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Abstract—We present an algorithm which is closely related
to direct phase retrieval methods that have been shown to
work well empirically [1], [2] and prove that it is guaranteed
to recover (up to a global phase) a large class of compactly
supported smooth functions from their spectrogram measure-
ments. As a result, we take a first step toward developing a
new class of practical phaseless imaging algorithms capable of
producing provably accurate images of a given sample after it
is masked by just a few shifts of a fixed periodic grating.

Index Terms—phase retrieval, phaseless imaging, spectro-
gram inversion, coded diffraction patterns, Short Time Fourier
Transform (STFT) magnitude measurements.

I. INTRODUCTION

Motivated by the plethora of phaseless imaging applica-
tions that involve the inversion of spectrogram measurements
(see, e.g., [3]), we consider the recovery of a smooth function
f : R — C with support contained in [—7, 7| from a finite
set of continuous spectrogram measurements of the form

| [ rom o)

Here m is a known trigonometric polynomial, and we use
d integer frequencies w and L shifts %’Té. In this paper, we
present an algorithm that will reconstruct f, up to a global
phase multiple, by approximating the d lowest frequency
Fourier series coefficients of f restricted to [—m, 7].
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A. Notation

Let £ > 4. Let d be odd and ¢ be even with 4§ < d.
Let p < § be even, L divide d, and L = p + k for some
2 < k < p. For n odd, let [n]. = [152%, %51] NZ be the
set of m consecutive integers centered at the origin, and let

Q:=[d. B:=[d—90]. and L :=[L].

For vectors x and y, we let x oy and 3 be their compo-
nentwise product and quotient, and for ¢ € Z, we let Sy
be the circular shift operator defined by (S;x), = zp4¢ for
X = (xp)pen (where the addition p + ¢ is interpreted to
mean the unique element of {2 which is equivalent to p + ¢

modulo d). We let Fgq be the d X d Fourier matrix with
entries (Fgq);; = e =5 fori,j € Q, and similarly let Fy,
be the L x L Fourier matrix with indexes in £. We will use
C to denote an arbitrary constant which depends only on f
and m (and in particular does not depend on d).

B. Main Result
Let f : R — C be a C*-smooth function, k > 4, with

[—7, 7.

supp(f) C

For x € [—m,n], we will write f(x) as its Fourier series

=Y jn)

nna:

neZ
where f(n) = = |7 flz)e " dz. We will let
D, = ma f(n),
\n’—n\?fc/2|f( )|

and assume that D, > D, whenever |n| < |n/|.

Remark 1. Under this assumption, for all |a| < |n|, there

exists n' such that la —n'| < k/2 and | f(n')| > |f(n)].
Let m(z) be a trigonometric polynomial of the form

p/2 _
> et ©)

p=—p/2

m(x) =

and let Y = (Y, ¢)weneec be a d x L matrix of measure-
ments with entries defined as in (1). The central focus of
this paper is Algorithm 1 which allows one to reconstruct
the signal f(x) from Y along with the following theorem
guaranteeing its convergence as d — oo.

Theorem 1. Let 11 be the mask dependent constant defined
below in (6). If u > 0, then the output of Algorithm 1, f.(x),
satisfies
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Remark 2. By imitating the arguments of [8], Proposition
4.1, one may check that it is relatively simple to construct
masks such that p is strictly positive.

C. Related Work

To the best of our knowledge, Algorithm 1 presented
here! is the first numerical method theoretically guaranteed
to accurately recover a complex-valued function f as above
up to a constant phase multiple from STFT magnitude mea-
surements of the form (1). Perhaps the most closely related
result to ours is that of Thakur [4] who gives an algorithm
for the reconstruction of real-valued bandlimited functions
up to a global sign. Grochenig [5] also considers/surveys
similar results in shift-invariant spaces. Other related work
includes that of Alaifari et al. [6] which proves (among other
things) that one can not hope to stably recover a periodic
function up to a single global phase using a trigonometric
polynomial mask of degree p/2 as done below unless its
Fourier series coefficients do not vanish on any p consecutive
integer frequencies in between two other frequencies with
nonzero coefficients. This helps motivate the quantity D,, as
well as the assumption that D,, > D,,, whenever |n| < |n/|.
See [7] for similar considerations in the discrete setting.

