IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

1467

Efficient Replication for Fast and Predictable
Performance in Distributed Computing

Amir Behrouzi-Far

Abstract— Master-worker distributed computing systems use
task replication to mitigate the effect of slow workers on job
compute time. The master node groups tasks into batches and
assigns each batch to one or more workers. We first assume
that the batches do not overlap. Using majorization theory,
we show that a balanced replication of batches minimizes the
average job compute time for a general class of service time
distributions. We then show that the balanced assignment of
non-overlapping batches achieves a lower average job compute
time than the overlapping schemes proposed in the literature.
Next, we derive the optimum redundancy level as a function of the
task service time distribution. We show that the redundancy level
that minimizes the average job compute time may not coincide
with the redundancy level that maximizes job compute time
predictability. Therefore, there is a trade-off in optimizing the
two metrics. By running experiments on Google cluster traces,
we observe that redundancy can reduce the job compute time
by one order of magnitude. The optimum level of redundancy
depends on the distribution of task service time.

Index Terms— Redundancy, replication, distributed systems,
distributed computing, latency, coefficient of variations.

I. INTRODUCTION

ISTRIBUTED computing plays an essential role in mod-

ern data analytics and machine learning systems [3], [4].
Parallel task execution on multiple nodes can bring consid-
erable speedup to many practical applications, e.g., matrix
multiplication [5], model training in machine learning [6]
and convex optimization [7]. However, distributed computing
systems are prone to node failure and slowdowns.

In a master-worker architecture, where the master node
waits for each worker to deliver its computation results (before
possibly moving to the next stage of the algorithm), the latency
is determined by the slowest workers, known as “stragglers”
[8]. Straggler mitigation by task replication has been consid-
ered in, e.g., [9]-[12], and by erasure coding in, e.g., [13],
[14]. Replication is easier to implement, but erasure coding
is generally more efficient (in terms of resource usage) [14].

Manuscript received June 3, 2020; revised December 23, 2020 and
February 5, 2021; accepted February 11, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor B. Ji. Date of publication
March 24, 2021; date of current version August 18, 2021. This work was sup-
ported by NSF Award under Grant CIF-1717314. This work was presented in
part in Annual Allerton Conference on Communication, Control and Comput-
ing and IEEE international conference on Big Data. (Corresponding author:
Amir Behrouzi-Far.)

The authors are with the Department of Electrical and Computer Engi-
neering, Rutgers University, New Brunswick, NJ 08901 USA (e-mail:
amir.behrouzifar@rutgers.edu; emina.soljanin@rutgers.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3062215, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3062215

and Emina Soljanin

, Fellow, IEEE

Furthermore, several works focus on performance analysis of
systems level techniques [15]-[17].

We are concerned with distributed computing systems with
master-worker architecture, which is used by commercial
distributed computing engines such as MapReduce and Kuber-
netes, and considered in theoretical studies, e.g., [17]-[19].
With redundancy, some workers are selected as backups and
thus the system can tolerate some number of stragglers. The
current literature on coded computing, e.g. [20], measures the
performance of redundancy techniques by the number of strag-
glers a system can tolerate. However, the core performance
metric in practical systems, such as Google [6], Amazon [21]
and Facebook [22], is the latency that jobs experience; see also
[23] and references therein. Minimizing the average latency
and maximizing the predictability of latency are among the
main concerns in practical systems [8]. Among other results,
we show that redundancy techniques that tolerate the same
number of stragglers can have different average latency and,
therefore, not equally effective in a practical system.

Most computing jobs in machine learning and data analytics
applications require running an algorithm on a big dataset
[6]. These jobs can be effectively distributed among workers,
by assigning to each of them a fraction of the dataset and
aggregating their results [18]. For example, the computing
jobs that involve multiplication of matrices can be distributed
effectively, by assigning rows and columns to the worker nodes
and recombining the results by the master node [24]. Such
computing jobs (parallelizable to smaller tasks) are common
and have motivated this research.

In this article, we derive the efficient assignment of repli-
cated redundancy in a master-worker computing model, where
jobs are parallelizable to smaller tasks. For a fixed level
of redundancy, we find the optimum task assignment to the
workers which minimizes the average job compute time. For
such assignments, we find the optimum redundancy level that
minimizes the average job compute time, and the (often dif-
ferent) optimum redundancy level that maximizes the compute
time predictability. Our specific contributions are as outlined
below.

First, given a budget of N workers, a job with N parallel
tasks, and a predefined level of redundancy, we derive the
optimum task assignment that minimizes the average job
compute time. With a predefined level of redundancy, each
worker is assigned a batch of tasks. Using the results from
majorization theory, we show that if the Complementary
Cumulative Density Function (CCDF) of the batch compute
time is stochastically decreasing and convex in the number
of workers hosting the batch, then the minimum average

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4089-235X
https://orcid.org/0000-0002-7464-4242

1468

Computing Job

Master

[Task Batching] [Finn] Result Gen.]

n
[Bmh Assignmem] [Ln:n] Result Agg.]
A
‘Worker NT

‘Worker 1 : A
L
i

Fig. 1. The master-worker architecture considered in this work. The master
node (redundantly) assigns the tasks to the worker nodes. Upon receiving the
computation results from a large enough group of workers, the master node
generates the overall result.

job compute time is achieved by balanced assignment of
non-overlapping batches (see Fig. 2). We then argue that,
even though the previously proposed overlapping [18] or
non-balanced [25] batch assignments can tolerate (with the
same redundancy) the same number of stragglers as the
balanced assignment of non-overlapping batches, they are not
optimal for minimizing the average job compute time.

Second, with the balanced assignment of non-overlapping
batches, we derive the optimum level of redundancy for dif-
ferent service time distributions of tasks. We observe that the
higher the randomness in workers’ service time, the higher the
optimum level of redundancy. Furthermore, when the service
time distribution of batches is heavy-tailed, the benefits are
larger than when the service times are exponential.

Third, we derive the Coefficient of Variations (CoV) of job
compute time to measure the degree of predictability of job
compute time. CoV is among the most important performance
metrics both in theory [26] and in practice [8]. We observe
that the level of redundancy that minimizes the coefficient of
variations of job compute time is not necessarily the same as
the level that minimizes the average job compute time. Thus,
there exists a trade-off between the two metrics that can be
regulated by the redundancy level.

Finally, we run experiments on the Google cluster traces,
using the runtime information of several jobs in the dataset.
We observe that jobs with both heavy-tail and (shifted) expo-
nential service time distributions of tasks are present in Google
clusters. We confirm our theoretical findings that 1) replication
can reduce the average compute time, 2) the optimum level
of redundancy depends on the service time distribution of
tasks, and 3) jobs with heavy-tailed distribution of service time
benefit more from redundancy.

