
A Hybrid Scattering Transform for Signals with
Isolated Singularities

Michael Perlmutter
Dept. of Mathematics

University of California, Los Angeles
Los Angeles, CA, USA

perlmutter@math.ucla.edu

Jieqian He
Dept. of CMSE

Michigan State University
East Lansing, MI, USA

hejieqia@msu.edu

Mark Iwen
Dept. of Mathematics

Dept. of CMSE
Michigan State University
East Lansing, MI, USA

iwenmark@msu.edu

Matthew Hirn
Dept. of CMSE

Dept. of Mathematics
Michigan State University
East Lansing, MI, USA

mhirn@msu.edu

Abstract—The scattering transform is a wavelet-based model

of Convolutional Neural Networks originally introduced by S.

Mallat. Mallat’s analysis shows that this network has desirable

stability and invariance guarantees and therefore helps explain

the observation that the filters learned by early layers of a

Convolutional Neural Network typically resemble wavelets. Our

aim is to understand what sort of filters should be used in the later

layers of the network. Towards this end, we propose a two-layer

hybrid scattering transform. In our first layer, we convolve the

input signal with a wavelet filter transform to promote sparsity,

and, in the second layer, we convolve with a Gabor filter to

leverage the sparsity created by the first layer. We show that

these measurements characterize information about signals with

isolated singularities. We also show that the Gabor measurements

used in the second layer can be used to synthesize sparse signals

such as those produced by the first layer.

Index Terms—scattering transforms, wavelets, sparsity, deep

learning, time-frequency analysis

I. INTRODUCTION

The wavelet scattering transform is a mathematical model
of Convolutional Neural Networks (CNNs) introduced by S.
Mallat [3]. Analogously to the feed-forward portion of a CNN,
it produces a latent representation of an input signal via an
alternating sequence of filter convolutions and nonlinearities.
It differs, most notably, by using predesigned wavelet filters
rather than filters learned from data.

Using predefined filters allows for rigorous analysis and
helps us understand why a deep nonlinear network is better
than a wide, shallow, linear network with the same number of
parameters. Ideally, a feed-forward network should produce a
representation which is sufficiently descriptive for downstream
tasks, but also stable to deformations such as translations.
Linear networks are typically unable to do both and often
must discard high-frequency information to achieve stability.
Mallat’s analysis in [3] shows that the scattering transform,
on the other hand, captures high-frequency information via
wavelets and then pushes it down to lower, more stable,
frequencies using a nonlinear activation function. Thus, the
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Fig. 1: Wavelet filter used in the first layer

nonlinear structure enables the network to stably capture high-
frequency information.

The scattering transform also helps us understand which
filters are useful for effectively encoding information. While
the optimal choice is task dependent, wavelets are often a
good choice since natural images are typically sparse in
the wavelet basis and as discussed above, they are able to
capture high-frequency information. Moreover, and perhaps
most importantly, the filters learned in the early layers of
CNNs typically resemble wavelets.

This paper focuses on the choice of filters for later layers
of the network. In particular, we propose a two-layer hybrid
scattering model. In the first layer, we use a wavelet convolu-
tion to sparsify the input. Then, we use a Gabor type filter to
leverage this sparsity.

For simplicity, we assume that the input y(t) is a piece-
wise polynomial whose knots are located at points {ui}

k
i=1

ui < ui+1. We shall also assume that each of its piecewise
components yi(t) has degree at most m. We let  be a mother
wavelet with supp( ) ✓ [�1, 1] and let

 `(t) =
1

2`
 

✓
t

2`

◆
.

We will assume that  has m+ 1 vanishing moments, which
implies that  ` ? yi(t) = 0 (see e.g. [2]). It follows that
supp( ` ? y) is contained in [

k
i=1[ui � 2`, ui +2`]. To further
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(a) piecewise polynomial y(t)

(b) Convolution against wavelet  `

(c) Sparse Signal from Max Pooling

Fig. 2: Wavelets sparsify piecewise polynomials on the interval
[0, 1024h].

promote sparsity, we next apply a max-pooling operator:

MP`z(t) =

(
z(t) if z(t) = maxt02[ti�2`,ti+2`]\hZ z(t

0)

0 otherwise
.

