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Evaluating Load Balancing Performance in
Distributed Storage With Redundancy

Mehmet Fatih Aktag

Abstract—To facilitate load balancing, distributed systems
store data redundantly. We evaluate the load balancing per-
formance of storage schemes in which each object is stored at
d different nodes, and each node stores the same number of
objects. In our model, the load offered for the objects is sampled
uniformly at random from all the load vectors with a fixed
cumulative value. We find that the load balance in a system of n
nodes improves multiplicatively with d as long as d = o (log(n)),
and improves exponentially once d = © (log(n)). We show that
the load balance improves in the same way with d when the
service choices are created with XOR’s of r objects rather than
object replicas. In such redundancy schemes, storage overhead
is reduced multiplicatively by r. However, recovery of an object
requires downloading content from r nodes. At the same time,
the load balance increases additively by . We express the system’s
load balance in terms of the maximal spacing or maximum of
d consecutive spacings between the ordered statistics of uniform
random variables. Using this connection and the limit results on
the maximal d-spacings, we derive our main results.

Index Terms— Load balancing, distributed storage, redundant
storage, distributed systems.

I. INTRODUCTION

ISTRIBUTED computing systems are built on a storage

layer that provides data write/read service for execut-
ing workloads. Thus, the overall performance of a comput-
ing system depends on the data access (I/O) performance
implemented by the underlying storage system. In produc-
tion systems, data access times are the main bottleneck to
performance [2]. Indeed, access times in modern large-scale
systems (e.g., Cloud systems) greatly suffer from storage
nodes that exhibit poor or variable performance [3]. Poor
performance is caused by many factors, but primarily it comes
from multiple-workload resource sharing and the resulting
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contention at the system resources [4]. Poor or variable per-
formance is possible at any level of load but it is certainly
aggravated at overloaded storage nodes [5]. It is, therefore,
paramount for distributed systems to be able to balance the
offered data access load across the storage nodes.

It follows that to achieve good data access performance,
we must balance the offered load across the storage nodes as
evenly as possible. In modern storage systems (e.g., HDFS [6],
Cassandra [7], Redis [8]), data objects are replicated and made
available across multiple nodes so that the offered load for
each object, which we refer to as the demand for the object,
can be split across multiple nodes (service choices). The best
support for load balancing is achieved when each object is
stored at each node, but that is feasible only in exceptional
cases at large scale. If the demand for each object is known
and fixed, each object could be stored with an adequate level
of redundancy. However, in practice, object popularities, and
in turn their demands, are not only unknown but also fluctuate
over time. Thus, load balancing should be robust against skews
and changes in object popularities [2], [9].

Load balancing has been considered in two important set-
tings. In the first, we call the dynamic setting, load balancing
is addressed from the point of view of scheduling tasks for
processing. Here the nodes correspond to single queues which
are processed independently and in parallel. Load balancing
amounts to interrogating some subset of all the queues and
offering new tasks to those nodes which are least loaded.
The simplest of these models is the one in which each task
is sent to the node with the least number of tasks. Clearly
this achieves the ideal load balance. This scheme is only
practical for a relatively small number of nodes but becomes
unworkable for large-scale systems with tens of thousands of
nodes or more. For this reason, a great deal of attention has
been placed on developing schemes which offer tasks to a
restricted number of nodes. These schemes include those based
on the well-known power of d choices paradigm. A range of
asymptotic results have been obtained following this direction,
often using analysis based on balls into bins models [10]-[12].

All of the above literature addresses the load balancing
question from the point of view of spreading tasks evenly
across the nodes. Its main weakness however is that the
well-understood power of d choices is only applicable for
systems where the arrivals can be placed at any one of
the nodes. For instance, for scheduling compute tasks across
nodes within the same data center. However, the flexibility
of querying any d bins at random does not exist in storage
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systems. This is because each object is typically stored only
at a limited number of nodes and an arriving request can only
be served at one of the nodes that host the requested object.

A more appropriate model for storage is to suppose that
each request is offered to one of a subset of nodes, each of
which hosts the requested object. Kenthapadi and Panigrahy
propose a model in [13] along these lines where subsets of
nodes are represented as edges in a graph. They studied this
restricted model for the power of two choices with n balls
and n bins. Edges are selected according to incoming object
requests and then the arrival is assigned to the least loaded
node among the vertices of the edge. Godfrey then extended
this in [14] to general power of d choices. Applying this
model to a system with n storage nodes with each object being
replicated d = (2 (log(n)) times, Godfrey’s results lead to the
conclusion that effective load balancing can be achieved in the
sense of power of d choices. Godfrey then goes on to show
that if d grows more slowly, then the above conclusion for the
power of d schemes is no longer valid. Storage schemes we
consider in this paper are a natural special case of the balanced
allocations on hyper graphs that was considered by Godfrey.
Beyond the above conclusions, Godfrey’s results provide little
insight into practical storage schemes. For example, how to
distribute different objects across various storage nodes or
what gain can be made from using coded schemes based on
object XOR’s. Finally Godfrey’s results are shown only for
the lightly loaded case, which is when the cumulative load
offered on the system scales as the order of the number of
nodes. This paper extends Godfrey’s results for the case with
concrete storage schemes and without restricting ourselves to
the lightly loaded case. Furthermore we examine i) the number
of different objects stored per node, ii) object overlaps between
the storage nodes, iii) using coded objects rather than plain
replicas, and address their impact on storage efficiency and
load balancing performance.

Under the dynamic setting, load offered for the objects is
not known a priori. Requests arrive sequentially and each is
assigned to a node based on the current load at each node.
We now turn to the second setting, namely the static setting.
In this setting, a different question is asked: is it feasible to
carry the load, if the load offered for each object is known
from the start. Any assignment strategy realized under the
dynamic setting is also achievable under the static setting. This
is because knowing the offered loads for the stored objects
in advance makes it only easier to balance the load. Load
balancing performance in the static setting therefore represents
the best-case performance of the system.

The question asked in the static setting gives rise to two
distinct approaches. The first approach leads to the design of
redundancy schemes, namely batch codes. They balance the
load as long as any m objects are chosen with replacement
out of all objects and then requested simultaneously [15].
The storage schemes we consider fall into the class of com-
binatorial batch codes [16]. We should note that the static
model adopted for batch codes has been extended to a more
dynamic setting, which led to the design of asynchronous
batch codes [17]. Batch codes were originally designed to
balance only a single batch of requests. An asynchronous
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Fig. 1. An illustration of the demand offered for three objects a, b, ¢ and
the fraction of those that are supported by the system. The simplex region
corresponds to all demand vectors that can be offered on the system. It is
given by {(z,y,2) | © + y + z = X} for cumulative load . The shaded
region shows the demand vectors that are supported by the system.

variant is designed to balance the present batch together
with the upcoming batch or batches. This approach asks the
question the other way around and seeks to find the set of all
object demand vectors that can be supported by a system with
a given storage scheme, namely the system’s service capacity
region [18], [19]. Our treatment of load balancing falls into
this second approach. References [18] and [19] only address
the case where each node stores a single object, their approach
being to find the system’s complete service capacity region.
However determining this region with multiple objects at each
node appears to be a largely intractable problem. In our
approach, we rely on a new stochastic formulation which
allows us to analyze the load balancing in this scenario and
to draw a range of conclusions on the design and structure of
storage schemes. Furthermore, the primary goal in the service
rate approach is to evaluate system stability under different
object popularities. In this paper however we address the
related problem of feasibility of load balancing, i.e., the degree
to which storage resources can be adapted according to the
changes of the object popularities.

It is helpful at this point to add a few words by way of
explaining the model setup that we use in this paper. First,
we consider only regular balanced storage schemes in which
each object is replicated d times (hence regular) and each
node stores the same number of objects (hence balanced).
Storage schemes specify where each object copy is stored,
and therefore determine the set of all possible ways that
one can split and assign individual object demands across
the nodes. Second, as far as object demands are concerned,
we suppose that the cumulative load is fixed and that all object
popularities are equally likely. This is motivated by the fact
that the cumulative demand for all the objects stored in the
system is known to vary slowly over time and therefore is
easy to estimate (see, e.g., Fig. 7 in [20]). Individual demands
for objects fluctuate much more rapidly. Additionally, our
assumption of fixed cumulative load on the system is the
continuous generalization of the offered load model used in
the batch code problem.

We now turn to the metrics which we will be using to
analyze load balancing performance. These metrics can be
understood by considering Fig. 1. Fig. 1 shows a simplex
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region that corresponds to the set of all possible demand
vectors for three objects. If load balancing is ideal, then for
all these vectors stability can be achieved. However, this is
too onerous in practice as it would require an unacceptably
large storage overhead. A compromise therefore is to minimize
the fraction of demand vectors which cannot be supported.
Under our formulation, this corresponds to our assumption that
the object demands are uniformly distributed on the simplex
region. This is indeed the standard model used in the study
of load balancing in the dynamic setting. Overall, we measure
the robustness of load balancing as the probability Py that
the system will be stable when the demand vector is sampled
uniformly at random from the simplex region defined by
cumulative load 3. We also use another metric that is closely
connected to Ps; to measure the load imbalance. Precisely for
a system of n nodes under a cumulative load of X, the load
imbalance, 7, is given by minimizing the maximum load and
dividing it by its minimum possible value /n.

With the metrics now established, we can state the main
contributions of this paper. These can be understood by con-
sidering the following questions with respect to load balancing
and storage:

Q1 How does Z scale with the number of objects and nodes
in the system where there is no storage redundancy?
Does the degree of overlap between the service choices of
different objects play a critical role in terms of achieving
better load balance? How does Z depend on the number
of service choices d provided for each object?

XOR’ing reduces storage requirements, however can
effective load balancing still be achieved using XOR’s,
rather than object replicas?

We address these questions for common storage schemes with
regular balanced redundancy. Optimizing storage schemes for
various purposes are studied elsewhere (e.g., for improving
data access in [21]).

Q2

Q3

Our contribution: From the results of the paper, we are able
to conclude the following answers A1, A2 and A3 for the
questions Q1, Q2 and Q3 above.

Al: For the storage schemes with no redundancy, we find
T = O (log(n)/m) where m is the number of different objects
stored on each node. This implies that in the limit as n — oo,
load imbalance grows as log(n). This implies that if we want
to maintain a load of ¥/n in the maximally loaded node,
we need nlog(n) nodes in the system.

A2: To answer Q2, we consider d-replication storage schemes.
Different storage schemes under a regular balanced require-
ment lead to differences in the way objects overlap at the
nodes. By examining three different storage designs, we find
that the scheme with consistently small overlaps outperforms
schemes with fewer overlaps which are necessarily larger in
size. For one class of schemes with limited overlap, which
we call the r-gap schemes, we have obtained the following
asymptotic results Z = © (log(n)/d) when d = o (log(n))
and Z = O (loglog(n)/log(n)) when d = © (log(n)).
These results imply that i) creating d service choices for
each object initially reduces the load imbalance in the system
multiplicatively by d, ii) there is an exponential reduction in
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load imbalance as soon as d reaches of order log(n). This
quantifies the tradeoff between storage and service capacity
for r-gap schemes.

A3: Using XOR’s reduces the amount of storage needed but at
the same time increases the capacity needed to access various
objects. This is because to obtain a single object, we have
to access several object codes. An m-XOR object code is one
which is constructed from r objects. Our asymptotic results
show that storage with d-fold redundancy implemented with
r-XOR’s have the advantage that it has the same scaling of Z
in d as if the service choices were created with replicas. Thus
in large-scale systems, there is no loss of significant benefit
over replication. XOR’ing can be used to trade off between
storage and the access capacity.

The paper is organized as follows: Sec. I gives an overview
of the literature on load balancing in storage context. We also
discuss the connections between our approach and the prior
work. Sec. II presents our storage and offered load model
and its connection with uniform spacings. We also precisely
define the metrics that we use to evaluate load balancing
performance. In Sec. III we consider storage schemes with no
redundancy and answer Q1. In Sec. IV we consider storage
schemes with object replication and answer Q2. In Sec. VI
we consider creating storage redundancy with XOR’s rather
than object replicas and answer Q3.

