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Abstract—Simulating the time evolution of a physical system
at quantum mechanical levels of detail — known as Hamil-
tonian Simulation (HS) — is an important and interesting
problem across physics and chemistry. For this task, algorithms
that run on quantum computers are known to be exponen-
tially faster than classical algorithms; in fact, this application
motivated Feynman to propose the construction of quantum
computers. Nonetheless, there are challenges in reaching this
performance potential.

Prior work has focused on compiling circuits (quantum
programs) for HS with the goal of maximizing either accuracy
or gate cancellation. Our work proposes a compilation strategy
that simultaneously advances both goals. At a high level, we use
classical optimizations such as graph coloring and travelling
salesperson to order the execution of quantum programs.
Specifically, we group together mutually commuting terms in
the Hamiltonian (a matrix characterizing the quantum me-
chanical system) to improve the accuracy of the simulation. We
then rearrange the terms within each group to maximize gate
cancellation in the final quantum circuit. These optimizations
work together to improve HS performance and result in an
average 40% reduction in circuit depth. This work advances
the frontier of HS which in turn can advance physical and
chemical modeling in both basic and applied sciences.

Keywords-quantum computing; compilation; program order-
ing; Hamiltonian simulation

I. INTRODUCTION

The development of quantum computers is advancing
rapidly. During the last decade, quantum computing (QC)
systems comprised of tens of qubits were brought online for
the first time [1]-[3]. Although information processing on
these devices is noisy and error-prone, successful execution
of several quantum algorithms — including a demonstration
of quantum supremacy — has been achieved [1], [4]-[7].

This paper focuses on Hamiltonian simulation (HS) which
is used for simulating the time evolution dynamics of a
physical system at quantum mechanical detail [8]. This type
of simulation was the original motivation behind Feynman’s
proposal of QC [9]. Lloyd [8] later proved that quantum

Problem Mapping | Ordering Trotterization
Use a QC to Obtain a qubit sort(H) Construct the
implement: Hamiltonian: quantum circuit

- Lexicographic

N
— 5 HHY; H,=Y c.P - Magnitude
=g | e ,g{ o - Max-commute-tsp

- N
Hids

Max-Commute-TSP

1. Group Pauli terms into 2. Maximize gate cancellation 3. Select a clique-clique

mutually commuting cliques within cliques by sorting terms ordering according to the
according to a TSP heuristic

permutation heuristic

e ve Ye

Figure 1: A summary of the Hamiltonian simulation compi-
lation process and the max-commute-tsp ordering strategy.

computers are indeed efficient simulators of quantum sys-
tems, implying an exponential separation between quan-
tum and classical algorithms for this problem. When at-
scale, fault-tolerant QCs are available, they are expected to
efficiently simulate the dynamics of classically intractable
chemical and physical systems [10], [11]. HS offers the po-
tential to reveal physical and chemical processes important
to materials research, pharmaceuticals, and more [12]-[14].

While HS is promising in theory, key challenges in
its uptake lie in demonstrating accurate and tractable HS
execution on current QCs. For current Noisy Intermediate-
Scale Quantum (NISQ) [15] computers, their limited scale
precludes the execution of large HS instances, and their
noisy operation impedes accuracy.

To implement HS on a quantum computer, one needs
to specify a particular problem instance (e.g., selecting a
specific molecule or defining an optimization objective) in
terms of a Hamiltonian—a characteristic matrix describing
the system of interest. Then, the quantum circuit (i.e.,
quantum program) that simulates the system is compiled via
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three steps: mapping, ordering, and Trotterization, shown
in Fig. 1. The goal of the mapping step is to produce
a Hamiltonian specified as a sum of Pauli terms (tensor
products of Pauli matrices, more details in Sec. II-B) which
act on the qubits of the quantum computer, although the
specifics may vary depending on the use case.

The quantum computer executes the HS by sequentially
simulating each Pauli term in the order that it appears in the
summation produced during the mapping step. While any
ordering is theoretically viable, some orderings have very
poor performance or accuracy given current QC constraints.
Thus, the purpose of the ordering step is to sort the Pauli
terms with the goal of (i) minimizing the depth (i.e., quantum
operation count or runtime) of the resulting quantum circuit
and (ii) maximizing the accuracy of the simulation. This is
analogous to the ordering of floating point operations or ba-
sic block scheduling performed by classical compilers [16].
Prior work has explored the impact that term order has on
the quality of the simulation, and finding tighter bounds on
the simulation error remains an open problem [17]-[20].
Additionally, the impact of term ordering on the gate count
requirements for the simulation circuits has also been studied
[21], [22].

Finally, the last step in the circuit compilation is Trot-
terization which iteratively constructs the quantum circuit
according to the Suzuki-Trotter decomposition [23].

While prior works offered theoretical advances, their term
ordering strategies focused solely on either accuracy or gate
cancellation. Our work highlights the importance of both of
these factors and applies classical optimization techniques to
compile quantum circuits which are both short and accurate.

We improve the execution of HS circuits by developing
methods to mitigate both physical and algorithmic errors.
Physical errors stem from the fact that gate operations on
NISQ processors are noisy. Two instances of the same HS
problem compiled with different term orderings can result
in quantum circuits of different lengths. The shorter circuit
contains fewer noisy operations and will, therefore, have a
higher probability of successful execution. Even in the fault-
tolerant (i.e., error-corrected) regime, where gate operations
are noiseless, compilations which produce shorter circuits
are still desirable since depth is proportional to runtime.
Algorithmic errors appear in the Trotterization step (covered
in detail in Sec. II-B) because the continuous time evolution
that we wish to simulate must be discretized before it can
be implemented on a quantum computer. This discretization
is only an approximation of the true evolution. Prior work
as well as our results indicate that the order in which the
Pauli terms are simulated can significantly impact the error
of this approximation.