This article is organized as follows: In Sec. II, we describe
the system architecture and compute job model, task assign-
ment model and the probability distributions we use through-
out the article. The task batching schemes, non-overlapping
and overlapping batching, are described in the same section.
In Section III, we study the optimum assignment of
non-overlapping batches. In Sec. IV, we compare the average
job compute time of overlapping batches and non-overlapping
batches. Optimum redundancy levels that minimize the aver-
age job compute time and maximize the compute time pre-
dictability are studied in Sec. V. We present our experimental

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

results in Section VI and conclude in Sec. VII. All the proofs
are presented in the Appendix.

II. SYSTEM MODEL
A. System Architecture and Task Batching Schemes

We study a master-worker architecture, as shown in Fig. 1.
We refer to that as system 1 throughout. A compute job is
N-parallelizable, that is, it consists of N smaller tasks that
can be concurrently executed at N workers. The master node
1) forms B batches of tasks (task batching), 2) assigns batches
to workers (batch assignment), 3) aggregates computing results
from the workers (local result aggregation), and 4) generates
the overall result (final result generating). A worker executes
all its tasks and only then communicates the aggregate results
to the master. Thus, for each batch, a worker communicates
only once with the master, which makes the task execution
order within a batch inconsequential.

Each task is redundantly placed into multiple batches and
each batch is assigned to one or more workers. There are
at least as many workers as batches, that is, N > B.
A batch is completed as soon as its first replica is completed.
This model has been used for a wide range of problems,
e.g., matrix multiplication [27], gradient-based optimizers [7],
model training in machine learning problems [18]. Batches
can have tasks in common (overlapping batches) or not
(non-overlapping batches).

1) Non-Overlapping Batches: the N tasks are partitioned
into B batches, each of size N/B (see Fig. 2). The two
extreme cases are B = 1, when all the tasks are in the same
batch, and B = NN, when each batch consists of a single task.
With B < N, a batch can be assigned to more than one worker.
A balanced assignment assigns each batch to a fixed number of
workers. The random assignment of non-overlapping batches
to workers was considered in the literature [25]. In Section III,
we show that the resulting imbalanced distribution of batches
among workers is not optimum in terms of average job
compute time. Furthermore, random distribution of batches
may leave some batches not selected at all. This is shown
analytically in Appendix A. In that case, the results of the
computations will not be accurate, since they are based on a
subset of tasks.

2) Overlapping Batches: the N tasks are redundantly
grouped in N batches (see Fig. 2). The batch assignment
here is not an issue since each batch is assigned to a single
worker. However, we do need to decide how the batches should
overlap to minimizes the expected job compute time. In its
most general form, this is a hard combinatorial optimization
problem, and we will study only the batching schemes that
satisfy certain properties as follows. The overlapping batches
could be grouped into smaller subsets, such that each task
appears exactly once in each subset. In Fig. 2, the batches
at W7 and W3 make one subset and the batches at W
and W, make another subset. The reason we consider this
particular batching scheme is that 1) the number of workers
assigned to each task is fixed (there is no task preference),
and 2) a task can appear only once at each worker and thus
each task experiences maximum diversity in its service time,
as opposed to assigning multiple copies of the same task to
one worker. Batching schemes with this property have been
proposed in the literature, cf. [18], [25]. With this property,

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

BEHROUZI-FAR AND SOLJANIN: EFFICIENT REPLICATION FOR FAST AND PREDICTABLE PERFORMANCE IN DISTRIBUTED COMPUTING

Non-Overlapping Overlapping
D, Ds Dy Ds D, D, Ds Dy
Dz D4 Dz Dy D, D3 D4 D]
W1 Wz W3 W4 Wl W2 W3 W4

Fig. 2. Task replication policies. Either the dark group or the white group
are enough for generating the overall compute result.

the only question is that, within a subset, how should tasks
be assigned to the batches. This question will be answered in
Section IV.

3) An Example: Consider the problem of optimizing a
model [with distributed gradient descent algorithm [18].
The goal is to minimize the loss function L(3;D), where
D = {D1, D2, D3, D4} is the dataset. Here, D;s are dis-
joint subsets of D. At the ith iteration of the algorithm,
the model is given by 5; = (;_1 — YVL(B;_1; D), where
7 is the step size. One can rewrite this equation as (; =
Bi—1 — 4V 22:1 L(Bi—1; D), and the summation can be
redundantly distributed among four workers. Two examples of
assignments are provided in Fig. 2. With the non-overlapping
assignment, the results from the fastest worker among Wi,
W3 and the fastest worker among W,, W, are enough for
the master node to generate the overall result. If X is the
service time random variable (RV) at worker i, with the
non-overlapping assignment, the job compute time follows
the distribution of max{min{X1, X3} min{Xs, X4}}. On the
other hand, with the overlapping assignment, the results form
the fastest group of workers among Wy, W5 and W, Wy is
sufficient to the overall result. Thus, the job compute time fol-
lows the distribution of min{max{X;, X3} max{Xs, X4}}.
Accordingly, the statistics of job compute time varies with the
type of assignment.

B. Service Time Model

Workers take random time to execute tasks, and they are
statistically identical. We adopt the the following terminology.
Task service time 7: the time a worker takes to complete a
task.

Batch service time X: the time it takes a worker to complete a
batch of tasks. With N/ B tasks in a batch we have X ~ %T.
Batch compute time Y': the time it takes the first worker
(among all hosting the same batch) to complete a batch. Batch
1 hosted by N; workers and X;; is the service time of
batch ¢ at its jth host worker. Then we have Y; ~
min{Xﬂ, Xig, e 7XiNi}-

Job compute time 7': the time it takes to complete the
job, i.e. compute all the batches. With B batches we have
T ~ max{Y7,Ys,...,Yp}.

