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Abstract

Measurements achieved with ptychographic imaging are a special case of diffrac-
tion measurements. They are generated by illuminating small parts of a sample
with, e.g., a focused X-ray beam. By shifting the sample, a set of far-field
diffraction patterns of the whole sample are then obtained. From a mathemati-
cal point of view those measurements are the squared modulus of the windowed
Fourier transform of the sample. Thus, we have a phase retrieval problem for
local Fourier measurements. A direct solver for this problem was introduced by
Iwen, Viswanathan and Wang in 2016 and improved by Iwen, Preskitt, Saab and
Viswanathan in 2018. Motivated by the applied perspective of ptychographic
imaging, we present a generalization of this method and compare the different
versions in numerical experiments. The new method proposed herein turns out
to be more stable, particularly in the case of missing data.
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1. Introduction

Ptychography refers to a diffraction imaging technique which collects a num-
ber of diffraction patterns of an object in the far-field, where each pattern is
generated by illuminating a small subregion one at a time [1} [2 3] [4]. The se-
lection of the small and necessarily overlapping subregions is managed by using
a mask, or window, placed between the X-ray beam and the object. For every
shift of the mask, a diffraction pattern is recorded and the imaging task con-
sists of reconstructing the object function from this collection of measurements.
Since the measurement takes place in the far-field it is given as the squared
modulus of the windowed Fourier transform of the object. This, in particular,
results in a loss of the phase information of the signal. For the image formation
we therefore have to reconstruct the object function from phaseless localized
Fourier transform data. The imaging task in ptychography can thus be formu-
lated in mathematical terms as follows. For an unknown object modeled as a
complex-valued function f € L?(R?) supported on a compact set  C R? we
measure

y(r,w) = |FIf Towlw)|* = | FITE fw)()|, (1)

where w € L?(R?) is a compactly supported window function, T, f(z) = f(x—7)
is the translation operator with adjoint T f(x) = f(z+7), and F is the Fourier
transform defined as F f(w) = [5q f(x) e 2™ dz. We have to invert the non-
linear mapping f — y. Note that the latter formulation in more closely
represents the real experimental situation where the object is shifted instead
of the window. Of course, in concrete applications we are given only samples
{y(7¢,&k)} and the inversion problem has to be formulated in a fully discrete

regime. Discretization of on a grid {n/N :n=0,...,N — 1} leads to
yor = [(f, My Tyw)|?, (2)

where f = (f(0),..., f(N —1)T and w = (w(0),...,w(N —1))T € CV are

vectors containing the sampled values of the function f resp. w. The translation



operator Ty and modulation operator M), are acting on the entries of the vectors
by Ty f(n) = f(n—¢ mod N) resp. My f(n) = e*™"*/N f(n). They have obvious
matrix representations. Recovery of f from data (2 falls in the class of problems
where a vector « has to be recovered from data of the form |(z, ¢,,,)| with {¢,,,}
being a frame for CV. We are considering here the case where frame is given as
a discrete Gabor frame {M;Tyw} for k=0,...,K and £ € L C {0,...,N — 1}
with card(£) = L+ 1 for K, L < N — 1.

The general Phase Retrieval Problem has a long history and it was tackled in
many different ways and under various assumptions. We will make no attempt
to review these developments in detail here but refer to [5 [6] and references
cited there. Among the diverse techniques one method seems to be particularly
popular among practitioners. In the physics literature this method is known
as the Ptychographic Interative Engine (PIE), and is regarded as a standard
approach for image formation from ptychographic data within the physics com-
munity [7[8]. Mathematically this approach is an alternating projection method
which goes back to the work of Gerchberg and Saxton [9] and Fienup [10]. The
method projects alternately on the set which consists of functions with support
in Q and the set of functions which agree with the measurement [11]. The lat-
ter set is non-convex which makes the problem notoriously difficult to analyze
theoretically. Due to the non-convexity, the alternating projection method can
converge to a stationary point that differs from the true solution. Determining
a good starting point in general is also not easy and some attempts were made
to come up with a good initial guess, see for example [12] for a recent approach
in this regard.

