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MODEWISE OPERATORS, THE TENSOR RESTRICTED ISOMETRY
PROPERTY, AND LOW-RANK TENSOR RECOVERY

MARK A. IWEN, MICHAEL PERLMUTTER, DEANNA NEEDELL, AND ELIZAVETA REBROVA

ABSTRACT. Recovery of sparse vectors and low-rank matrices from a small number of linear mea-
surements is well-known to be possible under various model assumptions on the measurements.
The key requirement on the measurement matrices is typically the restricted isometry property,
that is, approximate orthonormality when acting on the subspace to be recovered. Among the most
widely used random matrix measurement models are (a) independent sub-gaussian models and (b)
randomized Fourier-based models, allowing for the efficient computation of the measurements.

For the now ubiquitous tensor data, direct application of the known recovery algorithms to the
vectorized or matricized tensor is awkward and memory-heavy because of the huge measurement
matrices to be constructed and stored. In this paper, we propose modewise measurement schemes
based on sub-gaussian and randomized Fourier measurements. These modewise operators act on the
pairs or other small subsets of the tensor modes separately. They require significantly less memory
than the measurements working on the vectorized tensor, provably satisfy the tensor restricted
isometry property and experimentally can recover the tensor data from fewer measurements and
do not require impractical storage.

1. INTRODUCTION AND PRIOR WORK

Geometry preserving dimension reduction has become important in a wide variety of applications
in the last two decades due to improved sensing capabilities and the increasing prevalence of massive
data sets. This is motivated in part by the fact that the data one collects often consists of high-
dimensional representations of intrinsically simpler and effectively lower-dimensional data. In such
settings, randomized linear projections have been demonstrated to preserve the intrinsic geometric
structure of the collected data in a wide range of applications in both computer science (where
one often deals with finite data sets [14] [1]) and signal processing (where manifold [4] and sparsity
[17] assumptions are common). In this context, the vast majority of prior work has been focused
on recovering vector data taking values in a set S < R" using random linear maps into R” with
m « n which are guaranteed to approximately preserve the norms of all elements in S. The focus
of this paper is extending this line of work to higher-order tensors taking values in R™*-*"d,

In the vector case, uniform guarantees for the approximate norm preservation for all sparse
vectors, in the form of the restricted isometry property (RIP), have numerous applications. They
include recovery algorithms that reconstruct all sparse vectors from a few linear measurements
(such as, [;-minimization |12} [L6] [29], orthogonal matching pursuit [40], CoSaMP [30}, [16], iterative
hard thresholding [8] and hard thresholding pursuit [15]). Extending these algorithms from sparse
vector recovery to low-rank matrix or low-rank tensor recovery is very natural. Indeed, rank-r
matrices (i.e., two-mode tensors) in R™*" can be recovered from O(rn) linear measurements |11}, [17].
Extensions to the low-rank higher-order tensor setting, however, are less straightforward due to,
e.g., the more complicated structure of higher-order singular value decomposition and non-unique
definition of the tensor rank. Still, there are many applications that motivate the use of tensors,
ranging from video and longitudinal imaging [26] |6] to machine learning [35, 137] and differential
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equations [5,127]. Thus, while tensor applications are ubiquitous and moreover the tensors arising in
these applications are extremely large-scale, few methods exist that do satisfactory tensor dimension
reduction. Our goal here is thus to demonstrate a tensor dimension reduction technique that is
computationally feasible (in terms of application and storage) and that guarantees preservation
of geometry. As a motivating example, we consider the problem of tensor reconstruction from
such dimension reduction measurements, and in particular the Tensor Iterative Hard Thresholding
method is used for this purpose herein.

In [33], the authors propose tensor extensions of the Iterative Hard Thresholding (IHT) method
for several tensor decomposition formats, namely the higher-order singular value decomposition
(HOSVD), the tensor train format, and the general hierarchical Tucker decomposition. Addition-
ally, the recent papers [20, [19] extend the Tensor IHT method (TIHT) to low Canonical Polyadic
(CP) rank and low Tucker rank tensors, respectively. TIHT as the name suggests is an itera-
tive method that consists of one step that applies the adjoint of the measurement operator to
the remaining residual and a second step that thresholds that signal proxy to a low-rank tensor.
This method has seen provable guarantees for reconstruction under various geometry preserving
assumptions on the measurement maps [33) 120, [19]. All these works however propose first reshaping
a d-mode tensor X € R™**" into an 1_[?:1 n;-dimensional vector x and then multiplying by an
m X H?:l n; matrix A. Unfortunately, this means that the matrix A must be even larger than the
original tensors X. The main goal of this paper is to propose a more memory-efficient alternative
to this approach.

In particular, we propose a modewise framework for low-rank tensor recovery. A general two-

stage modewise linear operator £ : R™1X " *7d — RML XXM takes the form

(1) ,C(X) = RQ (’R,l(X) X1 A1 cee XJAJ) X1 Bl e Xy Bd/,

where (i) R1 is a reshaping operator which reorganizes an R™*""*"d tensor into an R *74
tensor, after which (i7) each A; € R %% is applied to the resphaped tensor for j = 1,...,d via a

modewise product (reviewed in Section [2), followed by (ii) an additional reshaping via Ry into an

R™ ™y tensor, and finally (iv) additional j-mode products with the matrices B; € R™*™; for
j=1,...,d. More general n-stage modewise operators can be defined similarly. First analyzed in
[21} 123] for aiding in the rapid computation of the CP decomposition, such modewise compression
operators offer a wide variety of computational advantages over standard vector-based approaches

(in which R; is a vectorization operator so that d= 1, Ay =Ae Rmxl‘[j "7 is a standard Johnson-
Lindenstrauss map, and all remaining operators Rg, Bi, ... are the identity). In particular, when
R is a more modest reshaping (or even the identity) the resulting modewise linear transforms can
be formed using significantly fewer random variables (effectively, independent random bits), and
stored using less memory by avoiding the use of a single massive m x H? n; matrix. In addition, such
modewise linear operators also offer trivially parallelizable operations, faster serial data evaluations
than standard vectorized approaches do for structured data (see, e.g., [23]), and the ability to better
respect the multimodal structure of the given tensor data.

Related Work and Contributions: This paper is directly motivated by recent work on
low-rank tensor recovery using vectorized measurements [33| 20, [19]. Given the framework that
modewise measurement operators provide for creating highly structured and computationally
efficient measurement maps, we aim to provide both theoretical guarantees and empirical evidence
that several modewise maps allow for the efficient recovery of tensors with low-rank HOSVD decom-
positions. This represents the first study of such modewise maps for performing norm-preserving
dimension reduction of nontrivial infinite sets of elements in (tensorized) Euclidean spaces, and so
provides a general framework for generalizing the use of such maps to other types of, e.g., low-rank
tensor models. See Section [3| for the specifics of our theoretical results as well as Section 4] for
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an empirical demonstration of the good performance such modewise maps can provide for tensor
recovery in practice.

Other recent work involving the analysis of modewise maps for tensor data include, e.g., appli-
cations in kernel learning methods which effectively use modewise operators specialized to finite
sets of rank-one tensors [2], as well as a variety of works in the computer science literature aimed
at compressing finite sets of low-rank (with respect to, e.g., CP and tensor train decompositions
[32]) tensors. More general results involving extensions of bounded orthonormal sampling results to
the tensor setting [23|, 3] apply to finite sets of arbitrary tensors. With respect to norm-preserving
modewise embeddings of infinite sets, prior work has been limited to oblivious subspace embed-
dings (see, e.g., [21}, 128]). Here, we extend these techniques to the set of all tensors with a low-rank
HOSVD decomposition in order to obtain modewise embeddings with the Tensor Restricted Isome-
try Property (TRIP). Having obtained modewise TRIP operators, we then consider low-rank tensor
recovery via Tensor IHT (TIHT).

Paper Outline: The rest of this paper is organized as follows. In Section 2] we will provide a
brief review of basic tensor definitions. In Section [3| we will state our main results, which we then
prove in Section 5, In Section |4, we discuss applications of our results recovering low-rank tensors
via the TTHT, and in present numerical results. In Section [6] we provide a short conclusion and
discussion of directions for future work. Proofs of auxiliary results are provided in the appendices.