We assume the tasks have an equal size corresponding to
their minimum execution time. This is a common assump-
tion in coded computing literature [18]. In particular, in a
master-worker architecture, the master node can split a job
into tasks of equal size and assign them to the worker nodes.
For a given compute job and a fixed number of statistically
identical worker nodes, the statistics of job compute time is
determined by 1) the task-to-worker assignment policy and
2) the service time distribution of batches/tasks. The following

1469

time

Fig. 3. Time diagram of system 1. Batch 7 is assigned to N; = 4 workers.
The computations of batch 7 is completed as soon as one of its 4 host workers
finishes the computations. Since the master node requires the results of all
batches, it has to wait until 77, at which the slowest group N of workers,
assigned to batch 1, complete the computations.

common service time distributions are considered to model the
service time of a batch/task.

i. Exponential distribution with rate u, X ~ Exp(u) where
Pr{X >z} = 1(x > 0)e” #*. (1)

ii. Shifted-exponential distribution with shift A and with rate
1, X ~ SExp(A, 1) where

Pr{X >z} =1-1(z > A) [1 — e*“(I*A)]7)

iii. Pareto distribution with shape « and scale o,
X ~ Pareto(a, o) where

Pr{X >z} =1-1(z > o) [1 - (;)_a} 3)

III. CoMPUTE TIME WITH NON-OVERLAPPING BATCHES

In this section, we show that if the batch compute time
is a stochastically decreasing and convex random variable
in the number of workers, then the balanced assignment of
non-overlapping batches achieves the minimum average job
compute time. Let IV; be the number of workers hosting batch
i, and define N = (Ny,..., Np) as batch assignment vector
(cf. Fig. 3). The computation of batch 7 is completed as soon
as one of its NV; host workers finishes the computations, which
we refer to as batch compute time. Let X;; be the execution
time of batch ¢ at the jth host worker, for j € {1,2,..., N;}.
Then, the compute time of the ¢th batch is the minimum of
Nj i.i.d RVs:

Y; ~ min(Xﬂ,XiQ,.. .,)(7;]\/'7:)7 Vi € {1,2,. ,B} (4)

For generating the overall result, the master node has to wait

for the computation results of all batches. In other words,
the overall result can be generated only after the slowest group
of workers (hosting the same batch) deliver the local result.
Hence, the job compute time 7" could be written as,

T ~max (Y1,Ya2,...,Yp). 5)

To study the effect of batch assignment on the average job
compute time 7', we need the following definitions.
Definition 1: The real-valued RV Zi is greater than or
equal to the real valued RV Zs in the sense of usual stochastic
ordering, shown by 7 Zf Zo, if their associated CCDF satisfy
St

Pr{Z, > B} > Pr{Zy > B}, VB ER, (6)

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

1470

ie, Elp(Z1)] >
function ¢.

Definition 2: The RV Z(0) is stochastically decreasing and
convex in 0 if its CCDF is a decreasing and convex in 0.

Definition 3: For any V,, = (Up1,Vp2,...,VpM) i RM,
the rearranged coordinate vector V), is defined as Vi, =
(Vip1]s V[p2)s - - - » V[paa)), the elements of which are the elements
of V' rearranged in decreasing order, i.e, vy > -0 >
UlpM]-

Definition 4: Let Vi, = (v[pl],v[pg], . ,v[pM]) and Vig =
(U[ql] »V[q2]s - - - ,v[qM]S be two rearranged coordinate vectors
in R™. Then V,, majorizes V,, denoted by V,, = V,, if

E[¢(Z2)], for any non-decreasing

Zv[m] > Zv[qi]’ Ym e {1,2,...,M},
=1 i=1

M M

Zv[pi] = Z”[qi]'

i=1 i=1

Definition 5: Function ¢ : RM — R is schur convex if for
every 01,05 € RM, 0, = 0y implies ¢(61) > ¢(62).

Definition 6: Real-valued RV Z(0), 0 € RM, is stochas-
tically schur convex in 0, in the sense of usual stochastic
ordering, if for any 61,05 € RM, 0, = 0y implies Z(61) >

Z(0). *

The following lemmas give the batch assignment that min-
imizes job compute time, under an assumption about the
distribution of batch compute time. All proofs hereafter are
postponed to the Appendix.

Lemma 1: If the batch assignment Ny = (Ny1,...,Nip)
majorizes the batch assignment No = (Naj, Nao, ..., Nog),
and the batch compute times are i.i.d stochastically decreasing,
convex RVs, then the corresponding job compute times T (N7)
and T (No) satisfy E[T(N1)] > E[T'(N>)],

Proof: The job compute time for the batch assign-
ment vector N, Vk € {1,2}, is given by T(Nj;) ~
max (Ykla Ykg, ey YkB) , where Yi; 1 € {1, 2,..., B} is
stochastically decreasing and convex in Ny;. Since max(-)
is a schur convex function, T’ (fﬁ[k) is stochastically decreasing
and schur convex function of N} (see [28] Section 2 for the
detailed discussion). Hence, by Definition 6, N1 = Na implies
T(Ny) Zt T(N) in the sense of usual stochastic ordering,

which in turn implies that for any non-decreasing function ¢,
we have E[¢(T'(N1))] > E[¢(T(Nz))]. Substituting ¢ by the
unit ramp function completes the proof. (|

Lemma 2: The balanced batch assignment, defined as Ny, =
(N/B,N/B,...,N/B) with N and B being the respective
number of workers and batches, is majorized by any other
batch assignment policy.

From Lemma 1 and Lemma 2, when the batch compute
times are stochastically decreasing and convex in the number
of host workers, the balanced assignment achieves the min-
imum average job compute time, across all non-overlapping
batch assignments.

In the following, we show that for all three service
time distributions of batches, the balanced assignment of
non-overlapping batches minimizes the average job compute
time. Several other assignments are proposed in the literature,
cf. [18], [25], which according to our results are not optimal.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

A. Exponential Distribution

With exponential service time distribution of batch X;; ~
Exp(u), the compute time of batch ¢ € {1,2,..., B} is the
minimum of N; i.i.d exponential RVs. Hence,

Y; ~Exp(N;p), Vie{1,2,...,B}.)

It can be verified that Y; is stochastically decreasing and
convex in NV;. Thus, the Theorem 1 follows.

Theorem 1: With exponential service time distribution of
batch X;; ~ Exp(u), among all (non-overlapping) batch
assignment policies, the balanced assignment achieves the
minimum average job compute time.

B. Shifted-Exponential Distribution

With shifted-exponential service time distribution of batch,
the compute time of a batch consists of a deterministic part
and a random part. The deterministic part can be thought of
as the minimum required time to complete a batch. Thus,
this part is batch dependent and varies with the size of a
batch. On the other hand, the random part can be thought
of as a worker-dependent component. Note that, in this case
the random part is i.i.d exponentially distributed across the
workers. Accordingly, the compute time of a batch with X;; ~
Sexp(A, i), is a A plus RV (7). Thus, the Corollary 1 follows
from Theorem 1.

Corollary 1: With shifted-exponential service time distribu-
tion of batch X;; ~ SExp(A, i), among all (non-overlapping)
batch assignment policies, the balanced assignment achieves
the minimum average job compute time.

