Laves phase field in a diblock copolymer alloy
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Abstract

Laves phases are a class of tetrahedrally close-packed Frank Kasper phases with AB»
stoichiometry. While these phases appear as intermetallic line compounds in a variety
of metallic alloys, it is challenging to stabilize Laves phases in reconfigurable soft matter
owing to the substantial difference in preferred volume between the large A particles
and small B particles. Surprisingly, perhaps the conceptually simplest approach —
blending two diblocks with incompatible core blocks — has not been explored yet.
Using self-consistent field theory, we predict that a Laves phase should emerge as a
phase field in the eutectic phase diagram of an AB/B’C diblock copolymer blend if (i)
the AB and B’C diblock copolymers are selected such that their neat melts produce bee

phases with the particle volume ratio of the desired Laves phase and (ii) the repulsion
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between A and C blocks is sufficiently strong to minimize mixing between micelles. This
diblock “alloying” approach produces phase behavior that closely mimics that arising in
intermetallic compound-producing metal alloys, and should provide a relatively simple
synthetic route to produce soft Frank-Kasper phases that are challenging to achieve by

conventional polymer-based approaches.

Introduction

Binary metallic alloys exhibit a wide range of phase behavior, including liquids, solid solu-
tions, and two- and three-phase equilibrium. Of particular interest are intermetallic com-
pounds, which have distinct stoichiometries® and thus differ qualitatively from the continu-
ously varying compositions exhibited by solid solutions. In the ideal case, an intermetallic
compound appears in the phase diagram as a line compound at the composition corre-
sponding to its stoichiometry; non-ideal systems can produce a narrow composition window
known as a phase field.? Laves phases are one important class of intermetallic compounds,
exemplified by the C14 and C15 phases illustrated in Fig. 1a. Laves phases are a subset of
tetrahedrally close-packed Frank-Kasper phases®* with an AB, stoichiometry. The smaller,
12-fold coordinated B particles are arranged on a 2D Kagome net layered with a triangulated
net of the larger, 16-fold coordinated A particles, another triangulated net of B particles,
and a third of A particles.* This complexity contrasts sharply with a body-centered cubic
(bce) phase, for example, which contains two identical particles per conventional unit cell
(Fig. 1b). Owing to their ability to accommodate two differently sized atoms, Laves phases
are the largest group of intermetallic compounds, with the canonical examples being MgZn,
(C14), MgCu, (C15), and MgNi,y (C36).°

Packing on lattices is also observed when flexible, compositionally asymmetric diblock
copolymers, which aggregate into micellar particles, are cooled below the order-disorder
transition. In contrast to metal alloys, where the ordered state symmetry is governed by a

combination of atomic packing and electronic interactions, the thermodynamics governing
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Figure 1: Schematic of the (a) C14 (MgZns) and C15 (MgCusy) Laves phases and (b) bcc
phase. For the Laves phases, the larger A particles are red, and the smaller B particles are
blue. Created using a modification of the program provided in Ref. 6.

the phase behavior of block polymer melts is markedly simpler. Here, the selection of the
ordered state is governed by a competition between chain stretching and interfacial tension
subject to the constraint of constant density, and thus exposes the geometric role of parti-
cle packing on the selection of ordered state symmetry. While bce is the most commonly
observed particle packing in block polymer melts, various Frank-Kasper phases have been
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observed as well,” 22 consistent with their emergence in other forms of soft matter.
ever, Laves phases are much less commonly observed in diblock copolymer melts!” 2?2 than
other Frank-Kasper phases, and theory predicts that only the C14 and C15 Laves phases are
likely to be stable.?? Moreover, the Laves phases seen to date appear in block polymer phase
diagrams as stability windows rather than the line compounds that emerge for intermetal-
lic compounds. In the present contribution, we describe an approach, inspired by metallic
alloys and supported by self-consistent field theory (SCFT) calculations, that promotes the
formation of block copolymer Laves phases as a phase field (i.e., a non-ideal line compound)
within a eutectic phase diagram that closely mimics that observed for metal alloys.

To understand the need for our approach, it is useful to recall first existing methods to pro-
duce Laves phases in diblock copolymers. Theory predicts that Laves phases are metastable
in neat melts, owing to the entropically unfavorable chain stretching needed to accommodate
the particle volume asymmetry of the structures.'”'® However, for neat block copolymers

melts, Laves phases have been formed via thermal processing routes!” 1922 that presumably

leverage the intrinsic distribution of micelle volumes in the liquid-like packing state, which



emerges upon deep cooling, to promote subsequent ordering into a Laves phase after reheat-
ing. These are inherently non-equilibrium processes whose molecular mechanisms are not
well understood.?? Laves phases have also been observed as equilibrium states in diblock

8,20 where the nonuniform loading of homopolymer into the

copolymer /homopolymer blends,
micelle core allows the system to accommodate the particle volume asymmetry. While the
underlying molecular mechanism for Frank-Kasper phase formation in these blends appears
to be understood ?*34%5 and the resulting Laves phases are equilibrium states, blending with
homopolymers is not a particularly robust approach due to macrophase separation as the
homopolymer volume fraction increases, and it is not obvious how to target a particular
Frank-Kasper phase. Finally, C14 has been observed in AB/A’B blends,?! where the prime
denotes a different degree of polymerization. Relying on SCFT, several molecular mecha-
nisms have been proposed for stabilizing Laves phases in AB/A’B systems including domain
segregation®® and delocalization of the smaller chains from the interface.?! However, much
of the Laves phase region predicted by SCFT for one AB/A’B blend was not realized exper-
imentally.?! Moreover, the domain segregation mechanism,?” which is a powerful approach
to produce Frank-Kasper phases in blends,'® tends to favor forming interfaces of different
curvature but does not necessarily promote volume asymmetry. Thus, we were interested in
whether we could develop a more general approach for block polymers that would provide

a rational route to design systems that will favor the formation of Laves phases and thus

provide a soft matter equivalent to phase diagrams for alloys that form intermetallic phases.

