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Abstract

Laves phases are a class of tetrahedrally close-packed Frank Kasper phases with AB2

stoichiometry. While these phases appear as intermetallic line compounds in a variety

of metallic alloys, it is challenging to stabilize Laves phases in reconfigurable soft matter

owing to the substantial difference in preferred volume between the large A particles

and small B particles. Surprisingly, perhaps the conceptually simplest approach —

blending two diblocks with incompatible core blocks — has not been explored yet.

Using self-consistent field theory, we predict that a Laves phase should emerge as a

phase field in the eutectic phase diagram of an AB/B′C diblock copolymer blend if (i)

the AB and B′C diblock copolymers are selected such that their neat melts produce bcc

phases with the particle volume ratio of the desired Laves phase and (ii) the repulsion
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between A and C blocks is sufficiently strong to minimize mixing between micelles. This

diblock “alloying” approach produces phase behavior that closely mimics that arising in

intermetallic compound-producing metal alloys, and should provide a relatively simple

synthetic route to produce soft Frank-Kasper phases that are challenging to achieve by

conventional polymer-based approaches.

Introduction

Binary metallic alloys exhibit a wide range of phase behavior, including liquids, solid solu-

tions, and two- and three-phase equilibrium. Of particular interest are intermetallic com-

pounds, which have distinct stoichiometries1 and thus differ qualitatively from the continu-

ously varying compositions exhibited by solid solutions. In the ideal case, an intermetallic

compound appears in the phase diagram as a line compound at the composition corre-

sponding to its stoichiometry; non-ideal systems can produce a narrow composition window

known as a phase field.2 Laves phases are one important class of intermetallic compounds,

exemplified by the C14 and C15 phases illustrated in Fig. 1a. Laves phases are a subset of

tetrahedrally close-packed Frank-Kasper phases3,4 with an AB2 stoichiometry. The smaller,

12-fold coordinated B particles are arranged on a 2D Kagome net layered with a triangulated

net of the larger, 16-fold coordinated A particles, another triangulated net of B particles,

and a third of A particles.4 This complexity contrasts sharply with a body-centered cubic

(bcc) phase, for example, which contains two identical particles per conventional unit cell

(Fig. 1b). Owing to their ability to accommodate two differently sized atoms, Laves phases

are the largest group of intermetallic compounds, with the canonical examples being MgZn2

(C14), MgCu2 (C15), and MgNi2 (C36).5

Packing on lattices is also observed when flexible, compositionally asymmetric diblock

copolymers, which aggregate into micellar particles, are cooled below the order-disorder

transition. In contrast to metal alloys, where the ordered state symmetry is governed by a

combination of atomic packing and electronic interactions, the thermodynamics governing
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Figure 1: Schematic of the (a) C14 (MgZn2) and C15 (MgCu2) Laves phases and (b) bcc
phase. For the Laves phases, the larger A particles are red, and the smaller B particles are
blue. Created using a modification of the program provided in Ref. 6.

the phase behavior of block polymer melts is markedly simpler. Here, the selection of the

ordered state is governed by a competition between chain stretching and interfacial tension

subject to the constraint of constant density, and thus exposes the geometric role of parti-

cle packing on the selection of ordered state symmetry. While bcc is the most commonly

observed particle packing in block polymer melts, various Frank-Kasper phases have been

observed as well,7–22 consistent with their emergence in other forms of soft matter.23–31 How-

ever, Laves phases are much less commonly observed in diblock copolymer melts17–22 than

other Frank-Kasper phases, and theory predicts that only the C14 and C15 Laves phases are

likely to be stable.32 Moreover, the Laves phases seen to date appear in block polymer phase

diagrams as stability windows rather than the line compounds that emerge for intermetal-

lic compounds. In the present contribution, we describe an approach, inspired by metallic

alloys and supported by self-consistent field theory (SCFT) calculations, that promotes the

formation of block copolymer Laves phases as a phase field (i.e., a non-ideal line compound)

within a eutectic phase diagram that closely mimics that observed for metal alloys.

To understand the need for our approach, it is useful to recall first existing methods to pro-

duce Laves phases in diblock copolymers. Theory predicts that Laves phases are metastable

in neat melts, owing to the entropically unfavorable chain stretching needed to accommodate

the particle volume asymmetry of the structures.17,18 However, for neat block copolymers

melts, Laves phases have been formed via thermal processing routes17–19,22 that presumably

leverage the intrinsic distribution of micelle volumes in the liquid-like packing state, which
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emerges upon deep cooling, to promote subsequent ordering into a Laves phase after reheat-

ing. These are inherently non-equilibrium processes whose molecular mechanisms are not

well understood.33 Laves phases have also been observed as equilibrium states in diblock

copolymer/homopolymer blends,8,20 where the nonuniform loading of homopolymer into the

micelle core allows the system to accommodate the particle volume asymmetry. While the

underlying molecular mechanism for Frank-Kasper phase formation in these blends appears

to be understood20,34,35 and the resulting Laves phases are equilibrium states, blending with

homopolymers is not a particularly robust approach due to macrophase separation as the

homopolymer volume fraction increases, and it is not obvious how to target a particular

Frank-Kasper phase. Finally, C14 has been observed in AB/A′B blends,21 where the prime

denotes a different degree of polymerization. Relying on SCFT, several molecular mecha-

nisms have been proposed for stabilizing Laves phases in AB/A′B systems including domain

segregation36 and delocalization of the smaller chains from the interface.21 However, much

of the Laves phase region predicted by SCFT for one AB/A′B blend was not realized exper-

imentally.21 Moreover, the domain segregation mechanism,37 which is a powerful approach

to produce Frank-Kasper phases in blends,15 tends to favor forming interfaces of different

curvature but does not necessarily promote volume asymmetry. Thus, we were interested in

whether we could develop a more general approach for block polymers that would provide

a rational route to design systems that will favor the formation of Laves phases and thus

provide a soft matter equivalent to phase diagrams for alloys that form intermetallic phases.

