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Abstract—We present an algorithm which is closely related

to direct phase retrieval methods that have been shown to

work well empirically [1], [2] and prove that it is guaranteed

to recover (up to a global phase) a large class of compactly

supported smooth functions from their spectrogram measure-

ments. As a result, we take a first step toward developing a

new class of practical phaseless imaging algorithms capable of

producing provably accurate images of a given sample after it

is masked by just a few shifts of a fixed periodic grating.

Index Terms—phase retrieval, phaseless imaging, spectro-

gram inversion, coded diffraction patterns, Short Time Fourier

Transform (STFT) magnitude measurements.

I. INTRODUCTION

Motivated by the plethora of phaseless imaging applica-
tions that involve the inversion of spectrogram measurements
(see, e.g., [3]), we consider the recovery of a smooth function
f : R ! C with support contained in [�⇡,⇡] from a finite
set of continuous spectrogram measurements of the form

Y!,` :=

����
Z 1

�1
f(x)m

✓
x�

2⇡

L
`

◆
� x!

dx

����
2

. (1)

Here m is a known trigonometric polynomial, and we use
d integer frequencies ! and L shifts 2⇡

L `. In this paper, we
present an algorithm that will reconstruct f , up to a global
phase multiple, by approximating the d lowest frequency
Fourier series coefficients of f restricted to [�⇡,⇡].

A. Notation

Let k � 4. Let d be odd and � be even with 4�  d.

Let ⇢  � be even, L divide d, and L = ⇢ +  for some
2    ⇢. For n odd, let [n]c :=

⇥
1�n
2 ,

n�1
2

⇤
\ Z be the

set of n consecutive integers centered at the origin, and let

⌦ := [d]c, B := [d� �]c and L := [L]c.

For vectors x and y, we let x � y and x
y be their compo-

nentwise product and quotient, and for ` 2 Z, we let S`

be the circular shift operator defined by (S`x)p = xp+` for
x = (xp)p2⌦ (where the addition p + ` is interpreted to
mean the unique element of ⌦ which is equivalent to p+ `

modulo d). We let Fd be the d ⇥ d Fourier matrix with
entries (Fd)i,j =

�2⇡ ij
d for i, j 2 ⌦, and similarly let FL

be the L⇥L Fourier matrix with indexes in L. We will use
C to denote an arbitrary constant which depends only on f

and m (and in particular does not depend on d).

B. Main Result

Let f : R! C be a C
k-smooth function, k � 4, with

supp(f) ✓ [�⇡,⇡].

For x 2 [�⇡,⇡], we will write f(x) as its Fourier series

f(x) =
X

n2Z

bf(n) nx
,

where bf(n) = 1
2⇡

R ⇡
�⇡ f(x)

� nx
dx. We will let

Dn := max
|n0�n|</2

| bf(n0)|,

and assume that Dn � Dn0 whenever |n|  |n
0
|.

Remark 1. Under this assumption, for all |a| < |n|, there

exists n
0

such that |a� n
0
| < /2 and | bf(n0)| � | bf(n)|.

Let m(x) be a trigonometric polynomial of the form

m(x) =

⇢/2X

p=�⇢/2

bm(p) px
, (2)

and let Y = (Y!,`)!2⌦,`2L be a d⇥ L matrix of measure-
ments with entries defined as in (1). The central focus of
this paper is Algorithm 1 which allows one to reconstruct
the signal f(x) from Y along with the following theorem
guaranteeing its convergence as d!1.

Theorem 1. Let µ be the mask dependent constant defined

below in (6). If µ > 0, then the output of Algorithm 1, fe(x),
satisfies

min
✓2[0,2⇡]

k
✓
f(x)� fe(x)kL2(�⇡,⇡)

C

 
⇢
1/2

�
1/4

µ1/2

✓
1

d

◆(k�3)/2

+

✓
1

d

◆(k�2)/2
!
.



Remark 2. By imitating the arguments of [8], Proposition

4.1, one may check that it is relatively simple to construct

masks such that µ is strictly positive.