2. TENSOR PREREQUISITES

In this section, we briefly review some basic definitions concerning tensors. For further overview,

we refer the reader to [24]. Let d > 1, ny,...,nq > 1 be integers, and [n;] = {1,...,n;} for all
j =1,...,d. For a multi-index i = (i1,...,iq) € [n1] X --+ x [ng], we will denote the i-th entry
of a d-mode tensor X € R™* X" by X;. When convenient we wil also denote the entries by
X(i1,. .., iq), Xiy,. iy, or X(i). For the remainder of this work, we will use bold text to denote

vectors (i.e., one-mode tensors), capital letters to denote matrices (i.e., two-mode tensors) and use
calligraphic text for all other tensors.

2.1. Modewise multiplication and j-mode products: For 1 < j < d, the j-mode product of
d-mode tensor X € R™ X XMj—1X71 XMy +1XXNd with a matrix U € R™*™ is another d-mode tensor
X x; U e RM>Xnj—1xmyxnj+12X0d - Jtg entries are given by

nj
(2) (X Xj U)ila-~-,ij—17£aij+17-~-7id = Z Xih---yijw,idUZ,i]’
1;=1
for all (’il, ceey ij—l,g, ij+1, ce ,id) € [nl] X e X [nj_l] X [mj] X [nj+1] X oo X [nd] If y is a tensor

of the form Y = szl y; € RM**"a where () denotes the outer product, then one may use
to see that

d j—1 d
(3) ijU:<OYi> XjU:<OYi>OUYjO<O yi)-
i=1 i=1 i=j+1
For further discussion of the properties of modewise products, please see [21] [24].

2.2. HOSVD decomposition and multilinear rank. Let r = (r1,...,74) be a multi-index in
[n1] x -+ - x [ng]. We say that a d-mode tensor X has multilinear rank or HOSVD rank at most
r if there exist subspaces U; < R™, ..., U; < R™ such that

d
dimlU; =r; and Xe€ ®Ui;
i=1
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where @?zll/li denotes the tensor product of the subspaces U; here. We note that a tensor X has
rank at most r if and only if there exists a core tensor C € R™* " *"d guch that

d
(4) XZCXlUIXQ...XdUd Z ZCkl, O
kg=1  ki=1 i=1

where, for each 1 < i < d, u’i, .. ,ufqi is an orthonormal basis for U;, and U’ is the n; x r; matrix

U' = (uf,...,u.). A factorization of the form is called a Higher-Order Singular Value
Decomposition (HOSVD) of the tensor X. It is well-known (see e.g., [33]) that we may assume
that the core tensor C has orthogonal subtensors in the sense that for all 1 < ¢ < d, we have
(Chy=p,Chi=q) = 0 for all p # ¢, i.e.

T
(5) D Clki,o iy kQ)CRy, . g, ... kg) =0 unless p = q.

j;i
We also note that, since each of the {ui:i}g;l form an orthonormal basis for U;, we have |C|p =
|X||F = /(X X), where here (-,-) denotes the trace inner product.

Remark 1. The Canonical Polyadic (CP) rank of a d-mode tensor is the minimum number
of rank-one tensors (i.e., outer products of d vectors) required to represent the tensor as a sum. If
X has HOSVD rank r then implies X has CP rank at most Hﬁlzln-.(fn particular, if r; = r for
all i , then X has CP rank at most r?.)

2.3. Restricted Isometry Properties and Tensors.

Definition 1. [TRIP(6,r) property] We say that a linear map A has the TRIP(,r) property if for
all X with HOSVD rank at most r we have

(6) (1= 0)X]* < JAX)[* < (1 +8)| x|

Definition 2. [RIP(e,S) property] We say that a linear map A has the RIP(e,S) property if for
all elements s€ S

(7) (L=e)ls|* < JA®)? < (1 +¢)|s]”
We emphasize that the set S in Definition [2|can be a subset of any vector space (not necessarily

a tensor space).

2.4. Reshaping and the HOSVD. For simplicity we will assume below, and for the rest of this

paper, that there exist n,r > 1 such that n; = n,r; = r for 1 < i < d. We note that this assumption

is made only for the sake of clarity, and all of our analysis can be extended to the general case.
We let x be an integer which divides d and let d’ := d/k. Consider the reshaping operator

d
R:@ —>®]R"

that flattens every k modes of a tensor into one. Note that R decreases the total number of modes
from d to d’' = d/k. Formally, R is defined to be the unique linear operator such that on rank-one

tensors it acts as
d . d K ' d
R(Qxl> =0 @ x| = Ox
i i ) i=1

i=1 =1 \t=1+r(i-1
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where ® denotes the Kronecker product when applied to vectors. We observe that if a tensor X
has a form ([4), then its reshaping X' := R(X) is the d’-mode tensor X € ®?:1 R™ with HOSVD
rank at most v’ :== (r® ... r") given by

d

(8) Z Z ,717"'7de O ]Z’

]d’ 1 j1 1 =

O
where the new component vectors uﬁe

. o .
u; , and where C € R™ %" ig a reshaped version of C from ({4 (). Since each of the {uy, - was an

are obtained by taking Kronecker product of the appropriate

orthonormal basis for U;, it follows that {u _1 is an orthonormal basis for L{ = span ({u . jl_1>

3. MAIN RESULTS: MODEWISE TRIP

For 1 < i < d', let A; be an m x n® matrix, let A : R?" X-Xn" _ RMX.-Xm he the linear map
which acts modevvlse on d’-mode tensors by
(9) A(y)zyXlAl X2-~-Xd’Ad’~

Let & be a d mode tensor with HOSVD decomposition given by . By and , we have that

(10) A(R(X)) = A(.)?) = TZ: - TZ} é(jl, cee ,jd/)(Alloljll 0...0 Ad/ﬁ;{;/).

Jar=1 Ji=1

Our first main result will show that A satisfies the TRIP(J, r) property under the assumption that
each of the A; satisfies a restricted isometry property on the set Sj o defined below.

Definition 3. [The set 812/ Consider a set of vectors in R™"
(11) Sy ={u|u=u, ues" !}

and let Sy = {IIx+yH ‘ x,y €81 s.t. (x,y) = 0} . For the rest of this text we will let S1 2 = S1 U Sa,

and note that S12 < S™ "1

More precisely, will show that Ao R satisfies the TRIP(4, r) property under the assumption that
each of the A; satisfy the RIP(e, S;2), where ¢ is a suitably chosen parameter depending on 4. In

the case where r = 1 := (1,1,...,1), this is nearly trivial. Indeed, if X = CO?/:l u’, and A is the
map defined in @, then we have

O

i

\CIHIIA a’|.

Therefore, since HAO,’ H = |c| 1_[?:1 [@f, we immediately obtain the following proposition.

Proposition 1. Suppose that A is defined as per @ and that each of the A; have RIP(e, S 2)
property. Let § = max{(1+ )% —1,(1 —¢)? + 1} and assume that 5 < 1. Then Ao R satisfies the
TRIP(6,1) property, that is,

(1= 0)|X[* < JARX)® < (1 + )] x|
for all X with HOSVD rank 1 = (1,1,...,1).

Our first main result is the following theorem which is the analogue for Proposition |1|for r > 2.
It shows that if the each of the A; satisfies RIP (e, S; 2) property for a suitable value of €, then A
has the TRIP(J,r) property.
5



Theorem 1. Suppose that A is defined as per @ and that each of the A; have RIP(e, S12) property.
Letr =2, let 6 = 4d'r% and assume that § < 1. Then Ao TR satisfies the TRIP(6,r) property, i.e.,

(12) (1= 9)X)* < [ARX))* < 1+ 8)| X
for all X with HOSVD rank less than r = (r,r,...,T).
Proof. See Section O

The following corollary shows that we may pick the matrices A; to have i.i.d sub-gaussian entries.

Corollary 1. Let r = 2, and let v = (r,r,...,r). Suppose that A is defined as per @ and that

each of the A; € R™"" has i.i.d. sub-gaussian entries, for alli = 1,...,d', where d' = d/k for
K = 2, and suppose that 0 <n,d < 1. Let
2 2
(13) m = C5~%r* max {ndln(f@)’ d—2 In <d> }
K K KN

for a sufficiently large constant C. Then AoR satisfies TRIP(S,r) property @ with probability at
least 1 — .