The method we present in this paper is an adoption of a fast direct solver for
the phase retrieval problem as it was developed by Iwen et. al. in [13] [14].
The method is based on a lifting scheme as used in the PhaseLift algorithm [15]
which transforms the discretized non-linear problem into a linear problem
for the lifted variables ff*. After recovering some of the entries of the lifted
variables ff* the phase of the individual entries of f can be determined by

an angular synchronization approach. This finally results in the reconstruction



of the function f on the grid up to a global phase multiple provided that the
measurements are sufficiently informative.

In this paper we will demonstrate how to apply a new algorithm for phase
retrieval from short-time Fourier measurements to the concrete experimental
setup of ptychography. The paper is organized as follows. We state the Algo-
rithm in the Section [2| Here, we first introduce the 1D case and later give its
2D version. In Section [3| we demonstrate the method with numerical examples.

Finally, Section [4] concludes with a discussion of the proposed technique.

2. Phase Retrieval from Localized Fourier Measurements

2.1. Description of the Algorithm
Let f,w € L?(R%) be compactly supported functions. Without loss of gen-
erality we may assume supp(f) C [0,1]¢. The short-time Fourier transform of

f with window w is defined as
Vwf(r,w) = , f®)w(t —7)e 2™ dt = (f, M, Trw) 2 @ny, (3)
R

where Trw(t) = w(t — 1), Myw(t) = e*™“w(t) are the translation resp. mod-
ulation operator. We concentrate on the cases d € {1,2}. For clarity of pre-
sentation, we first restrict ourselves to the case d = 1. The case d = 2 will be
addressed in Subsection [2.2] For discretization let N € N and consider the grid
I'={n/N:n=0,...N —1}. Discretization of the Fourier integral in on
I' and subsequential evaluation of the resulting semi-discrete transform w.r.t. 7
on the grid T" leads to the fully discretized transform which can be considered
as a short-time Fourier transform on the cyclic group Zy. It is given as

Vi f(£, k) = aneZZN F)@(m = £) e N g ke Ty (@)

This can be expressed in a more condensed form as
1
wa(f, k) = N< fa MkTZw>(CN' (5)

where f, w € CV, T;f(n) = f(n — £ mod N), and My, f(n) = e*™"k/N f(n) as
already defined after . The scaling factor 1/N in is of no relevance for



our consideration and will therefore be neglected henceforth.
The reconstruction problem can now be formulated as follows. We have to

reconstruct the vector f from data
_ 2
ye,k:|<f7T€wk>CN| l k2077Ka€€£g{077N_1}3 (6)

with card(£) = L+ 1 and K,L < N — 1, where wy = Mjw is the modulation
of the vector of window w. We will henceforth assume that w is supported on
the first s entries, i.e., w(n) # 0 for 0 < n < s and 0 elsewhere.

These nonlinear measurements can be “lifted” to linear measurements on the

space of matrices as follows

(. Tewi)en | = (f, Tewr) e (f, Tewnyen = (Ff, Town(Trwn) us.  (7)

Here (-, -)gs is the Hilbert-Schmidt inner product (A, B) s = trace(A* B).
For X € CN*N we arrange the numbers (X, Tywy(Tyw)*) s as a vector in

CP for D = (K + 1) (L + 1) and define a linear operator A : CN*N — CP by

AX) = ((X, Té'a’k(TZ'a’k)*)HS)D

a=1’

a=k+1+0K+1) (8)

and we will call this operator the measurement operator as it coincides with the
vector of measurements if X = ff* according to @ The operator can not
be injective on CV*¥ when w is supported on the first s entries of N. But,
depending on the choice of w, it might be stably invertible if we restrict it to
the space

span{Tyw,w, T, : L€ L, k=0,..., K} = Prk. 9)