As summarized in the following theorem, this yields a linear
combination of Dirac delta functions.

Theorem 1. Assume that 2`+1
 mini 6=i0 |ui � ui0 |. Then,

MP`(| ` ? y|)(t) =
kX

j=1

aj�vj (t).

for some a1, . . . , ak > 0, vj 2 [uj � 2`, uj + 2`], 1  j  k.

In our second layer, rather than another wavelet, we use a
Gabor filter

gs,⇠ = w

✓
t

s

◆
⇠t, (1)

where the parameters s and ⇠ determine the scale and central
frequency and the window function w is supported on an
interval of unit length. Next, we take the Lp norm for some
integer p � 1. As a result, we obtain translation invariant
hybrid scattering coefficients

kgs,⇠ ?MP`(| ` ? y|)kp.

By design, these measurements are invariant to translations,
reflections, and global sign changes. We aim to investigate
the ability of our measurements to characterize y up to these
natural ambiguities. The wavelet-modulus is known to be a

(a) Indicator function window

(b) Gaussian window

Fig. 3: Gabor filters used in the second layer (real parts)

powerful signal descriptor [4]. Therefore, in light of Theorem
1, we shall analyze the ability of the measurements

f⇠(s)[x] := kgs,⇠ ? xkp (2)

to characterize signals of the form

x(t) =
kX

j=1

aj�vj (t). (3)

For such a signal, we will let ~a be the vector] defined by
~a = (a1, . . . , ak) and let k~akp denote its `p norm.

To supplement our theory, we will show that the measure-
ments (2) can be used to reconstruct a sparse signal of the form
(3) up to translations, reflections and global sign changes in
Section VI.

We will show that our measurements characterize the sup-
port set {vj}kj=1. For i < j, we let �i,j = vj�vi and consider
the difference set

D(x) := {�i,j : 1  i < j  k}.

We will assume that x is collision free, i.e., that �i,j 6= �i0,j0

except for when (i, j) = (i0, j0) and that D(x) is contained
in a fine grid, hZ = {hn : n 2 Z} for some h > 0. Under
these assumptions, it is known [1], [5] that the support set
{vj}kj=1 is determined (up to reflection and translation) by
D(x) except for in the case where k = 6 and the {vj}6j=1

belong to a specific parametric family. (See Theorem 1 of [5]
for full details. For the remainder of this work, we will assume
that {vj}kj=1 does not belong to this family and therefore the
support set {vj}kj=1 is determined by D(x).) This motivates



the following theorem which shows that the measurements (2)
uniquely determine D(x).

Theorem 2. Let p � 1 be an integer and let w(t) = 1[0,1](t).
Then for almost every ⇠, the function

f⇠(s) = kgs,⇠ ? xkp

is piecewise linear. Morover, the set of its isolated singularities
is exactly the support set D(x).

Theorem 4 shows that selecting a single random frequency
and enough scales {sj} such that there is one sj in between
each element of D(x) allows us detect the location of each
point of D(x) by evaluating f⇠(s) at each of the sj (up to a
precision corresponding to the density of the scales). The next
result shows that the amplitudes aj can also be recovered with
O(p) randomly chosen frequencies. Thus, the measurements
(2) characterize sparse signals up to natural ambiguities.

Theorem 3. Let w(t) = 1[0,1](t) and, let

x(t) =
kX

j=1

aj�vj (t)

be a sparse signal of the form (3). Let ⇠1, . . . , ⇠L be i.i.d.
standard normal random variables, where L is assumed to be
at least p+2 if p is even and at least 4p+2 if p is odd. Then
the following uniqueness result holds almost surely:

Let

ex(t) =
kX

j=1

eaj�evj (t).

Suppose that k~akp = k~eakp, that D(ex) = D(x), and that

@2sf⇠` [x](d) = @2sf⇠` [ex](d)

for all d 2 D(x) and all 1  `  4p+ 2.
Then we have that ~ea = ±~ea, and therefore ex(t) is equivalent

to x(t) up to translation, reflection, and global sign change.

II. GENERALIZED EXPONENTIAL POLYNOMIALS

In this section, we will introduce some notation and state
some lemmas that are needed in order to prove Theorems 2
and 3. For the proof of the lemmas in this section, please see
section V.

