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Abstract—The scattering transform is a wavelet-based model
of Convolutional Neural Networks originally introduced by S.
Mallat. Mallat’s analysis shows that this network has desirable
stability and invariance guarantees and therefore helps explain
the observation that the filters learned by early layers of a
Convolutional Neural Network typically resemble wavelets. Our
aim is to understand what sort of filters should be used in the later
layers of the network. Towards this end, we propose a two-layer
hybrid scattering transform. In our first layer, we convolve the
input signal with a wavelet filter transform to promote sparsity,
and, in the second layer, we convolve with a Gabor filter to
leverage the sparsity created by the first layer. We show that
these measurements characterize information about signals with
isolated singularities. We also show that the Gabor measurements
used in the second layer can be used to synthesize sparse signals
such as those produced by the first layer.

Index Terms—scattering transforms, wavelets, sparsity, deep
learning, time-frequency analysis

I. INTRODUCTION

The wavelet scattering transform is a mathematical model
of Convolutional Neural Networks (CNNs) introduced by S.
Mallat [3]]. Analogously to the feed-forward portion of a CNN,
it produces a latent representation of an input signal via an
alternating sequence of filter convolutions and nonlinearities.
It differs, most notably, by using predesigned wavelet filters
rather than filters learned from data.

Using predefined filters allows for rigorous analysis and
helps us understand why a deep nonlinear network is better
than a wide, shallow, linear network with the same number of
parameters. Ideally, a feed-forward network should produce a
representation which is sufficiently descriptive for downstream
tasks, but also stable to deformations such as translations.
Linear networks are typically unable to do both and often
must discard high-frequency information to achieve stability.
Mallat’s analysis in [3] shows that the scattering transform,
on the other hand, captures high-frequency information via
wavelets and then pushes it down to lower, more stable,
frequencies using a nonlinear activation function. Thus, the
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Fig. 1: Wavelet filter used in the first layer

nonlinear structure enables the network to stably capture high-
frequency information.

The scattering transform also helps us understand which
filters are useful for effectively encoding information. While
the optimal choice is task dependent, wavelets are often a
good choice since natural images are typically sparse in
the wavelet basis and as discussed above, they are able to
capture high-frequency information. Moreover, and perhaps
most importantly, the filters learned in the early layers of
CNN s typically resemble wavelets.

This paper focuses on the choice of filters for later layers
of the network. In particular, we propose a two-layer hybrid
scattering model. In the first layer, we use a wavelet convolu-
tion to sparsify the input. Then, we use a Gabor type filter to
leverage this sparsity.

For simplicity, we assume that the input y(¢) is a piece-
wise polynomial whose knots are located at points {u;}5_,
u; < u;y+1. We shall also assume that each of its piecewise
components y; () has degree at most m. We let ¢) be a mother
wavelet with supp(¢)) C [—1,1] and let

o)) = 550 ()

We will assume that ¢/ has m + 1 vanishing moments, which
implies that ¥, x y;(t) = 0 (see e.g. [2]). It follows that
supp(1p¢ x ) is contained in UX_, [u; — 2%, u; + 2¢]. To further
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Fig. 2: Wavelets sparsify piecewise polynomials on the interval
[0,1024A).

promote sparsity, we next apply a max-pooling operator:

MPa(t) = 4 2B 17 2(8) = maxve, o, r290mz 2(t)
0 otherwise :

As summarized in the following theorem, this yields a linear
combination of Dirac delta functions.

Theorem 1. Assume that 241 < min;; |u; — uy|. Then,
k
MPy(|oe xy|)(t) = a;0,, (1),
j=1

for some aq,...,ax >0, v; € [uj—2z,uj+2é],1 <j<k.