Proof. See Section O

For another possible choice of the A;, we consider the set of Subsampled Orthogonal with Random
Sign matrices defined below. Note, in particular, that this class includes subsampled Fourier (i.e.,
discrete cosine and sine) matrices.

Definition 4 (Subsampled Orthogonal with Random Sign (SORS) matrices). Let F' € R™*"™ denote
an orthonormal matriz obeying

A
Vn
for some A > 0. Let H € R™*™ be a matriz whose rows are chosen i.i.d. uniformly at random
from the rows of F. We define a Subsampled Orthogonal with Random Sign (SORS) measurement

ensemble as A = \/EHD, where D € R™™ is a random diagonal matriz whose the diagonal entries
are i.1.d. £1 with equal probability.

(14) F*F =1 and max|Fj| <
27‘7

Analogous to Corollary 1] the following result shows that we may choose our matrices A; to be
SORS matrices in Theorem [1

Corollary 2. Letr > 2 and letr = (r,r,...,r). Suppose that A is defined as per @ and that each
of the A; € R™ ™" is a SORS matriz with A < C' for a universal constant C', as per Deﬁm’tion@
foralli=1,...,d, where d = d/k for k = 2. Furthermore, suppose that 0 <n,0 < 1. Let

2
(15) m > Cro-22d )
K
where
2 2en” 21 2
(16) L=1In <d> In ( o d) In? {025_2r2dndn(/<a) In <d>}
KM KN K KN

and C1,Co are sufficiently large absolute constants. Then Ao R satisfies TRIP(d,r) property @
with probability at least 1 — .

Proof. See Section O



To further improve embedding dimension of m® provided by Corollaries [1] and [2| we can apply
a secondary compression, analogous to the one used in [21], by letting

(17) A2pa(X) == Agpq(vect(A(R(X))),

where vect is a vectorization operator. In this case, we again wish to show that As,q satisfies
TRIP(d,r) for suitably chose parameters. One of the key challenges in doing this is that, for
any given 4, the new factor vectors {AZIOL;Z };::1 defined as in (|10)) are no longer orthogonal to one

another. Therefore is not an HOSVD decomposition of .A(.)é ), and the HOSVD rank of .A(/'\C,; )

might be much larger than the HOSVD rank of X. However, one may overcome this difficulty by
observing that, with high probability, A(R(X)) will belong to the following set of nearly orthogonal
tensors.

Definition 5 (Nearly orthogonal tensors Br,.gr). Let Bruor be the set of d-mode tensors in
X € R *" that may be written in standard form such that

(a) Hu}csz < R for all i and k;,

(b) |<u2i,u§€§>| < p for all k; # Kk,

(c) the core tensor C satisfies |C|p = 1,
(d

) C has orthogonal subtensors in the sense that holds for all 1 < i < d,
(e) [X]r = 0.

Our next main result is the following theorem which shows that As,q satisfies TRIP(d,r) for
suitably chosen parameters.

Theorem 2. Letr > 2 and letr = (r,r,...,1) € R?. Suppose that A and Asng are defined as in @
and . Let d' = d/k and assume that A; satisfies the RIP(e,S12) property for alli =1,...,d,
where § = 12d'r% < 1. Assume that Asng satisfies the RIP(5/3,Bl+€,€,1_5/37r/), property where

v =(r" ..., e RY . Then, Aong will satisfy the TRIP(5,r) property, i.e.,
(1= 0)[X[* < [A2na(X)[* < (1 + )| X[
for all X with HOSVD rank at most r.
Proof. See Section 5.4 O

The following two corollaries show that we may choose the matrices A; and Asng to be either
sub-gaussian or SORS matrices. We also note that it is possible to produce other variants of these
corollaries where, for example, one takes each A; to be sub-gaussian and lets Asyq be a SORS
matrix.

Corollary 3. Let r > 2 and letr = (r,r,...,r) € RL. Suppose that A and Agy,q are defined as in
@ and , and that all of the A; € R™*™" have i.i.d. sub-gaussian entries for alli =1,...,d’,
where d' = d/k, and suppose that 0 <n,§ < 1. Let

d?1 d? 2d
(18) m > Co~2r* max {nn(m)’ — In () } ,
K K KN
and let Ag,g € R™2d*™ qlso be a sub-gaussian matriz with i.i.d. entries with

d dmr® d dmr® d>mrco 2
(19) mgpa = C6~? max { (W> In ( + 1) + (1 + 5rd> + m2r ,In () } )
K K K K n

Then, Asnq satisfies the TRIP(S,x) property, i.e.,
(1=0) X < |A2na(X)[* < (1 + )] X7,

for all X with HOSVD rank at most r with probability at least 1 — 1.
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Proof. See Section [5.4 g

Remark 2. Note that applying the reshaping operator (with k > 1) is necessary in order for us
to actually achieve dimension reduction in the first step. Indeed, if k = 1, then requires
m > n". We also note that when other parameters are held fixed, the final dimension mo,q will be
required to be O(n), O(572), O(ln(n~")) or O(r?*?). While the dependence on the number modes d
18 exponential, we are primarily interested in cases where n is large in comparison to the rank or
the number of modes. In this case, the terms involving n will dominate the terms involving . In
Section we will show that TRIP-dependent tensor recovery methods (e.g., tensor iterative hard
thresholding, discussed in Section , successfully work for d =4 and k = 2.

In 33|, the author considered i.i.d. sub-gaussian measurements applied to the vectorizations of
low-rank tensors and proved that the TRIP(d, r) property will hold with probability at least 1 —n if
the target dimension satisfies

M final = C3 2 max{(r? + dnr) Ind, In(n~")}.

We note this bound has the same computational complexity as ours with respect ton, &, andn. While
their result has much better dependence on r, here, we are primarily interested in high-dimensional,
low-rank tensors and therefore are primarily concerned with the dependence on n.

Corollary 4. Letr > 2 and letr = (r,7,...,7). Suppose that A and As,q are defined as in @ and
, and that all of the A; € R™*™" are SORS matrices (as per Deﬁnition foralli=1,...,d,
where d' = d/k. Furthermore, suppose that 0 <n,5 <1 and, as in , let

d?1
(20) m = 015*27“2(1”711(%) - L, where L is defined by (16]).
K

Next, let Ag,g € R™2rd*™ glso be a SORS matriz with
rek + dmr" <d > dmr®
——In +

—+1
K

~ 4 d K K 2 K 4 4
Lo (S (md)|retdmrty (4 ) dmr ln<1+57“d>+dmr(s (= )m (=22,
52 n K K K K2 n n
Then, Asnq satisfies the TRIP(S,x) property, i.e.,
(1= 0)[X[? < [A2na(X)[* < (1 + )| X[
holds for all X with HOSVD rank at most r with probability at least 1 — 1.
Proof. See Section O

In (1 +(5rd> + 2

K

2 K B
(21) Mopg = C6 > { d ?:T 6} - L,

Remark 3. Similar to the sub-gaussian case, we note that reshaping (with k > 1) is needed in
order for us to achieve dimension reduction in the first compression. We also note that the final
dimension is O(npolylog(n)), O(6 2polylog(6=2)), polylog(n™") and O(r**polylog(r)).

4. Low-RANK TENSOR RECOVERY

Low-rank tensor recovery is the task of recovering a low-rank (or approximately low-rank) tensor
from a comparatively small number of possibly noisy linear measurements. This problem serves as
a nice motivating example of where the use of modewise maps with the TRIP(4, r) property can
help alleviate the burdensome storage requirements of maps which require vectorization. Indeed,
when the goal is compression, storing very large maps in memory as required by vectorization-based
approaches is counterintuitive and often infeasible.
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In the two-mode (matrix) case, the question of low-rank recovery from a small number of linear
measurements is now well-known to be possible under various model assumptions on the measure-
ments [11} [10} [34]. One of the standard approaches is so-called nuclear-norm minimization:

X = argmin | X[, subject to L(X)=1y.
XeRm1xn2
Since the nuclear norm is defined to be the sum of the singular values, it serves as a fairly good,
computationally feasible proxy for rank. As in classical compressed sensing, an alternative to
optimization-based reconstruction is the use of iterative solvers. One such approach is the Iterative
Hard Thresholding (IHT) method [8} 19} [36] that finds a solution via the alternating updates

V=X 4 Ly — L(X)),

22 X0 = 9, (37).

where X0 is initiated randomly. Here, £* denotes the adjoint of the operator £, and the function
‘H, is a thresholding operator, which returns the closest rank r matrix. Results for IHT prove
that sparse or low-rank recovery is guaranteed when the measurement operator £ satisfies various
properties. For example, in the case of sparse vector recovery, the restricted isometry property
is enough to guarantee accurate reconstruction [8]. In the low-rank matrix case, measurements
can be taken to be Gaussian [13], or satisfy various analogues of the restricted isometry property
1361, [7,139]. In what follows, for the sake of simplicity, we will focus on the case where ;1; = 1, which
is referred to as Classical IHT. However, our results can also be extended to Normalized TIHT
where the step size p; takes a different value at each step. (See [33] and the references provided
there.)