We let E denote the set of functions that can be written as

p(✓) =
NX

k=1

↵k
�k✓ (4)

where N � 1, ↵k, �k 2 R, ↵k 6= 0, and �1 < �2 < . . . < �N .
Since the �k are allowed to be arbitrary (possibly negative or
irrational) real numbers, we call these functions generalized
exponential polynomials. For p 2 E , we refer to �N as the
degree of p. We let E(d) refer to the set of all p 2 E with
degree(p) = d, and let E0(d) denote the set of p 2 E(d) such
that �1 = 0.

The following lemma shows that each p 2 E has a unique
representation as the sum of exponentials, and that therefore,
the degree of p is well defined.

Lemma 1. Let p, q 2 E , with

p(✓) =
NX

k=1

↵k
�k✓ and q(✓) =

N 0X

k=1

�k
⌘k✓.

Then p = q if and only if N = N 0 and for all k = 1, . . . , N
↵k = �k and �k = ⌘k.

Lemma 1 implies that if p 2 E(d1) and q 2 E(d2), then

pq 2 E(d1 + d2). (5)

In particular, if p 2 E0(d)

|p|2 = pp̄ 2 E(d+ 0) = E(d). (6)

Furthermore, if d2  d1 then

(p+ q) 2 E(d1), (7)

except, of course, if d1 = d2 and the lead coefficients of p
and q are negatives of one another.

The next several lemmas will be needed in the proofs of
Theorems 2 and 3.

Lemma 2. For i = 1, 2, 3, 4 let pi 2 E0(di) assume that
d1 > d2, d3, d4. Then the set of points ✓ such that

|p1(✓)|
p + |p2(✓)|

p = |p3(✓)|
p + |p4(✓)|

p (8)

has measure zero.

Lemma 3. Let p � 1 be an odd integer, and let a, b, c, d, C 2

R, a, b, c, d 6= 0. Let p(✓) = a+ b ✓, and q(✓) = c+ d ✓. If
there are more than 4p distinct ✓ 2 [0, 2⇡] such that

|p(✓)|p � |q(✓)|p = C,

then ab = cd and a2 + b2 = c2 + d2.

Lemma 4. Let p � 1 be an integer and let a, b, c, d, C 2

R, � > 0, 6= 0,±1. Then the set of ✓ such that
���a+ b ✓ + c (�+1)✓

���
p
�

����a+
1


b ✓ + c (�+1)✓

����
p

= C

(9)
has measure zero.

III. THE PROOF OF THEOREM 2
Before proving Theorem 2 we will first prove a preliminary

result which shows, even without the assumption that x(t) is
collision free, that f⇠(s) is a peicewise linear function whose
set of knots is contained in D(x). This result is based on the
observation that we may write

f⇠(s) =
X

i<j

↵i,j(s)�i,j(⇠).

where for each i < j,

�i,j(⇠) :=
jX

`=i

a`
⇠�i,` (10)

is a function that only depends on ⇠ and ↵i,j(s) is piecewise
linear function of s whose singularities are contained in D(x).



Specifically, we prove the following theorem. We emphasize
that this result does not assume that x(t) is collision free,
which is why for d 2 D(x) there might be multiple i, j such
that �i,j = d.

Theorem 4. Let p � 1 be an integer, and assume w(t) =
1[0,1](t). For i  j, �i,j(⇠) be as in (10). Then, for every fixed
⇠, the function f⇠(s) = kgs,⇠ ⇤ xkpp is piecewise linear, and
@2sf⇠(s) is a grid-free sparse signal whose support is contained
in D(x). Specifically,

@2sf⇠(s) =
X

d2D(x)

0

@
X

�i,j=d

ci,j(⇠)

1

A �d, (11)

where

ci,i+1(⇠) = |�i,i+1(⇠)|
p
� |�i+1,i+1(⇠)|

p
� |�i,i(⇠)|

p (12)

and for j � i+ 2

ci,j(⇠) = |�i,j(⇠)|
p+|�i+1,j�1(⇠)|

p
�|�i+1,j(⇠)|

p
�|�i,j�1(⇠)|

p.
(13)

Proof. We first note that

|(gs,⇠ ? x)(t)| =

�����

kX

i=1

aigs,⇠(t� vi)

�����

=

�����

kX

i=1

ai
⇠(t�vi)1[vi,vi+s](t)

�����

=

�����

kX

i=1

ai
� ⇠vi1[vi,vi+s](t)

����� .