II. SYSTEM MODEL AND PERFORMANCE METRICS

In this section, we introduce our system model and define
the metrics we use to evaluate load balancing performance.
We study load balancing in the static setting with a contin-
uous service and offered load model. Our model reveals an
interesting connection of the load balancing problem to convex
polytopes and the spacings between ordered random uniform
samples, the so-called uniform spacings [22]. We elaborate on
this in Sec. II-B. The latter connection enabled us to apply
prior results on uniform spacings in answering the questions
posed in Sec. L.

A. Storage and Access Model

We consider a system of n storage nodes sy, ..., s, hosting
k data objects oy, . . ., o, possibly with redundancy. Each node
provides the same capacity for content access, which is defined
as the maximum number of bytes that can be streamed from
a node per unit time. An object denotes the smallest unit of
content, and mathematically, it is a fixed-length string of bits.
XOR’ing multiple objects is carried out bitwise.

We refer to the offered load for object o; as its demand p;.
Demand for an object represents the average number of bytes
streamed from the system per unit time to access the object,
divided by a single node’s content access capacity. We refer
to a node that hosts an object as a service choice for the
object. Multiple service choices for an object can be created by
replicating it over several nodes. We consider d-choice storage
schemes with replicas in Sec. IV. Alternatively, XOR’ed
object copies can be used to create multiple service choices.
We consider d-choice storage schemes with XOR’s in Sec. VI.
When XOR’ing is used, a service choice for an object refers
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to a recovery set, that is, a set of nodes that can jointly
recover the object. Accessing an object through one choice
should not interfere with accessing the same object through
another choice. Different service choices for the same object
are therefore disjoint.

Demand for an object can be arbitrarily split across its
service choices. When a load of p is exerted by an object on
a recovery set, each node within the set will be offered a load
of p. The load on a node is given by the sum of the offered
load portions exerted on it by the objects for which the node
can serve as a choice. A node is said to be stable if the load
on it is less than 1. A system is said to be stable if every
node within the system is stable. We assume that each of the
object demands p; is split across its service choices so that
the load on the maximally loaded node is minimized. As we
describe further in Sec. II-C, this can be obtained by solving a
norm minimization problem given the storage scheme and the
value of p;.

A storage allocation defines how each object is assigned,
possibly with redundancy, to storage nodes. This paper focuses
on regular balanced d-choice storage allocations.

Definition 1: A regular balanced d-choice allocation stores
each object with d service choices and distributes object copies
across the nodes so that each node stores the same number of
different objects (either as an exact or XOR’ed copy).

There are many ways to design a d-choice allocation.
We detail some of them in Sec. IV and VI. In the rest of the
paper, unless otherwise noted, the allocation itself will refer
to a regular balanced allocation.

Connection with batch codes: A (k, N,m,n,t) batch code
encodes k objects into IV copies with redundancy and distrib-
utes them across the n nodes in such a way that any m of
these objects can be accessed by reading at most ¢ objects
from any node [15]. The goal while designing batch codes is
to minimize the total storage requirement. Redundancy can be
either in the form of replicating individual objects or encoding
(e.g., XOR’ing) multiple objects together. Multiset batch codes
are concerned with a more general case in which the selection
of m objects for access is done with replacement. It should be
noted that each of the objects needs to be accessed separately,
that is, the content that is read for accessing an object cannot
be used to access another object. We should note that the
demand model assumed for batch codes have been extended to
cases with additional constraints, such as balancing the access
frequencies over the nodes [23]. This area of research has
investigated the use of certain class of redundancy schemes to
balance access when the popularity ranks of the objects are
known in advance.

In Sec. IV we will consider storage allocations that are
constructed by object replication. Such allocations implement
batch codes as follows.

Lemma 1: Any d-choice regular balance storage allocation
with object replication represents a (k, kd, n,n, 1) batch code
and a (k, kd,d,n,1) multiset batch code.

Proof: See Appendix A. O

Batch codes with replication are known as combina-
torial batch codes and their construction has been well

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

studied [16], [24]. In particular, a combinatorial batch code
is named as d-uniform if it stores each object in exactly d
nodes, which is exactly the d-choice requirement we consider
here. An approach that is based on block design has been
given in [25] to construct optimal d-uniform batch codes.

B. Offered Load and Uniform Spacing Model

We suppose that the system can be offered any object
demand (offered load) vector (p1,. .., pr) in the set

SzZ{(Ph---W}«)‘iPiZ& PiZO}- (1)
=1

That is, the cumulative offered load remains constant but
the object popularities can change arbitrarily. The cumulative
condition we impose on the offered load is the continuous
generalization of the load model assumed in the multiset batch
code problem. Recall that a multiset batch code is designed to
support a user who can simultaneously access m objects that
are selected with replacement out of all objects stored in the
system.

We further assume that the demand vector (p1,...,pk) is
sampled uniformly at random from Sy. Uniform distribution
across all possible demand vectors models the case where no
a priori knowledge is given on the object popularities. In other
words, it represents the case with maximum uncertainty about
the object popularities. This assumption is the continuous
generalization of what has been used in balls-into-bins models.
There each ball arrives for one of the stored objects chosen
uniformly at random from all stored in the system. In addition
as we discuss shortly, sampling demand vectors uniformly
at random is able to model the skewed nature of object
popularities in real systems [9]. However it should be noted
that modeling with a more general distribution would yield
additional insight on load balancing under more specific and
possibly more realistic offered load models. An example of
such a model would be one that puts larger probability mass
on the demand vectors representing skewed object popularities.

In what follows, we define uniform spacings. They are
mathematical objects connected with the uniform sampling of
points from a simplex. Let Uyy,...,Uyg—1) be k — 1 iid.
uniform samples in [0, 1], given in non-decreasing order. Then
Si = Uy — Ugi—yy for i = 1,...,k, where Uy = 0 and
Ur) = 1, are known as k uniform spacings on the unit line.

Lemma 2 (See e.g. [22]): Uniform spacings (S, ..., Sk)
are uniformly distributed over the simplex

k
{(51,---,810‘281::1, 57;20f0ri:1,...,k}.
i=1

Lemma 2 implies that object demands p; in our model under
a cumulative load of ¥ can be seen as k uniform spacings
in [0,X]. This connection allows us to use the results on
uniform spacings to evaluate load balancing performance in
systems with d-choice storage allocation. We do the evaluation
in terms of the performance metrics defined in the following
subsection.
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We next examine the popularity skew characteristics cap-
tured by our uniform offered load model (as promised above).
Without loss of generality, let us assume that the cumulative
demand ¥ offered on the system is 1. Let N(«, ) denote
the number of objects with a demand of > « and < 3. Then
N(a, ) is given by the number of uniform spacings that are
within [, 5]. An asymptotic characterization of N («, 3) has
been given in [26] as follows.

Theorem 1 ([26, Theorem 8.1-2-3]):

RI . N(a/k,B/k) is asymptotically normally distributed as
k — oo with an asymptotic mean and variance

o~ (e — e,
op ~ k(e — e P — (ae ™ — 5676)2) .

R2 . N(a/k? 3/k?) has an asymptotic Poisson distribution
with parameter 3 — «.

R3 . N((log(k) + «)/k, (log(k) + 5)/k) has an asymptotic
Poisson distribution with parameter e~ — e~ ".

Results in Theorem 1 tell us a great deal about the object
popularities implemented by our demand model. With high
probability, only a few of the objects will be highly popular
(p ~ log(k)/k), only a few will have very low popularity
(p ~ 1/k?), while most objects will have around-average pop-
ularity (p ~ 1/k). This reflects the skewed object popularities
observed in real storage systems (see e.g. Fig. 3 in [27]).

C. Storage Service Capacity

We now obtain mathematical expressions determining the
service capacity region for a storage system. In particular,
we will express the set of all object demand vectors under
which the system with a given storage allocation can operate
under stability. Service capacity for systems that store content
with erasure coding was first studied in [18] and further studied
in [19]. We adopt a formulation similar to the one introduced
in [18]. The formulation we present in this section provides
a geometric interpretation of the performance metrics Py, and
7 introduced in Sec. II-D.

Definition 2: Service capacity region for a system with a
given storage allocation is the set of all object demand vectors
p = (p1,...,pr) under which the system can operate under
stability.

In what follows, we explain how to express the service
capacity region as a solution for a system of linear inequalities.
Let us consider a system in which object o; is stored on d;
nodes for ¢ = 1,..., k. Then its demand p; can be distributed
across its d; service choices, each handling a fraction of p;. Let
us denote the portion of p; that is assigned to the jth choice
of o; with pgj . Then we have p; = p§1) R p§di). We
represent the stacked collection of all these per-node demand
portions with the following vector of length dy + - - - + d:

d d
wT:<p§1),... () - (1) .,pgﬁ,’“)).

7p1 ’ c pk P
Converting back to p from x is a matter of matrix-vector
multiplication as p = T' - x, where T is a binary matrix of
size k X (dq + -+ + di). System stability is ensured if and
only if the total demand flowing into each node is less than
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its capacity 1. This can be expressed as a linear inequality for
each node and a matrix inequality for the whole system of n
nodes as

M-x <1, =0, 2)
where < and = denote the standard partial orderings in R",
and 0 and 1 denote the all-zeros and ones vectors of length n,
respectively. The overall service capacity region of the system
is given by

C={p | J; M- <1, T-z=p, x>=0}. (3)

M expresses the storage allocation and it is a binary matrix
of size n x (dy + -+ 4 di). It is constructed by setting
MTi, j] to 1 if the demand portion x[j] flows into node-i,
and to O otherwise. When storage redundancy is created with
only object replicas, each column of M becomes a binary
representation of a node that stores the corresponding object
copy. Precisely, each column of M would consist of a single 1,
and the position of this 1 within the column is equal to the
position of the represented node within the sequence of all
nodes. For instance for the system that stores a, b, ¢ across
three nodes by allocating two service choices for each as
{(a,c), (b,a), (c,b)}, we have

xT = (pfl”vpf), o o2 pD), péz)) :
10000 1

M=1011000
00071710

When storage redundancy consists of coded objects, some
of the demand portions pgj ) might be assigned to recovery
sets. A recovery set for an object is a set of nodes from which
the object can be recovered. When a demand portion of p
is assigned to a recovery set, then a fraction of p capacity
will be used up at each node within the recovery set. Then the
columns of M that consist of multiple ones represent recovery
sets for the corresponding objects. For instance, for the storage
allocation {(a,b + ¢), (b,a+c), (¢,a+b)}, we have

2

27 = (o, 02 00 o7 D)
100101
M=1[011001
010110

Lemma 3: The service capacity region for any storage
system is a convex polytope.

Proof: The convex polytope expressed by (2) in
RﬂlrlJr"'er’“ consists of all demand portion vectors & under
which the system is stable. Capacity region C is the linear
transformation of this polytope by 7. Hence C is another
convex polytope in R’j_. O

As noted in Sec. II-A, we consider the case where object
demands p; are split across their choices such that the load on
the maximally loaded storage node is minimized. This means
that for a given object demand vector p, out of all demand
portion vectors x that satisfy (2), the system will split the
demands across the nodes according to *. This achieves the
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best possible load balance. Thus * is the optimal solution for
the following convex optimization problem:

min [|[M-z|_; T-z=p, x>0, 4

where |[|-|| ., denotes the infinity norm.

Copying an object to a node that did not previously host
it, increments the number of service choices for the object.
We next state a simple but useful fact as the first step to
understanding the gains of increasing the number of service
choices for the objects.

Lemma 4: Let the system capacity region be C for a given
storage allocation. Keeping the number of nodes fixed, let us
store an object replica (or a coded copy) on a node that did not
previously host the object (or any object present in the coded
copy). Let C’ be the system capacity region for this modified
allocation. Then C C C'.

Proof: See Appendix C. O]

D. Performance Metrics

We now give precise definitions for the two metrics that
we use to quantify load balancing performance in distributed
storage. The first metric measures the system’s robustness
against the presence of skews and changes in object populari-
ties. We quantify robustness as the fraction of demand vectors
that are supported by the system in the simplex that consists
of all vectors that sum up to X.