Methods

Figure 2 illustrates our approach based on using an AB/B’C blend. A literature on such
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blends has accumulated gradually over the past three decades, much of it focused on the

competition between microphase and macrophase separation using experiments coupled to
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random-phase approximation (RPA) calculations of spinodal lines, creating composite
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Figure 2: Principle of the block polymer alloying method to stabilize Laves phases. By
selecting yac to be sufficiently high, a blend of compositionally asymmetric AB and B’'C
diblock copolymers will produce two different micellar particle sizes. The degrees of poly-
merization Nag < Np/¢ are selected such that the particles formed in their respective neat
bce melts correspond to the volume asymmetry of the Laves phase. When mixed with ap-
proximately the 2:1 stoichiometry, the Laves phase is predicted to emerge. The enclosing
polyhedra correspond to the Voronoi construct and were created using the program provided
in Ref. 6.

continuous phases for nanoporous materials when the A and C blocks are miscible,* ™ or

promoting the formation of unconventional morphologies.®®®® To produce a Laves phase in
the AB/B/C system, we first selected the volume fraction fs of the A-block to be small,
which will produce micellar particles provided the segregation strength xagNag is above the
order-disorder transition value, where yap is the Flory-Huggins parameter between blocks A
and B and Njp is the degree of polymerization of the AB polymer. For notational simplicity
going forward, let us denote the segregation strength between blocks 7 and j in a chain of
size N in the compact form (xN);;. We further select fc and (xN)g/c to promote formation
of micelles in B'C as well. To produce two distinct particle sizes, we require Nap < Np¢
and that yac be sufficiently large to suppress mixing of the AB polymers in the B’C micelles
and vice versa.?® We then anticipate the system will order into a Laves phase if (i) the
blend volume fractions ¢ap and ¢p:c = 1 — ¢ap produce particles at approximately a 2:1
stoichiometry and (ii) the choices for Nap and Np/¢ lead to micelles with the Laves volume
asymmetry.

With these general principles in mind, we describe how to implement this strategy in



practice. This initial communication focuses on a relatively simple system. First, we set
the statistical segment lengths for each block to the same value b, removing the effect of
conformational asymmetry that, on its own, tends to aid Frank-Kasper phase formation.*
Second, we designed our system around the bee particles formed at (YN)ag = (xV)gc = 25,
with xacNag = 50 to suppress the mixing of micelles. From the classic SCFT results for
conformationally symmetric diblock copolymers,®® the choice fo = fc = 0.2 is inside the
bee region of the phase diagram for neat melts at YN = 25. The bcc system has two
particles in a unit-cell volume that scales as N3/2 for a fixed yN and minority block volume
fraction. Thus, if we desire a ratio « between the particle volumes for (yN)ap = (xN)pc
and fa = fc, we should select Np//Nap = a?/3, where we have chosen arbitrarily that B'C
form the larger particles. In this model, the Laves phase should appear at ¢gp ~ 2/(2 + a).

To investigate the feasibility of this approach, we have studied the block polymer alloy
using SCF'T for a Gaussian chain model. All calculations were performed using the open-
source Polymer Self Consistent Field (PSCF) software package in either canonical and grand
canonical ensembles.?® Canonical ensemble calculations employed the original Fortran
version of this program®” while the grand canonical ensemble calculations used the C-++
version.?* Additional information on these calculations and the approach to compute the

phase equilibria are provided in the Supporting Information.

Results

The precise volume asymmetry « is not known, so we used canonical ensemble SCFT cal-
culations in the PSCF software package®’ to compute the free energies of the AB-rich bcc
phase, the B'C-rich bce phase, and the C15 Laves phase as a function of the volume fraction
¢ap of the AB block polymer in the blend for Np/c/Nag = 1 to Np.¢/Nap = 1.5 with the
aforementioned segregation strengths. These bee phases are comprised of micelles of the ma-

jority component at the lattice sites, with the minority component at the interstitial sites.
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Figure 3: Free energy per chain of size Nag of the C15 Laves phase relative to the free energy
of a macrophase separated mixture of AB-rich bce and B/C-rich bee as a function of the
relative degree of polymerization of the AB and B’C polymers for (xN)ap = (xV)pc = 25,
xacNag = 50, and fo = fc = 0.2. The data points correspond to the minimum of the
free energy difference. The inset provides an example of the underlying free energy diagram
versus volume fraction of AB and the double-tangent construction for the polymerization
ratio Np:c/Nap = 1.3. The corresponding data for other values of Np/c/Nap are provided
as Fig. S2.

The choice of C15 (versus C14) for the present purposes is arbitrary as these two phases are

k, 17183259 and that proves to be the

nearly degenerate in free energy as shown in prior wor
case here too (Fig. S10).

The inset of Fig. 3 provides an exemplary result obtained for Ng//Nap = 1.3, illustrating
the free energy per chain of length Nap as a function of the volume fraction ¢ap in the
melt. Companion data for other values of Np/c/Nap are provided in Fig. S2. Owing to the
different sizes of the AB and B’C polymers, the bee-bece tie lines are tilted for Nag < Npc
because it is harder for the larger B'C polymers to fit in the interstitial sites of the AB-
rich bee phase (Fig. 4a) than vice versa. The double-tangent construction for the bee-bec
equilibrium is indicated, and the C15 phase appears to be almost co-tangent to this line
at the scale of this inset. For visualization purposes, it is easier to subtract this tie line
from the free energy (see Fig. S3). The inset of Fig. 3 and the relevant panel of Fig. S3

indicate that a narrow window of Laves phase stability should exist at ¢ p =~ 0.538. This

value is reasonably close to the value ¢pap = 0.577 predicted from mixing bce-type particles
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Figure 4: Density profiles for the [110] planes of (a) AB-rich bee phase at ¢ap = 0.87 and
(b) C15 phase for ¢gop = 0.54 for the conditions in the inset of Fig. 3. In panel (a), note
that the density field pc for bee runs from 3.70% to 4.05% so that the impurity can be seen.
For panel (b), the distortion of the smaller (blue) AB-rich C15 particles is evident from the
shape of the A/B interface. The ratio of unit cell lattice parameters is ac15/apec = 2.429 but
the figures have been drawn using the same unit cell size; when drawn to scale, the bce and
C15 particles are approximately the same size.