C. Pareto Distribution

With pareto service time distribution of batch, the compute
time of a batch consists of a deterministic part and random
part. Similar to the shifted-exponential case, the deterministic
part can be associated with the batch size and the random part
is worker dependent and may vary across the workers.

Theorem 2: Whit Pareto service time distribution of batch
Xi; ~ Pareto(o,a), among all (non-overlapping) batch
assignment policies, the balanced assignment achieves the
minimum average job compute time.

We showed the desirable decreasing and convexity proper-
ties for our choice of distributions. Future studies may consider
the same behaviours for other service time distributions. Other
extension of this work may consider the optimal batch assign-
ment, when the decreasing and convexity properties do not
hold. Furthermore, the optimality of a batch assignment can
be studied under different metrics, such as job compute time
variability/predictability. However, due to space limitations we
leave these problems open for future studies.

IV. COMPUTE TIME WITH OVERLAPPING BATCHES

We next show that, regardless of service time distribution of
batches, the balanced assignment of non-overlapping batches
achieves lower average job compute time compared to any
overlapping assignments. Let us recall the original problem
of assigning N tasks redundantly among N workers. Each
worker is assigned with N/B tasks, for a given parameter
B|N. There are several schemes to group the N tasks into N
batches of size N/B. Here, we focus on the schemes where

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

BEHROUZI-FAR AND SOLJANIN: EFFICIENT REPLICATION FOR FAST AND PREDICTABLE PERFORMANCE IN DISTRIBUTED COMPUTING

1471

Scheme 1 Scheme 2 Scheme 3
D, |[D, |[D; |[Ds | [D5 |[Ds D, |[D, |[D; |[Ds |[Ds | [Ds D, |[D; |[Ds |[D, |[D; | [Ds
D, || D; |[Dy || D5 |[Ds || D, D, || D; |[Dy || D |[Ds || Ds D, || Dy |[Ds || D, || D2 || Ds
w w, w3 A Ws We Wi W, 8 A Ws Ws Wi w, W3 Wy Ws Ws

Fig. 4. Three task-to-worker assignment schemes: 1) cyclic overlapping, 2) combination of cyclic overlapping and non-overlapping and 3) non-overlapping.

the set of overlapping batches could be divided into subsets,
such that each task appears exactly once in each subset. With
these schemes, the number of workers assigned to a task is
equal for all tasks. It is worth mentioning that non-overlapping
batches can be thought of as an especial case of overlapping
batches, where within each subset the batches do not overlap.

Another special we consider is the scheme where the set
of tasks is divided into N overlapping batches, each with
size N/B, in a cyclic order, as follows. The first batch
comprises tasks 1 through N/B, the second batch comprises
tasks 2 through N/B+1, and so on (see Fig. 4). Note that the
batches built with cyclic scheme and non-overlapping batches
are the two end of the spectrum. With cyclic scheme the
number of batches that share at least one task with any given
batch is maximum, whereas with non-overlapping batches this
number is minimum. Precisely, with the cyclic scheme, each
batch shares at least one common task with 2(N/B —1)
other batches. With non-overlapping batches this number is
N/B—1. With any other batching scheme that conforms to our
assumption, this number is greater than N/B — 1 and smaller
than 2 (N/B — 1). As an example, Scheme 2 in Fig. 4 consists
of a cyclic part and a non-overlapping part. In what follows,
we aim to compare the average job compute time with the
three different batching schemes provided in Fig. 4. Although
we provide the comparison for the especial case of N = 6
and B = 3, the extension of our method to general values of
N and B is straightforward.

Consider system 1, with N = 6, B = 3, and three different
batching schemes, shown in Fig. 4. In each scheme, there
are two subsets of batches which contain exactly one copy
of every task. The subsets are shown by different colors. Let
X; Vie{l1,2,...,6} be the i.i.d RV of batch 7 service time.
Let us assume, without loss of generality, that W is the fastest
worker delivering its local result before the rest of the workers.
Then the job compute time with Scheme 1 is

TW ~ min (max (X3, X5) , max (X5, X4, Xg)) . (8)

With Scheme 2, the job compute time could be written as
T ~ min(max(Xs, min(Xs, X¢)),
max (max (X2, X4), min (X35, Xg)) . 9)
Comparing (8) and (9) gives E[T?)] < E[T(M], since
E[max (X3, min (X5, Xg))]
< E[max (X3, X5)] and
E[max (min (X5, Xg) , max (X2, X4))]
< IE[max (XQ, X4, XG)]
On the other hand, with Scheme 3,

T®) ~ max (min (X3, X4), min (X5, Xs)) .

To be able to compare the job compute time of
Scheme 2 and Scheme 3, we rewrite (9) as follows:

T ~ max (min (X3, max (X, X4)) , min (X5, X¢)) .

Since E[min (X3, X4)] < E[min (X3, max (X2, X4))]. we
have that E[T®)] < E[T®)]. Similarly, for the average
job compute times of three batching schemes in Fig. 4 we
have E[T®)] < E[T®] < E[T(™)]. Note that this result
does not depend on the service time distribution of batches.
Thus, we can conclude that, the balanced assignment of
non-overlapping batches achieves a lower average of job com-
pute time when compared to overlapping batch assignment.
This is an important result because overlapping assignments
have been often proposed in the literature, cf. [18] and [29].

V. OPTIMUM REDUNDANCY LEVEL

In this section, we address the problem of finding the
optimum level of redundancy for different service time dis-
tributions of tasks. We show that, the optimum redundancy
level depends on this distribution, and that for a given dis-
tribution it is a function of the distribution’s parameters.
Furthermore, we show that, the the optimum redundancy level
is not necessarily the same for average job compute time and
predictability, and that there exists a trade-off between the two
metrics when optimizing for the redundancy level.

In a system with B batches and N workers, each batch is
replicated N/B times, and we call N/B the level of redun-
dancy. Recall the original problem of redundantly assigning
tasks to workers in system 1. In one extreme case, all tasks
could be assigned to every worker. We refer to this case
as full diversity, as each task experiences maximum diver-
sity in execution time by getting assigned to every worker.
In the other extreme case, each task is assigned to only
one worker. We refer to this case as full parallelism, as no
worker performs redundant executions. Between full diversity
and full parallelism there is a spectrum of assignments, each
with different redundancy levels. We refer to this spectrum as
diversity-parallelism spectrum. Note that we make no specific
assumption about the maximum allowable level of redundancy
in the system. However, in practice, a system may fail if
the load exceeds a certain threshold. The implicit assumption
in the results of this section is that the system can perform
normally under all levels of redundancy.