We denote the corresponding projection operator by Trx : CN*N — Pr . We
will refer to this operator as the tight projector. Let Apx = Alp,, be the
restriction of A to the space Prx. Depending of the choice of w, the matrix
of this linear operator with respect to the generating system {Tywrw;T} }ek is
a symmetric positive definite matrix. Hence, the operator is (stably) invertible

and we can determine X = Ty (ff”) from the data uniquely solving

Ave(X) =y, y=(Yer) (10)



since
Yer = (T (ff7), Towrwy T ) is- (11)

Note that for L = N — 1 we have
Prx =span{E,; : [i —j mod N| < s} =:Vj,

where the FE; ;’s constitute the standard basis of CN*N_ This case coincides
with the projection considered in [14]. We have dimVy = (2s — 1)N. Thus,
invertibility can only be achieved in general for K +1=2s—1. If L < N — 1,
Prx can not be expressed in terms of (L 4+ 1)(K + 1) standard basis vectors
E; ;. Therefore, the algorithm in [14] needs to be adapted in our context. In
Section [3| we will compare the two methods where we will refer to the projection
operator given in terms of E; ;’s in and as pattern projector Prx, since
the projector reflects the zero pattern generated by the support of the windows.

In order to determine an approximation of the vector f from X = Tp i (ff7)
we consider the representation Z of X in the standard basis. The amplitudes
can now be determined by taking the square-roots of the main-diagonal of Z.
To reconstruct the phases we can use the following angular synchronization
technique: Let z € CV with 2z, = |2,[e'®", let 2 := z/|z| = (e®"),, and define
Z:=2Z /|Z|, where the operations are considered elementwise for the non-zero
entries. The phases of z are then given by the first eigenvector of Z. In case of
L = N —1 it can be shown [16] that the reconstruction is exact. In other words,
up to a global phase shift, the phases of z coincide with the phases of f. For
L < N — 1 this process can be stabilized by considering the first eigenvector of
D~ 'Y2ZD7'/2. Here D is the degree matrix which is a diagonal matrix whose
diagonal entries coincide with the number of non-zero entries in the correspond-

ing row of Z (see [17] for more details).

The algorithm for recovering f from measurements y, ; consists of five steps

which can be summarized as follows.



Algorithm

Input: Measurements y = (yp1) € CP

Output: }' ~f

Compute X = A (y).

Calculate Z, the representation of X in the standard basis.

Form Z = Z/|Z|, normalizing non-zero entries of Z.

Ll

Compute the eigenvector z of zZ corresponding to the largest

eigenvalue.

5. Form }' via fr, = \/Znn Zn.

The crucial step of the algorithm is the first, i.e., we have to ensure by a
suitable choice of the window w that has a unique solution which can be
computed in a stable manner. In [13][14] it has been shown that this is the case
for the following choice for w:

(2s — 1)~ Ve /e p <,
we(n) = (12)
0, otherwise,
where a € [4,00). In the numerical examples we will call these exponential
windows (EW).

However, this window does not reflect the concrete experimental situation.
Closer to physical reality is a shape of the window function which is given by
an Airy function, i.e., w(t) = (J1(t)/t)? where J; is the Bessel function of first
order. Experiments show that a Gaussian function seems to be an acceptable
approximation to this type of window function (see, e.g., [3]). Further, the
Gaussian function should be () centered at the midpoint of the support and
(#4) normalized such that the norm coincides the number of photons in the ex-
periment denoted by n(p). Therefore, we propose to use the Gaussian windows
(GW) constructed as follows: we consider a Gaussian window function with nor-
malization c,,) such that (i7) is satisfied. To ensure (i), we choose the support

according to an a-quantile ¢, for some o € (0,1), i.e., the continuous window



function is given by wea (t) = cp(p) et/ X([~ta,ta]). By uniform sampling on

[—ta,ta] We get w with entries

t2 2

——2 = (2n—s+1)
2(s—1 2 (

Cp(p) € 26D forn <s

we(n) = (13)

0 forn > s
In Section [3| we will compare reconstructions using the exponential window

(EW) and Gaussian window (GW) as well as the use of the pattern projector

and tight projector for 2D data. Thus, we first give some remarks on the 2D

case.