The iterative hard thresholding method has been extended to the tensor case ([18, 133} [19]).
In this problem, one aims to recover an unknown tensor X € R™**"d with e.g., HOSVD rank
r = (r,...,r), where r € minn;, from linear measurements of the form y = £(X) + e, where £
is a linear map from R"™**" — C™ with m « [[,n;, and e is an arbitrary noise vector. The
iteration update is given by the same updates as . The primary difference with the matrix case
is in the thresholding operator H, that approximately computes the best rank r approximation of
a given tensor. Unfortunately, exactly computing the best rank r approximation of a general tensor
is NP-hard. However, it is possible to construct an operator H, in a way such that

(23) |1Z — He(2)|F < OVd|Z — Zgest| F,

where Zpggr € R™**"d ig the true best rank r approximation of Z € R™*-*"d_ (For details,
please see [33] and the references therein.) For the rest of this section, we will always assume that
‘H, is constructed in a way to satisfy .

The following theorem is the main result of [33]. It guarantees accurate reconstruction via TIHT
guarantee when the measurement operator satisfies the TRIP (4, 3r) property for a sufficiently small
0. Unfortunately, the condition , required by this theorem, is a bit stronger than , which
is guaranteed to hold. As noted in [33], getting rid of the condition appears to be difficult
if not impossible. That said, is a worst-case estimate, and H, typically returns much better
estimates. Moreover, numerical experiments show that the TIHT algorithm works well in practice,
and indeed the condition does often hold, especially in early iterations of the algorithm.

Theorem 3 ([33], Theorem 1). Let 0 < a < 1, let £ : R"*=*"d — R™ satisfy TRIP(6, 3r) with
§ < a/4 for some a € (0,1), and let X7 and Y7 be defined as in (22)). We assume that

2

a
ba = 17(1 + VT + 830) [ £] 22

(24) |V = 27 p < (L4 &)Y — X|p,  where

9



Suppose y = L(X) + e, where e € R™ is an arbitrary noise vector. Then

. . b
|7 = X|p < X0 - X|p + 1 _aal\ellz,

where by, = 2v/1 + 6 + 4/4&, + 2€2||L]2—2.

Theorem [3| shows that that low-rank tensor recovery is possible when the measurements satisfy
the TRIP(J, 3r) property. In [33], the authors also show it is possible to randomly construct maps
which satisfy this property with high probability. Unfortunately, these maps require first vectorizing
the input tensor into a n?-dimensional vector and then multiplying by an m x n¢ matrix. This
greatly limits the practical use of such maps since this matrix requires more memory than the
original tensor. Thus, our results here for modewise TRIP are especially important and applicable
in the tensor recovery setting. The following corollary, which shows that we may choose £ = A or

Agpg (as in (9) or (L7)), now follows immediately from combining Theorem [3] with Theorems [1] and
2!

Corollary 5. Assume the operator L, is defined in one of the following ways:

(a) £ = vecto AoR, where A is defined as per (9) and the matrices A; satisfy the RIP(g,S1 2),
and § = 4d'(3r)% < a/4.
(b) £ = Agnq defined as in (17), its component matrices A; satisfy RIP(e,S1,2) property, § =
12d"(3r)%, and Afpna satisfies the RIP(6/3,Bi4ce1-5/3,) DTOpErty.
Consider the recovery problem from the noisy measurements'y = L(X) + e, where e € R™ is an
arbitrary noise vector. Let 0 < a < 1, and let X7, and )7 be defined as in , and assume that
holds. Then,

, , b
|27 = X]p < [ X0 = X+ ]l

where by = 2v/1 + & + 4/4&, + 262|| Al 2-2.

4.1. Experiments. In this section, we show that TIHT can be used with modewise measurement
maps in order to successfully reconstruct low-rank tensors. Herein we present numerical results for
recovery of random four-mode tensors in R19X10x10x10 from hoth modewise Gaussian and SORS
measurements.

We run tensor iterative hard thresholding algorithm as defined in to recover low-rank tensors
from mg measurements for a variety of mg values. We compare the percentage of successfully
recovered tensors from a batch of 100 randomly generated low-rank tensors, as well as the average
number of iterations used for recovery on the successful runs. We call a recovery process successful if
the initial error between the true low-rank tensor and its initial random approximation decreases by
a factor of at least 0.001 in at most 1000 iterations. We compare standard vectorized measurements
with proposed 2-step partially modewise measurements that reshape a four-mode tensor into a
100 x 100 matrix, perform modewise measurements reducing each of the two reshaped modes to m =
90, 80 and 70, and then vectorize that result and compress it further to the target dimension my.
Herein we consider a variety of intermediate dimensions to demonstrate the stability of advantage
of the modewise measurements over the vectorized ones.

In addition to the smaller memory required for storing modewise measurement matrices, we
show (Figure [1) that modewise measurements are able to recover tensors from at least as small
of a compressed representation as standard vectorized measurements can. Indeed, in the SORS
case, modewise measurements can actually successfully recover low-rank tensors using a much
smaller number of measurements (see Figure |1 right column). In Figure [2| we show that the
described memory advantages do not result in the need for a substantially increased number of
iterations in order to achieve our convergence criteria. In the Gaussian case, the number of iterations

10



needed when using a modewise measurements is at most twice the number as when using vectorized
measurements. In the SORS case, modewise measurements actually require fewer iterations. Thus,
modewise measurements are an effective, memory-efficient method of dimension reduction.

Gaussian measurements

SORS measurements
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FI1GURE 1. Fraction of successfully recovered random tensors out of a random sam-
ple of 100 tensors in RI0X10x10x10 with various intermediate dimensions. A run is
considered successful if it converged 0.001 times the initial approximation error in
at most 1000 iterations.

5. PROOFS AND THEORETICAL GUARANTEES

In this section, we will state auxiliary results that link the RIP property on a set & with the
covering number of &, and establish the covering number estimates for the subsets of interest.

5.1. Auxiliary Results: RIP estimates. For a set S we let N/(S,t) denote its covering number,
i.e., the minimal cardinality of a net contained in S, such that every element of S is within distance
t of an element of the net. For further discussion of the covering numbers, please see [38]. The
following proposition shows the estimates on the covering number of S can be used to show that
maps constructed from sub-gaussian matrices have the RIP(g,S) property. Its proof, which is a
generalization of the proof of |33, Theorem 2], can be found in Appendix

Proposition 2. Suppose A € R™*™" has i.i.d. sub-gaussian entries. Let S € R™*" be a subset
of unit norm r-mode tensors and let N'(S,t) denote the covering number of S. Then for any
0<ne<1and

(25)

1 2
m > Ce 2 max <J IHN(S,t)dt> ,Lln(n_l) ;
0
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FIGURE 2. Average number of iterations until convergence among the successful
runs. A run is considered successful if it converged 0.001 times the initial approxi-
mation error in at most 1000 iterations.

for some suitably chosen constant C' > 0, with probability at least 1—n, the map A(X) = A(vect(X))
has the RIP(e,S) property, i.e.,

(1—2)|X)2 < |A(vect(X))|2 < (1 + )| X2 for all X € S.

We also need an analogue of Proposition [2that holds for SORS matrices. Such results are known
in the literature, however all of them have additional logarithmic terms compared to the i.i.d. sub-
gaussian case. We shall use the following result from [22] which is a refinement of Theorem 3.3 of

I31.