For I ✓ {1, . . . , k}, let RI(s) be the set of t for which
ai � ⇠vi1[vi,vi+s](t) is nonzero if and only if i 2 I , i.e.,

RI(s) = {t : t 2 [vi, vi + s] 8i 2 I, t /2 [vi, vi + s] 8i /2 I}.

Then, since w(t) = 1[0,1](t) it is clear that for t 2 RI ,

|(gs,⇠ ? x)(t)| =

�����
X

i2I

ai
� ⇠vi

����� =: yI(⇠).

Therefore,

f⇠(s) = k(gs,⇠ ? x)(t)k
p
p =

X

I✓{1,...k}

|yI(⇠)|
p
|RI(s)|, (14)

where |RI(s)| denotes the Lebesgue measure of RI(s). We
will show that for all I ✓ {1, . . . , k}, |RI(s)| is piecewise
linear function whose knots are contained in D(x).

First, we note that RI(s) = ; unless I has the form {i, i+
1, . . . , j � 1, j} for some i  j. Therefore,

fs(⇠) =
kX

i=1

kX

j=i

|�i,j(⇠)|
p
|Ri,j(s)|, (15)

where Ri,j := R{i,...,j}. and, as in (10), �i,j(⇠) is given by

|�i,j(⇠)| =

�����

jX

`=i

a`
⇠�i,`

����� =

�����

jX

`=i

a`
⇠v`

����� .

Now, turning our attention to Ri,j(s), we observe by
definition that a point t is in Ri,j(s) if and only if it satisfies
the following three conditions:

v` t  v` + s for all i  `  j,

t > vi�1 + s, and
t < vj+1.

Therefore, letting _(a, b) and ^(a, b) denote min{a, b} and
max{a, b}, we see

Ri,j(s) = [vj , vi + s] \ [vi�1 + s, vj+1] (16)
= [vj _ (vi�1 + s), (vi + s) ^ vj+1], (17)

and therefore

|Ri,j(s)| = ((vi + s) ^ vj+1)� (vj _ (vi�1 + s))

if the above quantity is positive and zero otherwise. It follows
from (16) that |Ri,j(s)| is a piecewise linear function, and that
@2s |Ri,j(s)| is given by

@2s |Ri,j(S)| = ��i,j (s)+��i�1,j+1(s)���i�1,j (s)���i,j+1(s).
(18)

We note that in order for this equation to be valid for all
1  i < j  k, we identify v0 and vk+1 with �1 and 1,
and therefore, ��0,j ��i�1,k+1 are interpreted as being the zero
function since the domain of f is (0,1). Likewise ��i,i = �0
is interpreted as the zero function in the above equation.

Combining (18) with (15) implies that @2sf⇠(s) is a sparse
signal with support contained in D(x), and for d 2 D(x),

@2sf⇠(d) =
X

�i,j=d

ci,j(⇠)

as desired.

Before we prove Theorem 2, we note the following example
which shows that, in general, the support of @2sf⇠(s) may be
a proper subset of D(x).

Example 1. If p = 2 and

x(t) = �1(t) + �2(t) + �3(t)� �4(t),

then 2 2 D(x), but
@2sf⇠(2) = 0.

Proof. For this choice of x, there are two pairs (i, j) such that
�i,j = 2, namely (1, 3) and (2, 4). Therefore, by Theorem 4,

@2sf⇠(2) =
�
|y1,3(⇠)|

2 + |y2,2(⇠)|
2
� |y1,2(⇠)|

2
� |y2,3(⇠)|

2
�

+
�
|y2,4(⇠)|

2 + |y3,3(⇠)|
2
� |y2,3(⇠)|

2
� |y3,4(⇠)|

2
�
.