Methods

Figure 2 illustrates our approach based on using an AB/B′C blend. A literature on such

blends has accumulated gradually over the past three decades,38–53 much of it focused on the

competition between microphase and macrophase separation using experiments coupled to

random-phase approximation (RPA) calculations of spinodal lines,40–44 creating composite
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Figure 2: Principle of the block polymer alloying method to stabilize Laves phases. By
selecting χAC to be sufficiently high, a blend of compositionally asymmetric AB and B′C
diblock copolymers will produce two different micellar particle sizes. The degrees of poly-
merization NAB < NB′C are selected such that the particles formed in their respective neat
bcc melts correspond to the volume asymmetry of the Laves phase. When mixed with ap-
proximately the 2:1 stoichiometry, the Laves phase is predicted to emerge. The enclosing
polyhedra correspond to the Voronoi construct and were created using the program provided
in Ref. 6.

continuous phases for nanoporous materials when the A and C blocks are miscible,47–49 or

promoting the formation of unconventional morphologies.50–53 To produce a Laves phase in

the AB/B′C system, we first selected the volume fraction fA of the A-block to be small,

which will produce micellar particles provided the segregation strength χABNAB is above the

order-disorder transition value, where χAB is the Flory-Huggins parameter between blocks A

and B and NAB is the degree of polymerization of the AB polymer. For notational simplicity

going forward, let us denote the segregation strength between blocks i and j in a chain of

size N in the compact form (χN)ij. We further select fC and (χN)B′C to promote formation

of micelles in B′C as well. To produce two distinct particle sizes, we require NAB < NB′C

and that χAC be sufficiently large to suppress mixing of the AB polymers in the B′C micelles

and vice versa.39 We then anticipate the system will order into a Laves phase if (i) the

blend volume fractions φAB and φB′C = 1 − φAB produce particles at approximately a 2:1

stoichiometry and (ii) the choices for NAB and NB′C lead to micelles with the Laves volume

asymmetry.

With these general principles in mind, we describe how to implement this strategy in
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practice. This initial communication focuses on a relatively simple system. First, we set

the statistical segment lengths for each block to the same value b, removing the effect of

conformational asymmetry that, on its own, tends to aid Frank-Kasper phase formation. 54

Second, we designed our system around the bcc particles formed at (χN)AB = (χN)B′C = 25,

with χACNAB = 50 to suppress the mixing of micelles. From the classic SCFT results for

conformationally symmetric diblock copolymers,55 the choice fA = fC = 0.2 is inside the

bcc region of the phase diagram for neat melts at χN = 25. The bcc system has two

particles in a unit-cell volume that scales as N3/2 for a fixed χN and minority block volume

fraction. Thus, if we desire a ratio α between the particle volumes for (χN)AB = (χN)B′C

and fA = fC, we should select NB′C/NAB = α2/3, where we have chosen arbitrarily that B′C

form the larger particles. In this model, the Laves phase should appear at φAB ≈ 2/(2 + α).

To investigate the feasibility of this approach, we have studied the block polymer alloy

using SCFT for a Gaussian chain model. All calculations were performed using the open-

source Polymer Self Consistent Field (PSCF) software package in either canonical and grand

canonical ensembles.56–58 Canonical ensemble calculations employed the original Fortran

version of this program57 while the grand canonical ensemble calculations used the C++

version.34 Additional information on these calculations and the approach to compute the

phase equilibria are provided in the Supporting Information.

Results

The precise volume asymmetry α is not known, so we used canonical ensemble SCFT cal-

culations in the PSCF software package57 to compute the free energies of the AB-rich bcc

phase, the B′C-rich bcc phase, and the C15 Laves phase as a function of the volume fraction

φAB of the AB block polymer in the blend for NB′C/NAB = 1 to NB′C/NAB = 1.5 with the

aforementioned segregation strengths. These bcc phases are comprised of micelles of the ma-

jority component at the lattice sites, with the minority component at the interstitial sites.
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Figure S10: Free energy per chain of length /#! for the AB/B’C blend of Figure S1 at 
/!!"//#! = 1.3, plotted as a function of the volume fraction of the AB diblock copolymer in the 
blend ϕ#!. The bcc-bcc common tangent line is shown as a black dashed line, and the points of 

tangency are indicated with black dots. 
 
 
 

 
 

Figure S11: Identical to Figure S10, but with the common tangent line subtracted from the data. 
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Figure 3: Free energy per chain of size NAB of the C15 Laves phase relative to the free energy
of a macrophase separated mixture of AB-rich bcc and B′C-rich bcc as a function of the
relative degree of polymerization of the AB and B′C polymers for (χN)AB = (χN)BC = 25,
χACNAB = 50, and fA = fC = 0.2. The data points correspond to the minimum of the
free energy difference. The inset provides an example of the underlying free energy diagram
versus volume fraction of AB and the double-tangent construction for the polymerization
ratio NB′C/NAB = 1.3. The corresponding data for other values of NB′C/NAB are provided
as Fig. S2.

The choice of C15 (versus C14) for the present purposes is arbitrary as these two phases are

nearly degenerate in free energy as shown in prior work,17,18,32,59 and that proves to be the

case here too (Fig. S10).

The inset of Fig. 3 provides an exemplary result obtained for NB′C/NAB = 1.3, illustrating

the free energy per chain of length NAB as a function of the volume fraction φAB in the

melt. Companion data for other values of NB′C/NAB are provided in Fig. S2. Owing to the

different sizes of the AB and B′C polymers, the bcc-bcc tie lines are tilted for NAB < NB′C

because it is harder for the larger B′C polymers to fit in the interstitial sites of the AB-

rich bcc phase (Fig. 4a) than vice versa. The double-tangent construction for the bcc-bcc

equilibrium is indicated, and the C15 phase appears to be almost co-tangent to this line

at the scale of this inset. For visualization purposes, it is easier to subtract this tie line

from the free energy (see Fig. S3). The inset of Fig. 3 and the relevant panel of Fig. S3

indicate that a narrow window of Laves phase stability should exist at φAB ≈ 0.538. This

value is reasonably close to the value φAB = 0.577 predicted from mixing bcc-type particles
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Figure 4: Density profiles for the [110] planes of (a) AB-rich bcc phase at φAB = 0.87 and
(b) C15 phase for φAB = 0.54 for the conditions in the inset of Fig. 3. In panel (a), note
that the density field ρC for bcc runs from 3.70% to 4.05% so that the impurity can be seen.
For panel (b), the distortion of the smaller (blue) AB-rich C15 particles is evident from the
shape of the A/B interface. The ratio of unit cell lattice parameters is aC15/abcc = 2.429 but
the figures have been drawn using the same unit cell size; when drawn to scale, the bcc and
C15 particles are approximately the same size.

illustrated in Fig. 2. Naturally, the system must make some adjustments to both the particle

shapes and aggregation numbers when forming C15, and we would not expect the bcc-based

model to predict precisely the location of φAB for the Laves phase window. This distortion

of the particles in the C15 packing can be understood by comparing the A/B interface for

the bcc phase (Fig. 4a), which is essentially spherical,60,61 to that in the C15 phase (Fig. 4b),

where the (blue) AB-rich particles are distorted and the resulting A/B interface is ellipsoidal.