Theorem 4 (Theorem 9 of [22]). Suppose A € R™*"" is a SORS matriz as per Deﬁm’tion with
A < C' for an absolute constant C'. Let S be a subset of R™", and let w denote the Gaussian width
(see, e.g. [38]) of the projection of S onto the unit ball, {x/|x[2 | x € S\{0}}. Let 0 < n,e <1 and
assume

(26) m = Ce %w? In? [01w2 ln(27771)572] In(2n~1) In(2en"n~1),

for some suitably chosen constants C,c1 > 0. Then, with probability at least 1 — n, the matrixz A
has the RIP(e,S) property, i.e.,

(1—e)|x|* < |Ax|> < (1 +&)[x|*  holds for all x € S.

12



Remark 4. It is known (see, e.g., Theorem 8.1.10 of [38|) that the Gaussian width w(S) can be
estimated by the same Dudley-type integral as used in . Namely, for any set S,

w(S) < f:o VInN(S, 1) dt.

Additionally, if S is a subset of the unit ball, we have In(N'(S,t)) =0 for t > 2, and therefore,

w(S) < LQ«/IDN(S, t) dt.

5.2. Auxiliary results: covering estimates. The proofs of Corollaries[l]and [3|rely on applying
Proposition [2|to the sets S1 2 and By gy, defined in Definitions [3jand 5l The proofs of Corollaries
and |4] analogously follow from an application of Theorem The following two lemmas provide
covering estimates for these sets. Their proofs can be found in Appendix

Lemma 1 (Covering number for very low rank tensors). The covering number for the set Si 2
defined in Definition [3 satisfies

N(S12,t) < ((i'{)m + 1)2.

Lemma 2. Forall >0,0<e,u<1, R>1, and allr = (r,r,...,r) € R, the set Bruor < R?
defined in Definition [5] admits a covering with

rd4+rnd 4 dnr/2
(27) /\[(BR%Q’D “ . HF75) < <6(d€+1)> (R2 4 /JT’)T d/2 (Rz + l“"d> T R(d—l)dn?"

(Note that the right-hand side is independent of 6.)

Remark 5. If we set y =60 =0 and R = 1 we may obtain the covering number bound

3(d+ 1) re4dnr
8 )

NBroom |- 1me) < (

via a trival modification of the proof of Lemma |9 which doesn’t require an application of Lemma|[§
when § = 0. This is the same as the estimate obtained in |33, Lemma 5] for Bi 0.

5.3. Proof of Theorem [I and Corollaries [1] and [2. In order to prove Theorem [1} it will be
useful to write A as a composition of maps

(28) AQ) = Ag (... (A1(D))), where A;(Y) =Y x; A; for 1 <i < d.

Our argument will be based on showing that A; approximately preserves the norm of A; 1 (... (A; ()é )

for all 1 < ¢ < d’. We first note that by , we may still write X as a sum of 74 orthogonal tensors.
This motivates Lemma |3| which shows that if a linear operator L on an inner product space V
satisfies certain assumptions, then it approximately preserves the norm of orthogonal sums (up
to a factor depending on the number of terms). Lemma [4] then provides sufficient conditions for
the assumptions of Lemma (3| to hold. Lastly, Lemma [5| will show that the image of the first
i— 1 compressions, A;_1(... (Al(/'to’ ))), satisfies these conditions and therefore that we may proceed
inductively. The proofs of Lemmas and [5] are deferred to Appendix [A.

Lemma 3. Let V be an inner product space and let L be a linear operator on V. Let U <V be a
subspace of V spanned by an orthonormal system {v1,...,vk} € V. Suppose that

(29) Q=) |vi> < Lvil> < L+ &)|vil> foralll <i<K.
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and also that
(30) 1 —o)|vitv|* <|L(vitv)|* < A+ e)|vitv,|* foralll <i,j<K.

Then we have
(1 - Ke)|w|? < |£w|? < (1 + Ke)|w|? for all wel.

The next lemma checks that, if A;, satisfies RIP(e, Sy 2) property for some 1 < ig < d’, then
the operator A;, satisfies the conditions of Lemma [3| for the system of rank one component tensors
that are produced by our reshaping procedure.

Lemma 4. Let {V1,...,Vi} € R" " be an orthonormal system of rank one tensors of the form
Vi = OL, vi where |[vi| =1 foralll <i<d'. Let1<ip<d, suppose A;, has the RIP(c/2,812)
property and assume that each VZO is an element of the set S1 defined in Definition @ Then the
conditions (29) and are satisfied for (the vectorizations of) these {V;}X| and L = A;, defined
via Aiy(X) = X x4y Ay -

The next auxiliary lemma gives a formula for the tensor ), obtained by applying the first ¢ of
the maps A;. In particular, it shows that ); can be written as an orthogonal linear combination of
(@' =t) rank-one tensors of unit norm. Moreover, for each of the terms in this sum, the (t + 1)-st

component vector is ﬁt-:f as defined in and therefore is an element of the set .S;.

Jt+1

Lemma 5. Let )y = X and V= A(Vim1) = Vi1 x4 Ay for all t = 1,...,d". Then, for each
1<t<d —1, we may write

re

(31) Vi= ) ... Z Ct(jm,...,jd/)Kélv;?m,...,jd,>o< e u]ﬂ

Jar=1 = Jty1=1 = i=t+l

i i
jt+17"’7jd/ jt+17"'7jd/
depend on t. However, we suppress this dependence in order to avoid cumbersome notation.)

where |v | =1 for all valid index subsets. (We note that the vectors v implicitly

We are now ready to prove Theorem

Proof of Theorem [1. First, note that we can write Yy = X as an orthogonal linear combination of
r¢ norm one terms of the form

U

U

i

O
u]i ’

O

s

1<ji<rnv

]

, are obtained as the vectorization of a rank-one k-mode

where each of the vectors 1012-1_, 1<j5<r
tensor. Therefore, since A; satisfies RIP (e, S;2), Lemma [4] allows us to apply Lemma 3] to see

(32) [AL(X)] < (14 2r%) | X
Next, we apply Lemma |5 and note that there are 7#(@ %)
Therefore, Lemmas [3| and [4] allow us to see that

(33) [Perall < (1+ 27700 |32

terms appearing in the sum in (31)).

for 1 <t<d —1. Since Yy = A(?é ), combining and implies that the operator A defined
in @ satisfies
o dlil o
JA@)] < [T (1420 0) |2,

t=0
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To complete the upper bound set « := 2r% and note that 2a < 1. Then, since r > 2
d—1 d—1

H (1 + 27’”(‘1/7’5)5) = H (1+ ar™™)
t=0 t=0
d-1 d—1
=1 +a 2 T—tﬁ + OZ2 Z ,r,—(t1+t2)fﬂ 4o+ ad/,,,—(l-‘r...-‘r(d,—l))n
t=0 t1,t2=0:
t1<to
-1 -1 2 d—1 @
<l+a Z Pt 4 (a Z rt”> + ...+ <a Z rm>
=0 t=0 =0
o0 o0 2 o0 d/
<l+ad 27+ (aZT’f) +.+ <a22_t>
t=0 t=0 =0
<1420+ (202 + ...+ (20)?
<l+2da
=1+ 4d'r%

which completes the proof of the upper bound. The proof of the lower bound is nearly identical. [J
We will now prove Corollaries [1] and

Proof of Corollary[l] We first note that Lemma [ implies that the integral from can be
bounded as

(34) Jol A/IDN (81 2,t) dt < Cfol v knIn(6k/t) dt < Cr/knln(k).

Since the set Sp2 contains (reshaped) unit norm s-tensors, the assumption that m satisfies
implies that each of the A; will satisfy the assumptions of Proposition 2| with 7/d" in place of 7
and €72 = (d/k)?r?¥6=2. Therefore, by the union bound, we have that all of the A; will satisfy
RIP (e, S12) with probability at least 1 — 7, and so the result now follows from Theorem O

Proof of Corollary[2 To estimate the Gaussian width S; 2, we use , Lemma (1) and Remark

to see that
2 1
w(8S <Jq/ln./\/8 Jt dtgjq/ln./\/‘S 1) dt +4/InN(S19,1
(S12) . (S12,t) , (S12,t) (S12,1)
< C"/knIn(k) + C"+/knin(k) = Cy/knln(k).