Inserting (a1, a2, a3, a4) = (1, 1, 1,�1), �i,i+1 = 1, and
�i,i+2 = 2 into (10) implies that

@2sf⇠(2) =
�
|1 + ⇠ + 2i⇠

|
2 + 1� |1 + ⇠

|
2
� |1 + ⇠

|
2
�

+
�
|1 + ⇠

�
2i⇠

|
2 + 1� |1 + ⇠

|
2
� |1� ⇠

|
2
�

= |1 + ⇠ + 2i⇠
|
2 + |1 + ⇠

�
2i⇠

|
2

+ 2� 3|1 + ⇠
|
2
� |1� ⇠

|
2

= 0.



The last inequality follows from repeatedly applying the the
trigonometric identities sin2(✓) + cos2(✓) = 1 and cos(✓) =
cos(2✓) cos(✓) + sin(2✓) sin(✓).

We shall now prove Theorem 2.

The Proof of Theorem 2. By assumption, x(t) is collision
free. Therefore, for all d 2 D(x), there is a unique i, j
such that �i,j = d, and so, by (11), it suffices to show that
ci,j(⇠) 6= 0 for all i < j and for almost every ⇠ 2 R, where
as in (12) and for j � i+ (13)

ci,i+1(⇠) = |�i,i+1(⇠)|
p
� |�i+1,i+1(⇠)|

p
� |�i,i(⇠)|

p,

and for j � i+ 2,

ci,j(⇠) = |�i,j(⇠)|
p+|�i+1,j�1(⇠)|

p
�|�i+1,j(⇠)|

p
�|�i,j�1(⇠)|

p,

where

�i,j(⇠) =

�����

jX

k=i

ak
� ⇠�i,k

����� .

Observe that �i,j(⇠) are generalized exponential Laurent poly-
nomials of the form introduced in Section II, and in particular,
�i,j 2 E0(�i,j). Therefore, when j � i + 2, it follows from
Lemma 2 that ci,j(⇠) vanishes on a set of measure zero since
if ci,j(⇠) = 0 we have

|�i,j(⇠)|
p + |�i+1,j�1(⇠)|

p = |�i+1,j(⇠)|
p + |�i,j�1(⇠)|

p.

In the case where j = i+ 1, we see that

ci,i+1(⇠) = |ai + ai+1
� ⇠�i,i+1 |

p
� |ai|

p
� |ai+1|

p,

For any ⇠ such that ci,i+1(⇠) = 0, we see that ⇠�i,i+1 is a
solution to

��ai + ai+1
✓
��2 � (|ai|

p + |ai+1|
p)2/p = 0.

Thus, ci,i+1(⇠) vanishes on a set of measure zero since the left-
hand side of the above equation is a trigonometric polynomial.

IV. THE PROOF OF THEOREMS 3
Proof. Let ⇠1, ⇠2, . . . , ⇠L be i.i.d. standard normal random
variables. Since x is collision free, with probability one, each
of the ⇠`�i,i+1(x) are distinct modulo 2⇡, i.e.

⇠`�i,i+1(x) 6⌘ ⇠`0�i0,i0+1(x) mod 2⇡ (19)

for all 1  i, i0  k � 1 and 1  `, `0  L, except when
(i, `) = (i0, `0). For the rest of the proof we will assume this
is the case.

Let

ex(t) =
kX

j=1

eaj�evj (t)

be a signal D(ex) = D(x), k~akp = k~eakp, and @2sf⇠` [x](d) =
@2sf⇠` [ex](d) for all d 2 D(x) and for all 1  `  L � 1.
Note that ex(t) depends on ⇠1, . . . , ⇠L�1, but is independent
of ⇠L. By assumption that x(t) and ex(t) are collision free
(and also, as discussed in the Section I, we assume that we

are not in the special case where k = 6 and the {vj}kj=1

belong to a special parametrized family). Therefore, the fact
that D(x) = D(ex) implies that the support sets of x and ex are
equivalent up to translation and reflection, so we may assume
without loss of generality that �i,j(x) = �i,j(ex) =: �i,j for
all 1  i  j  k.