Interestingly, the larger (red) B′C-rich particles in C15 retain the spherical B/C interface that

they would exhibit in the bcc state. The ability of the micellar particles to exchange mass

and reconfigure their shapes is an intrinsic feature of soft matter that differs from packing

of hard spheres or atomic packing, and is very relevant to the stability of Frank-Kasper

phases.60

The main panel of Fig. 3 summarizes the double-tangent construction results as a function

of the ratio NB′C/NAB. When the two polymers have the same degree of polymerization,

the system favors the formation of equal sized particles and the Laves phase has its highest

free energy relative to the bcc-bcc coexistence. Interestingly, the data for NB′C/NAB = 1.15,

which corresponds approximately to the volume asymmetry α = 1.23 predicted for C15

from the Voronoi cell construction,33 indicate a metastable Laves phase. In contrast, the
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Figure 5: Comparison of the lowest free energy phases relative to the macrophase separation
(bcc or fcc common tangent) as a function of the segregation strength where χACNAB =
2 (χN)AB for NB′C/NAB = 1.3 and fA = fC = 0.2. The data correspond, in order of ascending
free energy at (χN)AB = 28, to C14 (solid green circles), C15 (open light green circles), σ
(solid brown diamonds), inverted Li3Bi (solid light purple squares), alternating bcc (solid
red-brown triangles), A15 (cyan x), Li3Bi (open purple squares), and AlB2 (open orange
diamonds). For σ, which has five different particle volumes, the AB-chains are primarily
located in the 2a and 8i Wyckoff positions. The free energy data for all competing phases
as a function of φAB at each value of (χN)AB appear in Figs. S4-S9.

ratio NB′C/NAB = 1.3, which produces a volume ratio α = 1.48 that is similar to what

was obtained60 for C15 from the unconstrained diblock foam model, appears to be the

optimal degree of polymerization ratio. The robustness of the diblock foam model volume

asymmetry60 relative to the Voronoi construction here is consistent with recent criticisms of

the Voronoi construction for Frank-Kasper phases.62 Further increasing NB′C/NAB leads to

increasing free energy of the C15 phase relative to bcc-bcc coexistence until the Laves phase

again becomes metastable. Based on these results, we selected the ratio NB′C/NAB = 1.3

(or, equivalently, α = 1.48) as the system for further investigation.

While demonstrating that the Laves phase has a region of stability that would interrupt

the bcc/bcc two-phase equilibrium, we also need to demonstrate that these are the only

stable morphologies. To this end, we performed canonical ensemble SCFT calculations for 20

possible candidate phases (Table S2) that could plausibly produce crystals with two different

particle sizes, inspired by the analysis of Shi and coworkers in the context of B1AB2CB3

pentablock terpolymers.63 Notably, this list of candidate phases includes C14 as a competing
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Laves phase, as well as face-centered cubic (fcc) systems which, as expected,56 proved to be

stable at low segregation strengths and sufficiently high concentrations of minority species.

These calculations were performed at different temperatures T by assuming that the Flory-

Huggins parameter is purely enthalpic, i.e. where χij = AijT0/T with Aij being a constant

and T0 a reference temperature. Continuing with the base case used in Fig. 3, this model

corresponds to AAB = 25, ABC = 19.23 and AAC = 50.

Representative results for the free energies of all of the candidate phases in Table S2

for several values of T/T0 are provided in Figs. S4-S9, with Fig. 5 providing a concise sum-

mary of the key results for the most stable phases. The Laves phase is the only state that

outcompetes AB-rich or B′C-rich bcc or fcc at lower temperatures. However, at higher tem-

peratures, the Laves phase becomes metastable because it becomes increasingly facile for the

impurities to reside in the B-rich interstitial sites of bcc (or fcc) as χAB and χBC decrease,

providing a favorable entropy of mixing without a substantial enthalpic cost. Moreover,

these calculations revealed that C14 is the stable Laves phase but that it is nearly degener-

ate with C15, with a free energy difference of approximately 10−5kBT per chain of size NAB

(Fig. S10). This near-degeneracy between C14 and C15 is expected from prior work. 17,18,32,59

Ultimately, distinguishing between these two very similar Laves phase particle packings is of

little relevance in practice because fluctuation effects12 and uncertainties in the experimental

data (polydispersity, precision in measuring the degree of polymerization, mapping multiple

χ parameters to experiments64,65) make it challenging to translate such subtle SCFT predic-

tions into experimental realizations. For this reason, we will simply refer to the stable state

as the “Laves” phase in what follows, with the understanding that SCFT predicts C14 but

it is very plausible that C15 could be realized in practice.

To complete our analysis of this AB/B′C system, Fig. 6a provides the phase diagram as a

function of temperature. Most of this figure was produced from double-tangent constructions

of the canonical ensemble data presented thus far, but the more challenging regions of the

phase diagram were computed from grand canonical ensemble calculations56,58 using the
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Figure 6: (a) Phase diagram for the AB/B′C blend for NB′C/NAB = 1.3, with (χN)AB =
(χN)B′C and fA = fC = 0.2. The reference temperature T0 corresponds to (χN)AB = 25 and
χACNAB = 50; data at other temperatures were obtained by assuming χ is purely enthalpic,
i.e. χACNAB = 2 (χN)AB. The state points used to compute this diagram are provided in
Fig. S11, and an alternate view in terms of increasing χ values is provided in Fig. S12. (b)
The details of the Laves phase field, which occupies an extremely narrow range in φAB at all
temperatures examined here.