C. Related Work

To the best of our knowledge, Algorithm 1 presented
here1 is the first numerical method theoretically guaranteed
to accurately recover a complex-valued function f as above
up to a constant phase multiple from STFT magnitude mea-
surements of the form (1). Perhaps the most closely related
result to ours is that of Thakur [4] who gives an algorithm
for the reconstruction of real-valued bandlimited functions
up to a global sign. Gröchenig [5] also considers/surveys
similar results in shift-invariant spaces. Other related work
includes that of Alaifari et al. [6] which proves (among other
things) that one can not hope to stably recover a periodic
function up to a single global phase using a trigonometric
polynomial mask of degree ⇢/2 as done below unless its
Fourier series coefficients do not vanish on any ⇢ consecutive
integer frequencies in between two other frequencies with
nonzero coefficients. This helps motivate the quantity Dn as
well as the assumption that Dn � Dn0 whenever |n|  |n

0
|.

See [7] for similar considerations in the discrete setting.

II. DISCRETIZATION

Let PBf be the partial Fourier series

PBf(x) :=
X

n2B

bf(n) nx
,

and let T := (T!,`)!2⌦,`2L denote the matrix of measure-
ments obtained by replacing f with PBf in (1), i.e.,

T!,` :=

����
Z ⇡

�⇡
PBf(x)m

✓
x�

2⇡

L
`

◆
� x!

dx

����
2

. (3)

Our method is based on showing that Y is well-
approximated by T and by representing PBf(x) and m(x)
with vectors x = (xp)p2⌦ and y = (yp)p2⌦ defined by

xp := PBf

✓
2⇡p

d

◆
and yp := m

✓
2⇡p

d

◆
.

We will also define u = (up)p2⌦ and v = (vp)p2⌦ by

up := bf(p) p2B and vp := bm(p) |p|⇢/2, (4)

where p2B and |p|⇢/2 are standard indicator functions.
We note that the Fourier transforms of x and y satisfy

Fdx =: bx = du and Fdy =: by = dv. (5)

Let µ be a mask-dependent constant defined by

µ := inf
d�⇢

min
|p|<,q2⌦

|Fd (v � Spv)q)| =: inf
d2N

µd. (6)

1Numerical results available at https://bitbucket.org/charms/blockpr

We note that in light of (5) we have

⌫d := min
|p|<,q2⌦

���Fd

⇣
by � Spby)q

⌘��� = d
2
µd � d

2
µ. (7)

The following lemma shows that the integral in (3) can be
replaced by a discrete sum. It is proved by expanding PBf

and m as trigonometric polynomials and using the fact that

2⇡
X

p2⌦

2⇡ pj/d = d

Z ⇡

�⇡
e

jx
dx 8j 2 ⌦.

Lemma 1. Let ` 2 L, ! 2 ⌦, and let è= 2⇡`
L . Then,

Z ⇡

�⇡
PBf(x)m

⇣
x� è

⌘
� x!

dx =
2⇡

d

X

p2⌦

xpyp�` d
L

�2⇡ !p/d
.

We may use Lemma 1 to prove the following result which
shows that T converges to Y as d!1.

Lemma 2. Let E := Y �T. Then

kEk1  C⇢

✓
1

d

◆k

, and (8)

E!,` = 0 whenever |!| 
d� 1

2
� �. (9)

Proof. For ! 2 ⌦ and ` 2 L, let

M!,` :=

Z ⇡

�⇡
f(x)m

✓
x�

2⇡

d
`

◆
� x!

dx, and

U!,` :=

Z ⇡

�⇡
PBf(x)m

✓
x�

2⇡

d
`

◆
� x!

dx.

It suffices to show that

|U!,`|  C (10)

and |E
0
!,`|  C⇢

✓
1

d

◆k

. (11)

Then, letting E
0
!,` := M!,` � U!,`, we will have

|E!,`| = ||M!,l|
2
� |U!,l|

2
|

= (|M!,l|+ |U!,l|)||M!,l|� |T!,l||

 (2|U!,l|+ |E
0
!,l|)|E

0
!,l|

 C

 
1 + ⇢

✓
1

d

◆k
!
⇢

✓
1

d

◆k

 C⇢

✓
1

d

◆k

.

Since m(x) is a trigonometric polynomial, we see

kyk1  kmk1  C,

and since f is C2-smooth and compactly supported, we have

kxk1  kPBfk1 
X

n2Z
| bf(n)|  C.