We are interested in finding the level of redundancy that
is optimal according to two important performance metrics:
1) the average job compute time, and 2) the job compute
time predictability. While the former has been defined in the
preceding sections, we define the latter as the Coefficients
of Variations (CoV) of job compute time. Among two jobs
with two different coefficients of variations, the one with
smaller CoV has more predictable compute time. For a given

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

1472

redundancy level, the tasks are assigned to workers such that
the average job compute time is minimized, as studied in
Section III. An extension of our work may consider finding
the optimum level of redundancy, where for a given redun-
dancy level the task assignment is done with the objective of
maximizing the job compute time predictability.

The service time of a batch depends on the number of tasks
in the batch (its size), which is determined by the redundancy
level. Several models have been used to describe how the
batch service time at a worker scales with its size (see e.g.,
[23], [30]-[32] and references therein). The model we use
here is the most common in the coded computing literature
(see e.g., [23] and references therein), described as follows.

In our model, all tasks have identical computing size.
We assume that the (random) task service time is determined
by the worker it is assigned to, and thus all tasks in a batch
experience the same service time. Each worker takes a random
time 7 to execute a task, which is i.i.d. across the workers.
Therefore, the service time of all tasks hosted by the same
worker is the same realization of the random variable 7, and
the random batch service time is %T. The service times of
the replicas of the same task (at different workers) are i.i.d.
i.e., different realizations of the random variable 7. This model
was called server dependent scaling in [23].

The results derived based on this model could as well be
used to optimize the redundancy level in systems which follow
the proposed model in [30]. According to [30], the batch
service time is the product of two factors: 1) an RV associated
with the batch size, and 2) an RV associated with the worker’s
slowdown. With equal size tasks, the batch size is constant
across the workers, and the only randomness in its service
time comes from the slowdown RV. Accordingly, with the
slowdown 7 and the special case of identical batch sizes of
N/ B, the batch service time at a worker is %7. Thus, in this
special case, the batch service time has the same expression
as in our model and our results could be used.

In the rest of the article, we assume N is even and greater
than 4, unless otherwise is stated. The extension of the results
to odd numbers is straightforward.

A. Shifted-Exponential Distribution

For shifted-exponential service time distribution of tasks,
the following theorem gives the optimum level of redundancy
that minimizes the average job compute time.

Theorem 3: With shifted-exponential service time distrib-
ution of task T ~ SExp(A,p), the optimum B, achieving
the minimum average job compute time, is the solution of the
following discrete unconstrained optimization problem,

NA 1

min F_’_;H(B,l)a

BeFp (10)

where Fp is the set of all feasible values for B.

Finding the optimum level of redundancy in (10) requires a
search in all the feasible values of B. The following insights
can be easily seen. When A and p are large, the term NA/B
dominates the objective function. In that case, increasing B,
or decreasing the redundancy level reduces the average job
compute time. With larger A and p, there is less uncertainty
in the tasks’ service time. Thus, reducing the redundancy level
reduces the average job compute time. On the other hand,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

for small values of A and p, the term %H(B,1) dominates
the objective function, and thus higher redundancy is more
beneficial. This is expected because with higher randomness
in tasks’ service time, the probability that a worker experiences
a severe slowdown is higher, in which case, more redundancy
is beneficial.

To reduce the complexity of the search algorithm in (10),
the following theorem establishes a connection between the
optimum operating point in the diversity-parallelism spectrum
and the parameters of tasks’ service time distribution.

Theorem 4: With shifted-exponential service time distribu-
tion of task T ~ SExp(A,), the optimum operating point
in the diversity-parallelism spectrum, achieving the minimum
average job compute time, is

- at full diversity when Ap < 1/N,

- at a middle point when 1/N < Ap < EkN:N/QH 1/k,

- at full parallelism when ZQ;N/Q_H 1/k < Ap.

Corollary 2: With shifted-exponential service time dis-
tribution of task T ~ SExp(A,p) and 1/N <
Ap < ZkN:N/QH 1/k, the optimum operating point in the
diversity-parallelism spectrum, achieving the minimum aver-
age job compute time, is the solution of the following discrete
unconstrained optimization problem,

min
BEFg
where Fp is the set of all feasible values for B.
Note that the complexity of solving (11) is O(log|Fg|). The
average job compute time vs. B for different values of x, when
the task service time follows shifted-exponential distribution,
is plotted in Fig. 5, for N = 100 and A = 0.05. For this set of
parameters, 1/N = 0.01 and ijyzzv/2+1 1/k ~ 0.69. Hence,
for ;1 < 0.2 full diversity should minimize the average job
compute time. For 0.2 < p < 13.8 the optimum point should
be in the middle of the spectrum. Finally, for p > 13.8 full
parallelism should minimize the average job compute time.
All these regions could be verified in Fig. 5.
Next, we find the optimum level of redundancy that
minimizes the coefficient of variations of job compute time.
Lemma 3: With shifted-exponential service time
distribution of task T ~ SExp(A,p), the coefficient of
variations of the job compute time is given by

CoV[T] = 1/H(B,Q)/[NAM/B + Hpy).

Theorem 5: With shifted-exponential service time distribu-
tion of task T ~ SExp(A,), the optimum operating point
in the diversity-parallelism spectrum, achieving the minimum
coefficient of variations of job compute time, is

- at full parallelism when Ap < 3/(\/5 —1)N,

- at either end of the spectrum when
3 <Ap< Hn, v/ H(nj2,2)—Hny2,1)/ (H(n,2)
(V5-1)N — - 2v/H(n2)=v/H(n/2,2) ’
- at full diversity when
Ap > Hn1)/ H(N/2,2)_H(N/2,1)\/(H(N,2)).
2\/Hv 2=/ H(n/2.2)
When tasks’ service times follow i.i.d shifted-exponential
distribution, the optimum operating point, minimizing the
coefficient of variations of job compute time, is either full

(12)

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

BEHROUZI-FAR AND SOLJANIN: EFFICIENT REPLICATION FOR FAST AND PREDICTABLE PERFORMANCE IN DISTRIBUTED COMPUTING

2 7~ SExp(0.05,1)
10 4p=0.1 Ap=03 @u=l Dp=3 Vu=10 @ u=20
___________________ <
gt -
2 ol Diversity Parallelism
£ o - n .
.::’ 1 ‘ “_* ———————— &A-----——m—"""TTTTTTT
élo E A
S & e 0
2 444 ¢
i)
on
s o--@@ o o
< 10 1 \
x‘::"'— ———————— e v
®o_____
P ®
0 20 4 60 80 100