C++ version of PSCF;66 see Fig. S1 for a comparison between methods. At the resolution

of Fig. 6a, the Laves phase is effectively a line compound but, owing to the finite width

illustrated by Fig. 6b, is denoted a phase field.2 The emergence of a phase field, rather than

a line compound, would be expected from the ability of block polymer micelles to exchange

mass, which prevents their particles from adopting the fixed stoichiometry seen in metallic

line compounds. Interestingly, the Laves phase field terminates before the eutectic as a result

of the aforementioned ability of the impurities to more easily occupy the interstitial sites in

bcc (see Fig. 4a) or fcc as the A/B and B/C repulsion is decreased. There is a significant

asymmetry to the diagram due to the ratio of NAB to NB′C, in particular near the eutectic

point. In practice, however, we anticipate that fluctuations will cut off the upper part of the
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phase diagram owing to the finite molecular weight polymers used in experiments.

Discussion

The results presented in this initial communication demonstrate the potential for alloying

block polymers to stabilize volume-asymmetric particle packings, in this case for the C14

Laves phase, and to produce phase diagrams that closely mimic those occurring with metallic

alloys. We posit that making this connection represents an important advance towards our

overarching goal of understanding the similarities between Frank-Kasper phase formation in

soft matter and metallic alloys.33 In addition to its conceptual simplicity, the block polymer

alloying approach that we have considered here has significant advantages in practice. SCFT

has predicted many intriguing particle packing morphologies using multiblock polymers and

nonlinear architectures.63,67–70 One could envision, for example, how the B1AB2CB3 system

proposed previously to mimic metallic crystal structures63 might be designed to produce a

polymeric packing with a Laves phase volume asymmetry. While one-component systems

are attractive because they avoid the complication of macroscopic phase separation, synthe-

sizing these materials is not trivial,71–74 especially if the predicted stability region occupies a

narrow range in composition. Moreover, the ordering kinetics of multiblock polymers can be

prohibitively slow.75 By comparison, diblock copolymers are easily prepared using a variety

of synthetic approaches (e.g., anionic, controlled free radical, and ring opening metathesis

polymerization), opening up a significantly wider range of chemistries. And the precision

required by our approach is relatively modest; uncertainties in the value of fA or fC can be

compensated by blending at different values of φAB, a much simpler task than synthesizing

and screening a library of multiblock polymers to identify one that produces a Laves phase.

If we assume that a polymer blend can be prepared with a volume fraction uncertainty of

circa 1%, then applying the lever rule over the two-phase bcc + Laves window suggests

that this alloying approach should produce crystals that contain circa 97% Laves phase.
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Moreover, the precise composition required could be identified based on a couple of blending

experiments, assuming the system reaches equilibrium. Finally, in practice, nucleation and

growth of small grains of the minority phase (bcc) is likely to be prohibitively expensive

from a free energy perspective, thereby producing pure Laves phase.

We do not yet know the sensitivity of the initial results presented here to the system

parameters (statistical segment lengths, minority block volume fractions, Flory-Huggins pa-

rameters), but we anticipate that they should be relatively robust given the underlying

principle of producing two particle sizes and blending them at the proper stoichiometry.

Our optimism is also supported by recent experimental results for complex particle phase

formation, including the C14 Laves phase, in binary blends of mesoatoms76,77 that rely on

mixing giant molecules of different shapes that then aggregate into different particle types,

and predictions that size dispersity in colloidal systems can stabilize Laves phases.78

Conclusions

We have used SCFT to establish the feasibility of stabilizing a C14 Laves phase in a diblock

copolymer alloy formed by blending micelle-forming AB and B′C diblock polymers of different

degrees of polymerization that promote the emergence of two distinct micelle sizes. The

resulting phase diagram bears a striking resemblance to those observed in metallic alloys,

with a Laves phase field, a eutectic point, and multiple regions of two-phase equilibria.

While we have focused here on Laves phase formation, it is likely that this alloying approach

will open up routes towards stabilizing other Frank-Kasper phases and other intermetallic-

like packings with particle volume distributions and packings that are difficult to realize in

single-component systems.60
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S1 Self-Consistent Field Theory (SCFT)

This section provides a brief summary of the SCFT formalism used in this paper for comput-

ing the phase behavior of AB/B′C blends within the Polymer Self-Consistent Field (PSCF)

software package.1 The methodology provided below is largely based on the description of

canonical ensemble SCFT in Ref. 2 and the on-line documentation for PSCF.3 Additional

information on SCFT, in particular for grand canonical ensemble, was obtained from Refs.

4–6.

S1.1 Polymer model

The polymers are modeled as continuous Gaussian chains comprised of three monomer types,

i = {A,B,C}, that are polymerized into two different block polymers, k = {AB,B′C}. The

AB chain consists of NA A-monomers and NB B-monomers for a total degree of polymeriza-

tion NAB = NA +NB, while the B′C chain consists of NB′ B-monomers and NC C-monomers

for a total degree of polymerization NB′C = NB′ + NC. In the model, the monomers are

coarse-grained and occupy the same monomer volume ν, such that the volume fraction of

the A-block in the AB chain is fA = NA/NAB and the volume fraction of the C-block in

the B′C chain is fC = NC/NB′C. The interaction between a monomer of type i and another

monomer of type j 6= i is given by the Flory-Huggins parameter χij. For simplicity, we have

assumed that the statistical segment lengths of each polymer are identical and given by b.

The blend has an overall volume fraction φAB of the AB chains, with the volume fraction of

B′C chains given by φB′C = 1 − φAB. The total system is incompressible and consist of n

monomers in a volume V , such that n = V/ν. The calculations performed here are unit-cell

SCFT, where the volume V in the various integrals that appear below is the unit-cell volume

and the system is assumed to be spatially periodic to produce the macroscopic volume.

In this formalism, there is considerable flexibility in the identification of a “monomer”

since the model is continuous. The monomer simply refers to the amount of a polymer chain

S3



that occupies the volume ν and does not need to correspond to a chemical repeat unit.1

Indeed, the standard convention is to use N = 1 for a single-component system, and our

calculations for this blend were performed using NAB = 1 and NB′C ≥ NAB. With this

choice, we can also interpret the value of n as the number of chains of length NAB, which

proves convenient for expressing the free energy per chain, rather than per coarse-grained

monomer.

