-to-noise ratio, in Case Study 4 for the
Fg monomer we analyzed the unfolding forces <500 pN and in
Case Study 5 we analyzed the unfolding forces in the 30−200
pN range. The unfolding forces >500 pN (Figure S3), which
correlate with the peak-to-peak distances >100 nm, are due to
protein desorption and/or cantilever tip detachment. The 100
nm distance is much longer than the average elongations of Fg
monomer due to unfolding transitions of types 1, 2, or 3 (Table
SII; see also ref 63). The unfolding force >200 pN, which
correlates with long extension >60 nm, corresponds to a
situation when several unfolding transitions in Fg monomer
occur simultaneously. Indeed, the 60 nm Fg extension is longer
than the sum of extensions for the unfolding transitions of types
1 and 2 (Table SII). Also, the unfolding forces <30 pN (Figure
S3) are due to weak nonspecific interactions.
The prior probability πj is the likelihood that a particular

unfolding transition corresponds to the transition of type j. This
quantity defines the weight of this transition type in an ensemble
of all observations. In experiment, some of the unfolding
transitions in a protein might not occur before protein
desorption from the substrate takes place. Also, different types
of unfolding transitions might not occur an equal number of
times due to cantilever tip detachment. For example, in the
simulations for dimer (WW)2 the unfolding transitions of type 2
almost always occur last. The unfolding transitions of type 3 in
Fg monomer is the last unfolding event, which occurs only after
the unfolding transitions of types 1 and 2 took place. Suppose
(WW)2 desorption and/or cantilever tip detachment takes place
right before the last unfolding transition of type 2 in (WW)2.
Then, the prior probabilities are π1 = 2/3 and π2 = 1/3 for the
unfolding transitions of types 1 and 2, respectively. Furthermore,
the strength of the desorption peak decreases as the length of a
protein fragment adsorbed on the substrate surface decreases,
and so for short protein fragments the strength of desorption
peak might become comparable with the strength of the
unfolding force. Hence, prior probabilities of observing the
unfolding transitions of different types may or may not be equal
to 1/J, where J is the total number of types of unfolding
transitions (i.e., J = 2 for (WW)2 and J = 3 for Fg). Therefore, in
Case Studies 4 and 5 we tested EM both with fixed and variable
prior probabilities πj.
SVM classification of the unfolding transitions for (WW)2 and

Fg (Case Study 1) showed that the maximal margin classifier
performs well even when the distributions of unfolding forces for
different types of transitions overlap (Figure S2). For Fg
monomer, errors are only ∼16−30% and the number of
misclassified data points is 2−5 for unfolding transitions of types
1−3. This is a good agreement given a small sample size (Mtrain =
47; Figure 3b). For (WW)2, the errors are 9−17%, but the
unfolding transitions of types 1 and 2 are characterized by the
strongly overlapping 37.4−77.8 and 42.6−82.2 pN force ranges,
respectively (Figure S2). The lower errors might be due to larger
sample size for (WW)2 compared to Fg. Given these overlapping
force ranges and small sample size of the training set (Mtrain =
200), 41 misclassified data points is a good achievement (Figure
3a). The errors are L1

1 = 0.24 and L2
1 = 0.39 for the unfolding

transitions of types 1 and 2 for (WW)2, and L1
1 = 0.14, L2

1 = 0.21,
L3
1 = 0.20 for the unfolding transitions of types 1, 2, and 3 for Fg.

We applied SVM tomap the distributions of unfolding forces for
(WW)2 (Case Study 2); here, we used maximal margin classier
to separate unfolding forces in the test set into the unfolding
transitions of types 1 and 2. The statistics of unfolding forces (πj,
μf j, and σf j) for the training data and test observations compare

well (Figure 4, panels a−c), and the errors are small: L1
1 = 0.07

and L2
1 = 0.09 (Table 1). We applied EM to map the

distributions of unfolding forces for (WW)2 (Case Study 3).
Here, we used nonparametric densities for the transitions of
types 1 and 2 from training sets, maximal likelihood estimation
to classify test observations, and EM optimization of πj, μf j, and
σf j. The statistics of unfolding forces (πj, μf j, and σf j) for training
and test observations show worse agreement (compared to
SVM; Figure 4, panels d−f), and the errors are larger: L11 = L2

1 =
0.2 (Table 1). In Case Study 4, SVM outperformed EM (Figure
5), and the errors were Lj

1 = 0.01−0.26 for SVM vs Lj
1 = 0.30−

0.70 for EM (Table 2). EM works better with variable prior
probabilities (Table 2). In Case Study 5, SVM outperformed
EM (Figure 6), and the errors were Lj

1 = 0.05−0.12 for SVM vs
Lj
1 = 0.14−0.37 for EM (Table 3). Comparing the errors in Case

Studies 4 and 5, EM performs better with variable prior
probabilities especially when noisy data are excluded.
The SVM- and EM-based approaches tested in Case Studies