Number of batches (B)

Fig. 5. Average job compute time with 7 ~ SExp(0.05, 1), versus the
number of batches, for different values of y. The minimum value of E[T]
moves toward the full parallelism as g increases.

diversity or full parallelism. With higher randomness in the
tasks’ service time, ie Ay € (—o0,3/(v/5 — 1)N), then
assigning each worker with a single task minimizes the coef-
ficient of variations of job compute time. On the other hand,
with lower randomness in the tasks’ service time, i.e., large
Ap, full diversity B = 1 is optimal. This is a sharp contrast
with levels of redundancy that minimizes the average job
compute time. Specifically, with high randomness, a high
redundancy level is required to minimize the average job com-
pute time, but a low redundancy level is required to minimize
the coefficient of variations of job compute time. In general,
with shifted-exponential distribution of tasks’ service time, one
could not minimize both the expected value and the coefficient
of variations of job compute time. This result sheds light on
the impossibility of reducing the average latency of compute
jobs and maximizing the predictability of their service time in
practical systems.

We simplify the problem of minimizing the coefficient of
variations by the following corollary, which gives the optimum
level of redundancy for middle values of Ay and large N.

Corollary 3: With shifted-exponential — service time
distribution of task T ~ SExp(A,), N > 11 and

3 Hn y/Hnj2,2—Hivy2y/ (Hn 2))
(VB-1)N 2¢/H(n,2)—\/H(n/2.2) ’
the optimum operating point in the diversity-parallelism
spectrum, achieving the minimum coefficient of variations of
Jjob compute time, is

<Ap <

- at full parallelism when A < H(y1y/(Ny/Hn2)—1),
- at full diversity when Hy 1y/(N\/Hn 2 —1) < Ap.

The coefficient of variations of job compute time is plotted
in Fig. 6, for N = 100 and A = 0.05. For this set of
parameters, Hy 1)/N(y/Hyn2 — 1) ~ 0.04. Thus, for p <
0.04/A = 0.8 full diversity and for p > 0.8 full parallelism
should be optimal. These regions can be verified in Fig. 6.
Finally, we present the results for the limit case, when N — oo
in the following corollary.

Corollary 4: With 7 ~ SExp(A, u), the optimum operat-
ing point in the diversity-parallelism spectrum, achieving the

1473

7~ SExp(0.05,X)

0o,
E 10" ve e .
% v/ Diversity Parallelism
© I:I'" « p=0.1
? A =03
i ¢ p=1
0 p=3
H vV u=10
10°] @ ® =20
0 20 40 60 80 100
Number of batches (B)
Fig. 6. Coefficient of variations of job compute time with 7 ~

SExp(0.05, 1), versus the number of batches, for different values of p. The
minimum value of CoV[T'] moves toward the full diversity as p increases.

minimum coefficient of variations of job compute time, occurs
at full diversity, as N — oo.

With shifted-exponential distribution of tasks’ service times,
we conclude that the expected value and the coefficient of
variations of job compute time may not be optimized by
the same redundancy level. For small and large values of
Ap product, the optimum points are at the opposite ends of
the spectrum. In other words, the level of redundancy that
minimizes the average compute time results in the maximum
coefficient of variations, and vice versa. Therefore, there is
an inevitable trade-off between the average value and the
coefficient of variations of job compute time, when tasks’
service time follow shifted-exponential distribution. As a rule
of thumb, when Ay is small, the average job compute time
is smaller at high diversity and the coefficient of variations
of job compute time is smaller at high parallelism. Whereas,
when Ay is large, the average job compute time is smaller
at high parallelism regime and the coefficient of variations is
smaller at high diversity.

B. Pareto Distribution

With Pareto distribution of tasks’ service time, the following
theorem gives the optimal level of redundancy that minimizes
the average job compute time.

Theorem 6: With Pareto service time distribution of task
7 ~ Pareto(o, «), the optimum level of redundancy, achieving
the minimum average job compute time, is the solution of the
following discrete unconstrained optimization problem,

No T'(B+1)-T(1-B/Na)
‘B I (B+1-B/Na)

13)

Bnél}r?ls B
where T'(-) is the Gamma function and Fp is the set of all
feasible values for B.

From (13), the average compute time grows linearly with the
scale parameter o. Nevertheless, its behaviour depends solely
on the shape parameter «. Therefore, the optimum level or
redundancy is a function of «, as follows.

Theorem 7: With Pareto service time distribution of task
T ~ Pareto(o,«a), the optimum operating point in the

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

1474

7~ Pareto(1,a)

102] - « =15 93 Vo5
H A o=2 Oo=4 @ a=6
1
e
Q i Diversity Parallelism 7
§ |‘ i — e
; ' ,/,
: |y
£ o
5 Y A
o e -
=) . -
2 10' i&:\ _____ < e
g RN =7
g A A S ’
=] ea&__ 0
e¢¢¢¢:‘\§ |
B Lttt et v
“““ []
0 20 40 60 80 100

Number of batches (B)

Fig. 7. Average job compute time with 7 ~ Pareto(1, o), versus the number
of batches, for different values of «. The minimum value of E[T] moves
toward the full parallelism point as « increases.

diversity-parallelism spectrum, achieving the minimum aver-
age job compute time, is
- at a middle point when 1 < a < o, and
- at full parallelism when o > o,
where o is the solution of the following equation,
2 2
da”t(a-1)7 VAN TY2091H1/200 g 58 — (. (14)
2a(a—1)
A Pareto RV with large shape parameter o has a lighter
tail and thus less randomness. Therefore, with large enough «
full parallelism minimizes the average job compute time. With
smaller values of «, redundancy may be required to reduce
the randomness in tasks’ service time. Therefore, the optimal
operating point should move towards the full diversity end
of the spectrum. For NV = 100 and ¢ = 1 the average job
compute time is plotted in Fig. 7. With this set of parameters,
o = 4.7. Thus, for a < 4.7 the optimum B lies in a mid
point of the diversity-parallelism spectrum. On the other hand,
for a« > 4.7 the optimum B is at full parallelism, which can
be verified by the plots in Fig. 7.
Lemma 4: With Pareto service time distribution of task T ~
Pareto(o, @), the coefficient of variations of job compute time
is given by

_ [D(B+1—B/Na)I(1-2B/Na)
CoV(T) = \/F(B +1-2B/Na).I'(1 — B/Na)

-1

With Pareto distribution, the coefficient of variations does
not depend on the scale parameter o of the distribution. The
following theorem gives the optimum level of redundancy that
minimizes the coefficient of variation given by Lemma 4.