We will show that ~ea must be given by

eai =
(

1
cai if i is odd
cai if i is even

, (20)

where c = ±1 or

|c|p =

Pb k+1
2 c

i=1 |a2i�1|
p

Pb k
2 c

i=1 |a2i|
p

. (21)

Then, we will show that, if c satisfies (21), but c 6= ±1, then
with probability one

@2sf⇠L [x](�1,3) 6= @2sf⇠L [ex](�1,3).

Since ex(t)
�
and therefore ~ea

�
was chosen to depend on

⇠1, . . . , ⇠L�1, but not ⇠L, these two facts together will imply
that, with probability one, if ex(t) is any signal such that
D(ex) = D(x) and @2sf⇠` [x](d) = @2sf⇠` [ex](d) for all d 2 D

and all 1  `  L, then ~ea = ±~a and therefore ex(t) is
equivalent to ±x(t) up to reflection and translation.

We first will show that (20) holds in the case where p is
odd. Setting @2sf⇠` [x](�i,i+1) = @2sf⇠` [ex](�i,i+1) and using
(12) implies that for all 1  `  L� 1 and all 1  i  k � 1
we have

|ai + ai+1
⇠`�i,i+1 |

p
� |ai+1|

p
� |ai|

p

=|eai + eai+1
⇠`�i,i+1 |

p
� |eai+1|

p
� |eai|p. (22)

Therefore, ⇠1�i,i+1, . . . , ⇠L�1�i,i+1 constitute L � 1 solu-
tions, which are distinct modulo 2⇡, to the equation

|ai+ai+1
✓
|
p
�|eai+ea ✓

i+1|
p = |eai|p+|eai+1|

p
�|ai|

p
�|ai+1|

p.

Since L� 1 > 4p, Lemma 3 implies that

aiai+1 = eaieai+1 and ea2i + ea2i+1 (23)

for all 1  i  k � 1. It follows from (23) that (20) holds
with c := a1/ea1.

Now consider the case where p = 2m is even. Sim-
ilarly to (22), the assumption that @2sf⇠` [x](�i,i+1) =
@2sf⇠` [ex](�i,i+1) implies that for all 1  `  L, 1  i  k�1,

|ai + ai+1
⇠`�i,i+1 |

2m
� |ai|

2m
� |ai+1|

2m

=|eai + eai+1
⇠`�i,i+1 |

2m
� |eai|2m � |eai+1|

2m.

Therefore, for all 1  i  k � 1, ⇠1�i,i+1, . . . , ⇠L�1�i,i+1

are L� 1 zeros of

hi(✓) := |ai + ai+1
✓
|
2m

� |eai + eai+1
✓
|
2m

+ |eai|2m + |eai+1|
2m

� |ai|
2m

� |ai+1|
2m

which are distinct modulo 2⇡. Using the fact that

|ai + ai+1
✓
|
2 = a2i + a2i+1 + 2aiai+1 cos(✓)



one may verify that hi(✓) is a trigonometric polynomial of
degree at most m given by

hi(✓) = (a2i + a2i+1 + 2aiai+1 cos(✓))
m

� (ea2i + ea2i+1 + 2eaieai+1 cos(✓))
m

+ ea2mi + ea2mi+1 � a2mi � a2mi+1

Thus, since L � 1 > p = 2m, this implies that h(✓) must be
uniformly zero. In particular, setting the lead coefficient equal
to zero implies

(aiai+1)
m = (eaieai+1)

m

for all 1  i  k� 1. Using the binomial theorem and setting
the cos(✓) coefficient equal to zero gives

(a2i + a2i+1)
m�1aiai+1 = (ea2i + ea2i+1)

m�1eaieai+1.

Together, the last two equations imply

a2i + a2i+1 = ea2i + ea2i+1 and aiai+1 = eaieai+1.

As in the case where p was odd, this implies that (20) must
hold.

Combining (20) with the assumption that

kX

i=1

|ai|
p =

kX

i=1

|eai|p

implies that either c = ±1 or that c satisfies (21). Thus the
proof will be complete once we show that if c satisfies (21),
but c 6= ±1,, then with probability one, @2sf⇠L [x](�1,3) 6=
@2sf⇠L [ex](�1,3).