2.2. The 2D Case

The discretization of for the case d = 2 uses the cartesian grid I' x I and
finally leads in an analogous manner as for the 1D case to

1

Vwf(l k) = el Z F(ny,me) w(ng — 0y, ng — by) e~ 2mikinthana) /N* 1)

n1,M2€ELN
with £ = (€1,42),k = (k1,k2) € Zn x Zn. Analogously to (5) we can express
this as

Vi (6 h) = <3 (F MTyW s, (15)

W = (w(nl,ng))Nfl € CN*N and with the

ni,n2=0

where F = (f(nl,ng))ii;jzzo,
usual convention that the translation resp. modulation operators are acting
entrywise. As in the 1D case we will ignore the factor 1/N? henceforth.

Following [1§], for the 2D case we make the assumption that the window function
w in separates w.r.t. the variables, i.e., w(t) = w(t1,t2) = u(t1)v(te).
We assume moreover that supp(u) = supp(v). Clearly, the Gaussian window
w(t) = e~ satisfies this assumption, but note that the Airy function does

not. With this assumption we have W = uv* with u,v € CV and, moreover,

M TW = (M, Ty, w) (M, Ty, v)*. In order to recover F' from measurements
2 2
Yo = [(F, Mi,W)us|” = (F, T,W)us| (16)

with Wy = MW we adapt the algorithm for the 1D case as follows. For
X € CVXN Jet X = vee(X) be its vectorization. Note that for X, Y € CN*N



we have (X,Y)ps = (X, ?>CN2' With this preparation it is now obvious how
to transfer the algorithm presented in Section [2.1]to the 2D case. Applying the

same lifting step as in @ we obtain
- ok T
Yor = <FF ,(TeWg) (Tng)*>HS (17)

where according to W = wv*, T,Wy, = (Ty, My, uw) (Tey M_j,v)*.

3. Numerical examples

We test the proposed method on simulated ptychographic data using the
object shown in Figure [l} For an easier comparison the color range of all plots
has been set to [0,1] for amplitudes and [—m, 7] for phases. However, keep
in mind that the phase is only reconstructed up to a global shift. For the
experiments we use an object size of 128 x 128 pixels and each pixel is about
30 x 30 nm. The size of the Fourier measurements per shift was chosen to
be 15 x 15 pixels, i.e., K = 15 frequencies in both directions. This coincides
to a window size of 8x8 pixels (s = 8 in each direction). To generate the
measurement data a Gaussian beam with main-focus over the support of the

window was simulated.

W |- z

=SZZ |
ol B °

7N

TN

Figure 1: Original amplitude (left) and original phase (right) of the simulated object

\
7]
7/

In a first experiment we reconstruct the object using all shifts of the window
function that fit into the 128x128 pattern of the object. Given a window size
of 8x8 pixels, this corresponds to L = 121 shifts for each dimension. Note that
this already differs from the setup given in [14] where also circulant shifts are

considered, i.e., L = N — 1 = 127. We compare the reconstruction quality



using the exponential window analyzed in [13| [14] against the Gaussian
window with o = 0.99, which more closely approximates experimental
setups. The results are shown in Figure [2l Since we do not consider circulant
shifts, both reconstructions show artifacts at the sides of the images. Because
the exponential window is not centered, these artifacts concentrate at the lower
and left side of the reconstruction. Moreover, the exponential window shows
strong artifacts especially in the phase of the reconstruction as it does not fit

the window form given in applications.