illustrated in Fig. 2. Naturally, the system must make some adjustments to both the particle
shapes and aggregation numbers when forming C15, and we would not expect the bee-based
model to predict precisely the location of ¢ap for the Laves phase window. This distortion
of the particles in the C15 packing can be understood by comparing the A/B interface for
the bee phase (Fig. 4a), which is essentially spherical, ®¢! to that in the C15 phase (Fig. 4b),
where the (blue) AB-rich particles are distorted and the resulting A /B interface is ellipsoidal.
Interestingly, the larger (red) B’C-rich particles in C15 retain the spherical B/C interface that
they would exhibit in the bce state. The ability of the micellar particles to exchange mass
and reconfigure their shapes is an intrinsic feature of soft matter that differs from packing
of hard spheres or atomic packing, and is very relevant to the stability of Frank-Kasper
phases. 5

The main panel of Fig. 3 summarizes the double-tangent construction results as a function
of the ratio Np/c/Nap. When the two polymers have the same degree of polymerization,
the system favors the formation of equal sized particles and the Laves phase has its highest
free energy relative to the bee-bee coexistence. Interestingly, the data for Ngio/Nap = 1.15,

which corresponds approximately to the volume asymmetry o = 1.23 predicted for C15

from the Voronoi cell construction,®® indicate a metastable Laves phase. In contrast, the



E 4 x10~3

c

~

£ 37 AIB;
£ —— Al5
Lol

5 —=— LisBi
g’ —— alt-bcc
1] (Li3Bi);
c ——

5 o

13 C15
£

s Cl4
o

1

L

T T
23 24 25 26 27 28
(XN)ag = (XN)sc

Figure 5: Comparison of the lowest free energy phases relative to the macrophase separation
(bee or fce common tangent) as a function of the segregation strength where xacNap =
2 (XN) g for Ngio/Nag = 1.3 and fa = fc = 0.2. The data correspond, in order of ascending
free energy at (xN)ap = 28, to C14 (solid green circles), C15 (open light green circles), o
(solid brown diamonds), inverted LizBi (solid light purple squares), alternating bce (solid
red-brown triangles), A15 (cyan x), Li3Bi (open purple squares), and AlB, (open orange
diamonds). For o, which has five different particle volumes, the AB-chains are primarily
located in the 2a and 8i Wyckoff positions. The free energy data for all competing phases
as a function of ¢ap at each value of (xN)ap appear in Figs. S4-S9.

ratio Npic/Nap = 1.3, which produces a volume ratio @ = 1.48 that is similar to what
was obtained® for C15 from the unconstrained diblock foam model, appears to be the
optimal degree of polymerization ratio. The robustness of the diblock foam model volume
asymmetry % relative to the Voronoi construction here is consistent with recent criticisms of
the Voronoi construction for Frank-Kasper phases.%? Further increasing Np/c /Nag leads to
increasing free energy of the C15 phase relative to bce-bece coexistence until the Laves phase
again becomes metastable. Based on these results, we selected the ratio Np.¢/Nap = 1.3
(or, equivalently, o = 1.48) as the system for further investigation.

While demonstrating that the Laves phase has a region of stability that would interrupt
the bee/bee two-phase equilibrium, we also need to demonstrate that these are the only
stable morphologies. To this end, we performed canonical ensemble SCF'T calculations for 20
possible candidate phases (Table S2) that could plausibly produce crystals with two different
particle sizes, inspired by the analysis of Shi and coworkers in the context of B;AB;CBj3

pentablock terpolymers. % Notably, this list of candidate phases includes C14 as a competing



Laves phase, as well as face-centered cubic (fcc) systems which, as expected,®® proved to be
stable at low segregation strengths and sufficiently high concentrations of minority species.
These calculations were performed at different temperatures 1" by assuming that the Flory-
Huggins parameter is purely enthalpic, i.e. where x;; = A;;Ty/T with A;; being a constant
and Ty a reference temperature. Continuing with the base case used in Fig. 3, this model
corresponds to Axg = 25, Agc = 19.23 and Axc = 50.

Representative results for the free energies of all of the candidate phases in Table S2
for several values of T'/T} are provided in Figs. S4-S9, with Fig. 5 providing a concise sum-
mary of the key results for the most stable phases. The Laves phase is the only state that
outcompetes AB-rich or B'C-rich bec or fee at lower temperatures. However, at higher tem-
peratures, the Laves phase becomes metastable because it becomes increasingly facile for the
impurities to reside in the B-rich interstitial sites of bee (or fec) as xap and xpc decrease,
providing a favorable entropy of mixing without a substantial enthalpic cost. Moreover,
these calculations revealed that C14 is the stable Laves phase but that it is nearly degener-
ate with C15, with a free energy difference of approximately 10=%kgT per chain of size Nap
(Fig. S10). This near-degeneracy between C14 and C15 is expected from prior work. 17183259
Ultimately, distinguishing between these two very similar Laves phase particle packings is of
little relevance in practice because fluctuation effects'? and uncertainties in the experimental
data (polydispersity, precision in measuring the degree of polymerization, mapping multiple

6465) make it challenging to translate such subtle SCFT predic-

X parameters to experiments
tions into experimental realizations. For this reason, we will simply refer to the stable state
as the “Laves” phase in what follows, with the understanding that SCFT predicts C14 but
it is very plausible that C15 could be realized in practice.

To complete our analysis of this AB/B’C system, Fig. 6a provides the phase diagram as a
function of temperature. Most of this figure was produced from double-tangent constructions
of the canonical ensemble data presented thus far, but the more challenging regions of the

56,58

phase diagram were computed from grand canonical ensemble calculations using the
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Figure 6: (a) Phase diagram for the AB/B’C blend for Np¢/Nag = 1.3, with (xN)ap =
(xN)pc and fa = fc = 0.2. The reference temperature Tg corresponds to (xV)ap = 25 and
xacNag = 50; data at other temperatures were obtained by assuming y is purely enthalpic,
i.e. xacNag = 2(xNV),p- The state points used to compute this diagram are provided in
Fig. S11, and an alternate view in terms of increasing x values is provided in Fig. S12. (b)
The details of the Laves phase field, which occupies an extremely narrow range in ¢ap at all
temperatures examined here.