II. DISCRETIZATION

Let Pgf be the partial Fourier series

Pef(a) =3 Fn)ei,

nenB
and let T = (T}, ¢)weq cec denote the matrix of measure-
ments obtained by replacing f with P f in (1), i.e.,

2

ij = ‘/ﬂ— PBf(l‘)m <I’ — 2[7;-6) ®7imwd;p (3)

Our method is based on showing that Y is well-
approximated by T and by representing Pgf(x) and m(z)
with vectors x = (2,)pen and y = (y,)peq defined by

27 27
zp = Pgf <dp> and  y,=m (dp> .

We will also define u = (up)peq and v = (vp)peq by

o~

up = f(p)lpep and

vp = m(p)Ljpi<prz, 4

where 1,¢5 and 1),<,/2 are standard indicator functions.
We note that the Fourier transforms of x and y satisfy

Fagx=X=du and Fay =y =dv. 5)
Let 1 be a mask-dependent constant defined by

@ = inf min

F v =: inf pg.
2 p|omaen |Fq(vo Spv)q)| éIElN Hd (6)

"'Numerical results available at https://bitbucket.org/charms/blockpr

We note that in light of (5) we have
‘Fd (? © Sp?)q)

The following lemma shows that the integral in (3) can be
replaced by a discrete sum. It is proved by expanding Py f
and m as trigonometric polynomials and using the fact that

.y

PEN -

=dPpg > d?p. (7

min
[p|<r,q€Q

Vg =

™ ..
eVrdx

Vj € Q.

Lemma 1. Let £ € L, w € 2, and let (= QT”Z. Then,

T

—irw 2m —2miw
Plgf(l‘)m(l‘—Z)(B dxz;%xpyp_g%qa 2miwp/d,
pe

—T

We may use Lemma 1 to prove the following result which
shows that T converges to Y as d — oo.

Lemma 2. Let E =Y — T. Then

k
1
Bl <cp(y) o o ®
d—1
E, =0 whenever |w| < —5 = o. 9)

Proof. For w € Q and ¢ € L, let

My = fl@)ym (x - 2;6) e ™ dr, and

T 2 .
Upy = / Paf(x)m (:g _ ;£> e g,
It suffices to show that

|Uw7€‘ S C

k
1
and |E, | < Cp (d) :

Then, letting E:J,[ = M, ¢ — Uy, we will have

(10)

(1D

Bl = [|Moa|* = Ui |
= (|Mo| + [Uo DI Me,i
< 2Uua| + 1B, DIEL,|

o(ieo(3))oG)
08

Since m(x) is a trigonometric polynomial, we see

= |Toall

[¥lloe < [[mllee < C,

and since f is C2-smooth and compactly supported, we have
%[00 < 1P flloo <> 1F(n)] < C.
nez
Therefore, using Lemma 1, we see that

2 —2miwp/d
Uil = gzﬂwpyp,g%ﬂe 2mivp/d) < 0 (12)
pe



and so (10) follows. To prove (11), we note that

f(z) = Psf(x) =" fn)

ng¢B

nnw

and therefore

Li= [ (@) = Pafa)m (m— ) et

p/2 Camipe [T
-5 8 e [ g,
n¢Bp=—p/2 -

The inner integral is zero unless w = n + p. Therefore,
ngB,lw—n|<p/2

<2rswp {|fm)l}p sup_[(n)|
n¢nB

[n|<p/2
k
1

where we used the facts f(n) = O(n=*) and that n > ¢
for all n ¢ B. This proves (8). Equation (9) follows from
noting that the condition w = n + p can never hold when
né¢B, |w <4t —6and |p| < p/2. O

Bl < 2 )| i = )|

III. WIGNER DECONVOLUTION

In this section, we apply a discrete, aliased Wigner de-
convolution approach, similar to Section 3 of [8], to solve
for a portion of the Fourier autocorrelation matrix Xx*. It
follows from (12) that

4 2
wa z

_ § —2miwp/d
L= d2 l‘pyp_g%(B

pEN

Up to a scaling factor of 47%/d?, these measurements
coincide with the measurements considered in [8].

Let T = FLTTFd , and let E = FLETFd Since
ﬁFd and ﬁFL are unitary, we may use Lemma 2 to see

_ 1\ k172
1Bl < VAL|B|r < VIBLIE|. < CLps"? (d) .