Conversion from such SCFT calculations to an experimental system requires connecting

the values of χij, b, and Nk to a particular experimental system by specifying some reference

volume νref and making appropriate conversions using the segment density and molecular

weights of the blocks. This mapping has been discussed in a straightforward manner by

Sinturel et al.7

S1.2 Statistical weights

The statistical weight of a given species k is computed by solving first a modified diffusion

equation for the forward propagator qk(r, s),

∂qk(r, s)

∂s
=

[
b2

6
∇2 − ωi(s)(r)

]
qk(r, s) (S1)

which is a function of spatial position r and coordinate s along the chain contour. Here,

ωi(r) is a spatially-dependent chemical potential field that acts on monomer type i and given

by

ωA = χABρB(r) + χACρC(r) + ξ(r) (S2)

ωB = χABρA(r) + χBCρC(r) + ξ(r) (S3)

ωC = χACρA(r) + χBCρB(r) + ξ(r) (S4)
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where ρi(r) is the number density (local volume fraction) of monomer i, whose computation

will be specified later in Eqs. S8-S10. The Lagrange multiplier ξ(r) is selected to enforce

incompressibility,

ρA(r) + ρB(r) + ρC(r) = 1 (S5)

For the AB chain, we thus use ωA for s ∈ [0, NA] and ωB for s ∈ [NA, NAB]. Equivalently,

the propagator for the B′C chain uses ωB for s ∈ [0, NB′ ] and ωC for s ∈ [NB′ , NB′C]. The

initial condition for the forward propagator is q(r, 0) = 1.

With the solution for the forward propagator, the partition function for each of the

polymers is computed from

Qk =
1

V

∫
V

dr qk(r, Nk) (S6)

Owing to the inhomogeneity of the block polymer, computation of the volume fractions

ρk requires a solution for the backwards propagator, q†k(r, s),4 which obeys the modified

diffusion equation

− ∂q†k(r, s)

∂s
=

[
b2

6
∇2 − ωi(s)(r)

]
q†k(r, s) (S7)

subject to the initial condition q†k(r, Nk) = 1. The probability of locating the segment of the

chain contour coordinate s at some position r is proportional to the product q(r, s)q†(r, s).8

Note that the local volume fractions are often denoted by the symbol φi(r),2 which

requires yet another symbol to define the overall volume fraction in the blend, e.g., φ̄k. We

prefer here to use the notation ρi(r) for the local volume fractions and the standard symbol

φk for the overall volume fraction in the blend to avoid the need to use the overbar notation

in the main text figures.
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S1.3 Canonical ensemble

In the canonical ensemble, the volume fraction φAB is specified. The volume fractions of the

different monomer types are then computed from6

ρA(r) =
φAB

QABNAB

∫ NA

0

ds qAB(r, s)q†AB(r, s) (S8)

ρB(r) =
φAB

QABNAB

∫ NAB

NA

ds qAB(r, s)q†AB(r, s)

+
φB′C

QB′CNB′C

∫ NB′

0

ds qB′C(r, s)q†B′C(r, s) (S9)

ρC(r) =
φB′C

QB′CNB′C

∫ NB′C

NB′

ds qB′C(r, s)q†B′C(r, s) (S10)

The set of equations S1-S10 needs to be solved self-consistently for a choice of the unit cell

geometry. To provide an initial guess for the chemical potential fields, we use the form-factor

method.2,9 All canonical calculations were performed using the Anderson Mixing iteration

algorithm,10–12 with an integration step size of ds = 0.01 and an error threshold of 1× 10−5.

The grid spacings for different phases are provided later in Table S2. In obtaining the

self-consistent solution, the unit cell size is also relaxed.12,13

Once the self-consistent solution has been obtained in the optimal unit cell, the Helmholtz

free energy per monomer is computed from2

F

nkBT
=

φAB

NAB

(
ln
φAB

QAB

− 1

)
+
φB′C

NB′C

(
ln
φB′C

QB′C
− 1

)
− 1

V

∫
dr (ωAρA + ωBρB + ωCρC)

+
1

V

∫
dr (χABρAρB + χACρAρC + χBCρBρC) (S11)

where kB is Boltzmann’s constant and T is the absolute temperature. This free energy is

readily converted to a free energy per chain by multiplying by some degree of polymerization

N . For a blend, there are several possibilities and we choose to reference our free energies

to a chain of size NAB.
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S1.4 Grand canonical ensemble

In the grand canonical ensemble, we specify the chemical potentials µAB and µB′C rather

than the volume fractions φAB and φB′C. The chemical potentials are related to the volume

fractions by6

exp

(
µk

kBT

)
Qk = φk (S12)

Since the volume fractions must sum to unity, the chemical potentials are not independent.

We chose, without loss of generality, to set µAB = 0 in our calculations.

For the SCFT solution, the volume fractions are still computed using Eqs. S8-S10, but

the prefactors φk/Qk are replaced by exp(µk/kBT ) following Eq. S12. The problem requires

again obtaining a self-consistent solution for Eqs. S1-S10 in an optimal unit cell. In the grand

canonical calculations, the modified diffusion Eqs. S1 and S7 were solved using an Anderson

mixing scheme,12,14 optimizing the unit-cell sizes with stress relaxation, with an integration

step of ds = 0.01 for the chain contour and an error threshold of 1 × 10−5. The grand

canonical calculations were only used here to refine the phase diagram data in Figure 6 and

were thus performed for C14, C15, fcc and bcc phases using the canonical ensemble solutions

as initial guesses for the fields. The grid sizes used for the fcc and C15 phases are same as

the canonical ensemble calculations as listed later in Table S2, and we used 96× 96× 96 for

the bcc phase and 96× 96× 156 for the C14 phase when finding the onset value of (χN)AB

for the C14 phase out to two decimal points. The output of the grand canonical ensemble

calculation are the blend volume fractions φAB and φB′C, obtained from Eq. S12, and the

grand canonical free energy15

Fg = −PV (S13)

where P is the system pressure. The grand canonical free energy is related to the Helmholtz

free energy by6

Fg = F − nABµAB − nB′CµB′C (S14)
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where nk is the number of chains of type k in the blend. Using Eq. S13 in Eq. S14 and

noting that nk = φkV/(Nkν) = nφk/Nk, we have

PV = −F + n

(
φABµAB

NAB

+
φB′CµB′C

NB′C

)
(S15)

The pressure can be expressed in a dimensionless form by dividing by nkBT ,

Pν

kBT
= − F

nkBT
+
φAB

NAB

(
µAB

kBT

)
+
φB′C

NB′C

(
µB′C

kBT

)
(S16)