C++ version of PSCF;% see Fig. S1 for a comparison between methods. At the resolution
of Fig. 6a, the Laves phase is effectively a line compound but, owing to the finite width
illustrated by Fig. 6b, is denoted a phase field.? The emergence of a phase field, rather than
a line compound, would be expected from the ability of block polymer micelles to exchange
mass, which prevents their particles from adopting the fixed stoichiometry seen in metallic
line compounds. Interestingly, the Laves phase field terminates before the eutectic as a result
of the aforementioned ability of the impurities to more easily occupy the interstitial sites in
bee (see Fig. 4a) or fcc as the A/B and B/C repulsion is decreased. There is a significant
asymmetry to the diagram due to the ratio of Nag to Np/¢, in particular near the eutectic

point. In practice, however, we anticipate that fluctuations will cut off the upper part of the

11



phase diagram owing to the finite molecular weight polymers used in experiments.

Discussion

The results presented in this initial communication demonstrate the potential for alloying
block polymers to stabilize volume-asymmetric particle packings, in this case for the C14
Laves phase, and to produce phase diagrams that closely mimic those occurring with metallic
alloys. We posit that making this connection represents an important advance towards our
overarching goal of understanding the similarities between Frank-Kasper phase formation in
soft matter and metallic alloys.?? In addition to its conceptual simplicity, the block polymer
alloying approach that we have considered here has significant advantages in practice. SCFT
has predicted many intriguing particle packing morphologies using multiblock polymers and
nonlinear architectures.%*%"" One could envision, for example, how the B;AB,CB3 system
proposed previously to mimic metallic crystal structures® might be designed to produce a
polymeric packing with a Laves phase volume asymmetry. While one-component systems
are attractive because they avoid the complication of macroscopic phase separation, synthe-
sizing these materials is not trivial, "' ™ especially if the predicted stability region occupies a
narrow range in composition. Moreover, the ordering kinetics of multiblock polymers can be
prohibitively slow.”™ By comparison, diblock copolymers are easily prepared using a variety
of synthetic approaches (e.g., anionic, controlled free radical, and ring opening metathesis
polymerization), opening up a significantly wider range of chemistries. And the precision
required by our approach is relatively modest; uncertainties in the value of fj or fc can be
compensated by blending at different values of ¢op, a much simpler task than synthesizing
and screening a library of multiblock polymers to identify one that produces a Laves phase.
If we assume that a polymer blend can be prepared with a volume fraction uncertainty of
circa 1%, then applying the lever rule over the two-phase bce + Laves window suggests

that this alloying approach should produce crystals that contain circa 97% Laves phase.
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Moreover, the precise composition required could be identified based on a couple of blending
experiments, assuming the system reaches equilibrium. Finally, in practice, nucleation and
growth of small grains of the minority phase (bcc) is likely to be prohibitively expensive
from a free energy perspective, thereby producing pure Laves phase.

We do not yet know the sensitivity of the initial results presented here to the system
parameters (statistical segment lengths, minority block volume fractions, Flory-Huggins pa-
rameters), but we anticipate that they should be relatively robust given the underlying
principle of producing two particle sizes and blending them at the proper stoichiometry.
Our optimism is also supported by recent experimental results for complex particle phase
formation, including the C14 Laves phase, in binary blends of mesoatoms™"" that rely on
mixing giant molecules of different shapes that then aggregate into different particle types,

and predictions that size dispersity in colloidal systems can stabilize Laves phases.™

Conclusions

We have used SCF'T to establish the feasibility of stabilizing a C14 Laves phase in a diblock
copolymer alloy formed by blending micelle-forming AB and B’C diblock polymers of different
degrees of polymerization that promote the emergence of two distinct micelle sizes. The
resulting phase diagram bears a striking resemblance to those observed in metallic alloys,
with a Laves phase field, a eutectic point, and multiple regions of two-phase equilibria.
While we have focused here on Laves phase formation, it is likely that this alloying approach
will open up routes towards stabilizing other Frank-Kasper phases and other intermetallic-
like packings with particle volume distributions and packings that are difficult to realize in

single-component systems. %
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S1 Self-Consistent Field Theory (SCFT)

This section provides a brief summary of the SCF'T formalism used in this paper for comput-
ing the phase behavior of AB/B’C blends within the Polymer Self-Consistent Field (PSCF)
software package.! The methodology provided below is largely based on the description of
canonical ensemble SCFT in Ref. 2 and the on-line documentation for PSCF.? Additional
information on SCFT, in particular for grand canonical ensemble, was obtained from Refs.

4-6.

S1.1 Polymer model

The polymers are modeled as continuous Gaussian chains comprised of three monomer types,
i = {A, B, C}, that are polymerized into two different block polymers, k = {AB, B'C}. The
AB chain consists of Ny A-monomers and Ng B-monomers for a total degree of polymeriza-
tion Nag = Na + Ng, while the B’C chain consists of Ngs B-monomers and N¢ C-monomers
for a total degree of polymerization Ng¢c = Np/ + N¢. In the model, the monomers are
coarse-grained and occupy the same monomer volume v, such that the volume fraction of
the A-block in the AB chain is fa = Na/Nap and the volume fraction of the C-block in
the B'C chain is fo = Ng/Np¢. The interaction between a monomer of type ¢ and another
monomer of type j # ¢ is given by the Flory-Huggins parameter y;;. For simplicity, we have
assumed that the statistical segment lengths of each polymer are identical and given by b.
The blend has an overall volume fraction ¢ap of the AB chains, with the volume fraction of
B'C chains given by ¢p:c = 1 — ¢ap. The total system is incompressible and consist of n
monomers in a volume V', such that n = V/v. The calculations performed here are unit-cell
SCF'T, where the volume V' in the various integrals that appear below is the unit-cell volume
and the system is assumed to be spatially periodic to produce the macroscopic volume.