We now observe that the assumption allows us to apply Theorem With n/d’ in place of  and
£72 = (d/k)?r?4§=2. Therefore, analogous to the proof of Corollary [1, we conclude the proof of by
taking the union bound and applying Theorem g

5.4. Proof of Theorem [2] and Corollaries [3 and [4. The key to proving Theorem [2]is Lemma
[l which shows that the output of the first compression step A(R(X)) lies in a set of nearly
orthogonal tensors introduced in Definition [5, and Lemma [2| which bounds the covering numbers
for such tensors. We can then get TRIP by applying Propositionto the vectorization of A(R(X)).

Lemma 6. Let X be a unit norm d-mode tensor with HOSVD rank at mostr = (r,...,r). Let A
be defined as in @, assume that the matrices A; have the RIP(e,S1 2) property for all 1 <i < d,

and that 6 = 12d'r% < 1. Then, the d'-mode tensor A(é\?) € R™*X™M 4s an element of the
15



set Biyce1-s/3x (as per Definition |E|/ Additionally, let Be,d,r = {I?;YF

suppose that m = r* 1. Then,

d K
> 9(d D\ " mad/k dmr® /K .
N (36,5,7"7 H ’ HF,t> < (WH> ((1 + 5)2 + z’fT'd) (1 + E)d2mr K2

Xe Bl+a,e,1—6/3,r’} and

t
holds for allt >0, and 1 > 6 > 0.

Proof. As in (8) we set X = R(X), and write

2 ZCJI""’]dI)éﬁN’

Jgr=1 J1=1

where, for all 7, the vectors {ﬁi-_}f:l are mutually orthogonal. Recall that by , we have

Z Z (s ) (Aluho OAd/ﬁd )

jd/ 1 j1 1
By RIP(e, S 2) property, A} | < (1+¢) for all 1 <i < d and all 1 < j; <. Additionally, by
Lemma [7| (stated in Appendix A) we have

|<Au Au/>|<5

forall 1 <i<d and all 1 < j;,j! <" such that j! # j;. The properties of the core tensor (c) and
(d) are preserved under the action of A and are satisfied for a unit norm, tensor in the HOSVD
standard form. Fmally, Theorem [I)implies that A satisfies the TRIP(6/3 r) property which in turn

guarantees that A(X ) will also satisfy property (e) of Definition |5 with § = 1 — /3.
Applying Lemma 2| (with R = (1 + ¢) and m, d’, r*, and ¢ in place of n,d,r, and €) and the

assumption m = r¢1 we obtain

d K
6(d/k+1)\" Frtmd/e dmr® [k 2t o2
N Brreea-se |- Ient) < (20552 (0024 er) ™" (1 g gyt

Furthermore, a geometric rescaling argument implies that

N X
N (Besr - Ieot) = N ({ g | € Broosamssar b o) <N Brocea-sie |- Ie.2/9)
hols for all § < 1. The stated result now follows. g
Theorem [2| now follows from a direct application of Lemma [6] and Theorem

Proof of Theorem [2. Theorem [1] implies that A satisfies the TRIP(d/3,r) property and Lemma @
implies that A(X') belongs to the set By .. 153, Therefore, we have

[ Azna(X)|? < (1 4+ 0/3)[AX)] < (1+ /32| X2 < (1 +6)| X,
and
(1= )|X)* < (1 —6/3)*|X]* < (1= 8/3)[AX)] < | Azna(X)|*.
O
The proofs of Corollaries [3| and [4| require an additional estimate bounding the Gaussian width

of B. 5, from Lemma
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Remark 6. Let 357577, c R™*XM pe the set of d'-mode tensors defined as per Lemma @ and
Definition[5. We can see that

leln/\/' (Besrst) dt < qu N (Begrt) dt < Ll N (Bespt) dt 4[N (Begrs1)).

If m = r%1 then we may apply Lemma@ and use the concavity of 4/ to see that

1 1 .
f IHN(BE(Sr;t) dtéj \/("I’d—l—r‘m:l) In <9(d/l{l+1)> dt
0 ] 0 K t
+ Jl \/dmrﬁ In ((1 +e)? + srd> dt + fl\/d%’m In(1+¢) dt
0 Kk 0 K2

K K 2 K
<C«/rd+dmr A [In <d+1> +\/me ln((1+€)2+8rd)+\/d W;T In(1+e¢).
K K K K

Furthermore, we also have

A/ In N (B&(s,r, 1) < C'y\[rd + dn:" A [In (: + 1>

d K d2 K
+\/ o ln((1+8)2+€rd)+\/ :;T In(1+e¢).

K

Proof of Corollary[3. Similar to the proof of Corollary [1, the assumption that m satisfies ,
implies that with probability at least 1 — /2, all of the A; satisfy the RIP(e, S12) property, 6 =
12d'r% < 1. The assumption also implies m > r?!. Therefore, by Proposition the estimate
for the Dudley-type integral from Remark [6] and the linearity of As,q o vect we see that Ag,q o vect
satisfies the RIP (6/3, Bl+s,s,175/3,r/) property with probability at least 1 — /2 as long as

K K 2 K
Manq = CO~ 2 max { <7‘d + dmr > In <d + 1) + dmr In (1 + 5rd> + dmig(sdn <2> } .
K K K K n

The result now follows by applying Theorem O

Proof of Corollary[f} Repeating the arguments used in the proof of Corollary [2] we see that the
assumption that m satisfies , implies that with probability at least 1 — n/2, all of the A;
satisfy the RIP(e,S12) property with § = 12dr% < 1. We also note that implies that
m = r%1 so that we may apply Remark @ Thus, and Theorem || imply that As,q satisfies
the RIP (6/3,61%7571_5/371./) property with probability at least 1 — 7/2. Therefore, the result now
follows from Theorem [2. O

6. CONCLUSION AND FUTURE WORK

In this paper, we have proved that several modewise linear maps (with sub-Gaussian and sub-
sampled from the orthogonal ensemble — e.g., discrete Fourier — measurements) have the TRIP for
tensors with low-rank HOSVD decompositions. Our measurements maps require significantly less
memory than previous works such as [33] and [19] that establish TRIP for vectorized measure-
ments. We also note that unlike other closely related works such as [23] and [21] that establish
modewise Johnson Lindenstrauss embeddings, our results hold for all low-HOSVD rank tensors
whereas previous work focuses on finite sets or for tensors lying in a low-dimensional vector space.
In our experiments, we have demonstrated that we are able to recover low-rank tensors from a com-
pressed representation produced via two-step modewise measurements. Moreover, we show that we
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are able to achieve such recovery from a lower compressed dimension than with purely vectorized
measurements, establishing yet another advantage.

A natural direction for future work would involve extending these results to other tensor for-
mats including, e.g., tensors which admit compact tensor train, (hierarchical) Tucker, and/or CP
decompositions instead. Additional projects of value might include parallel implementations of the
TIHT algorithm using modewise maps that fully leverage their structure, as well as more memory
efficient TIHT variants which reconstruct the factors of a given low-rank tensor from its measure-
ments instead of reconstructing the entire tensor in uncompressed form. Indeed, such a memory
efficient TIHT implementation in combination with using modewise measurements would allow for
memory efficient low-rank tensor reconstruction from the measurement stage all the way through
reconstruction of the final approximation in compressed form.
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APPENDIX A. THE PROOF OF LEMMAS [3, [4, AND [5

The proof of Lemma [3|requires the following well-known auxiliary lemma. For completeness, we
provide a short proof below.

Lemma 7. Let V be an inner product space and let L be a linear operator on V. Let {v1,..., vk}
be a finite orthonormal system in V (that is, |vi|| = 1 for all i and {(v;,vj) = 0 for all i # j).
Suppose that

(- e)vi £ vil> < [Lvi £ V)P < (L4 )lvi £ viP Jorall 1 <ij < K,i # .

Then

[(Lvi, Lvj)| < e for all i # j.
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Proof. Let i # j. Then,
ALvi, Lvyy = [ L(vi +v5)|? = |L(vi = v))|?
<@ +e)|vi+vjf? = (1 =) vi — vy?
= (L+e)([vil? + 51 + 2¢vi, v i) — (L =) (|val® + [v5]* — 2¢vi, vj)
= &vi, vy + 2e(|vi]? + [v2?)