Definition 3 (Measure of Robustness): For a system with a
given storage allocation, let the capacity region be the polytope
C and let Sy, be defined for a given cumulative load X as in (1).
Ps. for the system is given by

Do Volume (C N Sx)
>~ " Volume (Sx)

Ps. is obviously 0 when ¥ > n, hence we assume > < n
implicitly throughout. The shaded region in Fig. 1 illustrates
the intersection of the simplex Sy and the system capacity
region. Recall that the demand vector (p1,...,px) offered
on the system is sampled uniformly at random from Sy.
Therefore another way to define Py is that it is the probability
that the system defined by Ss; will be stable. In other words,
Ps is the probability of robustness for a system that operates
under a cumulative demand of X.

The expression given for Py, in (5) is a useful geometric
interpretation. It implies that once the capacity region of
a system is determined, evaluating Py for it becomes a
computational geometry problem. Finding volumes or pairwise
intersections of convex polytopes are well studied problems,
and numerous efficient algorithms are available to compute
both in the literature, e.g., see [28]. Eq.(5) essentially gives
a recipe to exactly compute Py, for a system with any given
storage allocation. This, together with the fact that service
capacity region is a convex polytope (Lemma 3), implies Ps
is non-increasing in .

Corollary 1: For any system, if ¥ > ¥’ then Py < Ps.

Proof: See Appendix B. O]

The second metric measures the load imbalance across the

storage nodes. In the balls-into-bins model, load imbalance is

)
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quantified by the number of balls in the maximally loaded bin.
Our metric is a continuous generalization of this. In addition,
we relate the load on the maximally loaded node to its smallest
possible value. This makes our metric independent of the
cumulative offered load.

Definition 4 (Measure of Load Imbalance): Consider the
system with n storage nodes operating under a cumulative
load of X. Load imbalance factor Z for the system is defined
as minimum of the maximal load on any node over all feasible
loads, divided by its minimum possible value, i.e., ¥/n.

It is given as
M- 27|

X/n

where M is the binary matrix representing the system’s
storage allocation (as described in Sec. II-C), and x* is the
solution for the minimization program given in (4).

Notice that 7 is always > 1. We abstract away the resource
sharing dynamics and other system related aspects and eval-
uate performance through the metrics of load imbalance.
It should be noted that this is the same approach taken in pre-
vious studies with balls-into-bins models. Even though much
complexity is abstracted away from the system model, load
balance is a good proxy to get an understanding of system’s
performance in terms of response time. This is because the
more evenly the load is balanced, the smaller the system’s
response time is. We argue this for illustrative purposes as
follows. Let us suppose that resource sharing at each storage
node is implemented with a first-come first-served (FCFS) or
a processor sharing (PS) queue. Response time at a node will
then get increasingly larger and more variable the greater the
load is to the node. Let us denote the average response time
of node 7 under an average offered load of p; € (0,1) with
T(p;). We know that under either FCFS or PS queue, T'(p)
will scale as p/(1 — p), which is a convex monotonically
increasing function of p. Roughly, p;/ > | fraction of the
request arrivals will experience an average response time of
T'(p;). By Jensen’s inequality, we find for all non-negative p;

that
S —Tp) =T (=Y pi ]
n
=1 Zi:1 Pi n P

Notice that the right hand side of the above inequality is the
average system response time when the load is perfectly bal-
anced across the nodes. This tells us that perfect load balance
minimizes the average response time under any cumulative
offered load. The same argument given above can be used to
observe that load balance is desirable to optimize other convex
quantities such as the second moment of response time.
Lemma 4 given in the previous sub-section says that storing
an additional redundant object copy in the system expands
the service capacity region that is supported by the system.
Keep in mind that the total capacity in the system does not
change but, by creating additional storage redundancy, we are
able to use the available capacity more efficiently for content
access. This helps to show how increasing storage redundancy
improves load balancing performance in terms of Py, and 7.
Corollary 2: Consider a system with load balancing perfor-
mance of Py, and Z. Suppose a new redundant object copy is

I= (6)
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stored in the system as described in Lemma 4, and let Pg, 7
represent the metrics of load balancing performance for the
modified system. Then we have P{, > Px and 7' < 7.
Proof sketch: By Lemma 4, C C (’. This together
with (5) directly implies Py, > Ps. In order to see Z > 77,
it is enough to observe the following. For an arbitrary object
demand vector p, let  be the demand portion vector that
minimizes the load on the maximally loaded node in the
unmodified system. Given that C C C’, « is also achievable
by the modified system. O

E. Note on the Proofs and the Notation

We place the proofs in the Appendix, in order not to disrupt
continuity of the text. Throughout the paper, log refers to
the natural logarithm, and log; refers to ¢ times iterated
logarithm, e.g., logy)(z) stands for loglog(z). We denote
convergence of a sequence using the “—” notation. Suppose
that {f,,(x);n > 1} is a sequence of functions f, : D — R
and f : D — R.If lim,, o0 fn(z) = f(x) at every x € D,
we will denote this as f,(z) — f(z). Throughout this
paper, we will rely on almost sure convergence in probability.
Suppose that X;, X, ... is a sequence of random variables in
a sample space €2 and suppose X is another random variable
in Q. Then {X,,;n > 1} converges to X almost surely if

Pr{w €Q: nh~>ngo Xn(w) = X(w)} =1.

We denote almost sure convergence of X, to X as
X, — X as.

IIT1. LOAD BALANCING WITH NO REDUNDANCY

In this section we consider single-choice allocations in
which each of the k£ objects is stored on only a single node
and each of the n nodes stores m = k/n different objects.
We assume n|k. Demand for each object in this case has to
be completely served by the only node hosting the object,
and each node has to serve the total demand for all objects
stored on it.

As discussed in Sec. II-B, object demand vector
(p1, ..., pk) can be described by k uniform spacings in [0, X].
Given that uniform spacings are exchangeable RV’s, we can
say without loss of generality that if node s; stores objects
O(i—1)m+1,- - -, Oim» then load [; exerted on s; is given by
l, = ZZ"_’Dm_H p;. For the system to be stable, all ; must be
< 1. Thus max{ly,...,l,} < 1is necessary and sufficient for
system stability. This implies Pyx. for the system is given by
., In} < 1. In the uniform spacing literature,
random variables (RV’s) {; have been studied and are called
non-overlapping m-spacings. Their maximum is referred to as
the maximal non-overlapping m-spacing.

Definition 5: Maximal non-overlapping m-spacing for k
uniform spacings on the unit line is defined for k = m - n
as

Prqmax{ly, ..

(no) _
k,m i=1

or as

max E S;.
i=1,...,n
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In a system of n nodes storing k objects under a cumu-
lative demand of 1, load on the maximally loaded node is
given by M ,En;) Using a combination of the ideas presented
in [29]-[31], we can derive the following convergence results
for M. ,i"frz

Lemma 5: For fixed m, as n — oo
Pr{M,in;) -mn —log(n) — fn < x} <, G(x). 7

where G(z) = exp(—exp(—xz)) is the standard Gumbel
function and f,, = (m — 1) log,(n) — log((m — 1)!).
In the limit n — oo, the following inequality holds

M < log(n) , (bg(z) (n)) as. (8)
’ mn n
Furthermore, as n — oo
no
M — 1 as. ©))
log(n)
Proof: See Appendix D. O

Now we are ready to express the metrics Px; and Z for a
system with single-choice allocation.

Lemma 6: In a system with a single-choice storage
allocation,

Ps=Pr{M{" <1/}, T=M) 0 (10

Proof: When system operates under a cumulative offered
load of %, the load on the maximally loaded node is given by
M ,i"frz - 3. This together with the definition of Py, (Def. 3) and
T (Def. 4) gives us (10). O

Using Lemma 6 and Lemma 5, we determine the behavior
of Px, and 7 for large n as follows:

Theorem 2: Consider a system with single-choice storage
allocation. For fixed m, as n — oo

Pr{I- m —log(n) — fn < a:} — G(x), (11)
W — 1 a.s. (12)

where f, = (m — 1) logy)(n) — log((m — 1)!).
If ¥,, = by, - n/log(n) for some sequence b,, > 0, then as
n— oo

1 limsupb, < m,
P 13
B {0 liminf b,, > m. (13
Proof: See Appendix I O]

Remark 1: Theorem 2 implies for a system of n nodes
with no redundancy and fixed m that load imbalance
Z = ©(log(n)). This is due to the following fact. As n
increases, maximal load on any node decays as ¥/n in the
case with perfect load balancing. However due to the skews
in popularity, demands for the popular objects go down as
log(n)/n (recall Theorem 1). This is why the load imbalance
in the system grows with n as log(n). The scaling of load
imbalance with log(n) as we find here is aligned with the
well-known result derived in the dynamic load balancing
setting: if n balls arrive sequentially and each is placed into
one of the n bins randomly, the maximally loaded bin will
end up with ©(log(n)/log(y)(n)) balls w.h.p. [11].
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In addition (12) shows that Z decays multiplicatively with
m for large scale systems. This implies that in large scale
systems, if the system can support a cumulative load of X
while storing k objects, it will also be able to support a
cumulative load of r x ¥ while storing k X r objects.

IV. LOAD BALANCING WITH d-FOLD REDUNDANCY

In this section we consider d-choice allocations in which
each of the k objects is stored on d different nodes (d-choices)
and each of the n nodes stores kd/n different objects.

As discussed in Remark 1, load imbalance 7 in the system
decays with the number of objects (m) stored per node.
We here, and also in Sec. VI, consider the worst case for
load balancing, that is & = n. This makes the problem more
tractable to formulate and study the load balancing problem.
This also makes it easier to explain and interpret the derived
results. Results that we present now can be extended for the
general case with a fixed value of k/n > 1 by using arguments
that are very similar to those we discuss.

In what follows, we first define and discuss maximal
d-spacing. It is a mathematical object defined in terms of uni-
form spacings and is instrumental while deriving our results.
We then present our results on the load balancing performance
of systems with d-choice allocations.

A. Uniform Spacings Interlude

Definition 6 (M}, q): Maximal d-spacing within & uniform
spacings on the unit line is defined as

itd—1

My g = ax Uy — Uy or max E S

4 0k (D ) i=1, 0 hedyl = TP
j=i

where d is any integer in [1, k], and Uy = 0 and U = 1 as
given in Sec. II-B.

It is worth to note that maximal d-spacing M}, 4 defined
above is the overlapping counterpart of the maximal
non-overlapping m-spacing M ,5";2 defined in Def. 5. We exten-
sively use the results presented in [30], [32]-[34] on M} 4
while deriving our main results. We state the ones that we use
in the remainder.

Lemma 7 ( [34, Theorem 1]): For any integer d > 1,

as k — oo
Pr{Mk,d & — log(k)

— (d — 1) logay (k) — log((d — 1)!) < x} — G(x).

(14)
Lemma 8 ( [32, Theorem 2, 6]): For d = o(log(k)),
as k — oo
Mgk —1
ka o = log(k) 1 as.  (15)

(d=1) (1 +loggy) (k) — log(d) )
For d = clog(k) + o(log(,)(k)) with some constant ¢ > 0,

Mgk — (14 a)c-log(k)
log(z)(k)

Vi
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satisfies

limsup Vi = 8*(1 + a)/a as.

k—o00

liminf Vi, = —37(1 + a)/a as.

k—o00

(16)

where « is the unique positive solution of e =1/¢ = (14-a)e™?,
and 3* and 3" are constants taking values in [—0.5,1.5] and
[—1.5, —0.5] respectively.

The uniform spacings we have considered so far are defined
on the unit line segment. However, in order to evaluate
load balancing performance in systems with d-choice storage
allocation, we need to consider uniform spacings on the unit
circle.

Definition 7 (M ,gc(; ): Maximal d-spacing within k£ uniform
spacings on the unit circle is defined as

itd—1
(& .
M,E; = z:nllaxk E _ S;, where S; = S;_j fori > k.
j=i

We show in Appendix E that results stated in Lemma 7
and 8 for maximal d-spacing on the unit line carry over to its
counterpart defined on the unit circle.