Our strategy (summarized in Fig. 1) for optimizing the
program order of the simulation is based on two key insights.
First, the algorithmic error associated with the Trotterization
step is due to non-commuting Pauli terms within the

Hamiltonian. Noticing this, we mitigate the algorithmic error
by grouping together Pauli terms which commute with one
another. We decide the grouping by constructing a graph that
indicates which Pauli terms commute with one another, and
then find a minimum clique cover on this graph. The second
insight follows from the first, namely, once the Pauli terms
are partitioned into mutually commuting groups, the terms
within each group can be rearranged without incurring
any additional algorithmic error. We choose to arrange
the Pauli terms within each group to maximize the amount
of gate cancellation in the final circuit. This is accomplished
by finding a travelling salesperson path through each group
which places similar Pauli terms next to each other, thus
increasing the amount of gate cancellation.

These compilation techniques incorporate both classical
optimizations and full-stack knowledge from application to
hardware which improves the performance of Hamiltonian
simulation. This approach has proven successful in previous
work targeting the Variational Quantum Eigensolver (a quan-
tum algorithm which can be considered a specialized case
of HS [24], [25]) [26]-[28]. Furthermore, considering the
physics at the hardware level — the QC must discretize the
simulation to handle non-commuting Pauli terms — guides
our optimizations at the compiler level: grouping together
commuting Pauli terms. Going in the other direction, we use
the compiler to optimize for short circuits which fit within
the limits set by the capabilities of the underlying hardware.

In this paper we consider simulation and experiments for
molecular Hamiltonians because they are a relevant and
important application and also easily obtainable via the
NIST Chemistry WebBook [29] and OpenFermion software
package [30].

Our contributions in this work include:

o A new term ordering strategy, max-commute-tsp, which
simultaneously mitigates both physical and algorith-
mic errors.

« Simulation and experimental results which demonstrate
an average 40% reduction in circuit depth and high-
light the importance of both gate cancellation and
simulation accuracy for good overall performance.

o A general, open-source implementation of HS which
can be of use to the QC community as a challenging
and practical benchmark.

The rest of the paper is organized as follows. An overview
of HS is given in Sec. II. Prior ordering strategies and com-
pilation techniques are discussed in Sec. III and a detailed
description of max-commute-tsp is presented in Sec. IV. Our
benchmarking methodology is given in Sec. V and Sec. VI
contains the results of our simulations and the evaluations on
trapped ion quantum computers. In Sec. VII we discuss our
results as well as future work on analyzing HS performance
in regimes beyond quantum chemistry.
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Figure 2: Dissecting a quantum circuit for simulating the
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II. HAMILTONIAN SIMULATION

Simulating quantum systems is a general problem with
important applications in physics, chemistry, and biology.
Many supercomputer hours are spent simulating different
molecules and materials each year [31]. With the recent
development of quantum computers, and because they are
efficient simulators of quantum systems, it is expected that
these simulation problems will be among the most promising
applications for quantum advantage [11]. However, it is
likely that the simulation of classically-intractable systems
will require a fault-tolerant quantum computer [10]. Despite
this, Hamiltonian simulation is still used throughout many
near-term NISQ algorithms for machine learning and other
optimization applications. For the remainder of this paper,
we choose to consider Hamiltonian simulation within the
specific context of simulating molecular dynamics. Our
compilation methods can be further applied wherever one
wishes to simulate a Hamiltonian written as a sum of Pauli
terms.

A. The Simulation Problem

To illustrate Hamiltonian simulation, assume we wish to
study a time-dependent quantum system, |¢(¢)), such as an
atom or molecule. The time evolution of this system will
be described by a matrix, H, called the Hamiltonian whose
eigenvalues are the allowed energy levels of the system. If
the initial state of the system is [¢(0)), then the state at a
later time is given by the equation

[¥(1)) = U[1(0)) = e 4(0)) . (D

The simulation problem is solved by computing the unitary
evolution matrix U. In general, this is a difficult task because
the size of the Hamiltonian grows exponentially with the size
of the system.

B. Quantum Circuits for Hamiltonian Simulation

Exponential scaling with system size is characteristic of
quantum mechanics, and it is one of the main reasons
why classical methods for solving quantum problems are
intractable. However, a quantum computer is capable of

representing exponentially large state vectors and evolu-
tion matrices using polynomially many qubits and gate
operations. Below, we describe the compilation process for
constructing the simulation circuits.

Mapping — The molecular Hamiltonians considered here
are typically written in terms of fermionic operators which
must be mapped to operators that act on qubits [32], [33].
The Hamiltonian can then be written as a sum of Pauli terms:

N
H= Z c; P, 2
i=1

Here, ¢; € R and the Pauli terms, P;, are tensor products of
the Pauli matrices with length equal to the number of qubits.

P = ®mn where m, € {I,X,Y,Z}
n=1

Ordering — A quantum computer simulates the evolution
Eq. (1) under a Hamiltonian Eq. (2) by sequentially simu-
lating each of the individual terms ¢; P;. Any ordering of the
Pauli terms is valid, but some orderings are able to mitigate
physical and algorithmic errors more effectively than others.
Although the simulation error’s dependence on term ordering
has been studied extensively [18], [20], [34], finding tight
bounds on the error remains an open problem [17], [35]. In
addition, the gate requirements for Hamiltonian simulation
circuits and numerous circuit optimizations have also been
studied, and have shown that different orderings can have
different amounts of gate cancellation [10], [22], [36].