In this formalism, there is considerable flexibility in the identification of a “monomer”

since the model is continuous. The monomer simply refers to the amount of a polymer chain

S3



that occupies the volume v and does not need to correspond to a chemical repeat unit.!
Indeed, the standard convention is to use N = 1 for a single-component system, and our
calculations for this blend were performed using Nag = 1 and Np/¢ > Nag. With this
choice, we can also interpret the value of n as the number of chains of length Nxg, which
proves convenient for expressing the free energy per chain, rather than per coarse-grained
monomer.

Conversion from such SCFT calculations to an experimental system requires connecting
the values of x;;, b, and N}, to a particular experimental system by specifying some reference
volume 1o and making appropriate conversions using the segment density and molecular
weights of the blocks. This mapping has been discussed in a straightforward manner by

Sinturel et al.”

S1.2 Statistical weights
The statistical weight of a given species k is computed by solving first a modified diffusion
equation for the forward propagator g(r, s),

e (¥

P 5 V2 — Wi(s) (r)} qx(r, s) (S1)

which is a function of spatial position r and coordinate s along the chain contour. Here,

w;(r) is a spatially-dependent chemical potential field that acts on monomer type ¢ and given

by
wa = xaBps(r) + xacpc(r) +&(r) (S2)
wp = xaBpa(r) + xBepc(r) +£(r) (S3)
we = Xxacpa(r) + xseps(r) +&(r) (S4)

S4



where p;(r) is the number density (local volume fraction) of monomer i, whose computation
will be specified later in Egs. S8-S10. The Lagrange multiplier £(r) is selected to enforce
incompressibility,

pa(r) + pp(r) + po(r) =1 (S5)

For the AB chain, we thus use wy for s € [0, Ny| and wg for s € [Na, Nag]. Equivalently,
the propagator for the B'C chain uses wg for s € [0, Ng/| and wc¢ for s € [N/, Ngi¢]. The
initial condition for the forward propagator is ¢(r,0) = 1.

With the solution for the forward propagator, the partition function for each of the

polymers is computed from

1

Owing to the inhomogeneity of the block polymer, computation of the volume fractions
pr requires a solution for the backwards propagator, q;i(r, s),* which obeys the modified
diffusion equation

| r.s 2
R A R P (57)

subject to the initial condition q,i (r, Ni) = 1. The probability of locating the segment of the
chain contour coordinate s at some position r is proportional to the product ¢(r, s)¢'(r, s).8

Note that the local volume fractions are often denoted by the symbol ¢;(r),? which
requires yet another symbol to define the overall volume fraction in the blend, e.g., ¢. We
prefer here to use the notation p;(r) for the local volume fractions and the standard symbol
¢y, for the overall volume fraction in the blend to avoid the need to use the overbar notation

in the main text figures.
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S1.3 Canonical ensemble

In the canonical ensemble, the volume fraction ¢ap is specified. The volume fractions of the

different monomer types are then computed from®

Na
palr) = ﬁ/ﬂ ds gag(r, 5)ghg (T, 5) (s8)
®AB /NAB ;
PBIE T O Nan dsq r,s)q r,s
B(T) QanNas Jx, AB(T, $)ghp(T, s)
¢BrC NB’d ; q
+m ; sqwo(r, s)gpa(r,s) (S9)
’ NB/C
pc(r) = ﬁ/ dqu/c(r,s)qg/C(r,s) (S10)
Ny

The set of equations S1-S10 needs to be solved self-consistently for a choice of the unit cell
geometry. To provide an initial guess for the chemical potential fields, we use the form-factor
method.?? All canonical calculations were performed using the Anderson Mixing iteration

10-12

algorithm, with an integration step size of ds = 0.01 and an error threshold of 1 x 1075,

The grid spacings for different phases are provided later in Table S2. In obtaining the
self-consistent solution, the unit cell size is also relaxed. '3

Once the self-consistent solution has been obtained in the optimal unit cell, the Helmholtz

free energy per monomer is computed from?

F (bAB ¢AB (bB/C (bB/C 1 /
- ] 1 ] SR D
nkgT Nag ( " 0ns + Noo \ " Owo v | (wapa +wpps +wepc)
1
+V /dr (XABPAPB + XACPAPC + XBCPBPC) (Sl].)

where kg is Boltzmann’s constant and 7' is the absolute temperature. This free energy is
readily converted to a free energy per chain by multiplying by some degree of polymerization
N. For a blend, there are several possibilities and we choose to reference our free energies

to a chain of size Nap.
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S1.4 Grand canonical ensemble

In the grand canonical ensemble, we specify the chemical potentials pap and ppc rather
than the volume fractions ¢ap and ¢p/c. The chemical potentials are related to the volume

fractions by®

exp (];;—'“T) Qr = o (S12)

Since the volume fractions must sum to unity, the chemical potentials are not independent.
We chose, without loss of generality, to set puap = 0 in our calculations.

For the SCF'T solution, the volume fractions are still computed using Eqgs. S8-S10, but
the prefactors ¢y /Qy are replaced by exp(uy/kgT) following Eq. S12. The problem requires
again obtaining a self-consistent solution for Eqs. S1-S10 in an optimal unit cell. In the grand
canonical calculations, the modified diffusion Eqs. S1 and S7 were solved using an Anderson

1214 optimizing the unit-cell sizes with stress relaxation, with an integration

mixing scheme,
step of ds = 0.01 for the chain contour and an error threshold of 1 x 107°. The grand
canonical calculations were only used here to refine the phase diagram data in Figure 6 and
were thus performed for C14, C15, fcc and bee phases using the canonical ensemble solutions
as initial guesses for the fields. The grid sizes used for the fcc and C15 phases are same as
the canonical ensemble calculations as listed later in Table S2, and we used 96 x 96 x 96 for
the bee phase and 96 x 96 x 156 for the C14 phase when finding the onset value of (xN)ap
for the C14 phase out to two decimal points. The output of the grand canonical ensemble

calculation are the blend volume fractions ¢ap and ¢p/c, obtained from Eq. S12; and the

grand canonical free energy

F,=-PV (S13)

where P is the system pressure. The grand canonical free energy is related to the Helmholtz
free energy by®

Fg =F— NABUAB — NB/CUB/C (814)
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where ny is the number of chains of type k in the blend. Using Eq. S13 in Eq. S14 and

noting that ny = ¢xV/(Nyv) = nog/Ng, we have

¢ABMAB §Z5B/C,UB/C)
PV =—F+n + S15
( Nap Nyrc (515)

The pressure can be expressed in a dimensionless form by dividing by nkgT,

Pv F OAB [ HAB opc [ MBC
. |
T ksl | Nap <k:BT) T Noo UipT (516)

These dimensionless forms for the pressure, Helmholtz free energy, and chemical potentials

in Eq. S16 correspond to the outputs of the PSCF code.?