In our second layer, rather than another wavelet, we use a

Gabor filter .
Gog =W (S) e, (M

where the parameters s and £ determine the scale and central
frequency and the window function w is supported on an
interval of unit length. Next, we take the LP norm for some
integer p > 1. As a result, we obtain translation invariant
hybrid scattering coefficients

1gs.6 x MPe([the x y[) -

By design, these measurements are invariant to translations,
reflections, and global sign changes. We aim to investigate
the ability of our measurements to characterize y up to these
natural ambiguities. The wavelet-modulus is known to be a
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Fig. 3: Gabor filters used in the second layer (real parts)

powerful signal descriptor [4]. Therefore, in light of Theorem
we shall analyze the ability of the measurements

fe(8)[a] = [|gs.e %zl (2)

to characterize signals of the form

k
x(t) = Zajévj (t). (3)

For such a signal, we will let @ be the vector] defined by
d=(ai,...,ax) and let ||@||, denote its ¢” norm.

To supplement our theory, we will show that the measure-
ments (2) can be used to reconstruct a sparse signal of the form
(3) up to translations, reflections and global sign changes in
Section [VI

We will show that our measurements characterize the sup-
port set {v; ?:1- Fori < j, we let A; j = v; —v; and consider
the difference set

We will assume that x is collision free, i.e., that A; ; # Ay
except for when (4,j) = (¢/,j') and that D(z) is contained
in a fine grid, hZ = {hn : n € Z} for some h > 0. Under
these assumptions, it is known [I]}, that the support set
{v; };?:1 is determined (up to reflection and translation) by
D(x) except for in the case where & = 6 and the {v;}5_,
belong to a specific parametric family. (See Theorem 1 of
for full details. For the remainder of this work, we will assume
that {v;}¥_, does not belong to this family and therefore the

support set {v;}_, is determined by D(z).) This motivates



the following theorem which shows that the measurements
uniquely determine D(z).

Theorem 2. Let p > 1 be an integer and let w(t) = 1j9 ().
Then for almost every &, the function

fe(s) = llgs,e * zllp

is piecewise linear. Morover, the set of its isolated singularities
is exactly the support set D(x).

Theorem [ shows that selecting a single random frequency
and enough scales {s;} such that there is one s; in between
each element of D(z) allows us detect the location of each
point of D(x) by evaluating f¢(s) at each of the s; (up to a
precision corresponding to the density of the scales). The next
result shows that the amplitudes a; can also be recovered with
O(p) randomly chosen frequencies. Thus, the measurements
characterize sparse signals up to natural ambiguities.

Theorem 3. Let w(t) = 1jp,1)(t) and, let

k
2(t) =Y a6, (t)
j=1

be a sparse signal of the form @). Let &1,...,&L be iid.
standard normal random variables, where L is assumed to be
at least p+ 2 if p is even and at least 4p+ 2 if p is odd. Then
the following uniqueness result holds almost surely:

Let

k
i(t) = Za’jégj (t).

Suppose that ||@|, = |||, that D(Z) = D(z), and that

03 fe,[2](d) = 0% fe, [7](d)

foralld e D(x) and all 1 < ¢ < 4p+ 2.
Then we have that a = +a, and therefore T(t) is equivalent
to x(t) up to translation, reflection, and global sign change.

II. GENERALIZED EXPONENTIAL POLYNOMIALS

In this section, we will introduce some notation and state
some lemmas that are needed in order to prove Theorems [2]
and [3] For the proof of the lemmas in this section, please see
section [V

We let £ denote the set of functions that can be written as

N
p(0) = apel ™! )
k=1

where N > 1, agp, 7 € R, ax #0,and v < 72 < ... < YN.
Since the v, are allowed to be arbitrary (possibly negative or
irrational) real numbers, we call these functions generalized
exponential polynomials. For p € £, we refer to vy as the
degree of p. We let £(d) refer to the set of all p € £ with
degree(p) = d, and let &y(d) denote the set of p € £(d) such
that v; = 0.

The following lemma shows that each p € £ has a unique
representation as the sum of exponentials, and that therefore,
the degree of p is well defined.

Lemma 1. Let p,q € £, with

N

N/
p(0) = > e and q(0) = pre’’.
k=1

k=1
Then p = q if and only if N = N’ and for all k =1,...,N
o = Br and i = 1.

Lemma [1] implies that if p € £(d;) and q € £(dz), then

pq € E(d1 + da). &)
In particular, if p € & (d)
Ip|* =pp € E(d+0) = £(d). (©6)
Furthermore, if do < d; then
(p+4q) € E(dn), @)

except, of course, if d; = do and the lead coefficients of p
and ¢ are negatives of one another.