Theorem 8: With Pareto service time distribution of task
T ~ Pareto(o, &), the coefficient of variations of job compute
time is minimized at full diversity.

Fig. 8 shows the coefficient of variations of job com-
pute time with Pareto distribution of tasks’ service time.
The optimum operating point is at full diversity, regardless
of the value of «. However, full diversity maximizes the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

T~ Pareto(1,a)

<« o=3
A o=4
‘ a=5
O o=6
1075
E «
2 /4
Q /)
/.
2
101 Diversity Parallelism
-— —
0 20 40 60 80 100
Number of batches (B)

Fig. 8. Coefficient of variations of job compute time with 7 ~ Pareto(1, @),
versus the number of batches, for different values of . The minimum value
of CoV[T7 is at the full diversity for all & > 2.

average compute time for all values of «, as it is shown
in Fig. 7. This result shows the trade-off between the expected
value and the coefficient of variations of job compute time,
with heavy-tail distribution of tasks’ service time. For both
exponential tail and heavy tail distributions of the workers’
slow down, we have shown that there exists a trade-off
between the average job compute time and the compute time
predictability. In other words, minimizing the average latency
of compute jobs and maximizing the predictability of this
latency at the same time may not be possible. Therefore,
in practical systems, this trade-off has to be considered in
order to balance a reasonable balance between the average
latency and predictability.

VI. EXPERIMENTS

We next present results based on experiments on the dataset
from Google cluster traces [33] which provides the runtime
information of the jobs in Google clusters. Jobs consists of
multiple tasks, each executed by a worker. The recorded infor-
mation for each task includes, among others, its scheduling
and finish times. We recorded the service time of a task as the
difference between its finish time and scheduling time.

We observed that the tasks’ service time could follow
both heavy-tail or exponential-tail behaviours, depending on
the job. The task compute time CCDF is plotted in Fig 9.
A linear decay in log-log scale means heavy-tail behaviour and
exponential decay means exponential-tail. Accordingly, jobs
1 through 4 show exponential decay in tail probability, whereas
jobs 5 through 10 have almost linear and thus heavy-tail decay.

To show the effect of redundancy level on the average
compute time, we sampled tasks within a job. With the
sampled tasks, we formed batches and assigned each batch to
a given number of workers, which is fixed across the batches.
In Fig 10, we plot the average job compute time, normalized
by the average compute time with no redundancy, versus the
number of batches B. Jobs 1 — 4 have exponential decay in
the tail probability. For these jobs, the shift parameter for the
shifted-exponential distribution is large (10 for jobs 1 — 3 and

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

BEHROUZI-FAR AND SOLJANIN: EFFICIENT REPLICATION FOR FAST AND PREDICTABLE PERFORMANCE IN DISTRIBUTED COMPUTING

107 «Jobl 4 Job3 VvlIob5 > Job7 Job 9
A Job2 Job4 @ Job6 < Job8 ¢ Job 10
10' 10° 10’ t
Fig. 9. CCDF of the task compute time for 10 jobs. The run times of the

tasks are extracted from Google cluster traces dataset.

< Job 1

A Job2

Diversity Parallelism 9 Job3
D — — O Job 4

Average job compute time

0 20 40 60 80 100
Number of batches (B)

Fig. 10. The effect of redundancy on the average job compute time, when
the service time of tasks within the job has exponential-tail distribution.

1000 for job 4). As predicted by our analysis, full parallelism
minimizes the average job compute time.

In Fig. 11 we plot the normalized average job compute time
versus the number of batches, where task service times are
heavy-tailed. The minimum average job compute times occur
somewhere between full parallelism and full diversity. This
observation is inline with our analysis of Pareto distribution
for tasks’ service time. The optimum level of redundancy,
however, depends on the job type. For instance, jobs 6, 8§,
9 and 10 have their minimum average compute time at B = 20
whereas for job 5 and 7 the optimum value is B = 50
and B = 10, respectively. This difference in the optimum
level of redundancy is a result of the shape parameter of the
distribution. For instance, job 7 decays faster than the other
heavy-tail jobs and thus its task service time distribution has
a larger shape parameter. Therefore, it would require lower
levels of redundancy. Note that the heavy-tail behavior of task
service times of some jobs in Fig. 9 may not exactly fit into
Pareto distribution. However, they are heavy-tailed and our
general results still apply.

1475

v V Job 5
@® Job6
> Job 7
\ <4 Job8
v @ Job9
\ @ Job 10

Average job compute time
S

0 20 40 60 80 100
Number of batches (B)

Fig. 11. The effect of redundancy on the normalized average job compute
time, when the task service time is heavy tailed.

VII. CONCLUSION

We studied the efficient task assignment problem in
master-worker distributed computing system. For a given
level of redundancy, we showed that if the batch compute
times are i.i.d stochastically decreasing and convex in in the
number of workers, a balanced assignment of non-overlapping
batches achieves the minimum average job compute time.
We then studied the optimum level of redundancy for mini-
mizing the average job compute time and maximizing compute
time predictability. With both exponential-tail and heavy-tail
distribution of workers’ slow down, we showed that the
redundancy level that minimizes the average job compute
time is not necessarily the same as the redundancy level the
maximizes the compute time predictability of jobs. Therefore,
when optimizing for the optimum redundancy level, there
exists an inevitable trade-off between the average and the
predictability of job compute time. Finally, we evaluate the
redundant task assignment with the data from Google cluster
traces. We showed that a careful assignment of redundant
tasks can reduce the average job compute time by an order
of magnitude.

REFERENCES

[1]1 A. Behrouzi-Far and E. Soljanin, “On the effect of task-to-worker assign-
ment in distributed computing systems with stragglers,” in Proc. 56th
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Oct. 2018,
pp. 560-566.

[2] A. Behrouzi-Far and E. Soljanin, “Data replication for reducing comput-
ing time in distributed systems with stragglers,” 2019, arXiv:1912.03349.
[Online]. Available: http://arxiv.org/abs/1912.03349

[3] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. J. Franklin, and

M. Jordan, “MLbase: A distributed machine-learning system,” CIDR,

vol. 1, pp. 1-2, Jan. 2013.

P. Buchlovsky et al., “TF-replicator: Distributed machine learn-

ing for researchers,” 2019, arXiv:1902.00465. [Online]. Available:

http://arxiv.org/abs/1902.00465

[5]1 A. R. Benson and G. Ballard, “A framework for practical parallel
fast matrix multiplication,” ACM SIGPLAN Notices, vol. 50, no. 8,
pp. 42-53, Dec. 2015.