B. Evaluating Px, and T for d-Choice Storage Allocation

A d-choice storage allocation defines a d-regular balanced
bipartite mapping from the set of objects to the set of nodes,
which we refer to as the allocation graph. Its construction
can be described as follows: i) Map primary copies for all
objects to nodes with a bijection fy, ii) For ¢ going from 1
to d, map the ith redundant object copies to nodes with a
bijection f; such that f;(0) # f;(o) for every j < 4 and o.
Thus every node stores a single primary and d — 1 redundant
object copies, and each copy stored on the same node is for
a different object. We refer to a node with the index of the
primary object copy stored on it, i.e., object o; is hosted
primarily on s;. The subscript in s; or o; will implicitly denote
i mod n throughout. We denote the set of nodes that host
object o; with C;. In other words C; consists of the service
choices available for o;.

The number of service choices available for the objects is
not the only factor that impacts load balancing performance
in storage systems. Layout of the content across the storage
nodes also plays a role in load balancing. Given that the total
number of object copies stored in the system is greater than
the number of storage nodes, we need to have |C; N C;| >0
for some j # i. Overlaps between C; might lead to contention
when the content popularity is skewed towards objects with
overlapping service choices. Both the number of overlapping
C; and the size of the overlaps should be minimized in order
to improve load balancing performance. However, size and
number of overlaps cannot be reduced together given a fixed
number of nodes in the system. For every regular balanced
d-choice allocation with object replicas we have

k

YN GinCy = (d—1)d-k,

i=1 j#i

a7)
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where | - | denotes the cardinality of a set. This equality
follows by observing that each node serves as a service choice
for d different objects and each is counted in exactly d — 1
of the overlaps C; N C;. It should be noted that the sum
in (17) is equal to twice the cumulative cardinality of the
overlaps between all pairs of (C;,C;). We emphasize that
cumulative cardinality of the pairwise overlaps is fixed. Hence
reducing the size of overlaps between some of the sets C; can
only come at the cost of enlarging overlaps between some
other Cj.

We first consider the two following simple designs for
constructing d-choice storage allocations.

Clustering design: This design is possible only if d|n. Let
us partition the nodes into n/d sets, each of which we call
a cluster. Let us then assign each object to a cluster such
that each cluster is assigned exactly d objects. Every object
is stored across all the nodes within its assigned cluster. The
resulting storage has an allocation graph that is composed by
n/d disjoint d-regular complete bi-partite graphs. Hence we
obtain a storage scheme with d-choice allocation. For instance,
3-choice allocation for 9 objects a,...,7 with cyclic design
would look like

a a a d d d g

b e e e h
c c c f f f i i i

> Q
> Q

Cyclic design: In this design we follow a cyclic construc-
tion. We start by assigning the original object copies to the
nodes according to an arbitrary bijection fy. We assign the
ith replicas of the objects for ¢ = 1,...,d — 1 by using
bijection f;, where f; is obtained by applying circular shift
on fy repeatedly ¢ times. Note that shifting is applied in the
same direction in all the steps. In other words, we pick f;
such that fi11(0) = fi(o) +1 modn fori =0,...,d -1
and every o. For instance, 3-choice allocation for 7 objects
a,...,q with cyclic design would look like

a b c d e f g
g a b c d e f
! g a b c d e

(18)

For a given set of objects S, the union of their choices
C; forms the node expansion of S, which we denote by
N(S). If [IN(S)| = =z, then there is at most x amount of
capacity available for the joint use of the objects within S.
It is surely impossible to stabilize the system when the
cumulative demand for S is greater than N(S). Thus it is
desirable to increase the size of the node expansions in the
allocation graph in order to guarantee stability for larger
skews in content popularity. Greater expansion for a given S
requires reducing the size of the overlaps between the choices
C; for the objects in S. This would imply overlapping the
choices C; of objects within .S’ with the choices C; of objects
outside of S.

It is not easy to define a knob that regulates both the
overlaps between object choices C; and the node expansions
in the allocation graph. We next define a class of allocations in
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which the overlaps and node expansions are loosely controlled
by a single parameter.
Definition 8 (r-Gap Design): An allocation is an r-gap
design if |C;NC;| = 0 for j > ¢ and min{j—i,n—(j—17)} > r.
Lemma 9: In a d-choice allocation with r-gap design,
r >d—-1and z < [N(S)| < z + 2r for any § =
{O,L'7 Ojt1y. - ;0i+x—1} for any T.
Proof: See Appendix F. O]
We can use the properties of r-gap design to find necessary
and sufficient conditions for the stability of a storage system.
Lemma 10: Consider a system with d-choice storage allo-
cation that is constructed with an r-gap design and operating
under a cumulative demand of X. Then for system stability,
a necessary condition is given as

M) < (i+2r)/S, foranyi=1,...,n—2r, (19
and a sufficient condition is given as
M), <d/z. (20)

In other words, we have fori=1,...,n —2r
Pr{M{),, <d/2} <Py < Pr{M{) < (i +20)/5}.

Proof: See Appendix G. O]
Notice that clustering or cyclic design is an r-gap design.
Hence the necessary and sufficient conditions given in
Lemma 10 for system stability are valid for storage allocation
with either design. In addition, the well-defined structure of
these two designs allows us to refine the results given in
Lemma 10 as follows.
Lemma 11: In a d-choice allocation constructed with clus-
tering or cyclic design

Pr{ M) <a/s} <Py <M, <203},

Proof: See Appendix H. O

Using the bounds given in Lemma 11, we can find an
asymptotic characterization for Py, and Z as follows.

Theorem 3: Consider a system with d-choice storage allo-
cation constructed with clustering or cyclic design.

When d = o (log(n)), the following inequality hold in the
limit as n — oo

1 Z-d

2 = log(n) + (d — 1)(1 + logy) (n) — log(d)) <1 as.

21

If ¥, = b, - n/log(n) for some sequence b, > 0, then as
n— oo

11 by/d <1,
732,7—>{ imsup b, /d < 22)

0 liminfb,/2d > 1.

When d = clog(n) for some constant ¢ > 0, the following
inequality holds in the limit n — oo

1 - 2ca T -log(n)

6~ 3(a+1) logys(n)

<1 as, (23)
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where a is the unique positive solution of e ~1/¢ = (1+a)e™.
If ¥, = b, - n/log(n) for some sequence b, > 0, then as
n — 00

(24)

1 limsupb, - 1.57/d < 1,
Ps. —
" 0 liminf b, - 0.25T/d > 1,

where 7 = ¢(1 + a)?/a.
Proof: See Appendix J O

Remark 2: Theorem 3 implies that load imbalance
Z = O©O(log(n)/d) when d = o(log(n)), and Z =
O (loglog(n)/log(n)) when d = © (log(n)). These imply
that i) d choices for each object initially reduces load imbal-
ance multiplicatively by d, ii) there is an exponential reduction
in load imbalance as soon as d reaches of order log(n),
that is, what we started with Z = O(log(n)), for d = 1,
is exponentially larger than what we end up with 7 =
O (loglog(n)/log(n)) for d = © (log(n)). The second impli-
cation extends Godfrey’s first observation in [14] to the static
setting under general offered load. Godfrey derived his results
with the dynamic balls-into-bins model under light offered
load, i.e., when O(n) balls are sequentially placed into n bins.
Godfrey’s second observation implies in the dynamic setting
that for any 1 < d < O (log(n)/loglog(n)), there exists a
d-choice storage allocation such that incrementing d from 1
to 2 will not yield exponential reduction in load imbalance.
The first implication given above, shows this observation of
Godfrey for a concrete storage design and extends it to the
static setting under general offered load.

In what follows, we discuss some of our arguments using
simulation results on Z. We compute Z by taking an average
of its values obtained from 10° simulation runs. Within each
simulation run, the object demand vectors that are offered to
the system are sampled uniformly at random from the simplex
Sy, which is defined by a fixed X as in (1).

Fig. 2 plots Z for n = 100. Notice that Z is close to log(n)
when d = 1 as suggested by Theorem 2. As d is incremented,
T decays as 1/d as suggested by Theorem 3. This illustrates
that our asymptotic results are close estimates for the finite
case.

Constructions with r-gap designs decouple object choices
C; that are r-apart at the cost of enlarging the overlaps between
those that are close to each other, as in the clustering or cyclic
designs. The Balanced Incomplete Block Designs (BIBD)
allow control of the overlaps between every pair of Cj.

Definition 9 (BIBD, [24]): A (d, \) block design is a class
of equal-size subsets of A’ (the set of stored objects), called
blocks (storage nodes), such that every point in X appears in
exactly d blocks (service choices), and every pair of distinct
points is contained in exactly A blocks.

Since we assume k = n, the block designs we consider are
symmetric. A symmetric BIBD with A = 1 guarantees that
|C; N C;| =1 for every j # i. Since this case represents the
minimal overlap between sets C; we focus on this case. The
block design we consider refers to (d, 1) symmetric BIBD, that
is every object appears in d nodes and every pair of distinct
objects is contained in exactly one node. Since every pair of
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Fig. 2. Simulated average values for Ps; and Z for a system that implements
d-choice allocation with cyclic design. Cumulative offered load on the system
is set to X = 0.8n. System stores kK = n objects across n nodes.

C; overlaps at one node, we have

ZZKJ NGyl = (

i=1 j#i

k—1)k.

Then by (17), such block designs are possible only if
k = d?>—d+1. For instance a 3-choice allocation with a block
design is given as

a a a b b c c
b f d d e d e

c q e f g g f

The sufficient and necessary conditions presented in
Lemma 10 cannot be used on a storage allocation with a block
design, since they are not r-gap designs. However using ideas
that are similar to those used to derive Lemma 10, we can find
the following conditions for system stability.

Lemma 12: Consider a system with d-choice allocation con-
structed with a block design and operating under a cumulative
offered load of X. For stability of the system, a necessary
condition is given as MT(IC()i < (d? —2d+3)/ and a sufficient
condition is given as M < d/2%.

Proof: See Appendlx K O]

The stability conditions given in Lemma 12 allow us to
find bounds on Py, and 7 for storage allocations with block

(25)
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designs, similar to those that were stated in Theorem 3.
We do not state them here since they are obtained by simply
modifying the multiplicative factors in the bounds given in
Theorem 3. The upper bound on 7 in this case decays as
1/d with increasing d, which says that providing d service
choices for each object initially reduces load imbalance at
least multiplicatively by d. However, the lower bound on 7
decays in this case as 1/d?, that is, block designs can possibly
implement better scaling of Z in d compared to clustering or
cyclic designs.

Our asymptotic analysis does not allow ordering different
designs of d-choice storage allocations in terms of their load
balancing performance. As discussed previously, all d-choice
allocations yield the same cumulative overlap between object
choices C; (recall (17)) and each design gives a different
way of distributing the overlaps across object choices Ci.
With simulations we find that it is better to evenly spread
the overlaps between choices C; using a block design, that is,
many but consistently small overlaps are better than fewer but
occasionally large overlaps. Fig. 3 shows the average 7 for
systems with 3- and 5-choice allocations that are constructed
using clustering, cyclic or block designs. We see here, and in
other simulation results we omit, that the largest gain in load
balancing is achieved by moving from clustering to cyclic,
while moving further to block design yields a smaller gain
in Z. Furthermore cyclic designs exist for any value of k, n
and d < n, while block designs exist only for a restricted
set of k, n and d. Cyclic design therefore appears to be
favorable for constructing multiple-choice storage allocations
in real systems.

Currently we don’t have a rigorous way to understand how
designs with different overlaps compare with each other in
terms of Py, or Z. In the following subsection, we present our
intuitive reasoning on why consistently small overlaps is better
in terms of load balancing than shrinking overlaps between
some objects and making them larger for others.

C. On the Impact of Overlaps Between the Service Choices

Storage redundancy allows the system to split the demand
for the popular objects across multiple nodes, hence enabling
the system to achieve better load balance across the nodes
in the presence of skews in object popularities. In order to
minimize the risk of overburdening a storage node, a natural
strategy would be to decouple the overlaps between the service
choices (C;) for the objects that are expected to be more
popular than others. In this paper we assume no a priori
knowledge on the object popularities; in particular we assume
cumulative demand remains constant at > while all possible
object popularity vectors are equally likely, which implies that
the object demands are distributed as the uniform spacings
within [0, ] (Sec. II-A). Our model then seeks to answer how
one should design the overlaps between the service choices of
objects when no a priori knowledge is available on the object
popularities.