= 4e,
where the last inequality follows from the fact that |vi|? = ||v2? = 1 and (v;,v;) = 0. Thus,
(Lv;, Lvj) < €. The reverse inequality is similar. O

We may now prove Lemma

The Proof of Lemmal3. We argue by induction on K. When K = 1, the result is immediate from
(29) and the fact that £ is linear. Now assume the result is true for K — 1. An arbitrary element
of U may be written as

K
W = Z C;Vj
1=1

where ¢y, ..., cx are scalars. We will write w = wx_1 + cx Vi, where

K-1
WK_1 = Z C;Vj.
=1

By construction, we have
HACW”2 = HACWK_1H2 + HCK,CVKH2 + QCK<£WK_1,,CVK>.

We may use the inequality 2ab < a? + b? along with Lemma [7]to see

K-1 K-1
2ex{(LWg_1,LVE) = Z 2¢cicg{Lvi, Lvi)y < e Z 2cKC;
=1 i=1
(35) l Iz<—1 K-1
<e Z (% +¢c) < (K —1)eck + ¢ Z 2.
=1 =1

By the inductive assumption,

K-1
[Lwr—1]? < (1+ (K = D)) [wr—]® = (1+ (K = 1)e) )] ¢

~
[y

Thus,

K-1 K—1

ILw]? < (1 + (K — 1)e) Z &+ (L+e)ck + (K —1)eck +¢ Z c?

i=1 i=1

(36) )
= (1+Ke) Y} = (1+Ke)|w|?
i=1

The reverse inequality is similar. O
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Proof of Lemma[jl Without loss of generality, we consider the case where iy = 1. By assumption,
we have v,l€ € 5y for all 1 < k < K. Therefore, since A; is assumed to have the RIP(£/2, S 2)
property, we have

1—¢/2 = (1—¢/2)|vi? < [Avi]® < (L +e/2)|vi]? = 1 + /2.
Now, follows from the fact that
4 (OW)| = 1D OVEO - OV = LNl 1941 = Lavil
and the fact that the vz have norm one. To prove , we let 1 < kp,ky < K and recall that
Vi, = OL, V;ﬁ and Vi, = 0%, viQ, where each of the V};l and v};Q have norm one. If k; = ks, (30)

follows immediately from (29). Otherwise, we may use the assumption that {V1,...,Vg} form an
orthonormal system to see

& 7 & % / 7 %
0= <Vk17vk2> = <qvk17 qvk2> = H<Vk1ﬂvk2>'
1= i= i—1

This implies that there exists an i such that (v} ,vj > =0. If (v} , v} > =0, then since A; satisfies
RIP(e,S12), we may apply Lemmal|7] ' and the Cauchy-Schwarz inequality to see that

d . d .
'<Al (ic__Jl v;ﬁ),Al (g vzz)>\ AL AV IV V] v v

< (¢/2) H Vi1, |
i=2
=¢/2.

On the other hand, if <V£1,V£2> = 0 for some ¢ # 1 then we have

d . d .
(A (Ovh ) A (O vk ) | = vy AR W Ko vl = 0

Therefore, in either case we have
d . d . d .
(@) oo () 4 (G0))
i=1 i=1 i=1
d/
7

d’ .
-l (G
2 2
) +¢€

J
< (1+¢/2) ( o

2 2 2

d d
'Al <Q vi, + O v,ZQ)
i=1 i=1

p 2 2 p 2 2
=(1+4¢/2) ( ) + (g/2) ( >
i=1 i=1 i=1
d a o |?
=(1+¢) + O Vi,
i=1 i=1
where in the last equality, we used orthogonality to see
2 2 2
+ O i,
i=1
The reverse inequality is similar. O
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Proof of Lemma[j. We argue by induction. When t = 0, the decomposition (31]) follows immedi-

ately from with Cy = C and the fact that )y =
Now suppose that the result is true for ¢ for some 0 t <d—2. Then,

Vig1 = Ve X1 A1

= 2 2 ct<jt+1,...,jd/>{<év’i - )o(Amﬁt-“)o( 5 u)}
P Jt+15--0g! Jt+1 =142 Ji

Jar=1 Jer1=1

Therefore, summing over j;41-st mode and normalizing yields

r r t+1 d' ]
Viy1 = Z 2 Ct+1(jt+2a o 7.jd') [(29 V;'t+2,-..7jd/) O <i—Ct2r2 u;)] ’

Jgr=1 Jt42=1

where new vectors v (with one less subscript) are defined as

Jt4+2y-5d g
~1
'VA .
7 _ Jt+25--5]q! 3 . _
Vierowods = T2 and  Ciy1(Jit2,-- - Ja) = |V
ji+27"'=jd/

1
Jt+25--Jq || ?

where

t
. ot+1
Jt+2, odar Z Ce(Jess- -y Jar) (O Vi1, Jd/> OAHluth'

Jt+1=1 i=1

APPENDIX B. THE PROOF OF LEMMAS [I AND [2

The proof of Lemma[1] Classical results [38] utilizing volumetric estimates show that

37 Nl < ()

Let N7 be the k-fold Kronecker product of ¢/2k-nets for S"‘{ By , we may choose N7 to have
cardinality at most (6x/t)"". Moreover, for any X = @}, u’ € S; (defined by (11))),

K K
inf |[X —X|p < inf ut — X)at
XeN h XeN: ) Z<>:§1 Z<>:§1 F

K 7—1
= jnAf[ > < Wb) (e P ( 11 U22>

i=j+1

Now, let 81,2 be the set of nonzero X = X} + A% such that each X; € S;uU{0} and has (X1, X2) = 0.
For a given X € Sj,, we may set X = X + Xy, where for i = 1,2 X; is the best (N U {0})-
approximation of X;, and note that

| X — XHF < | X — 5('1HF + || A — .5(2||F <t
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Thus, N3 := (N U {0}) + (N1 +0{0}) = {X1 + X | X1, X2 € N1+ 0U{0}}\{0} is a t-net of S , with

cardinality at most ((%")m + 1)2. Lastly, we note that each element of S{’Q has norm at least one

and that Sy is the projection of 81’2 onto the unit sphere. Therefore, the projection of A5 onto
the unit sphere is ¢-net for Sy ». ]

The following technical lemma will be used in the proof of Lemma

Lemma 8. Let A € B < R", and suppose that C < B is an £/2-net of B. Then, there exists an
e-net C' < A of A with cardinality |C'| < |C|.

Proof. We will construct €’ from C as follows. First, let C' be the subset of C' whose elements are
all at least £/2 away from A,

C = {x | xeCand inf [x—y|; > 8/2}.
yeA

Next, for each x € C\C let x’ € A be any point of A satisfying ||x — x[|2 < £/2, and then set

Note that |C’| < |C] by construction.

To see that C’ is an e-net of A, choose any y € A € B and let x € C be a point satisfying
ly — x| < /2. Noting that x ¢ C, we can see that there is a x’ € ¢’ such that |x — x|y < &/2.
Therefore, by the triangle inequality,

ly =xl2 <[y = x[2 + [x = x> <e.

This establishes the desired result. OJ

The proof of Lemma[Z Our argument is based on the proof of [33, Lemma 5|, with necessary
modifications to account for the fact that the tensor factors are not orthogonal.