The next several lemmas will be needed in the proofs of
Theorems 2] and Bl

Lemma 2. For i = 1,2,3,4 let p; € &y(d;) assume that
dy > ds,ds,dy. Then the set of points 0 such that

Ip1(0)” + |p2(0)|” = |p3(0)|” + |pa(0)|” (8)
has measure zero.

Lemma 3. Let p > 1 be an odd integer, and let a,b,c,d,C €
R, a,b,c,d # 0. Let p(0) = a+be'? and q(0) = c+ de'’. If
there are more than 4p distinct 0 € [0, 27] such that

p(O)" —1a(6)]” = C,
then ab = cd and a® + b* = ¢* + d2.
Lemma 4. Let p > 1 be an integer and let a,b,c,d,C €
R,v > 0,k # 0,£1. Then the set of 0 such that
‘p

1 . . P
ka + —bel? + kee! TV = O
K

9)

‘a + bel? + et T1?

has measure zero.

III. THE PROOF OF THEOREM 2]

Before proving Theorem [2] we will first prove a preliminary
result which shows, even without the assumption that x(t) is
collision free, that f¢(s) is a peicewise linear function whose
set of knots is contained in D(x). This result is based on the
observation that we may write

fe(s) = Z @i j(5)Bi;(§)-

where for each i < 7,

J
6iaﬁ(£) = ZaeeiéAi,z (10)
=i

is a function that only depends on ¢ and «; ;(s) is piecewise
linear function of s whose singularities are contained in D(x).



Specifically, we prove the following theorem. We emphasize
that this result does not assume that x(t) is collision free,
which is why for d € D(x) there might be multiple ¢, j such
that Ai7 j = d.

Theorem 4. Let p > 1 be an integer, and assume w(t) =
Lio,1)(t). Fori < j, B ;(§) be as in (10). Then, for every fixed
§, the function fe(s) = ||gs.¢ * x||b is piecewise linear, and
02 fe(s) is a grid-free sparse signal whose support is contained
in D(z). Specifically,

2fe(s)= > | D cii(©)] da (11
deD(z) \ A, —=d
where
Cii+1(§) = 1Bi,i+1(§)|” — |Bit1,i41(E)[F — B ()P (12)

and for j > i+ 2

ci (&) = |Bi i ()P +|Biv1,-1(E)P—Biv1,5 ()P —[Bi -1 (&)
(13)

Proof. We first note that

(9.6 x2) ()] =

k
D aigselt —v)
i=1

k
= Zaieﬁg(t_vi)l[vi,vﬂrs](t)

i=1

k
= Zaie_ngvil[vi7vi+8](t) .
=1

For I C {1,...,k}, let R;(s) be the set of ¢ for which
a;@ Y1y, .14 (t) is nonzero if and only if i € I, i.e.,

Ri(s)={t:t € vy,v;+s|Viel,t¢]vi,v+s|Vi¢gl}
Then, since w(t) = 1jo,1)(t) it is clear that for ¢t € Ry,

E aie_“&”

icl

(95, *2) ()] = = y1(§).

Therefore,

fe(s) = (gse x ) (D)|Ih =

>

IC{1,..k}

lyr(©F|Ri(s)], (14)

where |R;(s)| denotes the Lebesgue measure of Ry(s). We
will show that for all I C {1,...,k}, |Rs(s)| is piecewise
linear function whose knots are contained in D(x).