Recall from (17) that all d-choice allocations yield the same
cumulative overlap between object choices C; and each design
gives a different way of distributing the overlaps across C;.
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Fig. 3. Simulated average value of Z for d-choice allocation with different
designs. Note that clustering and block designs do not co-exist for the same
d and n.

With simulations (as presented in Fig. 3) we found that in order
to achieve higher load balancing performance, it is better to
spread the overlaps evenly across all pairs of objects (using
block design) than distributing them in an unbalanced manner
by implementing smaller overlaps between some objects while
implementing larger number of overlaps between others (such
as using clustering or cyclic design). Reducing the overlaps
between the service choices for a given set of objects S
enlarges the node expansion of S (as explained in detail in
Sec. IV-B), hence increasing the capacity available for jointly
serving the objects within S. However this leads to a reduction
in the node expansion for other sets of objects, hence reducing
the capacity available for the joint use of those objects.
Overall reducing the service choice overlaps between the
objects that are known to be more popular than others will
allow the system to balance the offered load, which is expected
to be skewed towards the popular objects, more effectively.
However reducing the overlaps for a particular set of objects is
risky when we don’t know which objects are going to be more
popular, because this would increase the overlaps for other sets
of objects, one of which might end up being the true set that is
more popular than others. This is exactly the case implemented
in our offered load model; few objects will be highly popular
while most of them will have average popularity (as implied
by R3 and RI) and we don’t know a priori which of those
that are highly popular. When no information is available on
which objects will be more popular, it is not possible to select
the popular objects and reduce the overlaps between their
service choices. Then the natural strategy would be to avoid
the risk of large overlaps. Indeed the simulations show for our
case with no a priori knowledge on object popularities that
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Fig. 4. Service capacity region of regular balanced d-choice allocation for d = 1, 2, 3.

allocating the service choices for a group of sets of objects
with smaller service choice overlap (as in clustering or cyclic
design) performs on average worse than treating all objects the
same and minimizing the overlaps across the service choices
of all pairs of objects (as in block designs).

The rationale of favoring many but consistently small over-
laps over fewer but occasionally larger overlaps has very
recently been observed to perform well also in the context
of scheduling compute jobs with bi-modal job size distrib-
ution. The authors in [35] consider replicating every arriving
job (ball) across r nodes (bins), in which the overlaps between
the sets of nodes assigned to subsequent jobs impact queueing
times at the nodes. The authors observed that the most
effective way to control the overlaps across the subsequent
node-assignment rounds is to use a block design, which
balances the large jobs across the nodes more effectively than
cyclic or random job-to-node assignment strategies.

V. INTERPRETING LOAD BALANCING PERFORMANCE
WITH THE SHAPE OF SERVICE CAPACITY REGION

Fig. 4 plots the capacity region C for a system of three
servers and three objects with d-choice allocation constructed
with cyclic design for d = 1,2,3 (the cyclic design was
introduced in Sec. IV-B). When d = 1, C is given by the
standard unit cube. Setting d = 2 extends C by a unit length
at the skew corners that lie on coordinate axes. We call them
skew corners because the object demand vectors that are close
to the corners represent the load scenarios with skewed object
popularities. Setting d = 3 extends the skew corners by an
additional unit of length and yields a simplex capacity region.
This implies that the total capacity that is available in the
system (which is 3 in this example) can be arbitrarily used for
serving any stored object when d = 3, i.e., when each object
is available at every server.

Previously, we observed that incrementing d from one to
two yields the greatest increase in the system’s load balancing
performance and further increments yield diminishing gains
(cf. Fig. 2). We now investigate this through the geometric
interpretation of Py that was given in (5). As a Corollary of
Lemma 4, the capacity region for d-choice allocation is
contained by that for (d + 1)-choice allocation. This can be

seen for the example given in Fig. 4. Recall that Sy, is the
k—1 dimensional standard simplex of side length ¥ as defined
in (1) and C is the k£ dimensional polytope representing the
system capacity region. Py is proportional to Vol(.A) where
A = Sy N C (by (5)), which increases with d, hence Ps
increases with d. A is a k — 1 dimensional polytope such
that Ss; and A share the same (Chebyshev') center. Again
examples in Fig. 4 help seeing this.

In order to better understand the effect of incrementing d on
the load balancing performance, let us go through the examples
given in Fig. 4. Suppose ¥ = 3. Then we have Vol(Sy) =
9v/3/2. When d = 1, A = {(1,1,1)} and Vol(A) = 0, hence
Ps, = 0. When d = 2, A is a polygon with the set of vertices

{(0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), (2,1,0) }

and Vol(A) = 3v/3, hence Px = 2/3. When d = 3, A = Sy,
hence Ps; = 1. This geometric view can be extended to larger
dimensions. Incrementing d extends C by a unit length in the
skew corners, which also expands A. This expansion in A
happens outward from its center equally in every direction
when d is small. However, the boundary of Sy, does not allow
expansion in every direction beyond a value of d. Furthermore,
the shape of Sy, causes the expansion per increment in d to
diminish in volume as d gets larger. Thus, as Vol(.A) increases,
the increase in Py per increment in d diminishes as d gets
larger.

VI. d-FOLD REDUNDANCY WITH XOR’S

In this section, we will answer Q3 posed in the Introduction.
Thus far, we have only considered d-choice storage allocations
with object replicas. A replicated copy adds a new service
choice for only a single object, while a coded copy can add
a new choice simultaneously for multiple objects. When an
XOR of r objects (i.e., 7-XOR) is stored on a node that did
not previously host any of the XOR’ed objects, each of the r
objects will gain a recovery set, i.e., a set of  nodes that can
jointly serve the object of interest.

IChebyshev center ¢ of a set S is computed by solving minc ,{r |
|z —c|| <r, Ve e S}
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We here consider the d-choice storage allocation with
r-XOR’s, which is implemented by distributing the k& exact
object copies and k(d—1)/r of their -XOR’ed copies evenly
across the storage nodes while complying with Def. 1. This
makes sure that each object can be directly accessed through
its exact copy and through d — 1 recovery sets. Note that we
consider recovery sets that contain a single XOR’ed object,
which potentially is less storage efficient than schemes that
have been previously proposed based on batch codes [15].
For instance, the 3-choice allocation given in (18) with object
replicas is implemented with 2-XOR’s as

L s b et 1 Liszé

Allocation with 7-XOR’s reduces the storage overhead
multiplicatively by r. However, object access from a recovery
set requires downloading an object copy from each of the
r nodes that jointly implement the choice, hence download
overhead of object recovery grows multiplicatively with r.
As a direct consequence of this, the load imbalance factor
grows additively with r as stated in the following.

Theorem 4: Consider a system with d-choice storage allo-
cation that is created with 7-XOR’s, where r > 2 is an integer.

When d = o (log(n)), the following inequality holds in the
limit n — oo

1 Z-d
2 7 log(n) + Bn.d
where (3, g = r(d — 1) (1 +log sy (n) —log (1 +7(d — 1))),

and if ¥,, = b, -n/log(n) for some sequence b,, > 0, then as
n — oo

<1 as., 27)

11 by/d <1,
732,,—>{ imsup b, /d < (28)

0 liminfb,/2d > 1.
When d = clog(n) for some constant ¢ > 0, the following
inequality holds in the limit n — oo
1 7

B <
3
(Ot + 1) (m .
where « is the unique positive solution of e =1/¢ = (14-a)e™?,

and if 3,, = b, - n/log(n) for some sequence b,, > 0, then as
n — oo

<1 as., (29)

log () (n)
TTog(m) T 7")

(30)

1 limsup 1.57-b,/d < 1,
Ps, — .
0 liminf0.257 - b,/d > 1,

where 7 = ¢(1 + a)?/a.
Proof: See Appendix L. O]
Remark 3: Theorem 4 implies that d-choice allocation with
r-XOR’s achieves the same scaling of the load imbalance
factor Z in d as if the service choices were created with
replicas (as stated in Remark 2), while also reducing the
storage requirement multiplicatively by r. However, accessing
an object from a recovery set requires downloading r object
copies to recover one, thus, increasing the object access
overhead multiplicatively by r. As a consequence of this, Z
in this case increases additively in 7, which can be seen from
its limiting value range given in (27) and (29).
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A. Note on Constructing d-Choice Allocations With r-XOR’s

A d-choice storage allocation with 7-XOR’s consists of
k exact and k(d — 1)/r of r-XOR’ed object copies, and
distributes them across the nodes in a way that complies
with the balanced and regular allocation requirements given
in Def. 1. This means each object has d —1 XOR’ed choices,
thus each object should be a part of d — 1 different XOR’ed
copies. In addition, sets of objects that are XOR’ed together
should not intersect pairwise at more than one object since
this would violate the requirement that service choices must
be disjoint for each object.

Clearly, d-choice allocation with 7-XOR’s does not exist for
all values of k, n, and d. First of all, as described previously
in this Section, k(d — 1)/r of r-XOR’ed object copies are
required, which means we need to have r|k(d — 1). Second,
the requirement that XOR’ed sets should intersect pairwise at
most at one object is similar to a block design. Indeed the
3-choice allocation with 2-XOR’s given in (26) is constructed
based on a symmetric BIBD with A = 1 (see Def. 9 and the
following paragraph). We do not address the construction of
d-choice allocations with 7-XOR’s, but only study their load
balancing performance by assuming their existence.

VII. CONCLUSION

Storage systems need to have the ability to balance the
offered load across the storage nodes in order to provide
fast and predictable content access performance. Data objects
are replicated across multiple nodes in distributed storage
systems to implement robust load balancing in the presence
of skews and changes in object popularities. In this paper,
we developed a quantitative answer for two natural questions
on implementing resource efficient distributed storage with
robust load balancing ability: 1) How does the ability of load
balancing improve per added level of storage redundancy for
each data object? 2) Can storage efficient alternatives be used
instead of replication to improve load balancing?

As an answer for the first question, we found that sys-
tem’s load balancing performance initially improves multi-
plicatively with the level of added storage redundancy d.
Somewhat interestingly, once d reaches within a linear range
of log(total # of storage nodes), system’s load balancing per-
formance improves exponentially. As an answer for the second
question, we found that implementing storage redundancy
with XOR’s of r objects rather than object replicas yield the
same improvement in load balancing performance, while also
reducing the storage overhead multiplicatively by r. However,
accessing data storage by decoding from XOR’ed content
requires jointly accessing r storage nodes (in contrast to a
replica being available at a single node), which reduces the
load balancing performance additively by r.

APPENDIX

The following expression for Mj 4—; (maximal spacing
within & uniform spacings in the unit line) is well known

max{FE1,...,E;}
k

in distribution,
-+ FE
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where F; denote 1i.i.d. random
variables (RV’s).

Joint distribution of the & uniform spacings on the unit line
(S1,...,Sk) is known to be the same as the joint distribution
of (E1/%,...,Ey/Y) where ¥ = Eq + - - - + Ej. Using this
representation, maximal non-overlapping m-spacing within k
uniform spacings on the unit line can be expressed as follows.

Lemma 13: For k = mn, we have
In}
Ti+---+1,

where I'; are i.i.d. as Gamma with a shape parameter of m
and a rate of 1, ie., I; = E;”Zl E;.

unit-mean Exponential

(no) max {Pl, .
km

in distribution,

A. Proof of Lemma 1

Proof: As discussed in Sec. IV-B, a regular balanced
d-choice allocation with object replicas defines a balanced d
regular bipartite mapping from the set of objects and the set
of nodes, which we refer to it as its allocation graph. First,
by K&nig’s theorem, every regular bipartite graph has a perfect
matching, hence the allocation graph has a perfect matching.

Let S be a set of objects and N (.S) denote its neighborhood,
i.e., the set of all nodes that host at least one of the objects in S.
Since the allocation graph has a perfect matching, by Hall’s
theorem, we have |N(S)| > |S| for every S. This shows that
the storage allocation defines a (k,kd,n,n,1) batch code.
Given that the graph is d regular, it can only qualify for a
(k,kd,d,n,1) multiset batch code. O

B. Proof of Corollary 1

Proof: Recall that the system stores k objects. Let us
denote its capacity region with C and denote its intersection
with Sy, as 7yx. Notice that Sy is obtained by scaling Sy
down with ¥/, hence we have

Volume(Ss ) /Volume(Sy) = (¥//%).