These dimensionless forms for the pressure, Helmholtz free energy, and chemical potentials

in Eq. S16 correspond to the outputs of the PSCF code.3

S1.5 Computing two-phase equilibria

Two coexisting phases are in equilibrium if the pressure, temperature, and chemical po-

tentials of each species are equal in both phases. In the canonical ensemble, the system

is incompressible, which implies that the Helmholtz free energy is invariant to the addi-

tion of a constant pressure;6 thus, the condition of equal pressure can always be satisfied,

because the pressure in the incompressible canonical ensemble is arbitrary. Specifying the

Flory-Huggins parameters χij sets the temperature, so satisfying the equal temperature re-

quirement for phase equilibrium is trivial. The condition of equal chemical potential is met

by the common-tangent construction,16 illustrated in Fig. S1a in the context of equilibrium

between an AB-rich bcc (body-centered cubic) phase and a B′C-rich bcc phase, with C15

and disorder (dis) as competing phases. The bcc-bcc common tangent line was found by

interpolating the free energy data for each phase (collected at increments of 0.005 in φAB)

using a third-order spline curve that was forced to pass through each data point exactly.

The Nelder-Mead minimization algorithm was then used to identify the compositions of the

two coexisting bcc phases, φI
AB and φII

AB, that place F I(φI
AB) and F II(φII

AB) along a common

tangent line with one another, where phase I and phase II are the AB-rich and B′C-rich bcc
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Figure S1: Comparison of (a) canonical and (b) grand canonical calculations for AB-rich bcc,
B′C-rich bcc and C15 at (χN)AB = (χN)B′C = 24.75 and χACNAB = 49.5. The canonical
ensemble data were obtained at increments of 0.005 in φAB and the grand canonical data
were obtained at increments of 5× 10−5 in µB′C/kBT with µAB = 0.

phases, respectively.

The approach for the grand canonical ensemble follows the method of Matsen,4 noting

that the equal temperature requirement is met by using the same Flory-Huggins parameters

in each phase as was done for the canonical ensemble. Here, the chemical potential is provided

as the input to the system, and the output is the system pressure from Eq. S16. To determine

the equilibrium point, we use the degree of freedom in the chemical potential (Eq. S12) to

first set µAB = 0, which automatically satisfies the equal chemical potential for the AB chain

between the two phases. We then performed SCFT calculations at increments of 5 × 10−5

in µB′C/kBT to determine the point where the curves for P (µB′C) intersect, which is the

condition at which the remaining criteria for phase equilibrium (equal pressure and equal

chemical potential for the B′C chain) are satisfied. Here, no interpolation was performed;

with such small increments of µB′C/kBT , the compositions of each phase changed very little

for each step, so the equilibrium compositions that we use are taken directly from the SCFT

output at the value of µB′C/kBT closest to the intersection point. Figure S1b illustrates this

calculation for bcc-bcc equilibrium with C15 as a competing phase.

Figure S1 demonstrates the very good agreement between these two complementary

approaches at (χN)AB = (χN)B′C = 24.75 and χACNAB = 49.5, which is the point where
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Table S1: Comparison of the volume fractions obtained from the data in Fig. S1.

Ensemble φAB (bccB′C) φAB (C15) φAB (bccAB)
Grand Canonical 0.161571 0.538207 0.863033
Canonical 0.161554 0.538169 0.863038

the C15 phase window effectively vanishes. The values of φAB corresponding to the AB-rich

bcc phase, the B′C-rich bcc phase, and the values of φAB where C15 exists were determined

by the common tangent method and by grand-canonical SCFT. Table S1 indicates that the

results differed by less than 4 × 10−5, demonstrating that either method will give the same

results for two-phase equilibrium between ordered phases, even for this relatively challenging

state point.

The grand canonical approach is generally preferred for computing phase behavior be-

cause it provides superior accuracy;4 relatively large changes in the chemical potential pro-

duce small changes in the volume fractions, allowing one to precisely locate the equilibrium

points using data similar to Fig. S1b. However, when there are many candidate phases,

which is the case discussed in Section S3, it proves convenient to first use canonical ensemble

calculations to identify the phase(s) of lowest free energy for subsequent grand canonical

calculations. As suggested by Fig. S1, these canonical ensemble calculations were sufficient

to resolve the phase behavior for ordered states in almost all cases. The main exception

was the region close to the termination of the Laves phase window, where we used grand

canonical SCFT to provide more detail for that point than can be achieved with canonical

SCFT alone. However, our method for finding the common tangent also proved to be less

reliable for finding two-phase equilibrium between an ordered state and the disordered state

because the common tangent line was often very steep, and we used grand canonical SCFT

for all such cases.

It is also worthwhile to recall a key point about the pressure and chemical potential

produced from canonical ensemble calculations,3,6 since this can be a source of confusion

from the PSCF output. The dimensionless pressure in Eq. S16 and the chemical potential
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in Eq. S12, while defined here in the discussion of the grand canonical ensemble, are com-

putable from the canonical ensemble as well, and these quantities are output as part of the

canonical ensemble calculation in PSCF. However, the Lagrange multiplier ξ(r) in the canon-

ical ensemble is only defined to within an arbitrary, additive constant and the Helmholtz

free energy is independent of this choice.3,6 The PSCF software uses the convention that

the spatial average of ξ(r) is zero,3 rather than establishing the true pressure that would

be associated with the given volume fraction φAB. As a result, the chemical potentials and

pressures output from the canonical ensemble cannot be used to establish phase equilibria.

S2 Selecting an optimal ratio NB′C/NAB

As discussed in the main text, it is not immediately apparent what the ideal ratio of particle

volumes α should be to stabilize a Laves phase in an AB/B′C diblock copolymer blend

according to our “alloying” approach. The Voronoi construction predicts α ≈ 1.23,17 while

the unconstrained diblock foam model predicts a larger value α ≈ 1.48,18 corresponding to

polymer length ratios NB′C/NAB of about 1.15 and 1.30, respectively.

To answer this question, we performed SCFT calculations using a variety of polymer

length ratios. We first found the Helmholtz free energy curves for an AB-rich bcc micelle

packing and a B′C-rich bcc packing as a function of AB volume fraction φAB. From these

free energy curves, the common tangent construction was used to find the free energy of a

two-phase mixture of the two bcc phases, which was compared to the free energy of the C15

Laves phase at the relevant compositions.