Figure 2: Reconstructed amplitude (left) and phase (right) using exponential window (top)

and Gaussian window (bottom)

In our next experiment we compare the proposed tight projector against the
pattern projector used in [14]. We already know that both projection spaces
coincide if all shifts are taken into account. Thus, we now consider the case
where only every x shift is used for the reconstruction. Therefore let 7/ be

the projector onto the subspace
span{Tywrw;Te,: £ =0,...,L, k=0,...,K},

and Pj the corresponding pattern projector. Note that the pattern projector

does not necessarily return Hermitian matrices as required for the angular syn-

10



chronization. Thus, the algorithm has to be extended to include an update step
Z < (Z+Z")/2. A careful analysis regarding this approximation with respect
to the phase retrieval problem was made by Iwen et.al. in [14].

For the experiment, we set L, K as above, and x = 4. The results are
illustrated in Figure|3] For both projectors a Gaussian window with a =
0.99 is used. As seen before, the reconstructed amplitude of both projectors
is similar. However, the phase reconstruction is much more stable using the
proposed tight projector. The pattern projector reconstruction shows strong

artifacts almost dominating the original phase.

Figure 3: Reconstructed amplitude (left) and phase (right) using the pattern projector (top)
and tight projector (bottom)

We verified these observations with extensive numerical experiments apply-
ing the reconstruction technique with both projectors using different window
functions. We simulated measurements of the object in Figure [I] using seven
different Gaussian windows. For the reconstruction we used four window func-
tions, one exponential window and three Gaussian windows that dif-
fer from the windows used for simulation. Figure [4] shows the mean squared
error (MSE) averaged over all 28 combinations. Here we define the MSE as

|F — F||%/N?. The original data has an amplitude range of [0.2,0.7], a phase

11



range of [0,7/2] and a Frobenius norm of ||F'||r = 65.31. Clearly, the tight pro-
jector leads to a much more stable technique. As was expected, when the shift
is equal to the support size of the windows (i.e., K = s = 8) both methods fail.
In Figure (4] the total error and the error considering only the reconstruction of
the phase is shown. The error in amplitude is not illustrated since it basically
coincides for both methods. Thus, the tight operator especially stabilizes the

phase reconstruction.

Total Error Error (Phase)
0.4
0.35 tight | ’ L6 tight R
7’
03 14 -~ 4 ,
.
1
& 028 o 12 ,
wn O I B
= 1
0.2 0.8 II
0415 0.6 !
0.4 [
0.1 -
_ -~ 02==___
2 2 4 6 8
shift x shift x

Figure 4: Reconstruction error using pattern and tight projector for different shift sizes .

Left: total error, right: phase error.

Next, we compare the reconstruction error of the tight projector for different
types of window functions. The mean squared error for different shift sizes k is
shown in Figure Here we used Gaussian windows with a« = 0.9,0.95,0.99
and an exponential window . We observe that the reconstruction is stable
up to a shift of Kk = s = 8 independent of the window. The clipped Gaussian
windows result in a smaller error since they more closely approximate the
ptychographic windows used to generate the measurements.

Note that some window functions, such as GW with a = 0.9, even seem to
perform better when not all shifts are taken into account. (Also compare the
results shown in Figure ) This is possibly due to the the hard cut-off of the
window function for small parameters o < 0.95 which appears to contribute to
Gibbs-like oscillations in the reconstructions. This effect appears to diminish

when the shift increases slightly.

12
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Figure 5: Reconstruction error for different types of window functions using the tight projector.

4. Conclusion

We presented a direct algorithm for ptychographic reconstruction for known
windows. We have shown numerically that using a window based on the normal
distribution results in good reconstructions even if the real window is not fully
known but is assumed to be approximately Gaussian. In addition, although
the algorithm was originally designed for reconstructions based on full circulant
shifts, i.e., L = N —1, we have also shown that our proposed modifications result

in good reconstructions of phase and amplitude when fewer shifts are used.

Acknowledgements

Mark Iwen was supported in part by NSF CCF 1615489. Rayan Saab was
supported in part by NSF DMS 1517204. Nada Sissouno acknowledges support
by the German Science Foundation (DFG) in the context of the Emmy-Noether-

Junior Research Group Randomized Sensing and Quantization of Signals and

Images (KR 4512/1-1).