First, we note that R;(s) = () unless I has the form {,% +
1,...,7— 1,5} for some i < j. Therefore,

k k
£ =D 1B (PR (5,

i=1 j=i

where R; j = Ry; ;. and, as in (10), 5; ;(€) is given by

J J
E ag(BngAi’[‘ E age“EW .
=i l=i

15)

16i,5 ()| =

Now, turning our attention to R;;(s), we observe by
definition that a point ¢ is in R; ;(s) if and only if it satisfies
the following three conditions:

v <t<wvy+s foralli</l<j,
t>wv;,_1+s, and
t<wji1-
Therefore, letting V(a,b) and A(a,b) denote min{a,b} and
max{a,b}, we see
R; i(s) = [vj,vi + s N [vic1 + 8,v541]
= [v; V (vi—1 + ), (v; + 8) Avjta],

(16)
(17)
and therefore

|Ri ()] = ((vi +8) Avjg1) — (v V (vie1 + 8))

if the above quantity is positive and zero otherwise. It follows
from that | R; j(s)| is a piecewise linear function, and that
92|R; j(s)| is given by

ag |Ri,j(5)| = 6Ai,j (8) +6Ai—1,j+1 (S) _6Ai—1.j (S) _6Ai,j+1 (8)

(18)
We note that in order for this equation to be valid for all
1 <i < j <k, we identify vy and vy with —oo and oo,
and therefore, da, ; da,_, ,,, are interpreted as being the zero
function since the domain of f is (0, c0). Likewise da, , = do
is interpreted as the zero function in the above equation.

Combining with implies that 02 f¢(s) is a sparse
signal with support contained in D(x), and for d € D(x),

2 fe(d)= > cij(9)

A;j=d

as desired. O

Before we prove Theorem 2] we note the following example
which shows that, in general, the support of 92 f¢(s) may be
a proper subset of D(z).

Example 1. If p =2 and
z(t) = 81 () + 62(t) + d3(t) — d4(¢),
then 2 € D(x), but
92 fe(2) = 0.

Proof. For this choice of z, there are two pairs (¢, j) such that
A;; =2, namely (1, 3) and (2,4). Therefore, by Theorem 4|

93 f¢(2) = (191,31 + ly2,2(O)F = [y1,2(O)* = 2,3(6)*)
+ (Jy2,4) 1 + lys,3(E)* = [y2,3(&)* = [yz,4()?) -
Inserting (a1,a2,a3,a4) = (1,1,1,-1), A; ;41 = 1, and
A;iy2 =2 into implies that
02 £e(2) = (1L + & + &P 11— 14+ — |1+ o)
+ (1 +e -2 +1—[1+e*]> - |1 —e?)
=1 + i€ _|_®2i£|2 + 1 +eté _®2¢5|2
+2 =31+ e — |1 - e
=0.



The last inequality follows from repeatedly applying the the
trigonometric identities sin?(#) 4 cos?(#) = 1 and cos(f) =
cos(20) cos(6) + sin(20) sin(6). O

We shall now prove Theorem [2}

The Proof of Theorem 2| By assumption, z(t) is collision
free. Therefore, for all d € D(z), there is a unique 4%, j
such that A; ; = d, and so, by , it suffices to show that
¢ ;(&) # 0 for all ¢ < j and for almost every £ € R, where
as in (12) and for j > i+ (13)

cii+1(8) = |Biit1(§IF — |Bit1,i41 (P — 18i.: (),
and for j > 1+ 2,
ci (&) = |Bij ()P +|Biv1,-1 ()P —|Bix1,5 (NP —1Bi—1(E),
where

Bii(€) =

J
E ape €A
k=i

Observe that 3, ;(£) are generalized exponential Laurent poly-
nomials of the form introduced in Section [II} and in particular,
Bi,; € E(Ai ;). Therefore, when j > i + 2, it follows from
Lemma [2{ that ¢; ;(£) vanishes on a set of measure zero since
if ¢; ;(§) = 0 we have

1Bi,5 (P + [Bit1,j—1(EI = [Bit1,; ()P +18i,5-1(E)["-

In the case where 5 = ¢+ 1, we see that

Ci,i+1(6) = lai + aipa@ 20 P —JagP — |agiq P,

For any ¢ such that ¢; ;4+1(§) = 0, we see that £A; ;41 is a
solution to

012
[ai + a1 [” = (Jaif? + faisa[1)*7 = 0.

Thus, ¢; ;+1(£) vanishes on a set of measure zero since the left-
hand side of the above equation is a trigonometric polynomial.
O

IV. THE PROOF OF THEOREMS 3]

Proof. Let &1,&5,...,&r be ii.d. standard normal random
variables. Since x is collision free, with probability one, each
of the £A; ;+1(x) are distinct modulo 27, i.e.