Figure S2 provides the original double-tangent constructions, analogous to the inset of

Fig. 3 in the main text. In this presentation, it can be challenging to determine whether

the Laves phase is below the tie line. Figure S3 thus provides the same data where the free

energy of the bcc-bcc tie line, which is the free energy of the macrophase separated system,

has been subtracted. The data in the main panel of Fig. 3 were computed using a third-order
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spline fit to interpolate between data points in Fig. S3 and identify each minimum value for

C15 precisely.
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bccB’C bccABC15

Figure S2: Free energy per chain of length NAB for the AB/B′C blend at different values of
NB′C/NAB, plotted as a function of the volume fraction of the AB diblock copolymer in the
blend, φAB, for fA = fC = 0.2, (χN)AB = (χN)B′C = 25 and χACNAB = 50. In all panels,
the phases are, from left-to-right, B′C-rich bcc (red), C15 (green) and AB-rich bcc (blue)
and these phases are labeled in the first panel. The bcc-bcc common tangent line is shown
as a black dashed line, and the points of tangency are indicated with black dots. The data
for NB′C/NAB = 1.3 appear in the inset of Fig. 3 of the main text.
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bccB’C bccABC15

Figure S3: Same as Fig. S2 but with the common tangent, i.e., the free energy of the bcc-
bcc macrophase separated system, subtracted from the data. The result for the symmetric
system NB′C/NAB = 1.0 is identical to the panel appearing in Fig. S2 and not reproduced in
this figure.
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S3 Free energies of different candidate phases

In order to be certain that our diblock copolymer alloying technique has truly stabilized the

Laves phase, it is necessary to compute the free energy profiles of other candidate phases that

may be stable in such a system. In Table S2, we provide information about each candidate

phase that we considered, the majority of which are taken from the list of two-atom crystals

that Xie et al.19 predict will be stable phases in a pentablock terpolymer system B1AB2CB3.

For each phase, the table includes additional information about the crystal structure and its

implementation in SCFT.

Figures S4-S9 provide the free energy diagrams at values of (χN)AB = (χN)B′C from

23 to 28, with χACNAB = 2(χN)AB. In all cases, the blend has a ratio NB′C/NAB = 1.3,

the block fractions are chosen such that fA = fC = 0.20 in neat melts of AB and B′C, and

polymeric segments A, B, and C have identical statistical segment lengths b. All converged

SCFT solutions are plotted. The figures reveal that the Laves phases are the only phases

that are more stable than the bcc-bcc tie line, which is validation that the block copolymer

alloying technique presented in this paper is working successfully. Figure 5 of the main text

summarizes the most important results obtained from these figures, highlighting only the

most stable phases.

S3.1 A note on convergence issues

Before showing the figures, it is important to comment on the candidate phases that pre-

sented SCFT convergence challenges in our diblock/diblock blend, specifically α-Al2O3,

TiO2, and ReO3. In certain cases, these phases are omitted from the free energy profiles

shown below, because convergence was not achieved. When the phases are included in the

free energy profiles, the converged solutions have the problems described below.

α-Al2O3 and ReO3 presented the same issue: each structure has a large void at the

center of the unit cell, too large for our diblock blend to accommodate. In order to achieve
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a converged SCFT solution, it is necessary for some polymers to be expelled from their

micelles and settle into this void in the center of the unit cell, creating what is, in essence,

another particle that is not part of the original structure. These expelled particles are small,

and they contain a higher B-block volume fraction than the other particles, but they exist

nonetheless and are worth noting. As a result of this problem, ReO3 was particularly difficult

to converge, and it is not shown on most of the figures below.

TiO2 had a slightly different, but related, problem: in order to fill space evenly, all of

the BC micelles need to be stretched into very oblong shapes that are nearly cylindrical in

the middle, which is an unfavorable configuration. This made the phase very difficult to

converge in SCFT.

It is reasonable to expect that these three phases would be especially difficult to converge

in our blend system based on the results found by Xie et al.19 for the B1AB2CB3 architecture.

For that pentablock terpolymer, all three of these phases are stable only in the case of a very

long B3 block (B3 volume fraction of > 0.5). For such a polymer, it is reasonable to expect

that stable structures could have both short interparticle distances (because of a short B2

block) and large voids with no particles (occupied by the very long terminal B3 block). For

our AB/B′C blend, there does not exist an easy way to accommodate large voids like this,

so we predict that these three structures will always be significantly less stable than the

bcc-bcc tie line. Once could certainly construct a diblock copolymer alloy to attempt to

stabilize these phases, but the diblocks in that system would look much different than those

used here. As such, in the cases where convergence issues were encountered, the three phases

discussed above are omitted from the free energy diagrams.
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Table S2: Complete list of phases tested in our AB/B′C diblock copolymer blend, including
relevant information about the structure of the phase and its implementation in canonical
ensemble SCFT. For grand canonical calculations, some grid sizes are different and specified
in Section S1.4.

Structure Alternate 
name 

Particles 
per unit 
cell 

Space 
Group 

Crystal 
System 

SCFT Grid 
Size 

Ratio of 
𝐀𝐁 to 𝐁’𝐂 
particles 

MgZn! C14 12 P63/mmc Hexagonal 64x64x104 2:1 
MgCu! C15 24 Fd33m Cubic 96x96x96 2:1 
W bcc 2 Im33m Cubic 48x48x48 0 or 1* 
CsCl alt-bcc 2 Pm33m Cubic 64x64x64 1:1 

Cu fcc 4 Fm33m Cubic 48x48x48 0 or 1* 

Hexagonally 
packed	cylinders hex N/A p6mm Hexagonal 48x48 0 or 1* 

Alternating	 
hexagonally	packed 

cylinders 
alt-hex N/A p6mm Hexagonal 48x48 2:1 

Inverted	alternating 
hexagonally	packed 

cylinders 
(alt-hex)i N/A p6mm Hexagonal 48x48 1:2 

Nb"Sn A15 8 Pm33n Cubic 64x64x64 1:3 
AlB! -- 3 P6/mmm Hexagonal 64x64x64 2:1 

α-Al!O" sapphire 10 R33c Trigonal 64x64x64 3:2 

α-BN -- 4 P63/mmc Hexagonal 48x48x64 1:1 

CaF! -- 12 Fm33m Cubic 64x64x64 2:1 
Li"Bi -- 16 Fm33m Cubic 64x64x64 3:1 

Inverted	Li"Bi -- 16 Fm33m Cubic 64x64x64 1:3 
NaCl rocksalt 8 Fm33m Cubic 64x64x64 1:1 

ReO" -- 4 Pm33m Cubic 64x64x64 3:1 

σ-FeCr σ 30 P42/mnm Tetragonal 128x128x64 1:2** 

TiO! -- 6 P42/mnm Tetragonal 64x64x42 1:2 

ZnS -- 8 F433m Cubic 64x64x64 1:1 
 

*This structure does not have any particles of the minority species. The minority species thus 
occupies space in the interstitial sites only.  
 