In this work, we consider a number of different compila-
tion methods including lexicographic [21], [22], magnitude
[21], [22], depleteGroups [20], random, and our newly-
proposed max-commute-tsp term orderings. An overview
of each of these strategies is given in Sec. III and max-
commute-tsp is discussed in detail in Sec. IV.

Trotterization — Once the Hamiltonian has been generated
and an ordering is selected, a quantum circuit is constructed
which implements the evolution unitary U in Eq. (1). Impor-
tantly, if all of the terms in H commute with one another,
then U can immediately be written as a product of individual
terms

U= e—th _ e—iclPlte—icngt e—icNPNt

if P;P, = PyP;, Yj,k € [N].

In general, however, real-world Hamiltonians may contain
non-commuting terms. In this case, we can use the Suzuki-
Trotter decomposition [23] to break the evolution of non-
commuting terms into many small time steps to approximate
the total evolution unitary [37]:

e—th ~ (e—iclPlAte—icngAt o e_iCNPNAt)t/At—FO(tAt).
3)
We denote ¢/At = r as the Trotter number. The product

of exponentials in Eq. (3) can be represented as a single
quantum circuit, repeated r times, while the remaining
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O(tAt) = O(t?/r) terms, referred to as the Trotter error,
is the algorithmic error associated with the Trotterization
process. As r — oo the Trotter error vanishes and the
quantum simulation becomes exact, but this comes at a cost
of increasing circuit depth.

Eq. (3) is an example of a first-order Trotter decomposi-
tion; higher order decompositions also exist which further
improve the accuracy of the approximation (see Sec. 4.7
of [38]), however, for simplicity we consider only the first-
order decomposition in this paper.

Fig. 2 shows a simulation circuit for an example Hamil-
tonian. Both terms require single-qubit gates to rotate each
qubit into the computational basis. The parity of the qubits
is then computed by performing a CNOT, controlled by
a data qubit and targeting an ancilla qubit, for each Pauli
matrix in the Pauli term. Another method for computing the
parity uses a ladder of CNOTSs between nearest neighbors
to compute the parity. We choose to use the former method
even though it introduces a single ancilla overhead because
it allows for additional gate cancellations which are not
possible with the ladder implementation.

III. PRIOR TERM ORDERING STRATEGIES

Prior work has studied the use of commutativity at the
circuit level to optimize the gate counts for the Quantum
Approximate Optimization Algorithm (QAOA) [39] and
more general quantum circuits [40]. The optimizations in
[39] are complementary to the techniques discussed in this
paper which operate at the abstraction level of Pauli terms
to minimize errors before the application is compiled down
into a quantum circuit. In addition, we list here a variety
of ordering strategies which have been introduced and their
impact on Trotter error or gate costs studied in previous
work.

Lexicographic — Prior work has proposed and improved
the lexicographic ordering which orders Pauli terms al-
phabetically to achieve high levels of gate cancellation
[21], [22]. The lexicographic ordering can produce circuits
with shorter depth since consecutive Pauli terms which
act on the same qubit with the same Pauli matrix result
in single- and two-qubit gates cancelling at the interface
between the two terms (see Fig. 2). Although this ordering
produces short circuits, it does nothing to mitigate Trotter
(algorithmic) errors and therefore a larger Trotter number
(i.e., longer circuits) will be required to attain high accuracy.
Additionally, Sec. IV-B introduces a pathological example
where the circuits produced by a lexicographic ordering are
asymptotically equivalent to no gate cancellation at all.

Magnitude — Prior work also considered sorting the Pauli
terms according to the magnitude of their coefficients in
Eq. (2) in descending order [21], [22]. Interestingly, the
magnitude ordering can produce simulation circuits with
very low Trotter error, often outperforming the analytically
computed bounds on the Trotter error. Tranter et al. [20]

suggest that the superior accuracy of the magnitude strategy
may be attributable to simulating the terms with large coeffi-
cients earlier in the circuit and so they cannot compound any
errors that occur later on. Despite the low algorithmic errors
of a magnitude ordering, the resulting circuits will be quite
deep because this ordering does not utilize any information
related to gate cancellations between terms.

DepleteGroups — The depleteGroups strategy was pro-
posed by Tranter et al. [20], which also partitions the Pauli
terms into groups where every term commutes with every
other term within the group. Once the Pauli terms are
grouped into mutually commuting cliques, the final ordering
is produced by iteratively selecting the highest magnitude
term from each clique until all the groups have been ex-
hausted, which is the opposite of the approach described in
Sec. IV.

Random - We also consider a random ordering of the
Pauli terms to serve as a baseline for comparison. Random
term orderings were also used by Childs et. al. [18] to prove
stronger bounds on the size of the Trotter error.

IV. MAX-COMMUTE-TSP

As shown in Fig. 1, the max-commute-tsp ordering is com-
posed of three parts. This algorithm sorts the Hamiltonian
by first grouping the Pauli terms into mutually commuting
cliques. It then orders the terms within each clique according
to a travelling salesperson (TSP) heuristic before heuristi-
cally selecting a permutation of the cliques. The following
sections describe each of these steps and also motivate why
max-commute-tsp is able to mitigate both the physical and
algorithmic errors in Hamiltonian simulation.