Therefore, using Lemma 1, we see that

|U!,l| =

������
2⇡

d

X

p2⌦

xpyp�` d
L

�2⇡ !p/d

������
 C, (12)



and so (10) follows. To prove (11), we note that

f(x)� PBf(x) =
X

n/2B

bf(n) nx
,

and therefore

E
0
!,l =

Z ⇡

�⇡
(f(x)� PBf(x))m

✓
x�

2⇡`

L

◆
� !x

dx

=
X

n/2B

⇢/2X

p=�⇢/2

bf(n)bm(p) � 2⇡ p`
L

Z ⇡

�⇡

(n+p�!)x
dx.

The inner integral is zero unless ! = n+ p. Therefore,

|E
0
!,l|  2⇡

X

n/2B,|!�n|⇢/2

��� bf(n)
��� |bm(! � n)|

 2⇡ sup
n/2B

n
| bf(n)|

o
⇢ sup
|n|⇢/2

|bm(n)|

 C⇢

✓
1

d

◆k

,

where we used the facts bf(n) = O(n�k) and that n >
d
4

for all n /2 B. This proves (8). Equation (9) follows from
noting that the condition ! = n + p can never hold when
n /2 B, |!| 

d�1
2 � � and |p|  ⇢/2. ⇤

III. WIGNER DECONVOLUTION

In this section, we apply a discrete, aliased Wigner de-
convolution approach, similar to Section 3 of [8], to solve
for a portion of the Fourier autocorrelation matrix bxbx⇤

. It
follows from (12) that

T!,` =
4⇡2

d2

������

X

p2⌦

xpyp�` d
L

�2⇡ !p/d

������

2

.

Up to a scaling factor of 4⇡2
/d

2, these measurements
coincide with the measurements considered in [8].

Let eT := FLTTFd
T
, and let eE := FLETFd

T
. Since

1p
d
Fd and 1p

L
FL are unitary, we may use Lemma 2 to see

keEkF 
p

dLkEkF 
p

2d�LkEk1  CL⇢�
1/2

✓
1

d

◆k�1/2

.

(13)
It follows from Theorem 4, Equation 3.2, of [8] that

eT`,! �
eE`,! =

4⇡2
L

d4

X

p2[ d
L ]c

⇣
Fd

⇣
bx � SpL�`bx

⌘⌘

!

⇣
Fd

⇣
by � S`�pLby

⌘⌘

!
,

where, as in Section I, (S`x)p = xp+` for all ` 2 Z. By
construction, we have that supp(by) ✓ [⇢+ 1]c . Therefore,
if 1�   `  � 1, we may use the same reasoning as in
the proof of Lemma 10 of [8], to see that by � S`�pLby = 0
except for when p = 0. Therefore,

eT`,!�
eE`,! =

4⇡2
L

d4

⇣
Fd

⇣
bx � S�`bx

⌘⌘

!

⇣
Fd

⇣
by � S`by

⌘⌘

!
.

Changing variables `! �` we see that

⇣
Fd

⇣
bx � S`bx

⌘⌘

!
=

d
4

4⇡2L

 
eT�`,! �

eE�`,!

(Fd(by � S�`by))!

!
,

and so

bx � S`bx =
d
4

4⇡2L
Fd

�1

 
eT�` �

eE�`

(Fd(by � S�`by))

!
, (14)

where Mj denotes the j-th column of a matrix M and we
define vector division componentwise.

Let T : Cd⇥d
! Cd⇥d be the restriction operator

T(M)ij =

(
Mi,j if |i� j| < 

0 otherwise
.

We may rewrite (14) in matrix form as

T(bxbx⇤) = X+N, (15)

where the matrix X = (Xi,j)i,j2⌦ has entries defined by

Xi,j =

8
<

:

d4

4⇡2L

⇣
Fd

�1
⇣ eTi�j

(Fd(by�Si�jby))

⌘⌘

i
if |i� j| < 

0 otherwise
,

(16)
and N is defined similarly using eE in place of eT. Let R =
(Ri,j)i2⌦,j2[2�1]c be the d⇥ (2� 1) matrix with entries
Ri,j = Ni,i+j so that the columns of R are the diagonal
bands of N within  of the main diagonal. By (7), we may
bound the `

2-norm of each column of R by

kRjk2 =

�����
d
4

4⇡2L
Fd

�1

 
eE�j

(Fd(by � S�jby))

!�����
2


d
7/2

4⇡2L⌫d
keE�jk2 

d
3/2

4⇡2Lµ
keE�jk2.