**This structure is not a two-atom crystal, so the choice of which particles to assign as AB diblocks 
is not obvious. The ratio given here, and used in our calculations, is chosen by identifying the 
largest gap in the particle size distribution from the unconstrained diblock foam model of Reddy 
et al. (18), which is between the 8i and 8j Wyckoff positions. 
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Figure S4: Free energy per chain of length NAB relative to the bcc-bcc tie line for an AB/B′C
blend of diblock copolymers, plotted as a function of the volume fraction of the AB diblock
copolymer in the blend, φAB, for fA = fC = 0.2 and NB′C/NAB = 1.3. The segregation
strengths are defined such that (χN)AB = (χN)B′C = 28 and χACNAB = 56. The phases
fccAB, fccB′C, and C15 are largely not visible because they are plotted underneath bccAB,
bccB′C, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energies of dis, α-BN, and ZnS are not visible
because they are off of the top of the plot.
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Figure S5: Identical to Figure S4, but with (χN)AB = (χN)B′C = 27 and χACNAB = 54.
fccAB, fccB′C, and C15 are largely not visible because they are plotted underneath bccAB,
bccB′C, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.

Figure S6: Identical to Figure S4, but with (χN)AB = (χN)B′C = 26 and χACNAB = 52.
fccAB, fccB′C, and C15 are largely not visible because they are plotted underneath bccAB,
bccB′C, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.
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Figure S7: Identical to Figure S4, but with (χN)AB = (χN)B′C = 25 and χACNAB = 50.
fccAB, fccB′C, and C15 are largely not visible because they are plotted underneath bccAB,
bccB′C, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.

Figure S8: Identical to Figure S4, but with (χN)AB = (χN)B′C = 24 and χACNAB = 48,
and set relative to the fcc-fcc tie line instead of bcc-bcc. bccAB, bccB′C, and C15 are largely
not visible because they are plotted underneath fccAB, fccB′C, and C14, respectively; in these
overlapping instances, the phase that is plotted in front is the more stable of the two.
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Figure S9: Identical to Figure S4, but with (χN)AB = (χN)B′C = 23 and χACNAB = 46,
and set relative to the fcc-fcc tie line instead of bcc-bcc. bccAB, bccB′C, and C15 are largely
not visible because they are plotted underneath fccAB, fccB′C, and C14, respectively; in these
overlapping instances, the phase that is plotted in front is the more stable of the two.
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S3.2 Comparison of C14 and C15 free energies

Figure S10 summarizes the results for the C14 and C15 Laves phases over all of the conditions

in Figs. S4-S9; owing to their near degeneracy, these two phases cannot be distinguished

easily with the free energy scale used to display the results for all candidate phases. In all

cases, the C14 phase is slightly more stable than the C15 phases in the mean-field limit.

The difference is quite small in all cases, so the effects of fluctuations or dispersity in a real

polymer system may be enough to stabilize C15 instead, and we prefer herein to refer to

Laves phases as a degenerate set of phases for our intents and purposes. Interestingly, the two

Laves phases become completely degenerate at about φAB = 0.475 at every temperature, but

C15 never becomes more stable, which seems to be a result that occurs because of the similar

symmetries of the structures. As our previous study shows,20 the packing structure much

more directly affects the free energy of a soft matter system than an analogous hard matter

(metal alloy) system, so it makes sense that two very similar structures have a composition

at which they are perfectly degenerate under all conditions in our polymer alloy.

Figure S10: Free energy diagram showing the difference in free energy between the C15
and C14 phases for the system of Fig. 5 and Fig. 6 in the main text, as a function of
the volume fraction of the AB diblock φAB. Data are shown at segregation strengths from
(χN)AB = (χN)B′C = 23 to 28 with χACNAB = 2 (χN)AB.
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S4 Construction of the phase diagram

Here, we present the details of the construction of the phase diagram shown in Figure 6 of the

main text. Grand canonical SCFT calculations were used to determine the compositions in

two-phase equilibrium with the disordered state (for (χN)AB = (χN)B′C ≤ 22.05), because

the common tangent lines became so steep so quickly that the error in compositions became

large using the common tangent construction. At (χN)AB = 22.05, grand canonical SCFT

gave the same compositions as the common tangent construction to within 0.001, so we used

the common tangent construction for the remainder of the phase diagram. When tempera-

ture is sufficiently low to reach the onset of the Laves phase (for (χN)AB = (χN)B′C ≈ 24.6),

the difference between the results given by the two methods was less than 4 × 10−5 (Table

S1), demonstrating that our methodologies are sound since they agree.

The figures in this section more closely explore the details of the phase diagram, and

portray it in two different ways. First, in Figure S11, we show an alternate version of the

phase diagram in which we have placed a dot at every point for which we have obtained SCFT

data, to demonstrate that our data are sufficiently resolved that the spline interpolations

used for Fig. 6 in the main text do not introduce any spurious artifacts. Owing the density of

points required to resolve the phase boundary for disorder and bcc-fcc order-order transitions,

we feel that the version appearing in Fig. 6 is the more effective presentation. Second, an

alternate version of the phase diagram is provided in Figure S12 which is plotted with

(χN)AB = (χN)B′C as the main variable on the y-axis, with T/T0 shown on the right hand

axis. This is essentially just an inverted version of Fig. 6 of the main text, and conforms

more closely to the typical theoretical representation of SCFT phase diagrams in terms of

the Flory-Huggins parameters.
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Figure S11: Identical to Figure 6 of the main text, but with a dot placed at each point
for which we have obtained data. The lines are interpolated between data points using a
third-order spline.
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Figure S12: Identical to Figure 6 of the main text, but with the left and right y-axes switched.
Here, it is plotted in terms of (χN)AB = (χN)B′C, with T/T0 plotted on the right hand y-axis.
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