A. Term Grouping to Mitigate Trotter Errors

The first step in the max-commute-tsp ordering is to con-
struct a commutation graph. The nodes of the commutation
graph represent the Pauli terms of the Hamiltonian, and
an edge exists between every pair of Pauli terms which
commute with one another. The terms are then grouped
into a minimum number of mutually commuting cliques that
cover the entire graph.

Recall that a quantum computer is only able to carry out
the Hamiltonian simulation by Trotterizing the continuous
evolution [23]. This Trotterization step is required to deal
with non-commuting terms in the Hamiltonian and incurs
Trotter errors, as discussed in Sec. II. In practice, some
of the Trotter errors may be avoided by grouping as many
commuting terms together as possible.

Theoretical Analysis of Commutation Groupings — We
illustrate the effectiveness of the group commutation order-
ing strategy with an example Hamiltonian containing two
commuting cliques. The analysis can be generalized to more
commutation groups by the reader. Consider a Hamiltonian
H = Zle «o; H;, where a; are real numbers and H; are
simple Hamiltonians that can be mapped to quantum circuits
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Figure 3: An example showing the gate cancellations that
are available with (a) lexicographic and (b) TSP orderings.

(or diagonalized) directly. Suppose H can be divided into

two commuting groups (cliques) H{ = > P | H,, and
k . .

HS = Z7n:p+l H,,ie, [Hy,, H)])=0if0<mmn<p

or p < m,n < k. We compare the Trotter error of a term

grouping strategy against other orderings below.

For a group commutation ordering of H, it has been
shown that the approximation error (in the additive form)
of the Lie-Trotter formula is given by the variation-of-
parameters formula [34], [41], [42],

el TreN  _ap( IyC .
590 —e zt(Hl)e it(HS) —e itH

t
—_ / dTef’L(th)H[efiTHi" H§]€TH2L (4)
0

Note that the error form also applies to general HY where
HY = HY + HJ. For simplicity, we denote the integral in
Eq. (4) as I(HY, HY) for general H{, HY. Thus, we can
simply write the approximation error as dy. = I(Hf, HS).

We are interested primarily in the operator norm (:.e.,
spectral norm) of ||04c|| = |[I(H, HS)||, which gives the
worst-case analysis of the error.

We can recursively apply the error formula in Eq. (4) to
the Lie-Trotter formula for an arbitrary ordering of H. Let ™
be a permutation of the set {1, .., p} that defines the ordering.
First, we can approximate e~ by separating H,(1) from
other terms:

51 — e*ZtHﬂ,(l)eth Zm:2 Hﬂ.(m,) _ e*ltH

k
= I(Hpr), Y Hu(my)-

m=2

Then we can recursively repeat the process for the rest of
the Hamiltonian and arrive at the following expression for
the approximation error ¢ of the Lie-Trotter formula.

5ngc = eiitHﬂ(l)eiitH‘“’(Z) __.efitHw(Q) _ e*itH
P 3 p
- I(Hﬂ'(l)’ Z Hﬂ'(m)) + eiltHW(l)I(Hﬂ'(Q), Z Hﬂ-(m))

m=2 m=3

p
N efitHﬂu)e*”Hﬂ?)I(Hﬂ(g), Z Hemy) + ..

m=4

P
+e e T [(Hegigr), > Ham) + -
m=j+2
Using the triangle inequality and the submultiplicativity of
the operator norm, together with the fact that the operator
norm of a unitary is 1, we have

p p
0ngell = 11 (Hr1ys Y Ha(m) + I(He(2), Y He(m))

m=2 m=3

P
+ ot I(Hﬂ(j+1)7 Z Hﬂ'(m)) + H
m=j-+2
Also we know that H ) is either in H{ or Hj. Thus,
we have

ngell || Y I(Hng), Hs)|l+
r(f)ell

>

m(4)€Elp+1,k]

Although we have no proof that ||d4¢|| < ||0ngc|| (because
we do not have information about the full commutation
relation and magnitude information in H), we can, however,
make several observations why group commutation ordering
is advantageous. First, ||d4c|| in general has a much lower
upper bound than does the first term in ||,4c||. In fact,
the upper bound of ||d,.|| does not scale with the number
of terms p while ||[I(Hy1y, >0 o Hrm)|| is of O(p).
Second, ||d4¢|| does not include the second term in ||, 4c||.
Thus, there is strong evidence that group commutation
ordering has an advantage over naive ordering in terms of
eliminating Trotter errors.

Algorithms for Min-Clique-Cover — Partitioning the com-
mutation graph of a quantum Hamiltonian has been pro-
posed for other quantum computing applications, including
Hamiltonian simulation [25] and minimizing the number of
measurements required in variational algorithms such as the
Variational Quantum Eigensolver [26]-[28].

The minimum clique cover problem is NP-Complete [43].
Fortunately, we do not require the exact min-clique-cover
solution for the purpose of this work since approximate
solutions are able to effectively mitigate both algorithmic
and physical errors. The commutation graphs produced by
real-world applications (especially molecular Hamiltonians)
tend to be highly structured allowing for reasonably good
solutions to be found in time scaling like O(N?2) or O(N?)
for a graph with N nodes [44]-[46].

I(Hx ), HY)|-
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B. Travelling Salesperson For Gate Cancellation

Because the terms within each clique commute with one
another, they can be rearranged at will without incurring any
additional Trotter error. Therefore, the Pauli terms within
cliques can be sorted into an order which maximizes gate
cancellation without the worry of degrading the accuracy of
the simulation.