For any @ € 7y, C C, its scaled version ¥//% - also lies in
C. This comes from the convexity of C. (Note that the origin
0 € C.) Let us then scale down Ty, with X'/, and denote it
with 73,. Then 73, will also lie in C. We also know that

Volume(7%,)/Volume(7x) = (X'/%).
We have 7. C C(\ Sy, then

Py — Volume(C () Sy) - Volume(74)
> Volume(Ssy) — Volume(Sy/)
~ Volume(7Ty) - (X//%)F P,
~ Volume(Sy) - (//S)F ~ ¥
|

C. Proof of Lemma 4

Proof: Let the given storage allocation, that yields the
capacity region C, be described by the matrices 7" and M (in
the sense of (2)). The described modification on the allocation
says that a new service choice is added for one of the stored
objects by either creating an additional service choice for the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

object, via replicating it on a node that did not previously
host the object or by adding a new choice simultaneously for
multiple objects via encoding the objects together, and storing
the coded copy on a node that did not previously host any of
the encoded objects. We consider these two cases separately
in the following.

When the new service choice is created with replication:
Let a tagged object be copied to a node that did not previously
host the tagged object. The newly added choice can be
captured by adding a new column to both allocation matrices
T and M. Without loss of generality, suppose this new column
is appended to both matrices at the end. Let us denote the
modified versions of these matrices as T’ and M’ respectively.

First, we show that any point in C also lies in C’. Let
us define D = {x | M-z <1, > 0}, and D’ similarly
with M’. Let p € C, then there is an = in D such that
p =T -x. Let us generate ' by appending a 0 at the end of
x. Then, =’ € D' since M' ¢’ = M-z < 1,and T' -2’ = p.
Thus, p also lies in C’, which implies C C C’.

Next, we show that there is at least one point that lies in
C’ but not in C. Suppose that the tagged object is stored in
d + 1 nodes after its number of choice is incremented (the
modification). Then, the system can supply (d + 1)C units of
demand for the tagged object and zero demand for all other
objects, while it could not supply this before the modification
was implemented on the storage allocation. This together with
the fact that C C C’ implies C C C'.

When the new service choice is created with coding:
Let a new coded object copy be stored on a node that did
not previously host any of the objects that constitute the
coded copy. This adds a new choice for multiple objects
simultaneously, which can be captured (as in the case above
with replication) by adding new columns to allocation matrices
T and M. The same arguments used above for the case with
replication can be easily repeated here showing C C C’ holds
for this case as well. O

D. Proof of Lemma 5

Proof: Proof of (7): By Lemma 13, we have

arn}
F1+"'+Fn

(no) max {Fl, .
km —

in distribution, 31

where £ = m - n and T';’s are i.i.d. as Gamma with a shape
parameter of m and a rate of 1.
From Darling [29, Sec. 3], we know for fixed m as n — oo

pr{l U > it — - )
+ mlog(F(m))logg(n) + mlogg(n)x} — G(x).
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From this we get

o < 2ot
) o
Defining
= o) O D Tt gt
we can write
pr{rf) < 2 -0, - ).

Using the Taylor expansion on 1/(1 — «,), we can write
1
Pr{M{) < —(z+1
1 Mim < — x + log(n)

+ (m — 1) logy(n) — log(T'(m)) ) } — G(x),

which gives us (7).
Proof of (9):

For the maximal spacing M}, 4—1 in k uniform spacings on
the unit line, results in [30, Theorem 2.1] show that

klim My a=1 - k/log(k) =1 as. (33)

The same theorem actually shows that the error in the above
convergence is O(logy(k)/log(k)) as. as k — oo. The
presented proof is established from the following

Pr{|Mk7d:1 &/ log(k) — 1| > 5k} = O(k™%)

for any sequence such that dxlog(k) — oo and 0 — 0 as
k — oo.

Recall that M 15“;’3 refers to the maximal non-overlapping
m-spacing in k = n - m uniform spacings on the unit
line. By applying the argument that is used to prove [30,
Theorem 2.1], we here show that a modified version of (33)
holds also for M ,Enfn) In the statement of the Lemma, this is
expressed in (9).

The following bound, which is similar to that given in [32,
Lemma 7], will allow us to obtain a result similar to (34).
Let u, be a fixed se%uence to be defined later. Using the
representation of M k,m thatis given in (31)

(34)

Pr{ M) > w,}

_Pr{M<“°> > wp Zr <k- k3/4}

+Pr{M(“°)>uk, ZF >k— k:3/4}

i=1

< Pr{zn: T, <k— k3/4}
=1

+Pr{ max I'; > ug (k— I<;3/4)}

1<i<n

@
e VR 1y g (k — K34)] (35)
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where 1) T';’s are i.i.d. as Gamma with a shape parameter of
m and a rate of 1, ii) (a) follows by a large deviation argument
on the left side of the expression and a union bound on the
right side, iii) 7,, denotes the tail distribution of I'; as

w4

For some sequence &5 > 0, let us set

(14 0x)log(k) + (m — 1) logy (k)
= 2 .
We know by [32, Lemma 5] that as x — oo

e~ "“du.

mm—l
—
Now define ¢, = £k '/* and further suppose that
dr = O(logy(k)/log(k)). Then we get
Yo [ (k = /1)
(1 — Ek)m71
I'(m)

((1+ 0x) log(k) + (m — 1) logy (k)))™ "
KOH0 =) Jog(k)(m—D(1—e0)

<0 <k7(1+35k/4)) .
Substituting this estimate into (35) we obtain
Pr{M,infrz > uk} <O (n_‘s’“/Q) .

Arguing as in the proof of [30, Theorem 2.1], let us define
the subsequence k¢, t = 1,2,... to be k; = Lemj where
rounding is to the largest multiple of m. Further choose the
subsequence dr, to be

log(t) log, (k+)
Ok, = =0 .
o/t log (k)
Notice that dz, as given above satisfies our previous assump-
tions: Jg, - log(t) — oo and o, — 0 as t — oo.
For 0 < o < 1/4/2 we have

Zkt_ékt/Q _ Ze—log(t)/(m/i) < c0.

(36)

Then by the first Borel-Cantelli lemma, it follows that the
inequality

IORS (1 + dg,) log(ky) + (m — 1) logy (K4)

ke,m k't

occurs finitely often. Thus we have
M) < log(ks)/ke + O (logy (ki) /ke) as.  (37)

Given that (ki1 — ki) ~ ki/log(k:), again from Darling
[29, Sec. 3] we have the following bound for 0 < ¢ < ky 71—k

log(ke +¢)  log(k:) (f : log(k:t))
- =0 —2 1
ke + 0 ky © ky - ki = o/ k%g)

Therefore it follows from (37)

Clearly M™) > M), .
and (38) that

M) < log(k)/k + O (logy (k) /k) as.
This shows (8).
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We can therefore conclude that

hmsupM,Em k/log(k) < 1.

k—oo

(39)

Given that M,En:;) > My g=1, from (33) it immediately
follows
likm inf M,En:;) - k/log(k) > 1.

This together with (39) implies that as & — oo

M(no k/log(k) — 1 as.

This gives us (9). 0

E. Maximal d-Spacing on the Unit Circle

We here show that the maximal d-spacing M,icé defined
for k ordered uniform samples on the unit circle (see Def. 7)
converge to its counterpart M}, ¢ defined on the unit line. In the
following, we show convergence first in distribution, then in
probability, and finally almost surely. Note that showing almost
sure convergence implies convergence in probability, which
then implies convergence in distribution. Convergence in this
order is presented so as to make the arguments transparent.

Lemma 14: For d < k,

Pr{MW > x} < pr{M,gf; > x} < % Pr{Mk,d > :c}

Proof: Let us denote the events {Mjq >z} and
M,EC[)I > x ¢ respectively with L and C.

The first inequality is immediate; if a sequence of spacings
s = (s1,82,...,8;) € L then s € C, while the opposite
direction may not hold. Thus, . C C, hence Pr{L} < Pr{C}.

Next we show the second inequality. Let s € L. Then,
at least k — d different permutations of s lie in L. In order
to see this, let the maximal d-spacing within s be m =
(Siy- -y Sitd—1). Shifting (by feeding what is shifted out back
in the sequence at the opposite end) s to the left by at most
i — 1 times will preserve m, hence each of the ¢ — 1 shifted
versions will also lie in L. Similarly, shifting s to the right by
at most k— (i+d—1) times will also preserve m. We call such
permutations, which are obtained by shifting with wrapping
around, a cyclic permutation.

Let us introduce a set L’ C L such that for any s € L/,
no cyclic permutation of s lies in L’. L contains at least k —d
cyclic permutations of every s € L’. This together with the fact
that all sequences of spacings are equally likely (Lemma 2)
gives us (k —d)Pr{L'} <Pr{L}.

Now let s € C. All k — 1 cyclic permutations of s’
will also lie in C (recall that we are now working on the
unit circle). This together with the fact ./ € L C C and
Lemma 2 gives us k-Pr{L’'} = Pr{C'}. Putting it all together,
we have Pr{C}/k = Pr{L'} < Pr{L}/(k— d), which yields
the second inequality.

A simpler way to find the second inequality in Lemma 14
is given as follows. Recall that the uniform samples,
together with the 0 point, are ordered on the unit circle as
0,Ugy, .-+, Ug—1). Let us denote the index of the sample at
which the maximal d-spacings starts with I, e.g., I = ¢ means
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that the maximal d-spacing starts at the ith minimum uniform
sample, / = 0 means it starts at the point of 0. We have

Pr{MW > x} > pr{M,gf; >l < k—d+ 1}

since the event on the right implies the event on the left. The
right hand side of this inequality can be written as

Pr{M,gf; > x} (k- d)/k,

using the independence of the events and the fact that I is
uniformon 1,..., k. O]

Lemma 15: For d = o(k), M,g’cﬁ)l/Mk,’d — 1 in probability
as k — oo.

Proof: 1Tt is easy to see M,ic(; > My q. Let D = M,ic(; —
My, q and S be the set of all sequence of spacings for which
D > 0. For every s € S, d — 1 of its cyclic permutations
(see the Proof of Lemma 14 for the definition of a cyclic
permutation) also lie in S while the remaining k£ — d of them
lie in S¢ (complement of .S). Thus, for every d points in S,
there are at least k — d points in S¢, and all the points in .S or
S¢ (i.e., all spacings) have the same probability measure (by
Lemma 2). This gives us the following upper bound Pr{D >
0} = Pr{S} < d/k, which — 0 as k — oo. This implies
M ]ic; /My, ¢ — 1 in probability. O

In order to use the results known for the convergence of
Mj,.q in probability or a.s. in addressing M ,ii;, we need the
following Lemma.

Lemma 16: For d = o(k), M (C)/Mk a4 — las. as k — oo.

Before we move on with the proof of Lemma 16, we next
express the maximal d-spacing M ,EC; on the unit circle in terms
of the two different instances of its counterpart defined on the
unit line.

Let 2m+1 > 1 be arbitrary and place 2m + 1 i.i.d. uniform
random variables on the unit circle with 0 < Uqy < ... <
U@m41) < 1 where the points 0 and 1 are identified. Let
O denote the linear sequence starting at 0 and P be the
linear sequence starting at U, 1) the median, without loss
of generality. We know U(,,, 1) = a € (0,1) almost surely.
By adding further i.i.d. uniform variates we get two sequences
of uniform spacings with parameter k& > 2m + 1, where the
first starts at O and the second at P.

Let di, = o(k) be a sequence of dj-spacings for the
kth realisation. Let M ,ic(;k be the maximal circular dj-spacing
on the previously constructed unit circle (as defined in Def. 7),
and let M,g%i, Mlifi)k be the maximal dj-spacing for the
line segments that stretch along the sequences O and P
respectively. We say that the circular spacings are covered by
O and P if any circular dj-spacing on the circle is either a
dy-spacing for O or for P (or both). This will always be the
case if the number of intervening points Nj going from the
beginning of O to the beginning of P clockwise is such that
Ny, > dj, and also for the number of points M} going from
the end of P to the end of O clockwise. Clearly if the circle

spacings are covered by O and P,
MG, < max { MG M) } (40)

We now show that a.s. for any sequence there is a Ky
sufficiently large so that Vk > K it holds that Ny, M}, > dy.
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It is enough to show this for N as the same argument will
apply to Mj,.