2−5 require the total number of different types of unfolding
transitions J as an input. We remind that J = 2 for dimer (WW)2
and J = 3 for Fg monomer. When this information is available
from computational molecular modeling or other studies
(crystal structures, differential scanning calorimetry data),
both SVM and EM can be used with success to understand
the unfolding force data (Figures 4−6). Furthermore, when
experimental unfolding data contain more meaningful force
signals (due to protein unfolding) and less noise, SVM and EM
perform very well (Tables 2 and 3). The question is can one
develop an approach that uses a minimal input (prior
knowledge) from molecular modeling in silico or other studies?
This problem can be overcome by using an EM-based approach
described below, where only the total number of unfolding
transition types J is specified (no information about the force
ranges is necessary). In a simple implementation, one can set
initial values for the average unfolding forces μj for the unfolding
transitions of type j to be equal to the few largest experimental
unfolding forces. For example, from the force histogram for
(WW)2 dimer, the two largest forces are 62 and 59 pN (see
locations of the two tallest bins in Figure 4a). In many situations,
the force histograms for combined data sets reveal broad
unimodal distributions (as for dimer (WW)2; see Figure 4), or
bimodal or multimodal distributions (as for Fg monomer; see
Figures 5 and 6). For bimodal and multimodal shapes, selecting
initial values of the average forces μf j is simple; one can set μf1,
μf 2, ... for j = 1, 2, etc., to be equal to the force modes. Initial
values of the prior probabilities can be taken as πj = 1/J, and
initial values of the standard deviations σf j can be set to be equal
to σ / 2f (σf is the standard deviation for combined data set).

Case Study 6. Resolving Distributions of Unfolding
Forces without Data Classification and Data Division
into Training and Test Observations. We used the output
from the pulling simulations for dimer (WW)2 (Figure 1) and
for the Fg monomer (Figure 2) to mimic curated experimental
unfolding force data (rather than “raw experimental data”), but
now we apply EM directly to the unfolding forces from
combined data sets D(WW)2 for (WW)2 and DFg for Fg without
maximum likelihood classification. Here, we use visual
inspection of the shapes of experimental force histograms. We
tested EM algorithm with fixed and variable prior probabilities
for Fg. In the first case, we used fixed values π1 = 0.29, π2 = 0.38,
and π3 = 0.33, and in the second case, we varied the prior
probabilities starting from π1 = 0.29, π2 = 0.38, and π3 = 0.33. For
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(WW)2, we set initial values to π1 = 0.5 and π2 = 0.5. We set
initial values of μf j to be equal to the locations of the highest bins
in the force histogram for combined data sets (Figure 7): μf1 =
56 pN and μf 2 = 62 pN for (WW)2 (D(WW)2) and μf1 = 99 pN, μf 2
= 122 pN, and μf 3 = 144 pN for Fg (DFg). Initial values of μxj
were set to be equal to the peak-to-peak distances from the 3D
histogram of bivariate data (not shown) corresponding to these
forces: μx1 = 2.5 nm and μx2 = 5.8 nm for (WW)2 and μx1 = 35
nm, μx2 = 30 nm, and μx3 = 20 nm for Fg. Initial values of σf jwere
set to be equal to σ / 2f ,(WW)2 and σ / 2f ,Fg , where σf,(WW)2 =
8.2 pN and σf,Fg = 31.2 pN are the standard deviations for data
from D(WW)2 and DFg. In all cases, the convergence of EM
algorithm was reached in less than 20 steps. The histograms and
nonparametric densities for combined data sets D(WW)2 and DFg

are compared with the theoretical pdfs of unfolding forces for
weighted superposition, π μ σ∑ |f( , )j j i fj fj , and for each

transition type, μ σ|f( , )i fj fj , in Figure 7, which shows very

good agreement both for (WW)2 and Fg. The predicted values
of πj, μf j, and σf j are compared with actual values of these
quantities in Table 4. The errors for fixed (variable) prior
probabilities are L1

1 = 0.13 (0.14) and L2
1 = 0.13 (0.12) for

(WW)2 and L1
1 = 0.13 (0.15), L2

1 = 0.07 (0.10), and L3
1 = 0.08

(0.10) for Fg (Table 4). The agreement is very good both for
(WW)2 and for Fg notwithstanding the small sample size
(M(WW)2 = 100 and MFg = 82) and overlapping force ranges
(Figure S2). Hence, the EM-based approach described above
can be applied directly to the experimental data to resolve the
distributions of unfolding forces.

■ CONCLUSIONS

To conclude, we developed and tested SVM- and EM-based
approaches to statistical learning from single-molecule forced
unfolding experiments. We showed that results from molecular
modeling in silico can be used as a training set to construct the
maximal margin classifier (with SVM) or maximum likelihood
classifier (with EM). These can then be used to classify and
model the experimental unfolding forces. An input from the
computational molecular modeling is desirable for meaningful
interpretation of complex forced unfolding data characterized by
low signal-to-noise ratio. We also proposed a simple EM-based
approach (Case Study 6), which can be applied directly to the
experimental unfolding data. This approach uses information
about the number of unfolding transitions of different types
(available from the shape of experimental force histograms), but
it does not involve data classification and data division into
training and test observations. This approach performs well

when the sample size is small and unfolding transitions of
different types have overlapping force ranges. The developed
SVM- and EM-based methods can be implemented in a single-
molecule experimental setting to understand and model the
protein unfolding data.
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