We frame the question of ordering the Pauli terms within
cliques as an instance of the Travelling Salesperson problem.
Recall the example simulation circuit in Fig. 2, we charac-
terize the potential for gate cancellation between two terms
using the following principles:

e Two CNOT gates with the same target and control
qubits can be cancelled so long as no single-qubit gates
lie between them.

o Sequential Pauli terms which act on the same qubits
with the same Pauli matrix will be able to cancel the
basis rotation single-qubit gates between them.

According to these gate cancellation principles, it will
be favorable to place two Pauli terms next to each other
if they operate on the same qubits with the same Pauli
matrices. This can be framed as an instance of the Travelling
Salesperson problem, where instead of distance travelled the
cost function is the number of two-qubit gates in the final
circuit.

We focus primarily on the cancellation of two-qubit gates,
because they are the dominant source of errors and latency
in the prevalent quantum platforms. Typically, CNOT gates
have at least 10x lower fidelity and 2-5x longer duration
than single-qubit gates [47], [48].

Defining the TSP Instance — The TSP objective is to
order a set of k Pauli terms, { Py, P5, ..., P;.}, such that the
number of CNOT gates in the resulting circuit is minimized.

Every Pauli term within the Hamiltonian corresponds
to a subcircuit implemented on the quantum computer.
Within a Pauli term, each non-I Pauli matrix generates
two identical CNOTs (one for parity-compute, the other for
parity-uncompute). For example, the Pauli term: XZZ in
Fig. 2 has a total of 6 CNOTs in its subcircuit because it
has three non-I Pauli matrices. These CNOTs are controlled
on the m-th qubit (where m = the index of the Pauli matrix
within the Pauli term) and target the ancilla qubit. Without
any gate cancellation, the number of CNOT gates required
to implement the simulation circuit for a Hamiltonian,
H= Z’;:l Cij, is

k N

S Upiern )

j=11i=1

k
2 |Pjltam = 2
j=1

where N denotes the width of the Pauli terms and Ham
refers to Hamming weight.

A good permutation, however, can substantially reduce
the number of required CNOTs compared to Eq. (5)’s upper

bound because the CNOT gates between neighboring Pauli
term subcircuits can cancel with one another. Using the gate
cancellation principles listed above, we define the CNOT
distance between two Pauli terms as

|P1 — P2|cenor = [P — Palpam + Z 11 4P [i) P i) AT
i€[N]

= Z 1p,(izpofi)(1 + Lrgpy i), Pafig})-
1€[N]
(0)

This distance reports the number of CNOTs needed to
implement the transition from the parity-uncompute zone
of the P; subcircuit through the parity-compute zone of the
P, subcircuit, after all possible gates have been cancelled.

The TSP instance is then defined as: given a graph, with
nodes representing Pauli terms and edges between nodes
weighted according to the CNOT distance, find the shortest
cycle which visits each vertex once. To be precise, we
actually desire the shortest Hamiltonian path, e.g., we want
to visit each Pauli term once, without returning to the start.
This is accomplished by generating the TSP cycle and then
deleting the most expensive edge in the path.

Approximating TSP — Solving TSP in the most general
setting is NP-hard. Moreover, no polynomial-time algo-
rithms exist which are guaranteed to approximate it to a
constant ratio [49]. In the case of metric graphs, however,
TSP can be efficiently 1.5-approximated via Christofides’
algorithm, meaning that the approximation will return an
ordering that requires at most 1.5x as many CNOTs as the
optimal ordering [50]. In addition, Christofides’ algorithm
is fast, running in O(k3) time, and it is known to perform
well in practice, often attaining near-optimal solutions [51].

We now prove that the graph defined by the | P; — Pa|cnor
distance function is a metric graph. We have already seen
that it is symmetric in its arguments (i.e., the graph is
undirected), so we need only show that it satisfies the
triangle inequality:

|P1 — Ps|enor + | P2 — Ps|enor — | P2 — Pslenor > 0.
Expanding this expression we obtain:
|P1 — Pslenor + | P2 — Pslenor — |P1 — Pslenor

=Y Lnuzr (L + Ligip i, papy)
i€[N] @)

1 p, (25 (i) (1 + L1g(pyfig, Psligy)

—Upy (P (i) (1 4 Lrgpy i), Pofif})-
We will prove that each three-term expression in the sum is
non-negative for each ¢, so that the full sum must also be

non-negative. Note that the third term evaluates to 0, -1, or
-2.

o If it is 0, the three-term expression is already non-
negative since the first two terms are non-negative.
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o If it is -1, then Py[i] # Ps[i], and one of the two is I.
We must also have P;[i] # Pali] or Pali] # Psli], so
the first two terms must sum to at least 1. Thus, the
three-term expression is non-negative.

o Ifitis -2, then Py[i] # Psli], and neither is I. Suppose
that Py[i] = P[i]; then the first term is +2, and
the three-term expression is non-negative. Similarly, if
Pi] = Ps]i], then the second term is +2, and the three-
term expression is non-negative. And if P; [i] # Ps[i] #
Ps]i], then the first two terms are both at least +1, so
the three-term expression is non-negative.

Thus, we conclude that Eq. (7) is a sum over non-negative
numbers which proves that the triangle inequality holds for
the CNOT distance. Therefore, our graph is metric, and
Christofides’ algorithm can be used to efficiently attain a
1.5-approximation to the optimal TSP.