By (13), if @2sf⇠L [x](�1,3) = @2sf⇠L [ex](�1,3), then

|a1 + a2
⇠L�1,2 + a3

⇠L�1,3 |
p + |a2|

p (24)
� |a2

⇠L�1,2 + a3
⇠L�1,3 |

p
� |a1 + a2

⇠L�1,2 |
p

=|ea1 + ea2 ⇠L�1,2 + ea3 ⇠L�1,3 |
p + |ea2|p

� |ea2 ⇠L�1,2 + ea3 ⇠L�1,3 |
p
� |ea1 + ea2 ⇠L�1,2 |

p.

But (23) implies that for all i either (ai, ai+1) = ±(eai,eai+1)
or (ai, ai+1) = ±(eai+1,eai). In either case, we have that

|a1 + a2
⇠L�1,2 | = |ea1 + ea2 ⇠L�1,2 |

and

|a2
⇠L�1,2 + a3

⇠L�1,3 | = |ea2 ⇠L�1,2 + ea3 ⇠L�1,3 |.

Combining this with (24) gives

|a1 + a2
⇠L�1,2 + a3

⇠L�1,3 |
p + |a2|

p

= |ea1 + ea2 ⇠L�1,2 + ea3 ⇠L�1,3 |
p + |ea2|p. (25)

However, by Lemma 4 the set of ⇠L 2 R such that (25) holds
has measure zero, unless c = ±1. Since ⇠L is a normal random
variable, this happens with probability zero. Thus, the proof
is complete.

V. PROOFS OF AUXILIARY LEMMAS

In this section, we will provide proofs of the lemmas stated
in section II.

The Proof of Lemma 1. By linearity, it suffices to show that
↵1, . . . ,↵N are nonzero numbers, then p(✓) =

PN
k=1 ↵k

�k✓

is not the zero function. We will restrict attention to the case
where |�N | > |�k| for all 1  k  N � 1. The proofs of the
other cases, where either |�1| > |�k| for all 2  k  N or
where |�1| = |�N | > |�k| for all 2  k  N � 1 are similar.

For all n � 1, the n-th derivative of p(✓) is given by

p(n)(✓) =
NX

k=1

↵k�
n
k

�k✓.

Therefore, since |�N | > �k for all 1  k  N � 1, we have

lim
n!1

p(n)(0)

�nN
= ↵N .

In particular, there exists n such that p(n)(0) 6= 0, and
therefore p(✓) is not the zero function.

The proof of Lemma 2. In the case where p = 2m is even,
then by (6) and (7), |pi(✓)|2m 2 E(mdi) for each i. Therefore,
since d1 > d2, d3, d4, it follows from (7) that

|p1(✓)|
2m + |p2(✓)|

2m
� |p3(✓)|

2m
� |p4(✓)|

2m

is an element of E(md1) and therefore vanishes on a set of
measure zero.

Now consider the case where p = 2m+1 is odd. Squaring
both sides of (8) implies

p5(✓) = 2(|p1(✓)p2(✓)|
2m+1

� |p3(✓)p4(✓)|
2m+1),

where

p5(✓) := |p1(✓)|
4m+2+|p2(✓)|

4m+2
�|p3(✓)|

4m+2
�|p4(✓)|

4m+2.

Thus, squaring both sides again gives

p6(✓) = 8|p1(✓)p2(✓)p3(✓)p4(✓)|
2m+1,

where

p6(✓) := p5(✓)
2
� 4|p1(✓)p2(✓)|

4m+2
� 4|p3(✓)p4(✓)|

4m+2.

Therefore, squaring both sides one final time implies that

p6(✓)
2
� 64|p1(✓)p2(✓)p3(✓)p4(✓)|

4m+2 = 0.

However, since d1 > d2, d3, d4, applying (5), (6), and (7),
implies that (p6(✓)2�64|p1(✓)p2(✓)p3(✓)p4(✓)|2) 2 E((8m+
4)d1) and therefore vanishes on a set of measure zero.

The Proof of Lemma 3. If ✓ is a solution to

|p(✓)|p � |q(✓)|p = C,

then
|p(✓)|2p � |q(✓)|2p � C2 = 2|q(✓)|pC.

Therefore,

f(✓) :=
�
|p(✓)|2p � |q(✓)|2p � C2

�2
� 4|q(✓)|2pC2 = 0.