Part 1: Construction of the net. An arbritrary element of Bg ¢, can be written as
X =C x1 V! xyg... x5 V% where the core tensor C € R™**" is a d-mode tensor with Frobenius
norm one and the factor matrices V? € R™ " have columns vé with norm at most R. The set of all
core tensors satisfying the orthogonality condition (d) is isometric to a subset of the unit ball in
R, Therefore, the admissible core tensors admit an e1-net A7 of the cardinality at most (3/81)Td
by [33, Lemma 1]. We define the |- |12 norm by |[V']1 2 := max; |v;|2 and note that by construction
we have |[V?|12 < R. Therefore, our admissible factor matrices satisfying condition (b) have an
eg-net (with respect to the | - [|1,2 norm) of the cardinality at most (3R/e2)"" again by [33, Lemma

1]. We now define
g dnr
€9 '

Going forward we will prove that A" above is an €/2-net of Bg 0 for suitable choices of ¢, and
2. The result will then follow from noting Br ,.6r S Br 0, and applying Lemma

rd

€1

N o= {éxlvl... xg Vi :Ce N, andVieNQ}, V| < <3>

Part 2: Term by term approximation. Let us take an arbitrary element of X € Bg 0, and
consider its component-wise approximation in X € N:

X=Cx,; V! x2...ded€BR,H’07r and ?z@xlvl x2...xdvde/\/,
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where |C — C|r < 1 and HVZ — V|12 < & for all 1 < i < d. The triangle inequality implies that

(38) X = X[r <

J

1751
0

d
where 7o = (C —C) x1V1 ><2...de‘1 and for 1 < j < d,

Ti=Cx Vi xq VIThx, WY ><j+1VjH...><dVd for 1 < j <d,

where W7 = VJ — Vj.

Part 3: Bounding 7; for j=1,...,d. For 1 < j < d, we can expand

IT0% = > o D) Tt ta)

tq=1 t1=1
(39> n T r j—1 ' d ' 2
aiP IR PIREDICIRELY [Hvzim)] i, (1) [ [1 %(tz)] ,
ti=1 |kg=1  k1=1 i=1 i=j+1
1<i<d
where vi ... vl denote the columns of V? and similarly wi,... w’ and V¢,..., V. denote the

columns of W and V'. Exchanging the sums, we can rewrite in the following way:

r r n 7—1 ) ) d ' '
D ) Clhaye o ka)C(l, - la) Y [H Uzii(tz‘)vzii(ti)] wfj(tj)wij(tj)[ [ 1 U?fi(tz)%(ti)]

l,L':l kZ‘:l ti=1 i=1 ’i:j+1
1<i<d 1<i<d 1<i<d
r 7—1 d
_ i i J J S
- Z C(kla vy kd)c(llv <o 7ld) H<Vkiavéi> <Wk]- ) W£j> H Vi Ve /|-
li=1,k;= =1 i=7+1
1<i<d

We estimate scalar products by [(w} , wj )| < |wj |||w} | < &3 and

R2, ifk =1,

1, otherwise
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Therefore, for any 1 < j < d, we have

D Clka,. . ka)C(l, g [H<vk,vg>] <Wk,wz>[ H<vk,v€>]

l;=1,k;=1 i=j+1
1<i<d

T

= > Cler.. kg)Cl, . g [H(Vk,v£>] <Wk,w£>ln<vki,véi]

li=1,k;=1 i=j+1
1<i<d
ki=L;Vi#]
+ > C(k, . ka)C, [H(vk Vi >] (Wi, Wy [ [] & v, >]
li=1,k;=1 i=j+1
1<i<d
di#j s.t. ki#L;
<RM Vel N C(ky, . ka)C(l, - la) + pR2PEE N (Ck, . ka)C( - 1)
Li=1k;=1 Li=1k;=1
1<i<d 1<i<d
ki=0;Vi#]
since i < 1 < R by assumption. Hence, we have
|T5% < RY4Del Z Z Z Clki, .. ki kd)Ckr, o1, k)
i kj=1£;=1
1<z<d z;é]
+pRH* T2 N (el La)C k- ka)]
li=1k;=1
1<i<d
2
d r
= RMVE N (C(k, Ky, k)P pREIES | Y (el )]
ki=1 £;=1
1<i<d
where in the last step we have used the fact that by the orthogonality property (d)
Z C(kl,. . .,kj,. . .,kd>C(k1,...,lj,. . .,kd> =0 unless ]{Zj = Ej,
i#j
to see that
d
Z Z Z (Bty ko ka)Clkr, o gy ka) = D0 [C(Ra, o Ky, k)
ki=1k;j=1£;=1 ki=1
1#]

Recalling that all of our core tensors are unit norm, and appealing to Cauchy-Schwarz now allows
us to see that

" IT13 < ROV + uRDegrd|cl
< e2RYYR? + ).
Part 4: Bounding 7. We note that for any 1 <i < d, the |- |r — || - | 7 operator norm of the

operator X — X x; V'’ is the same as the fo- operator norm of the matrix V* acting on R”. Next,
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we observe that for all x = (z1,...,2,) € R” with [x[2 = 1, we have

7 s s

Vixlg = 3 o viman = Y viovidat + Y] vk vhaga,

k=1 k=1 k#l=1
Thus, bounding the coefficients by and using Cauchy—Schwarz we have that

2

T T T

IVix[3 < R® Y ai+p D) lawlla] < BPx]3 + (Z !%!) < (R* +rp)|x|3.
k=1 k#l=1 k=1

Therefore, since |C — C|% < e1,
ITol% = (€ = C) x1 Vi xa... xa Valf < (R + rp)’et.
Part 5: Conclusion and cardinality estimate. By (38), we get that | X — X| » < £/2 if each

| 75|l < e/2(d+1). That is, taking (R?+ur)¥?e1 = €/2(d+1) and ea R*"2(R% + pur®)1/2 := £/2(d +1),
we get,

rd dnr rd4rnd d
3 3R 6(d+1 r dnr
(42) |N| < <> <> = <(+)> ((R2 + ,ur)d/2) (Rdfl(RZ n /u"d)l/2> .
€1 €2 €
This concludes the proof of Lemma 0

ApPENDIX C. THE PROOF OF PROPOSITION [2

Proposition [2| follows by essentially repeating the proof of Theorem 2 of [33]. We include the
argument here for completeness. The key probabilistic component of the proof is the supremum of
chaos inequality proved in [25]:

Theorem 5 ([25], Theorem 3.1). Let A be a collection of matrices, which size is measured through
the following three quantities E,V and U defined as

E(A) == 72(A)(12(A4) + dr(A)) + dp(A)da(A)
(43) V(A) = d2(A)(12(A) + dp(A)), and

U(A) = d3(A),
where

dp(A) = sup [Alp,  da(A) = sup [ Az
€ €

and v2(A) = v2(A, | - |a—2) is Talagrand’s functional. Let € be a sub-gaussian random vector whose
entries &; are independent, mean-zero and variance-1. Then, fort > 0,

P t
P <i§§\|A£\§ — E|A¢[3| = c1E(A) + t) < 2exp <—CQ — {V(A)2’ U(A)}) ’

where the constants ¢y, co depend only on the sub-gaussian constant L.

The proof of Proposition[2 Observe that

es=sup [[A(vect(X))[* —1] = sup [|[Vx€|* - E[VxE[?],
XeS, | X||=1 XesS,|X][=1
where ¢ € R"™ is a vector with i.i.d. sub-gaussian entries, and Vy € R™*™"™ is a block-diagonal
matrix
vect(X)T 0 e 0
1 T
Vi = 0 vect(X)" ... 0
0 0 . veet(X)T
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Let V = V(S) be the set of all such matrices Vx where X € S. We will now apply Theorem [5| It
is easy to check (see [33] Theorem 3]) that

(44) da(V) = m™Y? and dp(V) = 1,
therefore, by Theorem

1 t2
(45) P {53 = (73 + v + W) + t} < 2exp (—02 min {mt, 1\/‘?72 }) for all t > 0,

where v2 = 72(V).
For any set Sy, the Talagrand functional v5(Sp) is a functional of Sy which can be bounded by
the Dudley-type integral

d2(So)
(46) ) <€ [ VN[ famar)
0

We need to consider Sy = V(S). We note that due to (44)),
NV(S), |- [2o2,u) S N (S, | - [r, vVmuw),

and so by a change of variables

1
1 (V(S)) < C\/lm L N AR

This implies that v2(V) < CC~Y2¢ by the main condition on m given in the statement of Propo-

sition [2| Choosing C' large enough, this ensures that v < £/6¢; for any ¢; > 1.
Taking t = £/2 and using € < 1, we can now rewrite as

2
€ € 1 e
P > — — 4 — — <2 —C 2
{63 cl([ﬁcl] +601+\/m>+2} exp( gms)

If Cis chosen large enough, then m > Ce2In n~! implies that the probability bound is at most 7
and m > Ce~? implies that m~1/2 < £/6c1. This concludes the proof of Proposition O
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