Since N is a banded matrix, (13) implies

kNkF = kRkF 
d
3/2

4⇡2Lµ
keEkF  C

⇢�
1/2

µ

✓
1

d

◆k�2

.

(17)
Dividing both sides of (15) by d

2, using (5), and applying
the Hermitianizing operator H(M) = 1

2 (M+M⇤) yields

T(uu
⇤) = A+ eN. (18)

where A = d
�2

H(X), and fN := d
�2

H(N). By (17), and
the triangle inequality, we have

kfNkF  C
⇢�

1/2

µ

✓
1

d

◆k

. (19)

IV. ANGULAR SYNCHRONIZATION

In this section, we will use a greedy angular synchroniza-
tion approach to recover the Fourier coefficients of f. For
each n 2 B, the greedy algorithm, Algorithm 2, outputs a



sequence {n`}
b
`=0 where n0 = argmaxn2B an and nb = n.

Given that sequence, we let

↵n :=
b�1X

l=0

arg
�
An`+1,n`

�
.

To understand this definition, let

✓0 := arg( bf(n0)) and ⌧n :=
b�1X

l=0

arg
�
(uu⇤)n`+1,n`

�
.

Then, we have ⌧n = arg
⇣
bf(n)

⌘
� ✓0, and therefore

� ✓0 bf(n) = | bf(n)|ei⌧n

for all n 2 B. (Note that n0 does not depend on n.) Since
A is a noisy approximation of uu⇤

, we intuitively view
↵n as a noisy approximation of ⌧n (up to a phase shift ✓0).
Lemma 3 will show that this intuition is correct when | bf(n)|
is sufficiently large. Due to [9, Lemma 3], for all n 2 B we
have ���

q
|An,n|� | bf(n)|

���
2
 3kfNk1. (20)

Therefore, we set an :=
p
|An,n| and define the output of

Algorithm 1 to be the trigonometric polynomial

fe(x) :=
X

n2B
an

↵n nx
.

The following lemma shows that ↵n is indeed a good
approximation of ⌧n when | bf(n)| is sufficiently large. Its
proof is nearly identical to the proof of [9, Lemma 4], but
uses Lemma 4 stated below in place of the “flat vector”
condition considered there.

Lemma 3. Let Lf be the set

Lf = {n 2 B : | bf(n)|2 � 48kfNk1}.

Then, for all n 2 Lf

|
⌧n �

↵n | 
2⇡dkfNk1
| bf(n)|2

.

As mentioned above, the key to modifying the proof of
[9, Lemma 4] in order to prove Lemma 3 is the following
lemma, which shows that Algorithm 2 will only select entries
n` corresponding to large Fourier coefficients.

Lemma 4. Let n 2 Lf , and let {n`}
b
`=0 be the sequence

output by Algorithm 2. Then,

| bf(n`)| �
| bf(n)|

2
for all 0  `  b.

Proof. When ` = b, the claim is immediate. For 0  ` 

b� 1, we have an` = maxm2I` am for some interval I` of
length 2, which is centered at some |a|  |n|. Therefore,

letting ✏ =
q
3kfNk1, we see that by (20) and Remark 1,

| bf(n`)| � max
m2I`

am � ✏ � max
m2I`

| bf(m)|� 2✏ � | bf(n)|� 2✏.

The result follows by noting that ✏ < | bf(n)|
4 for n 2 Lf .⇤

Together, (20) and Lemma 3 allow us to prove the
following lemma showing that fe(x) approximates PBf(x).

Lemma 5. The output of Algorithm 1 satisfies

��� � ✓0PBf(x)� fe(x)
���
L2(�⇡,⇡)

 C d
3
2

q
kfNk1.

Proof. Recall the vector u defined in (4) and, for n 2 ⌦,
let

u
0
n := an

↵n and u
00
n := |un|

↵n .

By construction, for all n /2 B we have an = un = 0. There-
fore the supports of u0 := (u0

n)n2⌦ and u00 := (u00
n)n2⌦ are

contained in B. By Parseval’s identity, we see
��� � ✓0PBf(x)�

X

n2B
an

↵n nx
���
L2(�⇡,⇡)

=
��� � ✓0

X

n2B
un

nx
�

X

n2B
u
0
n

nx
���
L2(�⇡,⇡)


p
2⇡
�� � ✓0u� u0��

`2


p
2⇡
�� � ✓0u� u00��

`2
+
p
2⇡ku00

� u0
k`2

=:I1 + I2.