The interval from the beginning of O to the beginning of
P has length a (recall Uy, 11y = a) and therefore

Ni/k — a as.

by the strong law of large numbers. Therefore 3K such that
Vk > K, N, > % and a > 0 as. Since di = o(k) it
follows that 3K > K such that Ny > di, k > Ky. By the
same argument 3K, such that My > di,k > Kj;. Now
K4 = max{Ky, Ky} is the required number and it follows
that inequality (40) holds Vk > K a.s.

Now we are ready to prove Lemma 16, that is to show
M) /Myq — 1 as.

Proof: First, given that M ,EC; > My, q, we have

lim inf M%) /My 4 > 1. (41)
k—o0 ’
Next using (40), we have
c O P
M,g’; < max {M]<(77dl7M]§;d)lc} .
This allows us to find
lim supM,ng/M;“d
k—o00 ’
< max { lim sup M,g?/Mkyd, lim sup MIEZ)/M’W'}
k—o0 ’ k—o0 ’

This, together with the fact that M ,i%) and M, ,EZ) converge to
My, q as., gives us

lim sup M) /My, 4 < 1. (42)
k—o00 ’
Putting (41) and (42) together completes the proof. O]

In the following, we show that the results given in Lemma 7
and Lemma 8 for M}, 4 carry over to M ,ic(%
Lemma 17: For any integer d > 1, as k — oo

Pr {M,gf; -k — log(k) — (d — 1) log, (k)
+log((d — 1)) < a:} — G(z). (43)

That is the distribution of M,gcg -k—log(k)—(d—1)logs (k) +
log((d — 1)!) converges to standard Gumbel distribution as
k — oo.

Proof: Let us first denote the event that the maximal
d-spacing on the unit circle lies between the 1st and kth
uniform sample with E, meaning that (M,EC; | E) = Mj.q.
Since the maximal spacing is equally likely to start at any one
of the uniform samples Up,...,Ui_1, we have Pr{E} =

(k — d)/k. Let us also define

fr = log(k) + (d — 1) logy (k) — log((d — 1)!).
By the law of total probability

Pr{M,Ef; -k —log(k) — fi < a:}
- Pr{M,gf; Tk —log(k) — fu < a3 E}

+ Pr{M,gf; Tk —log(k) — fu < a3 E} (44)
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Left hand side of the sum above can be bounded as
Pr{M,gi% -k —log(k) — fr < x; E}

@ Pr{Mk,d Tk —log(k) — fi < a3 E}

(g) Pr{Mk,d -k —log(k) — fi < a:} - Pr{EC},

where (a) follows from (M,ic(z, E) = (Myq; E), and (b)
comes from the inequality for events A and B

Pr{A;B} - Pr{B} _ Pr{B;AC} > Pr{B} _ Pr{AC}.

Putting this in (44) gives us
Pr{ M)k~ log(k) - fi <
> Pr{Mk,d -k —log(k) — fu < x}
~Pr{E°}
+ Pr{M,gf; Tk —log(k) — fu < a3 E}
since Pr{EC} =d/k — 0 as k — oo. Overall this gives us

lim inf pr{M,gc; & —log(k) — fi < :c}
k—o0 ’
> likminf Pr{Mk,d <k —log(k) — fr < x}
Given that M ,gcg > My, 4, we have the lower bound

hmsupPr{M,gz -k —log(k) — fr < a:}

k—o00
< lim sup Pr{Mk,d -k —log(k) — fi < x}
k—o0
Both the lower and upper bounds given above are equal to
G(z) by Lemma 7, hence showing (43). O

Lemma 18: For d = o(log(k)), as k — oo
M5 - k —log(k)

(d—1) (1 + logy (k) — log(d))

Proof: For brevity, let us define the function

B x -k —log(k)
flx) = (d—1) (14 logy(k) —log(d))

The fact that M,EC; > Mj,.q gives us
f (M;EC(;) > f(Mp,a)

for k sufficiently large a.s. By (15) in Lemma 8, the right hand
side of the above inequality — 1 as k — oo a.s. Then we have

— 1 a.s.

. (¢)
hkrriggff (Mk’d) > 1. 45)

Inequality (40) gives us

o P
f (M,EC;) <f (maX{M]i,d)k’Mlg,d)k})
for k sufficiently large a.s. This implies that

limsup f (M,gi;)

k—o0

< max{lim sup f (Méz)) ;

k—oo

limsup f (M,gg))}.

k—oo
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By (15) in Lemma 8,

limsup f (M,gz)) =1 and limsup f (MIEZ)) =1 as.

k—o00 k—o00

Hence we have
limsup f (M,gcg) <1

k—oo
This together with (45) concludes the proof. O]
Lemma 19: For d = clog(k) + o(logy(k)) with some
constant ¢ > 0,
B M)k — (1 + a)c-log(k)
log, (k)

e =
satisfies

limsup Vi = c¢*(14+ a)/a as.

k—o00

liminf Vi, = —c'(1 + a)/a as.

k—o00

(46)

where « is the unique positive solution of e~ /¢ = (1+a)e™,
and ¢* and ¢! are constants taking values in [—0.5,1.5] and
[—1.5,—0.5] respectively.

Proof: Shown applying the same ideas used in the proof
of Lemma 18 given above. O

F. Proof of Lemma 9

Proof: Recall that nodes are indexed by the index of
the primary object copies they store, i.e., node s; stores the
primary copy for object o; fori = 1,..., k. We denote the set
of choices for o; with C;.

Proof of » > d — 1: We first prove that » > d — 1 by
contradiction. Suppose r < d — 1. Pick an arbitrary object o;
with the set of choices C;. Then o0;_, is co-located together
with o, on one of the nodes in C;, which we refer to as s*.
Given that s* is a choice for o0;, any object stored on it must
be in the set {0;—r,0i—r41,-..,0i+r}. By now s* stores o;
and o;_, by design, and we now look at the remaining d — 2
storage slots of s*. Given that s* € Cj, r-gap allocation
dictates that s* can store only objects within {0;_, ..., 04, }.
We assumed that s* stores o;_, which means s* € C;_,
as well. So if s* stores any object in {0;11,...,0;4+,} then
Ci—» N Cj # @ for some j > ¢, which would violate the
definition of r-gap design. Therefore all the remaining d — 2
storage slots of s* must be occupied by the objects in the
set O = {0;—r41,...,0,—1}, which means there needs to be
at least d — 2 different objects within O (the same object
cannot be stored multiple times on the same node), implying
r>d—1.

Perhaps, an easier way to show this is given as follows.
The objects which may share a node with an object i are
those within a set

S’L = {Tmin < 1 < rmax}

< mod n.
Such sets always contain at most r 4 1 elements. For example
if r =2 and i = 3, we may take the set {2, 3,4}, if n > 5,
which has 3 =7+ 1 elements. Orif n=6,¢=5and r = 4

where rmax — rmin < 7 and we apply arithmetic
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we may take the set {5,6,1,2,3} and note that 3—5+6 =4
using arithmetic mod 6. The set contains 5 elements.

Now consider an object ¢ and the corresponding node set Cj.
It has d? slots which have to be occupied. Since all sets
containing ¢ have at most 7+1 elements under an r-gap design,
it must be the case that (r+1)d > d* which implies r > d—1.

Proof of the lower bound for the node expansion of sets
of objects: We next show that z < N(S) < x + 2r for any
S = {0iy...,0i4z—1} for i = 1,...,n. Storage allocation
defines a regular bipartite graph, then by Hall’s theorem we
have |N(S)| > x. The copies of 0; can expand across at most
Ni—r, ..., Nitr, and the copies of 0,1 ,_1 can expand at most
ACTOSS Mjyg—1—ry- -, Mitz—1+r- Lhen S can expand at most
across Nj—r, ..., Nity—1+4r, meaning |[N(S)| < x + 2r. O

G. Proof of Lemma 10

Proof: Necessary condition: System is surely unstable
if a set of objects S has a cumulative offered load larger
than |[N(S)|. Lemma 9 states that every consecutive ¢ objects
expands across at most 7 + 2r nodes, meaning that the system
can possibly be made stable only if the cumulative offered
load for any ¢ consecutive objects is less than ¢ 4+ 27, which
is exactly what is expressed in (19).

Sufficient condition: Suppose that the maximum offered load
on any 7 consecutive objects is d, which can be described
with the maximal r-spacing as My(f,)« -2 < d (recall X is the
cumulative offered load on the system).

Let = be an integer in [1,n]. Consider the following spiky
load scenario starting at o,; offered load p; for o; is d when
i=xz+(r+1)j, j=0,1,...,|n/(r+1)] and 0 otherwise.
In this case, an offered load of magnitude d for each spiky
object 0; can be supplied by using up the capacity in all
the nodes available in its set of d choices C; since all other
objects that overlap with o; in their service choices have 0
offered load (by the r-gap design property). The system can
supply the spiky load regardless of the value for x. Given that
the system’s service capacity region is convex (Lemma 3),
any convex combination of any set of spiky load scenarios
can also be supplied by the system. This can be expressed
as follows: system can operate under stability as long as the
offered load on every r + 1 consecutive objects is at most d,
which implies (20). 0

H. Proof of Lemma 11

Proof: Lower bounds come from substituting »r = d—1 in
those given in Lemma 10. Upper bounds come from observing
that every d+1 consecutive objects expand to at most 2d nodes
in the design with clustering, and every d consecutive objects
expand to 2d — 1 nodes in the design with cyclic construction.

|

L. Proof of Theorem 2

Proof: Recall that the load at the maximally loaded node

[a* is given by M, 15721 - ¥,,. Almost sure convergence given
in (9) implies for ¥,, = b,, - n/log(n) that

5 -m/b, — 1 as.
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This implies in the limit n — oo for any > 0
Pr{u;;m b — 1] > 5}
= Pr{zgax > bn/m - (1+ 5)}
5)} — 0.

Given that both terms in the sum above is non-negative,
we have

+ Pr{lﬁlax <bp/m-(1-

Pr{z;;lax > bn/m - (14 5)} N
Pr{zg‘ax <bn/m-(1— 5)} =0

Recall from (10) that Py, is given by Prq['® < 1:. Then

the convergence of probablhtles given above 1m[))11es (13).
(11) and (12) come from substituting Z = -n (by (10))

in the convergence results given in Lemma 5. O

J. Proof of Theorem 3

Proof: We first need to recall Lemma 11; under a cumula-
tive demand of X, Mn "> < dis sufficient and M(C) ¥ <2d
is necessary for system stability. Here we will refer to d as dy,
to make it explicit that it is a sequence in n.

Proof of (22): In this case d = o(log(n)). Almost sure
convergence given in (15) together with Lemma 16 implies
for 3,, = by, - n/log(n) that

M) S, /by — 1as.

Recall that M7 d ¥, /d, < 1issufficient and M ) d En/ 2d,, <
1 is necessary for system stability, which respectively implies
that Py, — 1 if limsup,,_,. b,/dy, < 1, and Py, — O if
liminf,,_c bn/2d,, > 1, hence (22).

Proof of (24): In this case d = o(log(n)). Almost sure
convergence given in (16) together with Lemma 16 implies
for ¥,, = b, - n/log(n) that in the limit n — oo we have
almost surely

0.57 < M%) £, /b, < L57.