S1.5 Computing two-phase equilibria

Two coexisting phases are in equilibrium if the pressure, temperature, and chemical po-
tentials of each species are equal in both phases. In the canonical ensemble, the system
is incompressible, which implies that the Helmholtz free energy is invariant to the addi-
tion of a constant pressure;® thus, the condition of equal pressure can always be satisfied,
because the pressure in the incompressible canonical ensemble is arbitrary. Specifying the
Flory-Huggins parameters ;; sets the temperature, so satisfying the equal temperature re-
quirement for phase equilibrium is trivial. The condition of equal chemical potential is met
by the common-tangent construction, !¢ illustrated in Fig. Sla in the context of equilibrium
between an AB-rich bee (body-centered cubic) phase and a B’C-rich bee phase, with C15
and disorder (dis) as competing phases. The bce-bee common tangent line was found by
interpolating the free energy data for each phase (collected at increments of 0.005 in ¢ap)
using a third-order spline curve that was forced to pass through each data point exactly.
The Nelder-Mead minimization algorithm was then used to identify the compositions of the
two coexisting bee phases, ¢ and @i, that place F'(¢ly) and FY(¢'5) along a common

tangent line with one another, where phase I and phase II are the AB-rich and B’C-rich becc
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Figure S1: Comparison of (a) canonical and (b) grand canonical calculations for AB-rich bcc,
B'C-rich bee and C15 at (yN)ap = (xN)pc = 24.75 and xacNap = 49.5. The canonical
ensemble data were obtained at increments of 0.005 in ¢ap and the grand canonical data
were obtained at increments of 5 x 1075 in puprc/kgT with pag = 0.

phases, respectively.

The approach for the grand canonical ensemble follows the method of Matsen,* noting
that the equal temperature requirement is met by using the same Flory-Huggins parameters
in each phase as was done for the canonical ensemble. Here, the chemical potential is provided
as the input to the system, and the output is the system pressure from Eq. S16. To determine
the equilibrium point, we use the degree of freedom in the chemical potential (Eq. S12) to
first set uap = 0, which automatically satisfies the equal chemical potential for the AB chain
between the two phases. We then performed SCFT calculations at increments of 5 x 1075
in pupc/kgT to determine the point where the curves for P(up/c) intersect, which is the
condition at which the remaining criteria for phase equilibrium (equal pressure and equal
chemical potential for the B’C chain) are satisfied. Here, no interpolation was performed;
with such small increments of up/c/kgT, the compositions of each phase changed very little
for each step, so the equilibrium compositions that we use are taken directly from the SCFT
output at the value of upc/kgT closest to the intersection point. Figure S1b illustrates this
calculation for bee-bece equilibrium with C15 as a competing phase.

Figure S1 demonstrates the very good agreement between these two complementary

approaches at (xN)ap = (xN)pc = 24.75 and xacNap = 49.5, which is the point where
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Table S1: Comparison of the volume fractions obtained from the data in Fig. S1.

Ensemble OB (bCCB’C) OB (015) OB (bCCAB)
Grand Canonical 0.161571 0.538207 0.863033
Canonical 0.161554 0.538169 0.863038

the C15 phase window effectively vanishes. The values of ¢ap corresponding to the AB-rich
bee phase, the B'C-rich bee phase, and the values of ¢ap where C15 exists were determined
by the common tangent method and by grand-canonical SCF'T. Table S1 indicates that the
results differed by less than 4 x 1075, demonstrating that either method will give the same
results for two-phase equilibrium between ordered phases, even for this relatively challenging
state point.

The grand canonical approach is generally preferred for computing phase behavior be-
cause it provides superior accuracy;? relatively large changes in the chemical potential pro-
duce small changes in the volume fractions, allowing one to precisely locate the equilibrium
points using data similar to Fig. S1b. However, when there are many candidate phases,
which is the case discussed in Section S3, it proves convenient to first use canonical ensemble
calculations to identify the phase(s) of lowest free energy for subsequent grand canonical
calculations. As suggested by Fig. S1, these canonical ensemble calculations were sufficient
to resolve the phase behavior for ordered states in almost all cases. The main exception
was the region close to the termination of the Laves phase window, where we used grand
canonical SCFT to provide more detail for that point than can be achieved with canonical
SCFT alone. However, our method for finding the common tangent also proved to be less
reliable for finding two-phase equilibrium between an ordered state and the disordered state
because the common tangent line was often very steep, and we used grand canonical SCF'T
for all such cases.

It is also worthwhile to recall a key point about the pressure and chemical potential

3,6

produced from canonical ensemble calculations,”® since this can be a source of confusion

from the PSCF output. The dimensionless pressure in Eq. S16 and the chemical potential
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in Eq. S12, while defined here in the discussion of the grand canonical ensemble, are com-
putable from the canonical ensemble as well, and these quantities are output as part of the
canonical ensemble calculation in PSCF. However, the Lagrange multiplier £(r) in the canon-
ical ensemble is only defined to within an arbitrary, additive constant and the Helmholtz
free energy is independent of this choice.®® The PSCF software uses the convention that
the spatial average of £(r) is zero,® rather than establishing the true pressure that would
be associated with the given volume fraction ¢g. As a result, the chemical potentials and

pressures output from the canonical ensemble cannot be used to establish phase equilibria.

S2 Selecting an optimal ratio Np/Nap

As discussed in the main text, it is not immediately apparent what the ideal ratio of particle
volumes « should be to stabilize a Laves phase in an AB/B’C diblock copolymer blend
according to our “alloying” approach. The Voronoi construction predicts o ~ 1.23,'7 while
the unconstrained diblock foam model predicts a larger value o ~ 1.48,'® corresponding to
polymer length ratios Npc/Nap of about 1.15 and 1.30, respectively.