Since

|p(✓)|2 = a2+b2+2ab cos(✓) and |q(✓)|2 = c2+d2+cd cos(✓),

f(✓) is a trigonometric polynomial of degree at most 2p. Thus,
if f(✓) has more than 4p zeros in [0, 2⇡] it must be uniformly
zero. Expanding out terms, we see

f(✓)

=((a2 + b2 + 2ab cos(✓))p � (c2 + d2 + 2cd cos(✓))p � C2)2

� 4C2(c2 + d2 + 2cd cos(✓))p

and so setting the cos2p(✓) coefficient equal to zero implies

0 = (2papbp � 2pcpdp)2

which implies ab = cd since p is odd. If p � 3, then we have
2(p� 1) > p. Therefore,

f1(✓) := ((a2+b2+2ab cos(✓))p�(c2+d2+2cd cos(✓))p�C2)2

has strictly greater degree than

f2(✓) := 4C2(c2 + d2 + 2cd cos(✓))p

and so f1(✓) must also be uniformly zero. Setting the
cosp�1(✓) coefficient of f1(✓)1/2 equal to zero yields

�
p(a2 + b2)(2ab)p�1

� p(c2 + d2)(2cd)p�1
�2

= 0,

but since ab = cd this implies that a2 + b2 = c2 + d2. On the
other hand, if p = 1, using the fact that ab = cd we see that

0 =
�
a2 + b2 � (c2 + d2)� C

�2
�4C2(c2+d2+2cd cos(✓)),

which can only happen for all ✓ if C = 0 and a2 + b2 =
c2 + d2.

The Proof of Lemma 4. Let

p(✓) = a+ b ✓ + c (�+1)✓

and
q(✓) = a+

1


b ✓ + c (�+1)✓.

Then squaring both sides of (9) yields,

|p(✓)|2p � |q(✓)|2p � C2 = 2|q(✓)|pC,

and therefore if ✓ satisfies (9) it is a solution to f(✓) = 0,
where

f(✓) :=
�
|p(✓)|2p � |q(✓)|2p � C2

�2
� 4|q(✓)|2pC2.

f(✓) is an element of the class E of generalized exponential
polynomials introduced earlier. Thus, it will follow that f
vanishes on a set of measure zero as soon as we show that
f is not uniformly zero. We will verify that that the lead
cofficient of f is nonzero unless  = ±1. Using the identity

x + � x = 2 cos(x) we see that

|p(✓)|2 = a2 + b2 + c2 + 2ab cos(✓)

+ 2bc cos(�✓) + 2ac cos((� + 1)✓)

Fig. 4: Sparse signals reconstructed up to a global reflections,
translations, and sign changes. Originals signals are on the left
and reconstructed signals are on the right.

and likewise is given by

|q(✓)|2 = 2a2 +
1

2
b2 + 2c2

+ 2ab cos(✓) + 2bc cos(�✓) + 22ac cos((� + 1)✓).

Therefore, the lead coefficient of f(✓) vanishes if and only if
2 = 1.

VI. SIGNAL SYNTHESIS

In order to illustrate the ability of the measurements ?? to
characterize sparse signals, we verify empirically that signals
with the same measurement differ only by global reflections,
translations and sign changes. Specifically, given a signal
x(t) =

Pk
j=1 aj�vj (t) and a finite collection of measurements

{kgsk,⇠k ? xkp}
N
k=1

we use a greedy scheme to find another signal ex(t) =Pk
j=1 eaj�vj (t) which minimizes

NX

k=1

|kgsk,⇠k ? xkp � kgsk,⇠k ? exkp|
2 .

Figure 4 shows the result of several signals x̃ which were
obtained by solving this minimization problem.

In all of experiments, we set the signal lengther to be N =
128 and used two frequencies ⇠ = (41/N)⇡, (23/N)⇡. For the
first signal we used scales s = 1, 14, 27, 40, 53, 2, 65, 96, 106.
For the second singal we used s =
1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 2, 4, 65, 96, 106,
and for the third we used s =
1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 2, 4, 6, 65, 96, 106.
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[2] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition:
The Sparse Way. Academic Press, 3rd edition, 2008.
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