[6] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223-1231.

[7]1 S. Boyd, “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1-122, 2010.

[4

=

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

1476

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, Feb. 2013.

D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” in Proc. ACM Int. Conf. Meas.
Modelinf Comput. Syst., 2014, pp. 599-600.

K. Gardner et al., “Reducing latency via redundant requests: Exact
analysis,” ACM SIGMETRICS Perform. Eval. Rev., vol. 43, no. 1,
pp. 347-360, 2015.

G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Trans. Modeling Perform.
Eval. Comput. Syst., vol. 2, no. 2, pp. 1-30, May 2017.

G. Joshi, E. Soljanin, and G. Wornell, “Efficient replication of queued
tasks for latency reduction in cloud systems,” in Proc. 53rd Annu.
Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2015,
pp. 107-114.

M. Fatih Aktas, P. Peng, and E. Soljanin, “Effective straggler mitiga-
tion: Which clones should attack and when?” 2017, arXiv:1710.00748.
[Online]. Available: http://arxiv.org/abs/1710.00748

M. F. Aktas and E. Soljanin, “Straggler mitigation at scale,” IEEE/ACM
Trans. Netw., vol. 27, no. 6, pp. 22662279, Dec. 2019.

M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
relaunch of tasks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45,
no. 3, pp. 224-231, Mar. 2018.

E. Ozfatura, D. Gunduz, and S. Ulukus, “Speeding up distributed
gradient descent by utilizing non-persistent stragglers,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 2729-2733.

N. Ferdinand and S. C. Draper, “Anytime stochastic gradient descent:
A time to hear from all the workers,” in Proc. 56th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Oct. 2018, pp. 552-559.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradi-
ent coding,” 2016, arXiv:1612.03301. [Online]. Available: http://arxiv.
org/abs/1612.03301

N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs,” 2017, arXiv:1707.03858.
[Online]. Available: http://arxiv.org/abs/1707.03858

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist., 2019, pp. 1215-1225.

K. R. Jackson et al., “Performance analysis of high performance com-
puting applications on the Amazon Web services cloud,” in Proc. [EEE
2nd Int. Conf. Cloud Comput. Technol. Sci., Nov. 2010, pp. 159-168.
K. Hazelwood et al., “Applied machine learning at facebook: A datacen-
ter infrastructure perspective,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2018, pp. 620-629.

P. Peng, E. Soljanin, and P. Whiting, “Diversity/parallelism trade-
off in distributed systems with redundancy,” 2020, arXiv:2010.02147.
[Online]. Available: http://arxiv.org/abs/2010.02147

A. Bulug and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication
and indexing: Implementation and experiments,” SIAM J. Sci. Comput.,
vol. 34, no. 4, pp. C170-C191, Jan. 2012.

S. Li, S. Mohammadreza Mousavi Kalan, A. Salman Avestimehr,
and M. Soltanolkotabi, “Near-optimal straggler mitigation for distrib-
uted gradient methods,” 2017, arXiv:1710.09990. [Online]. Available:
http://arxiv.org/abs/1710.09990

M. Harchol-Balter, N. Bansal, and B. Schroeder, “Implementation of
SRPT scheduling in Web servers,” CMU-CS, Pittsburgh, PA, USA, Tech.
Rep., 2000.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

[27] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2418-2422.

L. Liyanage and J. G. Shanthikumar, “Allocation through stochastic
Schur convexity and stochastic transposition increascingness,” in Proc.
Lect. Notes-Monograph Ser., 1992, pp. 253-273.

M. M. Amiri and D. Gunduz, “Computation scheduling for distributed
machine learning with straggling workers,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2019, pp. 8177-8181.
K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf, “A better model
for job redundancy: Decoupling server slowdown and job size,” in Proc.
1EEE 24th Int. Symp. Modeling, Anal. Simulation Comput. Telecommun.
Syst. (MASCOTS), Sep. 2016, pp. 1-10.

M. Zubeldia, “Delay-optimal policies in partial fork-join systems with
redundancy and random slowdowns,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 4, no. 1, pp. 1-49, May 2020.

P. Peng, E. Soljanin, and P. Whiting, “Diversity vs. Parallelism in
distributed computing with redundancy,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2020, pp. 257-262.

J. Wilkes. (Nov. 2011). More Google Cluster Data. [Online]. Avail-
able: http://googleresearch.blogspot.com/2011/11/more-google-cluster-
data.html

E. W. Weisstein, “Stirling number of the second kind,” Triangle, vol. 7,
p- 8, Dec. 2002.

A. N. Myers and H. S. Wilf, “Some new aspects of the coupon
Collector’s problem,” SIAM Rev., vol. 48, no. 3, pp. 549-565, Jan. 2006.
B. C. Arnold, Pareto Distribution. Hoboken, NJ, USA: Wiley, 2014,
pp. 1-10.

(28]

[29]

[30]

(31]

(32]

(33]

[34]
[35]

[36]

Amir Behrouzi-Far received the B.S. degree in electrical engineering from
the Iran University of Science and Technology, Tehran, Iran, in 2013, and the
M.S. degree in electrical and electronics engineering from Bilkent University,
Ankara, Turkey, in 2016. He is currently pursuing the Ph.D. degree in
electrical and computer engineering with Rutgers University, New Brunswick,
NJ, USA. His research interests include performance evaluation in distributed
systems, timeliness in real time systems, scheduling in computing/storage
systems, wireless communications, and reinforcement learning.

Emina Soljanin (Fellow, IEEE) was a (Distinguished) Member of Technical
Staff for 21 years in the Mathematical Sciences Research, Bell Labs. In Jan-
uary 2016, she joined Rutgers University, where she is currently a Professor.
Her interests and expertise are wide. Over the past quarter of the century,
she has participated in numerous research and business projects, as diverse
as power system optimization, magnetic recording, color space quantization,
hybrid ARQ, network coding, data and network security, distributed systems
performance analysis, and quantum information theory.

Prof. Soljanin is an Outstanding Alumnus of the Texas A&M School
of Engineering, the 2011 Padovani Lecturer, a Distinguished Lecturer from
2016 to 2017, and the 2019 President of the IEEE Information Theory Society.
She served as an Associate Editor for Coding Techniques and the IEEE
TRANSACTIONS ON INFORMATION THEORY, on the Information Theory
Society Board of Governors, and in various roles on other journal editorial
boards and conference program committees.

Authorized licensed use limited to: Rutgers University. Downloaded on April 12,2022 at 18:00:31 UTC from IEEE Xplore. Restrictions apply.