To answer this question, we performed SCFT calculations using a variety of polymer
length ratios. We first found the Helmholtz free energy curves for an AB-rich bee micelle
packing and a B’C-rich bee packing as a function of AB volume fraction ¢p. From these
free energy curves, the common tangent construction was used to find the free energy of a
two-phase mixture of the two bce phases, which was compared to the free energy of the C15
Laves phase at the relevant compositions.

Figure S2 provides the original double-tangent constructions, analogous to the inset of
Fig. 3 in the main text. In this presentation, it can be challenging to determine whether
the Laves phase is below the tie line. Figure S3 thus provides the same data where the free
energy of the bee-bec tie line, which is the free energy of the macrophase separated system,

has been subtracted. The data in the main panel of Fig. 3 were computed using a third-order
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spline fit to interpolate between data points in Fig. S3 and identify each minimum value for

C15 precisely.
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Figure S2: Free energy per chain of length Nap for the AB/B’C blend at different values of
Ngp//Nag, plotted as a function of the volume fraction of the AB diblock copolymer in the
blend, ¢ap, for fa = fc = 0.2, (xV)ap = (xV)p'c = 25 and xacNap = 50. In all panels,
the phases are, from left-to-right, B’C-rich bee (red), C15 (green) and AB-rich bee (blue)
and these phases are labeled in the first panel. The bce-bee common tangent line is shown
as a black dashed line, and the points of tangency are indicated with black dots. The data
for Ngic/Nag = 1.3 appear in the inset of Fig. 3 of the main text.
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Figure S3: Same as Fig. S2 but with the common tangent, i.e., the free energy of the bcc-
bce macrophase separated system, subtracted from the data. The result for the symmetric
system Npo/Nap = 1.0 is identical to the panel appearing in Fig. S2 and not reproduced in

this figure.
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S3 Free energies of different candidate phases

In order to be certain that our diblock copolymer alloying technique has truly stabilized the
Laves phase, it is necessary to compute the free energy profiles of other candidate phases that
may be stable in such a system. In Table S2, we provide information about each candidate
phase that we considered, the majority of which are taken from the list of two-atom crystals
that Xie et al.' predict will be stable phases in a pentablock terpolymer system B; AB,CBs.
For each phase, the table includes additional information about the crystal structure and its
implementation in SCFT.

Figures S4-S9 provide the free energy diagrams at values of (yN)ap = (xN)p¢ from
23 to 28, with xacNap = 2(xN)ap. In all cases, the blend has a ratio Np.¢/Nap = 1.3,
the block fractions are chosen such that fo = fc = 0.20 in neat melts of AB and B’C, and
polymeric segments A, B, and C have identical statistical segment lengths b. All converged
SCFT solutions are plotted. The figures reveal that the Laves phases are the only phases
that are more stable than the bce-bece tie line, which is validation that the block copolymer
alloying technique presented in this paper is working successfully. Figure 5 of the main text
summarizes the most important results obtained from these figures, highlighting only the

most stable phases.

S3.1 A note on convergence issues

Before showing the figures, it is important to comment on the candidate phases that pre-
sented SCFT convergence challenges in our diblock/diblock blend, specifically a-Al,Os3,
TiO,, and ReOs. In certain cases, these phases are omitted from the free energy profiles
shown below, because convergence was not achieved. When the phases are included in the
free energy profiles, the converged solutions have the problems described below.

a-Al,O3 and ReOj3 presented the same issue: each structure has a large void at the

center of the unit cell, too large for our diblock blend to accommodate. In order to achieve
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a converged SCF'T solution, it is necessary for some polymers to be expelled from their
micelles and settle into this void in the center of the unit cell, creating what is, in essence,
another particle that is not part of the original structure. These expelled particles are small,
and they contain a higher B-block volume fraction than the other particles, but they exist
nonetheless and are worth noting. As a result of this problem, ReO3 was particularly difficult
to converge, and it is not shown on most of the figures below.

TiO5 had a slightly different, but related, problem: in order to fill space evenly, all of
the BC micelles need to be stretched into very oblong shapes that are nearly cylindrical in
the middle, which is an unfavorable configuration. This made the phase very difficult to
converge in SCF'T.

It is reasonable to expect that these three phases would be especially difficult to converge
in our blend system based on the results found by Xie et al.'® for the B;AB,CBj3 architecture.
For that pentablock terpolymer, all three of these phases are stable only in the case of a very
long B3 block (B3 volume fraction of > 0.5). For such a polymer, it is reasonable to expect
that stable structures could have both short interparticle distances (because of a short By
block) and large voids with no particles (occupied by the very long terminal B3 block). For
our AB/B/C blend, there does not exist an easy way to accommodate large voids like this,
so we predict that these three structures will always be significantly less stable than the
bee-bee tie line. Once could certainly construct a diblock copolymer alloy to attempt to
stabilize these phases, but the diblocks in that system would look much different than those
used here. As such, in the cases where convergence issues were encountered, the three phases

discussed above are omitted from the free energy diagrams.
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Table S2: Complete list of phases tested in our AB/B’C diblock copolymer blend, including
relevant information about the structure of the phase and its implementation in canonical
ensemble SCF'T. For grand canonical calculations, some grid sizes are different and specified
in Section S1.4.