§eliiv1(w) Z & Ayr i1 ()

forall 1 < 4,¢ < k—1and 1 < ¢,¢ < L, except when
(i,£) = (i, ¢). For the rest of the proof we will assume this
is the case.

Let

mod 27 (19)

k
7(t) = D0, (1)

be a signal D(&) = D(x), [|dll, = [[all,. and 32 ¢, [x](d) =
02 fe,[7)(d) for all d € D(z) and for all 1 < ¢ < L — 1.
Note that Z(¢) depends on &1,...,&,—1, but is independent
of &. By assumption that x(¢) and Z(t) are collision free
(and also, as discussed in the Section IE, we assume that we

are not in the special case where k = 6 and the {vj}é?zl
belong to a special parametrized family). Therefore, the fact
that D(z) = D(Z) implies that the support sets of x and Z are
equivalent up to translation and reflection, so we may assume
without loss of generality that A; ;(z) = A, ;(Z) =: A, ; for
al1<i<j<k.

We will show that @ must be given by

~ La; ifiis odd 20)
a; = [P )
ca; if 1 is even
where ¢ = +1 or
L=5+) »
|C|p — Zi:l ‘a’27f—1| (21)

E
Zi:l |azi
Then, we will show that, if ¢ satisfies (21, but ¢ # +1, then
with probability one

D2 fe [7](A13) # 02 fe, [F](A13).

Since Z(t) (and therefore @) was chosen to depend on
&,...,€—1, but not &1, these two facts together will imply
that, with probability one, if Z(¢) is any signal such that
D(z) = D(x) and 9?2 fe,[x](d) = 8% f¢,[7](d) for all d € D
and all 1 < ¢ < L, then @ = =+ and therefore Z(t) is
equivalent to +x(t) up to reflection and translation.

We first will show that holds in the case where p is
odd. Setting 92 fe,[z](Aiit1) = 02 fe,[Z](Aii+1) and using
(12) implies that forall 1 <¢/<L—1landall 1 <i<k-—1
we have

|ai + @i @ P —Jag g [P — P

=[; 4 Ty @0 P — [T |P — [P (22)
Therefore, £&14; i41,...,6L-14,;+1 constitute L — 1 solu-
tions, which are distinct modulo 27, to the equation
|aitaip @ [P —[a+ail P = [@fP+[ai P —aiP —|agalP.
Since L — 1 > 4p, Lemma [3] implies that
(23)
for all 1 < i < k — 1. It follows from that holds
with ¢ == ay/ay.
Now consider the case where p = 2m is even. Sim-
ilarly to (22), the assumption that 92f¢,[z](Aiit1) =
02 fe, [%)(A;,i+1) implies that forall 1 < ¢ < L,1 <i < k—1,

~ ~ ~2 | =2
A;iQi4+1 = A;Q541 and a; + [}

|ai + ai+1®ﬁ&Ai’i+1 |2m _ ‘ai|2m _ |ai+1‘2m
:|az +ai+1®ﬁ££A7"’i+l |2m _ ‘62|2m _ |aji+1‘2m.
Therefore, for all 1 < i <k —1, &4 i41,.- ., 8010441

are L — 1 zeros of
hi(0) = |a; + aip1@ ™ — [@; + @y et?)P™
@™ @i [P = e = laiga P
which are distinct modulo 27. Using the fact that
0|2

la; + aip1€™|* = af + afy | + 2a;a,41 cos(0)



one may verify that h;(f) is a trigonometric polynomial of
degree at most m given by

hi(0) = (a7 + aZ 4 + 2a;a;4+1 cos(9))™
— (53 + Ei?+1 + 221'Z-Zii+1 COS(@))m
R ol
Thus, since L — 1 > p = 2m, this implies that ~2(#) must be

uniformly zero. In particular, setting the lead coefficient equal
to zero implies

(aiai+1)m = (5i5i+1)m

for all 1 <4 < k— 1. Using the binomial theorem and setting
the cos(6) coefficient equal to zero gives

2, 2 -1 ~2 | ~2 —1~ ~
(a7 +aiy1)"  aiai = (a7 + a3 )™ Aidiga.
Together, the last two equations imply
2, 2 ~2 | ~2 ~ ~
a; +ai g =a; +aj; and  a;a;41 = QiQ41.