Using Lemma 3 and the fact that | ⌧n� ↵n |  2, we have

I
2
1 = 2⇡

X

n2B
|un|

2
|

⌧n �
↵n |

2

 C

X

n2B\Lf

|un|
2 + C

X

n2Lf

d
2
kfNk21 | bf(n)|�2

 C d kfNk1 + C

X

n2Lf

d
2
kfNk1

 C d
3
kfNk1.

To estimate I2, we recall (20) and note

I
2
2 = 2⇡

X

n2B

���|un|� an

���
2
 CdkfNk1. ⇤

We now use Lemma 5 as well as the uniform convergence
of the partial Fourier series PBf to prove Theorem 1.
Proof. [The Proof of Theorem 1] By the triangle inequality,

min
✓2[0,2⇡]

�����
✓
f(x)�

X

n2B
an

↵n nx

�����
L2(�⇡,⇡)

 kf � PBfkL2(�⇡,⇡)

+
��� � ✓0PBf(x)�

X

n2B
an

↵n nx
���
L2(�⇡,⇡)

,

where ✓0 = arg( bf(n0)). By (19) and Lemma 5, we have

��� � ✓0PBf(x)� fe(x)k2  C
⇢
1/2

�
1/4

µ1/2

✓
1

d

◆(k�3)/2

.



To bound the first term we see that by Parseval’s identity,
the fact that d > 4�, and the fact that | bf(n)| = O(d�k)

kf � PBfk
2
2 = 2⇡

X

n/2B

| bf(n)|2  C

X

n� d
4

1

n2k
 C

1

d2k�1
.⇤

Algorithm 1 Wigner Deconvolution and Angular Syn-

chronization for Bandlimited Masks

Inputs

1) Matrix Y = (Y!,`)!2⌦,`2L of spectogram
measurements defined as in (1).

2) Trigonometric polynomial mask of the form (2).
Steps

1) Define vector y = (yp)p2⌦ by yp = m
� 2⇡p

d

�
.

2) Let  = L� ⇢, and for 1�   `  � 1 estimate

Fd

⇣
bx � S`bx

⌘
⇡

d
4

4⇡2L

 
(FLYTFd

T )�`

(Fd(by � S�`by))

!
.

3) Invert the Fourier transforms above to recover esti-
mates of the vectors bx � S`bx.

4) Organize these vectors into a banded matrix, X de-
scribed as in (16).

5) Hermitianize X and divide by d
2 to obtain the matrix

A = (Ai,j)i,j2⌦ as described in (18).
6) Estimate | bf(n)| ⇡ an =

p
|An,n|.

7) For n 2 B, choose {n`}
b
`=0 according to Algorithm 2.

8) Approximate

arg
⇣
bf(n)

⌘
⇡ ↵n =

b�1X

`=0

arg
�
An`+1,n`

�
.

Output

An approximation of f given by

fe(x) =
X

n2B
an

↵n nx
.

.

V. FUTURE WORK

The work here shows that, under suitable regularity as-
sumptions, we may recover a continuous signal f(x) from
a d⇥ L matrix of phaseless measurements. We believe that
this paper naturally opens up several research directions for
future work. Firstly, one might replace the assumption that
m(x) is a trigonometric polynomial with the assumption
that m(x) is compactly supported in space. This would lead
to a measurement setup closely related to ptychographic
imaging. Also, in [8], it is shown that in the discrete setting,
a discrete Wigner deconvolution approach can be applied
to a K ⇥ L measurement matrix for some K < d and
that this approach is robust to additive noise. It is likely

Algorithm 2 Greedy Entry Selection

Inputs

1) Vector of amplitudes a = (an)n2⌦, an =
p

|An,n|.

2) Entry n 2 B.

Steps

1) Choose n0 = argmaxn2B an.
2) Let b = 0.
3) While: |n� nb| > /2
4) If: n > nb, let nb+1  argmaxnb<m<nb+ am

5) If: n < nb, let nb+1  argmaxnb�<m<nb
am

6) b b+ 1
7) nb  n

Output

A sequence {n`}
b
`=0, |n`+1 � n`| < /2, nb = n, b  d.

that analogous techniques can be applied in the continuous
setting when the matrix Y is subsampled in frequency and
corrupted by additive noise. Lastly, one might also extend
these results to functions of two variables f(x, y).
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