References
References

[1] R. Hegerl, W. Hoppe, Dynamic theory of crystalline structure analysis

by electron diffraction in homogeneous primary wave field, Berichte der

13



[10]

Bunsen-Gesellschaft fiir physikalische Chemie 74 (1970) 1148.

J. M. Rodenburg, Ptychography and Related Diffractive Imaging Methods,
Advances in Imaging and Electron Physics, Elsevier 74 (2008) 87-184.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rdel, M. Wnsche,
T. Ullsperger, S. Nolte, J. Rahomki, K. Parfeniukas, S. Giakoumidis,
U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg,
E. C. Galtier, H. J. Lee, B. Nagler, C. G. Schroer, Perfect X-ray focusing
via fitting corrective glasses to aberrated optics, Nature Communications

8 (2017).
F. Pfeiffer, X-ray ptychography, Nature Photonics 12 (2018) 9-17.

D. R. Luke, Phase Retrieval. What’s New?, STAM SIAG/OPT Views and
News 25 (2017) 1-6.

Y. C. Eldar, N. Hammen, D. G. Mixon, Recent Advances in Phase Re-
trieval, IEEE Signal Processing Magazine 33 (2016) 158-162.

A. M. Maiden, J. M. Rodenburg, An improved ptychographical phase
retrieval algorithm for diffractive imaging, Ultramicroscopy 109 (2009)
1256-1262.

A. Maiden, D. Johnson, P. Li, Further improvements to the ptychographical
iterative engine, Optica 4 (2017) 736-745.

R. W. Gerchberg, W. O. Saxton, A practical algorithm for the determina-
tion of phase from image and diffraction plane pictures, Optik 35 (1972)
237-246.

J. R. Fienup, Reconstruction of a complex-valued object from the modulus
of its Fourier transform using support constraint, J. Opt. Soc. Am. A 4

(1986) 118-123.

14



[11]

[16]

[17]

[18]

H. H. Bauschke, P. L. Combettes, D. R. Luke, Phase retrieval, error reduc-
tion algorithm, and Fienup variants: a view from convex optimization, J.

Opt. Soc. Am. A 19 (2002) 1334-1345.

S. Marchesini, Y.-C. Tu, H.-T. Wu, Alternating projection, ptychographic
imaging and phase synchronization, Applied and Computational Harmonic

Analysis 41 (2016) 815-851.

M. A. Iwen, A. Viswanathan, Y. Wang, Fast Phase Retrieval from Local
Correlation Measurements 9 (2016) 1655-1688.

M. A. Iwen, B. Preskitt, R. Saab, A. Viswanathan, Phase retrieval from
local measurements: improved robustness via eigenvector-based angular
synchronization, Applied and Computational Harmonic Analysis (2018).

In press.

E. J. Cands, T. Strohmer, V. Voroninski, PhaseLift: Exact and Stable
Signal Recovery from Magnitude Measurements via Convex Programming,

Communications on Pure and Applied Mathematics 66 (2013) 1241-1274.

A. Viswanathan, M. Iwen, Fast angular synchronization for phase retrieval
via incomplete information, 2015. URL: https://doi.org/10.1117/12.
2186336. doii10.1117/12.2186336.

B. P. Preskitt, Phase Retrieval from Locally Supported Measurements,
Ph.D. thesis, UC San Diego, 2018.

M. Iwen, B. Preskitt, R. Saab, A. Viswanathan, Phase retrieval from local
measurements in two dimensions, in: Wavelets and Sparsity XVII, volume

10394, International Society for Optics and Photonics, 2017, p. 103940X.

15


https://doi.org/10.1117/12.2186336
https://doi.org/10.1117/12.2186336
http://dx.doi.org/10.1117/12.2186336

	1 Introduction
	2 Phase Retrieval from Localized Fourier Measurements
	2.1 Description of the Algorithm
	2.2 The 2D Case

	3 Numerical examples
	4 Conclusion