As in the case where p was odd, this implies that must
hold.
Combining (20) with the assumption that

k k
D lailf = [@f
i=1 i=1

implies that either ¢ = +1 or that ¢ satisfies (21). Thus the
proof will be complete once we show that if ¢ satisfies 1)),
but ¢ # +1,, then with probability one, 02 f¢, [z](A1,3) #
02 fe [7](Ar5).
By (13), if 03 fe, [2](A13) = 2 fe, [#](A1,3), then
|a1 + azefl&LALz + a3®ﬁ€I’A1‘3|p + ‘a2‘p (24)
_ |a2®ﬁ£LA1‘2 + a3®1'1§LA1,3|p _ |a1 4 a2®1'1§LA1,2|P
:|El + a2®i£LAl,2 +53®i§LA1,3|P 4 ‘52‘17
_ |52ei§LA1,2 +53®i5LA1,3|P _ |’dl +’d2®1—1§LA1.2|P.
But implies that for all 4 either (a;,a;+1) = £(a;, @j41)
or (a;,a;+1) = £(a;41, a;). In either case, we have that

ﬁELA1,2| — iELA1,2|

|a1 + ase ‘51 + Ege

and

|a2<BifLA1,2 + a3®i§LA1,3| _ |52ei§LA1,2 +63®ﬂ5LA1,3|'
Combining this with (24) gives

‘al 4 a2®i§LA1,2 + ag(BigLAl’ﬂp + |a2‘17

= |1 + Ge@l®r 212 4 Gt AP 4 [gyfP. (25)
However, by Lemma 4] the set of &7, € R such that (25) holds
has measure zero, unless ¢ = +1. Since &7, is a normal random
variable, this happens with probability zero. Thus, the proof
is complete. ]

V. PROOFS OF AUXILIARY LEMMAS

In this section, we will provide proofs of the lemmas stated
in section [[Il

The Proof of Lemmal[I] By linearity, it suffices to show that

a1, ...,an are nonzero numbers, then p(f) = Zf::l apei?

is not the zero function. We will restrict attention to the case

where |yn| > |yk| for all 1 < k < N — 1. The proofs of the

other cases, where either |y1| > || for all 2 < k < N or

where |y1| = |yn| > || for all 2 < k < N — 1 are similar.
For all n > 1, the n-th derivative of p(6) is given by

N
P (0) = 3 et
k=1

Therefore, since |yn| > v, for all 1 <k < N — 1, we have

(o
lim pin() = ay.
In particular, there exists n such that p(™(0) # 0, and
therefore p(#) is not the zero function. O

The proof of Lemma 2] In the case where p = 2m is even,
then by (6) and (@), |p;(0)|>™ € £(md;) for each i. Therefore,
since dy > do, d3, dy, it follows from that

L O™ + [p2(O)*™ — Ips(0)*™ — [pa(O)]*™

is an element of £(md) and therefore vanishes on a set of
measure Zero.

Now consider the case where p = 2m + 1 is odd. Squaring
both sides of (8) implies

p5(0) = 2(Ip1(O)p2(O) ™ — [ps(O)pa(O)* 1),
where
ps(0) := [p1(O)|*" 2+ [p2(0) "2 ~[ps (0)| "2~ |pa ()2
Thus, squaring both sides again gives

po(0) = 8lp1(0)p2(0)p3(0)pa ()",
where
p6(6) = ps(6) — dlp1(8)p2(6)|*"** — dlps(B)pa(8)[*™ .
Therefore, squaring both sides one final time implies that
p6(0)* — 64|p1 (0)p2(0)p3(0)pa (0) ™2 = 0.

However, since di > da,ds,ds, applying (5), (6), and (7),
implies that (pg(6)? —64[p1(0)p2(0)p3 (0)pa(0)?) € E((8m+
4)d;) and therefore vanishes on a set of measure zero. O

The Proof of Lemma [3] If 0 is a solution to
lp(O)" —1q(0)|" = C,

then
p(O) 7 — [q(0)]* — C* = 2|q(0)[C.