Then the necessary and sufficient conditions (as used in
the previous step while showing (22)) for system stability
imply (24).
Proof of (21) and (23): In order to prove (21), let us
now suppose that content access capacity at each node is
C, in which case the sufficient and necessary conditions for
stability are respectively written as M,(ft)i -3 < dC and
MY(LC; -3 < 2dC. Using these we find that C' > MY(LC; -2/d
is sufficient and C' > Mr(le - X2/2d is necessary for system
stability. This means that the maximum load on any node
in the system will lie in [M( -X/2d, M(C) ¥/d], which
1mp11es that the load 1mbalance factor 7 for the system lies in
[ nd /Qd‘]\/(l(i n/d]

Finally using the results of almost sure convergence given

for M, 4 in Lemma 8 (hence given for M (e) . as well due to
Lemma (16)), we find (21) and (23). 0
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K. Proof of Lemma 12

Proof: We use the following fact, which we refer to as F
here: in a storage allocation with block design, every pair of
objects overlaps at exactly one node in their choices.
Necessary condition: Expansion of a set S of d objects is
maximized (of size d?) when the choices for each object are
pairwise disjoint. This is not possible due to F. Let us start
forming S by picking an arbitrary object o; with the set of
choices C;. In order to maximize the expansion of S, let us
form the rest of S by selecting one object from each node
in C;. Given F, no pair in S'\ o; is hosted on the same node.
However, this does not prevent all objects within S\ o; to
be hosted on some other node (since a node hosts d different
objects). In this case the expansion of S will consist of d +
(d—1)+ (d —2)* = d* — 2d + 3 nodes, which gives us the
necessary condition for stability.

Sufficient condition: We here consider the spiky load scenario
discussed in the proof of Lemma 10; let  be an integer in
[0, n], and the offered load for o; is p if i = x + dj for some
j=0,1,...,|n/d] and O otherwise. Let us refer to objects
with spiky load as “a spiky object”. Each spiky object shares
its d choices with every other spiky object, and the worst case
sharing is when the object has to share d — 1 of its choices
with others. In the worst case, the system is stable only if
p <1+ (d—1)/2, which gives us the sufficient condition for
stability. O

L. Proof of Theorem 4

Proof: This proof is very similar to that of Theorem 3,
except for the complication that there is no cyclic equivalence
of regular balanced d-choice allocation with XOR’s unlike the
case in allocations with object replicas. That is why we first
find auxiliary cyclic allocations that serve as lower or upper
bound on the load balancing ability of the d-choice allocation
with 7-XOR’s (this is what makes the proof more difficult),
then we derive our results by studying these auxiliary cyclic
allocations.

We start by showing sufficient and necessary conditions for
system stability.

(i) Sufficient condition for system stability:
consists of three intermediate steps.

This part

Step 1: Cyclic allocation with r-XOR’s. Consider a cyclic
d-choice allocation in which for each object o; that is primarily
stored on node s;, d — 1 choices (recovery sets) are formed
by the d — 1 consecutive disjoint r-sets of nodes that come
right after s; (in the order of node indices, by wrapping around
the sequence of nodes if necessary). For instance, in 3-choice
cyclic allocation over nodes [1,...,6] with » = 2, pairs of
nodes (s5,s¢) and (s1,s2) can jointly serve the object oy
that is primarily stored on s4 (recall that we assume the total
number of stored objects k is equal to the total number of
storage nodes n).

Notice that a cyclic allocation cannot be implemented with
XOR’s. This is because an additional r-XOR’ed copy adds a
new choice simultaneously for r objects over a set of r + 1
nodes, and it is not possible for all these added choices to be
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a proper cyclic choice. For instance, let objects a, b and ¢ be
stored on nodes s, s2 and sz respectively, and let us store
a + b on s3. Then, s5 and s3 form a choice for a, which is a
proper cyclic choice, while s; and s3 form a choice also for b
and this is improper for a cyclic allocation, which we simply
refer to as a non-cyclic choice. However, it is still possible to
create an allocation that implements both cyclic and non-cyclic
choices with XOR'’s, then restrict it to behave as a cyclic
allocation as follows. Firstly, each of the d —1 cyclic recovery
choices can be created for each object via a separate XOR’ed
copy. These XOR’ed copies will incur non-cyclic choices as
discussed, but we will ignore and never use them for object
access. For instance in the previous example, the incurred
non-cyclic choice implemented by a, a + b stored on (s1, s3)
can be ignored and never used to access b, while a new proper
cyclic choice can be added for b by storing b + ¢ on s4. In
the following we use cyclic allocation, which is created with
the restriction described here, merely as a tool to derive our
results.

Step 2: Cyclic achieves smaller capacity region than
non-cyclic. The capacity region of non-cyclic (our regular
balanced) allocation with XOR’s contains that of its cyclic
counterpart. To see this is true, we give the following expla-
nation. In non-cyclic d-choice allocation with 7-XOR’s, each
node participates in ar most k - d/r different choices, while
in its cyclic counterpart, each node participates in exactly
k- d/r different choices. In other words, non-cyclic allocation
is using the capacity at the nodes more efficiently than its
cyclic counter part, while implementing the same number of
choices for each object. This expands the capacity region
everywhere, or keeps it the same at worst. To better understand
this, consider the following example of a 2-choice allocation
with 2-XOR’s and its corresponding allocation matrix

I ER G P PR TP e P

(47)

S oo O =
O OO~ F=O
[=NeNeNall -
O oo~ OO
O oo~ OO
SO~ O OO
OO, O OO
O = OO OO
o= OO OO
_ o0 O o o
_— O OO OO

S oo O =

0 0

We next briefly explain what M represents. The system
achieves stability by splitting (balancing) the demand for each
object across its d choices in such a way that no node is
over burdened (i.e., each node is offered a load of < 1).
Each service choice for an object is either implemented by
a single (primary) node or jointly by r nodes (an XOR’ed
choice). The portion of an object’s demand that is forwarded
to and supplied by one of its XOR’ed choices flows simul-
taneously into the r nodes that jointly implement the choice.
Each 1 within the ith row of M represents the assignment
of an object’s demand portion to node s;. For instance,
s1 implements the first (primary) choice for a (hence the first
1 in the 1st row), and participates in the second choice for
objects e and f (hence the second and third 1 in the 1st row).
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The cyclic counterpart of the allocation given above in (47)
would be

a b c d e f
e+ f| |f+a|’ |la+bd|’ |b+c|’ |c+d|’ |d+e
[1 000 00O0O0OGOT1O01
06011 0000O0O0O0OTO071

c 10101 100O0O0O0O0O0
M= 000101100O0O0O0|’ (48)

0000O0O1O0T1T1QO0OTQO0ODO0

0 00000O0O1IO0T1TT10

where the incurred non-cyclic choices are ignored in M€,
e.g., a is never accessed from f+a and f. Each row sums to 3
in M€, while half the rows sum to less than 3 in M (notice the
additional 1’s in M®). In other words, non-cyclic allocation
implements the same number of choices for each object with
smaller overlap between different choices compared to its
cyclic counterpart. A node’s capacity is shared by all the
service choices in which the node participates. Thus, it is better
to have less overlap between choices in order to achieve greater
capacity region. This is the “inefficiency” of cyclic allocation
that causes it to achieve a smaller capacity region than its
non-cyclic counterpart.

Let D = {x | M-x <1, =0}, and D¢ be defined
similarly with M€, It is easy to see that any x in D¢ will
also lie in D (recall the additional 1’s in M€). In addition,
non-cyclic d-choice allocation and its cyclic counterpart share
the same T" (i.e., the other allocation matrix that yields the
capacity region C (or C¢) by transforming D (or D€); see
Sec. II-C). Thus, we have C D C¢. This together with Def. 3
implies that probability Ps; for non-cyclic d-choice allocation
is at least as large as that for its cyclic counterpart.

Step 3: A sufficient condition for the stability of cyclic allo-
cation. Recall from Lemma 10 how we found a sufficient
condition for stability when the allocation is constructed with
the clustering or cyclic (r-gap in general) designs. Using
the same arguments, a sufficient condition for the stability
of the cyclic d-choice allocation with 7-XOR’s is found as

My(fi 1) 3 < d, where ¥ is the cumulative offered load

on the system and Mv(:i-i-r(d—l) is the maximal (1 +7(d —1))-
spacing for n uniform spacings on the unit circle. The reason
for caring about (1 + 7(d — 1))-spacing’s in this case (rather
than d-spacing’s as was the case for allocations with object
replicas) is because an object’s first choice is implemented
by the (primary) node that stores the object, and its XOR’ed
choices are implemented by the d — 1 disjoint 7-sets of nodes
that follow the primary node in (cyclic) order. The reason
for keeping the right hand side of the sufficient condition
unchanged at d (as for the allocations with replication) is that
object access from an 7-XOR’ed choice requires accessing all
r nodes that jointly implement the choice, so r(d — 1) nodes
that form the d — 1 XOR’ed choices for an object can at most
provide a capacity of d — 1, which together with the capacity
of the primary node adds up to d.

Final Step: Putting it all together. As discussed above, Py
for cyclic d-choice allocations is a lower bound for that
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of its non-cyclic counterpart. Thus, the sufficient condition
Mr(lci tr(d—1)" 3. < d for the stability of cyclic allocations will
also be sufficient for the stability of its non-cyclic counterpart

(i.e., our regular balanced allocation).

(ii) Necessary condition for system stability: We again here
relate the cyclic allocation with 7-XOR’s as introduced in
part (i) to its non-cyclic counterpart (our regular balanced
allocation). We do this again in three intermediate steps that
are in the same spirit as those given in part (i).

Step 1: Cyclic-plus allocation. Recall in part (i) that we
created a cyclic d-choice allocation by adding all k(d — 1)
XOR’ed copies that are necessary to implement the d — 1
cyclic choices for each object; and then ignoring the incurred
non-cyclic choices by never considering them for object access
(e.g., recall the non-cyclic allocation in (47) and its cyclic
counterpart in (48)). Let us also consider and use the incurred
non-cyclic choices for object access here, and refer to this
form of allocation as cyclic-plus.

Cyclic-plus achieves greater capacity region than non-
cyclic. The capacity region of cyclic-plus allocations will
contain that of its non-cyclic counterpart, which together with
Def. 3 implies that Ps; for cyclic-plus allocations will be at
least as large as that of its non-cyclic counterpart. This is
because cyclic-plus allocations implement all the choices that
their non-cyclic counterparts implement plus some additional
choices (e.g., compare (47) with (48)), which will yield at
least as large a capacity region everywhere as the one without
the additional choices.

Step 2: A necessary condition for the stability of cyclic-plus
allocation. In cyclic-plus d-choice allocations, there are d
cyclic and d non-cyclic choices for each object. Notice that
each non-cyclic choice for an object is due to a cyclic choice
of another object. Consider an object primarily stored on s;,
then s;+1 mod n participates in this object’s first cyclic choice
and all of its non-cyclic choices. This is a direct consequence
of how cyclic choice with XOR’s are constructed. For instance,
consider object a in (48), its first cyclic choice is (b, a + b)
and its only non-cyclic choice is (f + a, a), where both b
and f + a are stored on the node that comes right after a’s
primary node. Thus, all of the d additional non-cyclic choices
and the first cyclic choice for an object depend on a single
node, which will be a bottleneck when these choices must
be used simultaneously to access the object. In other words,
all of these d + 1 choices (one cyclic and d non-cyclic) can
simultaneously yield at most as much capacity as of a single
node.

Due to the bottleneck node described above, even the
additional non-cyclic choices are not sufficient to achieve
stability in a cyclic-plus d-choice allocation with r-XOR’s
when any 1 + r(d — 1) consecutive nodes have a cumulative
offered load > 2d — 1, that is when Mv(ﬁw(d—l) Y >
2d — 1, hence a necessary condition for stability is that as
M'r(z?iJrr(dfl) -3 < 2d. This is easy to see using the exact
same arguments we used to show the corresponding necessary
stability condition in Lemma 10 for d-choice allocation with
object replicas.
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Final Step: Putting it all together. We showed that the proba-
bility P, for cyclic-plus allocation is an upper bound on that

of its non-cyclic counterpart, thus ffi r(d-1) Y < 2d is

also a necessary stability condition for non-cyclic (our regular
balanced) d-choice allocation.
From now on we will refer to 1 + r(d — 1) as D.

Proof of (28) and (30). Follows from the exact same
arguments used in the proof of respectively (22) and (24)
(Theorem 3).

Proof of (27) and (29). Using the same arguments used in

the proof of (21) and (23) (Theorem 3), we can conclude here
that the load imbalance factor Z for the system lies in [M,(ZC)D .
n/2d, My(LC)D -n/d]. The results of almost sure convergence

given for M, p in Lemma 8 hold also for M fLC)D by Lemma 16.
Using the same arguments given in the proof of Lemma 8§,
we derive (27) and (29). O
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