(13)
It follows from Theorem 4, Equation 3.2, of [8] that
f&w - E&w =
4772L —~ = ~ =
LS (Ra(5o8)(Ra 50500
re(£],

where, as in Section I, (S¢x), = Xpye for all £ € Z. By
construction, we have that supp(y) C [p + 1].. Therefore,
if 1 —x < /¢ < k-1, we may use the same reasoning as in
the proof of Lemma 10 of [8], to see that y o Sg_pL§ =0
except for when p = 0. Therefore,

~ 4m?L

Te,w—EE,w — —i (Fd (xo S_ ZX))w (Fd (? o Sé?))w

Changing variables ¢ — —¢ we see that
o = d* [ Tt — By,
(rao55), = 2 (e
w  ATL\ (Fa(y 0 S-¥))w

and so
- (Tf —B ) . a4
(Fa(yoS_sy))

where M; denotes the j-th column of a matrix M and we
define vector division componentwise.

d4

RO SX = papFa

Let T), : C™?4 — C%*? be the restriction operator
My ifli—jl <&
T.(M)y; =4 " . :
0 otherwise

We may rewrite (14) in matrix form as

T.(XX*) = X + N, (15)

where the matrix X = (X ;); jen has entries defined by

-1 T, e
X = T (Fd ((Fd@osiﬁ))))i it =gl <n

,J . ’
0 otherwise

(16)
and N is defined similarly using E in place of T.Let R =
(Ri j)icq.jezr—1]. be the d x (2k — 1) matrix with entries
R;; = N;it; so that the columns of R are the diagonal
bands of N within x of the main diagonal. By (7), we may
bound the ¢2-norm of each column of R by

d* E_;
IRjll2 = |-+ Fa ™' | ===
’ Am?L (Fa(yoS—3) ) ||,
A7/ - 3/2
< E_ills < ——|E_|2.
< Lo, Bl < 47TQLMII ill2

Since N is a banded matrix, (13) implies

d3/2 P§1/2 1\ F2
nBle<c” = (3)
I
a7
Dividing both sides of (15) by d?, using (5), and applying

the Hermitianizing operator H(M) = 1 (M + M*) yields

IN|[F = [R||F <1

T.(uu*) = A + N. (18)

where A = d~2H(X), and N = d=2H(N). By (17), and
the triangle inequality, we have

__ /2 71\ *
HNHFSCMH () |

p (19)

IV. ANGULAR SYNCHRONIZATION

In this section, we will use a greedy angular synchroniza-
tion approach to recover the Fourier coefficients of f. For
each n € B, the greedy algorithm, Algorithm 2, outputs a



sequence {n}%_, where ng = arg max,,c a,, and n; = n.
Given that sequence, we let

Z arg

To understand this deﬁmtlon, let

’n[+1,’ﬂ1/ °

b—1

0o = arg(f(ng)) and 7, := Zarg ((UU*>nz+1,m) :
1=0

Then, we have 7,, = arg ( (n)) — 6, and therefore

e 1% f(n) = |f(n)le’™
for all n € B. (Note that ny does not depend on n.) Since
A is a noisy approximation of uu®, we intuitively view
Q. as a noisy approximation of 7, (up to a phase shift ).
Lemma 3 will show that this intuition is correct when | f(n)|
is sufficiently large. Due to [9, Lemma 3], for all n € B we

[/1Anal ~1F0I[ < 31N

Therefore, we set a,, == \/|Ap. | and define the output of
Algorithm 1 to be the trigonometric polynomial

_ § anenaneunx.

neB

have
(20)

The following lemma shows that «, is indeed a good
approximation of 7,, when |f(n)| is sufficiently large. Its
proof is nearly identical to the proof of [9, Lemma 4], but
uses Lemma 4 stated below in place of the “flat vector”
condition considered there.

Lemma 3. Let L be the set

Ly={n€B:|f(n)]? > 48N}
Then, for all n € Ly
irn e o 27N o
‘(B " — "| < —.
|f(n)[?

As mentioned above, the key to modifying the proof of
[9, Lemma 4] in order to prove Lemma 3 is the following
lemma, which shows that Algorithm 2 will only select entries
ny corresponding to large Fourier coefficients.

Lemma 4. Let n € Ly, and let {n;}5_, be the sequence
output by Algorithm 2. Then,
~ f(n
Py = 0

Proof. When ¢ = b, the claim is immediate. For 0 < ¢ <
b—1, we have a,,, = max;ey, a,, for some interval I, of
length 2k, which is centered at some |a| < |n|. Therefore,

\/3||N\|w, we see that by (20) and Remark 1,

for all 0 < £ <b.

letting € =

|f(ne)] > MAX Gy — € > max | f(m)| — 2¢ > |f(n)] - 2e.

me mel,

The result follows by noting that € < o (4n)| forne L;. O

Together, (20) and Lemma 3 allow us to prove the
following lemma showing that f.(x) approximates Pgf(z).