Therefore,

£(8) = (Ip(6)]*" — |9(6)|> — C*)* — 4]q(6)]>PC? = 0.



Since

Ip(0)|? = a®+b*+2abcos(d) and |q(h)

f(0) is a trigonometric polynomial of degree at most 2p. Thus,
if f(#) has more than 4p zeros in [0, 27] it must be uniformly
zero. Expanding out terms, we see

1(0)
=((a® + b* + 2abcos(0))F — (c® + d* + 2cd cos())P — C?)?
—4C?%(c? + d? 4 2cd cos(6))P
and so setting the cos?? () coefficient equal to zero implies
0 = (2PaPbP — 2PcPaP)?

which implies ab = cd since p is odd. If p > 3, then we have
2(p — 1) > p. Therefore,

f1(0) = ((a®>+b*+2abcos ()P —(c2+d*+2cd cos(0))P —C?)?
has strictly greater degree than
f2(0) = 4C?(c* + d* 4 2cd cos(6))?

and so f1(f) must also be uniformly zero. Setting the
cosP~ () coefficient of f;(#)'/? equal to zero yields

(p(a® +b%)(2ab)" " — p(¢* + d%)(2¢d)P ) =0,

but since ab = cd this implies that a? + b? = c? 4 d2. On the
other hand, if p = 1, using the fact that ab = cd we see that

0= (a®+1*— (¢ +d*) — O)° —4C*(P+d® +2cd cos(6)),
which can only happen for all § if C = 0 and a® + b =
c?+d2. O
The Proof of Lemma [ Let
p(0) = a+ be'? + cet(v 1o
and 1. .
q(0) = ka + ;bew + kee! T
Then squaring both sides of (9) yields,
p(0)1*" — la(0)** — C* = 2]q(0)["C,

and therefore if 0 satisfies (9) it is a solution to f(6) = 0,
where

£(8) = (Ip(8)[" — |a(8)> — C?)* — 4lq(6)[>C>.

f(0) is an element of the class £ of generalized exponential
polynomials introduced earlier. Thus, it will follow that f
vanishes on a set of measure zero as soon as we show that
f is not uniformly zero. We will verify that that the lead
cofficient of f is nonzero unless x = +1. Using the identity
el + e~ = 2cos(x) we see that

Ip(0)|? = a® + b? + ¢® + 2abcos(6)
+ 2bc cos(v0) + 2accos((y + 1)6)

2 = 2 4d*+cdcos(9),

aaaaaaaaaaaa

Fig. 4: Sparse signals reconstructed up to a global reflections,
translations, and sign changes. Originals signals are on the left
and reconstructed signals are on the right.

and likewise is given by

1
1q(0)]? = K%a® + ?bz + K2c?
+ 2abcos(0) + 2bc cos(y8) + 2x%accos((y + 1)6).

Therefore, the lead coefficient of f(#) vanishes if and only if
K2 =1.
O

VI. SIGNAL SYNTHESIS

In order to illustrate the ability of the measurements ?? to
characterize sparse signals, we verify empirically that signals
with the same measurement differ only by global reflections,
translations and sign changes. Specifically, given a signal
z(t) = Z?:l a;0y,,(t) and a finite collection of measurements

{lgsi. * zllp IR

we use a greedy scheme to find another signal Z(t) =
25:1 @;0,,(t) which minimizes

N

~ 2
Z ng&c,fk *pr - ||gsk7fk *'erI :
k=1

Figure [ shows the result of several signals Z which were
obtained by solving this minimization problem.

In all of experiments, we set the signal lengther to be N =
128 and used two frequencies £ = (41/N)r, (23/N)x. For the
first signal we used scales s = 1,14,27,40, 53,2, 65, 96, 106.

For the second singal we used s =
1,6,11,16,21, 26, 31, 36,41, 46, 51, 56,61, 2, 4, 65, 96, 106,
and for the third we used s =

1,7,13,19,25,31, 37,43, 49,55, 61, 2, 4, 6, 65, 96, 106.
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