. XX | XXXXXXXX
. XY | XXXZ2222
XZ | XXXXXXXZ
YX|XXZZ2222Z
YY | XXXXXXZZ
YZ|X222222Z
ZX | XXXXXZ2272
. ZY| 22222227
. 272 | XXXXZ222

. XX [ XXXXXXXX
. XZ | XXXXXXXZ
LYY | XXXXXXZZ
. ZX | XXXXXZZZ
. 22| XXXXZ227
XY | XXXZZ222Z
YX|XXZZ2222Z
. YZ|XZ22222727
. Y| 22222222

(b) TSP

W —

O XNk
I I N N O N

(a) Lexicographic

Figure 4: Pathological example of lexicographic’s subopti-
mality compared to TSP.

Advantage Over Lexicographic Ordering — Although
the lexicographic ordering often leads to large amounts of
gate cancellation, it does not achieve the optimality of TSP
over the entire Hamiltonian. As an example, consider the
4-qubit Hamiltonian with lexicographically ordered strings
[XXXX, XXYY, XYXY, XYYX,YXXY, YXYX,
YYXX, YYYY]. These eight commuting strings arise in
the Jordan-Wigner encoding for molecules, so this example
is ubiquitous [26], [37]. Applying Eq. (5), we see that
8 x2x4 = 64 CNOTs are needed prior to gate cancellation.
After CNOT cancellation, summing Eq. (6) along the lexico-
graphic order gives a total of 40 CNOTs. Now consider the
TSP order [ XXX X, XXYY, XYXY, XYYX,YXYX,
YXXY,YYXX, YYYY], which flips the fifth and sixth
terms from the lexicographic order. Under TSP, we are able
to generate circuits with only 36 CNOTs. See Fig. 3 for an
example of the gate cancellations that are available in these
two cases. In summary, unoptimized to lexicographic to TSP
have CNOT costs of 64 — 40 — 36.

In certain cases, TSP can have an even greater factor of
improvement over lexicographic ordering. As an example,
consider the nine Pauli terms in Fig. 4, sorted by lexico-
graphic and TSP orderings.

ﬁarﬁtion the Hamiltonian: \
N
H= ZCiPi=C1+C2+“‘+CM

i
2. Greedily construct trees based on the number of edges
shared between the cliques in the commutation graph:

c C

/ '\ . VAN
ISR G
< G, G, G, C,
= |- | |

i i | |

(%M C%M C&M C;M

M — 1 branches
3. Each path from root to leaf is a different clique-clique
permutation:

€,GC,,...C,

ap—1° ZM-1
4. Select the permutation which has the smallest
summed magnitudes of Pauli coefficients:

\_ Elr)

Figure 5: Polynomial time heuristic for selecting a clique-
clique ordering. (1) The commutation graph, which was
constructed to partition the Hamiltonian into M cliques, is
(2) utilized to greedily construct many trees based on the
number of edges shared between cliques. (3) Each traversal
of a tree from root to leaf produces a different clique-
clique permutation. (4) The permutation with the smallest
commutator magnitude (Eq. (8)) is selected.

e . CyCoyrCo ...C.

Without gate cancellation, 9 x 10 x 2 = 180 CNOTs are
required. Under the lexicographic order, gate cancellation
yields 112 CNOTs. However, with reordering into the TSP
route, only 62 CNOTs are needed. While this particular
example is pathological, it demonstrates scenarios where
lexicographic ordering is asymptotically identical to no-gate
cancellation, but TSP achieves an asymptotic advantage.
This advantage is from O(N?) to O(N log N), which is
a significant improvement.

C. Ordering the Cliques

Finally, the last step in max-commute-tsp is to select
the order in which the cliques, produced via the minimum
clique cover from Sec. IV-A, are simulated. Different or-
derings of the cliques can incur different Trotter errors
by the same reasoning given above for the varying Pauli
term orderings. Determining the optimal clique-clique or-
dering is intractable as it would require knowledge of the
nested commutators between each of the cliques after the
Baker—Campbell-Hausdorff expansion, i.e., an exponential
amount of computation. Therefore, we use a heuristic, which
runs in polynomial time, to decide upon a clique-clique
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ordering that relies on the approximated commutator: the
first-order approximated difference between Ugppror and
Uezact after the Taylor expansion. Note that, for two cliques
C, = £V=11 a;A; and Cy = Zf\gl b; B;, where a;,b; € R
and A;, B; are Pauli terms, the commutator between them
is

N1 N2

[C1,Co] = C1C2 — C2C = Zzaibj(AiBj — B;A;).

i=1 j=1
(®)

Rather than compute the commutator between cliques ex-
actly, the heuristic, shown in Fig. 5, exploits the information
stored in the commutation graph that was used to group
the Pauli terms into fully commuting cliques. Counting the
number of edges between C; and C5 in the commutator
graph indicates the number of terms within Eq. (8)’s sum
that evaluate to zero. The heuristic uses the number of
inter-clique edges to greedily grow a tree (the nodes of the
tree representing cliques) where each path through the tree
corresponds to a separate clique-clique ordering. Intuitively,
a permutation selected in this manner will produce com-
mutators between the consecutive cliques that contain many
zero terms. One can hope that this will reduce the overall
magnitude of the commutator and therefore contribute very
little to the overall Trotter error.

For each clique produced in the minimum clique cover,
the heuristic constructs the tree described above with the
current clique as the root. It then traverses each of these
trees, producing a set of possible clique-clique permutations.
Finally, for each permutation, compute Zf\gl Z;le |a;b;|
over the non-zero terms and select the permutation with the
smallest value, which one would expect to have the smallest
contribution to the Trotter error. For a Hamiltonian which is
partitioned into M cliques, this heuristic has a runtime of
O(M*) and produces O(M?) different permutations.