Lemma 5. The output of Algorithm 1 satisfies

< C'd>\/||N||o-
L2 (—m,m)

Proof. Recall the vector u defined in (4) and, for n € ,
let

5% Paf (@)~ fu(o)]

iy, e

ul, = aye and  ull = |u,|e

By construction, for all n ¢ B we have a,, = u,, = 0. There-
fore the supports of u’ := (u),)neq and u” = (u!!),cq are
contained in B. By Parseval’s identity, we see

H —1190P f Za (Bnan@lmz
neB L2 (=mm)
:Hef"‘eo Z Up® Z ul, @
neB neB L2 (=mm)
<VEr o],

S\/ﬂ HCE—]'leou _ u//
:Ill + 12.

I, + V2r(u” — |,

Using Lemma 3 and the fact that |e!™ —ei%"| < 2, we have

112 =27 Z |un|2|®”" —e

neB
<C Y JunP+0 > EIN|E |f(n)] 2
n€B\ Ly neLy

<Cd||N|x+C > d®|Ns
n€Lly

ﬁan‘Q

< Cd®|| N oo

To estimate I, we recall (20) and note

2
122 = 2%2 '|un| —ay,

neB

<Cd|N|w. O

We now use Lemma 5 as well as the uniform convergence
of the partial Fourier series Pgf to prove Theorem 1.
Proof. [The Proof of Theorem 1] By the triangle inequality,

min 119f Z an (Bnan@nnm
0€[0,27]
<|f = Psfllez(—nm
+ H —nGOPBf Z an (Bnan@nnx
L2(— 7'('71')

neB

~

where 6y = arg(f(no)). By (19) and Lemma 5, we have

) 1/251/4 /1 (k=3)/2
~i% p <ol ° (= .
e s ) = gl < 7 (



To bound the first term we see that by Parseval’s identity,
the fact that d > 44, and the fact that |f(n)| = O(d*)

—~ 1 1
I/ =Psflf=2m Y 1P <C Y — < O 0

n¢B n>4

Algorithm 1 Wigner Deconvolution and Angular Syn-

chronization for Bandlimited Masks
Inputs

1) Matrix Y = (Y., ¢)weq,ec of spectogram
measurements defined as in (1).
2) Trigonometric polynomial mask of the form (2).

Steps

1) Define vector y = (y,)peq by y, = m (232).

2) Let k =L —p, and for 1 — k < ¢ < k — 1 estimate
d* [ (FLYTFq")_,
AL\ (Fa(¥ 0 S_y))

3) Invert the Fourier transforms above to recover esti-

Fd ()/E o Sg§> ~

mates of the vectors X o Sg?.

4) Organize these vectors into a banded matrix, X de-
scribed as in (16).

5) Hermitianize X and divide by d? to obtain the matrix
A = (A ;)i jeq as described in (18).

6) Estimate |f(n)| R an = /|Annl

7) For n € B, choose {n,}}_, according to Algorithm 2.

8) Approximate

b—1
arg (J?(n)) Nag =Y arg (Auin) -
=0

Output
An approximation of f given by

fo(@) = anelre,

neB

V. FUTURE WORK

The work here shows that, under suitable regularity as-
sumptions, we may recover a continuous signal f(z) from
a d x L matrix of phaseless measurements. We believe that
this paper naturally opens up several research directions for
future work. Firstly, one might replace the assumption that
m(x) is a trigonometric polynomial with the assumption
that m(z) is compactly supported in space. This would lead
to a measurement setup closely related to ptychographic
imaging. Also, in [8], it is shown that in the discrete setting,
a discrete Wigner deconvolution approach can be applied
to a K x L measurement matrix for some K < d and
that this approach is robust to additive noise. It is likely

Algorithm 2 Greedy Entry Selection
Inputs

an = +/|Annl-

1) Vector of amplitudes a = (ay)neq,
2) Entry n € B.

Steps
1) Choose ng = argmax,,cg G-
2) Let b= 0.
3) While: |n —np| > k/2
4) If: n > ny, let npy1 < argmax,, <, 1x Gm
5) If: n < ny, let nyp41 < argmax
6) b+b+1
T np+n

QOutput

A sequence {ng}z:o, [nes1 —me| < K/2, np =n, b<d.

ny—rk<m<ng Qm

that analogous techniques can be applied in the continuous
setting when the matrix Y is subsampled in frequency and
corrupted by additive noise. Lastly, one might also extend
these results to functions of two variables f(x,y).
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