V. METHODOLOGY

We compare the performance of different ordering strate-
gies by measuring their ability to mitigate both physical and
algorithmic errors via simulation and real device executions.
A benchmark set of 79 molecular Hamiltonians was gener-
ated using the OpenFermion software package [30] and the
NIST Chemistry WebBook [29].

For each of the ordering strategies we simulate the time
dynamics of the benchmark Hamiltonians and at every time
step we increase the Trotter number r until the HS achieves
an error € < 0.1. The accuracy of a Hamiltonian simulation
is measured using the diamond distance [52]-[54]. The
diamond distance between two quantum processes £ and
F is defined as:

do (&, F) :=e= €= Flo 0
mgXH(E @Dp—(Folp|, ©)

where p is the density matrix representation of a quantum
state, 1 is the identity operator acting on the same size
Hilbert space as £ and F, and ||. . .||; denotes the trace norm.
The diamond distance is an important and commonly used
metric for distinguishing between two quantum processes
in the absence of noise (i.e., considering only algorithmic
errors) [54], [55]. Once the error threshold is met we
report the number of CNOT gates required in the final
quantum circuit. The results of these noiseless simulations
are presented in Sec. VI-A.

To capture the combined effects of algorithmic and phys-
ical errors on hardware execution we use noisy simulations
with a depolarizing error model £(p) = %I + (1 —pp
which adds a noise channel on the two-qubit gates [38]. Each
entangling gate has probability p of depolarizing its control
and target qubits (replacing the qubits with the completely
mixed state I/2), and probability 1 — p of leaving the qubits
untouched.

We compare the output distributions of the noisy sim-
ulations and hardware executions using the Hellinger in-
fidelity [56]-[58]. The Hellinger infidelity is defined as
1— Hp(P,Q), where Hp(P, Q) is the Hellinger distance,
defined for two probability distributions P and @ as

Hp(P.Q) = VP~ /> (10)

V2

Eq. (10) is preferable for these experiments because they
output probability distributions. Additionally, the diamond
distance involves a maximization over all quantum states p
to capture the worst-case difference between two quantum
channels, but for experiments on real hardware a specific
initial state must be chosen.

All of the code used to generate and test the benchmarks
is available online in a Github repository [59].

VI. BENCHMARK RESULTS
A. Noiseless Simulation

In both the NISQ and fault-tolerant regimes, circuit depth
and total gate count are important metrics of comparison
for quantum circuits. In the NISQ era, these metrics are
closely related to the probability that a circuit will execute
successfully or succumb to the effects of noise. In the fault-
tolerant regime, circuit depth and gate count are directly
linked to the runtime of quantum programs. In the case of
Hamiltonian simulation, a higher Trotter number r provides
a more accurate simulation, but the total gate cost scales
proportionally with r.

In Fig. 6 we report the results of noiseless simulations
of the time dynamics of the benchmark molecular Hamilto-
nians. At every time step we require that the HS achieve
an error € < 0.1, increasing r until this constraint is
satisfied, and then computing the final number of CNOT
gates required. In Fig. 6a max-commute-tsp is able to si-
multaneously mitigate both algorithmic and physical errors.
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Figure 6: Noiseless simulations of the time dynamics of 79 molecular Hamiltonians with an error threshold € < 0.1. Each
molecule is represented with 4 qubits, and at every time step the Trotter number 7 is increased until the diamond distance
between the HS quantum circuit and the exact evolution unitary is below the error threshold.

Compared to the other ordering strategies, max-commute-
tsp is able to produce accurate HS circuits using fewer
entangling gates. On average, both the max-commute-tsp and
magnitude orderings require similar Trotter numbers to reach
the error threshold ¢ < 0.1 as shown in Fig. 6¢c. However,
the TSP ordering of the Pauli terms within cliques allows
the max-commute-tsp strategy to cancel an average of 39%
more gates than the magnitude ordering. The average 40%
difference in gate count between the lexicographic and max-
commute-tsp strategies is mostly due to the higher Trotter
numbers needed for the lexicographic ordering to surpass
the accuracy threshold.

The need to mitigate both sources of error is made
apparent by comparing the results of the lexicographic and
magnitude orderings. The lexicographic HS circuits cancel
many gates and are able to mitigate physical errors quite
well. The magnitude ordering is well suited to the regime of
molecular Hamiltonians and is able to achieve high accuracy
with low Trotter number. In Fig. 6a, at small ¢ values the
poor accuracy of the lexicographic ordering is compensated
by its ability for gate cancellation, but for ¢ > 0.35 the
magnitude ordering is able to produce shorter HS circuits
because it requires a smaller Trotter number.

B. Noisy Simulation and Hardware Evaluation

We conducted noisy simulations of each benchmark
Hamiltonian under a depolarizing error model using the
lexicographic, magnitude, and max-commute-tsp orderings

with an initial state ¥in;; = %(\001” + [1100)). In
addition, six small benchmark Hamiltonians were evaluated
on trapped ion processors. For each simulation and hardware
execution the time and Trotter number parameters were set
tot = 1 and »r = 1 due to the error rates of current
NISQ hardware. The increased noise incurred by the deeper
circuits for » > 1 quickly overwhelms the results of the
computation.

Fig. 7 shows the measured distribution of Hellinger infi-
delities across four different error rates. The max-commute-
tsp ordering produces HS circuits with lower infidelity on
average and also attains a minimum infidelity that is 1.2,
2.4, 3.6, 6.7% lower than the minimum achieved by either
the lexicographic or magnitude orderings for each of the 0.1,
0.5, 1.0, 2.0% error rates, respectively.

The results of the trapped ion experiments are contained
in Table I. The ethene (CyH,4) benchmark was run on a 7-
qubit device [60] (4000 shots) while the remainder utilized
an IonQ device with 11-qubits [3] (1000 shots each). Each
benchmark circuit was prepared in the initial state v;,,;; and
consists of 4 data qubits and 1 ancilla qubit. Both processors
have average entangling gate errors near 2%. The experimen-
tal results are in shown in Fig. 7 as the stars (7-qubit) and
crosses (11-qubit). The hardware experiments confirm the
results of the noisy-simulations and also highlight the impact
of algorithmic errors — even for current NISQ processors.
For the Cly, CoH,, Fy, and Ny benchmark molecules
the magnitude ordering, which produced deeper quantum
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Figure 7: Distribution of Hellinger infidelities after evolving
the entangled initial state ;,;;. The solid lines making
up each violin plot denote the max, mean, and min of
the distribution. The stars and crosses indicate experimental
results obatained via a 7- and 11-qubit ion trap processor,
respectively [3], [60].

Molecule | Diamond Dist. () 2-qubit gates Hellinger Inf. (%)
lex, mag, mctsp lex, mag, mctsp lex, mag, mctsp

C2Hy 2.9, 1.8e-3, 1.8e-3 55, 49, 41 75.9, 55.2, 53.8
Cla 1.9, 1.4e-4, 1.4e-4 47, 53, 37 62.2, 56.6, 54.2
CoHo 1.9, 1.3e-3, 1.3e-3 47, 53, 37 624, 57.2, 57.7
F> 1.1, 3.0e-3, 3.0e-3 47, 53, 37 71.0, 56.7, 52.2
No 1.7, 1.2e-3, 1.2e-3 47, 53, 37 61.9, 54.6, 54.1
O3 3.1, 4.1e-3, 4.1e-3 41, 41, 27 59.6, 59.7, 46.5

Table I: Diamond distances, gate counts, and Hellinger
infidelities for the benchmarks evaluated on ion trap QPUs.

circuits, attained lower infidelities than the lexicographic
ordering. The difference in performance can be attributed to
the high (low) diamond distance between the lexicographic
(magnitude) ordering and the ideal evolution. Interestingly,
both strategies produced circuits of equal depth for the
Oy benchmark and achieved similar Hellinger infidelities
despite a large difference in diamond distance. This may be
due to the specific choice of initial state since the diamond
distance is a measure of error over all initial states while
the reported Hellinger infidelity is measured with respect to
a single initial state.

VII. CONCLUSION & FUTURE DIRECTIONS

In this work, we introduced a new compilation method
for Pauli term ordering, max-commute-tsp, which is able to
simultaneously mitigate algorithmic and physical errors
in the quantum circuits that perform Hamiltonian simula-
tions. Our hardware-level insights into the nature of the al-
gorithmic errors guided us toward a solution which exploits
the commutativity between Pauli terms to mitigate these
errors. Additionally, max-commute-tsp is able to mitigate
physical errors by observing that the Pauli terms within

each clique can be reordered to maximize gate cancellation
via a TSP heuristic. While maintaining the same accuracy,
max-commute-tsp is able to produce HS circuits that are
39% shorter than other compilation methods. Additionally,
we use realistic noise models and real device executions to
demonstrate the combined importance of algorithmic and
physical error mitigation.

It is important to note that, in the case of Hamiltonian
simulation, even small improvements in accuracy can have
significant impact. We point out two specific reasons below:

« When concatenating many instances of the HS circuits
together (i.e., for HS with Trotter number » > 1), errors
will accumulate with each repetition of the circuit.
Therefore, reducing the error of the HS subcircuit can
have an exponential impact on the final accuracy. For
variational algorithms (such as VQE and QAOA), the
same circuit is executed many times with classical post-
processing in between. Reducing the error within this
circuit will at least linearly increase the accuracy of any
estimated observables.

o For quantum chemistry applications, a small reduc-
tion in error is likely to have a substantial effect.
An improvement in quantum circuit fidelity would
similarly improve a quantum algorithm’s ability to
compute exact ground state energies. Most classical
approaches utilize approximation algorithms to estimate
the ground state energy (since an exact diagonalization
requires exponential classical computing resources) and
even single digit improvements in accuracy are highly
desirable [61], [62].

Our open-source software repository [59] allows users
to construct HS circuits compiled via any of the ordering
strategies considered here. This general compilation frame-
work can be easily adapted to specific problem instances. For
example, one can perform max-commute-tsp on a partial set
of the Pauli terms if the user has prior knowledge that the
partial sets tend to share similar physical properties.

Future work will involve developing Hamiltonian simula-
tions for regimes other than the molecular systems studied
here (e.g., solid-state structures [63], high energy physics
[64], protein folding [65], etc.). The varied physical prop-
erties of these systems may result in different correlations
between Pauli terms. These regimes may by difficult for
inflexible strategies such as magnitude or lexicographic
because most of their development has been centered around
molecular Hamiltonians. Recent work on QAOA [66] sug-
gests the use of complicated mixing Hamiltonians that
consist of many non-commuting Pauli terms, which would
invoke Trotter errors during evolution. A flexible ordering
strategy like max-commute-tsp would significantly reduce
such Trotter errors, while also keeping the circuits short,
improving the performance of QAOA and expanding the
domain of tractable problems.
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