Particles . Ratio of
Structure Alternate per unit Space Crystal SCF"l." Grid AB to B'C
name Group System Size .
cell particles
MgZn, Cl4 12 P63/mmc | Hexagonal | 64x64x104 2:1
MgCu, C15 24 Fd3m Cubic 96x96x96 2:1
w bee 2 Im3m Cubic 48x48x48 0orl*
CsCl alt-bce 2 Pm3m Cubic 64x64x64 1:1
Cu fce 4 Fm3m Cubic 48x48x48 0orl*
Hexagonally %
packed cylinders hex N/A p6mm Hexagonal 48x48 Oorl
Alternating
hexagonally packed alt-hex N/A p6émm Hexagonal 48x48 2:1
cylinders
Inverted alternating
hexagonally packed | (alt-hex); N/A p6émm Hexagonal 48x48 1:2
cylinders
Nb;Sn Al5 8 Pm3n Cubic 64x64x64 1:3
AlB, -- 3 P6/mmm | Hexagonal | 64x64x64 2:1
a-Al, 04 sapphire 10 R3c Trigonal 64x64x64 3:2
a-BN -- 4 P63/mmc | Hexagonal | 48x48x64 1:1
CaF, - 12 Fm3m Cubic 64x64x64 2:1
Li;Bi -- 16 Fm3m Cubic 64x64x64 3:1
Inverted Li;Bi -- 16 Fm3m Cubic 64x64x64 1:3
NaCl rocksalt 8 Fm3m Cubic 64x64x64 1:1
ReO4 -- 4 Pm3m Cubic 64x64x64 3:1
o-FeCr o 30 P42/mnm | Tetragonal | 128x128x64 1:2%%*
TiO, -- 6 P42/mnm | Tetragonal | 64x64x42 1:2
ZnS -- 8 F43m Cubic 64x64x64 1:1

*This structure does not have any particles of the minority species. The minority species thus
occupies space in the interstitial sites only.

**This structure is not a two-atom crystal, so the choice of which particles to assign as AB diblocks
1s not obvious. The ratio given here, and used in our calculations, is chosen by identifying the
largest gap in the particle size distribution from the unconstrained diblock foam model of Reddy
et al. (18), which is between the 81 and 8) Wyckoff positions.
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Figure S4: Free energy per chain of length Nap relative to the bee-bec tie line for an AB/B/C
blend of diblock copolymers, plotted as a function of the volume fraction of the AB diblock
copolymer in the blend, ¢ap, for fa = fc = 0.2 and Np¢/Nap = 1.3. The segregation
strengths are defined such that (xN), 5 = (XN)p = 28 and xacNap = 56. The phases
fceap, feepo, and C15 are largely not visible because they are plotted underneath bccyp,
beepie, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energies of dis, a-BN, and ZnS are not visible
because they are off of the top of the plot.
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Figure S5: Identical to Figure S4, but with (xN) 5 = (XN)pe = 27 and xacNap = 54.
fceap, feepio, and C15 are largely not visible because they are plotted underneath bccyg,
beepc, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.
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Figure S6: Identical to Figure S4, but with (xN),5 = (XN)pe = 26 and xacNap = 52.
fceap, feepio, and C15 are largely not visible because they are plotted underneath bccagp,
beepie, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.
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Figure S7: Identical to Figure S4, but with (xN),g =

(XN)B’C = 25 and XACNAB = 50.

fcean, feepo, and C15 are largely not visible because they are plotted underneath bccyg,
beepa, and C14, respectively; in these overlapping instances, the phase that is plotted in
front is the more stable of the two. The free energy of dis is not visible because it is off of
the top of the plot.
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(XN)B/C = 24 and xacNap = 48,

and set relative to the fce-fee tie line instead of bee-bee. becag, beepie, and C15 are largely
not visible because they are plotted underneath fccap, feepic, and C14, respectively; in these
overlapping instances, the phase that is plotted in front is the more stable of the two.
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Figure S9: Identical to Figure 5S4, but with (xV),p = (XN)g.c = 23 and xacNap = 46,
and set relative to the fce-fee tie line instead of bee-bee. beeap, beepie, and C15 are largely
not visible because they are plotted underneath fccag, feepic, and C14, respectively; in these
overlapping instances, the phase that is plotted in front is the more stable of the two.
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S3.2 Comparison of C14 and C15 free energies

Figure S10 summarizes the results for the C14 and C15 Laves phases over all of the conditions
in Figs. S4-S9; owing to their near degeneracy, these two phases cannot be distinguished
easily with the free energy scale used to display the results for all candidate phases. In all
cases, the C14 phase is slightly more stable than the C15 phases in the mean-field limit.
The difference is quite small in all cases, so the effects of fluctuations or dispersity in a real
polymer system may be enough to stabilize C15 instead, and we prefer herein to refer to
Laves phases as a degenerate set of phases for our intents and purposes. Interestingly, the two
Laves phases become completely degenerate at about ¢ = 0.475 at every temperature, but
C15 never becomes more stable, which seems to be a result that occurs because of the similar
symmetries of the structures. As our previous study shows,?° the packing structure much
more directly affects the free energy of a soft matter system than an analogous hard matter
(metal alloy) system, so it makes sense that two very similar structures have a composition

at which they are perfectly degenerate under all conditions in our polymer alloy.
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Figure S10: Free energy diagram showing the difference in free energy between the C15
and C14 phases for the system of Fig. 5 and Fig. 6 in the main text, as a function of
the volume fraction of the AB diblock ¢ap. Data are shown at segregation strengths from
(XN)ap = (XNV) g = 23 to 28 with xacNag = 2 (XN ) o-
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S4 Construction of the phase diagram

Here, we present the details of the construction of the phase diagram shown in Figure 6 of the
main text. Grand canonical SCFT calculations were used to determine the compositions in
two-phase equilibrium with the disordered state (for (xV) g = (XN)pc < 22.05), because
the common tangent lines became so steep so quickly that the error in compositions became
large using the common tangent construction. At (xV),p = 22.05, grand canonical SCFT
gave the same compositions as the common tangent construction to within 0.001, so we used
the common tangent construction for the remainder of the phase diagram. When tempera-
ture is sufficiently low to reach the onset of the Laves phase (for (xN) 5 = (XV) g/ = 24.6),
the difference between the results given by the two methods was less than 4 x 107° (Table
S1), demonstrating that our methodologies are sound since they agree.

The figures in this section more closely explore the details of the phase diagram, and
portray it in two different ways. First, in Figure S11, we show an alternate version of the
phase diagram in which we have placed a dot at every point for which we have obtained SCFT
data, to demonstrate that our data are sufficiently resolved that the spline interpolations
used for Fig. 6 in the main text do not introduce any spurious artifacts. Owing the density of
points required to resolve the phase boundary for disorder and bee-fee order-order transitions,
we feel that the version appearing in Fig. 6 is the more effective presentation. Second, an
alternate version of the phase diagram is provided in Figure S12 which is plotted with
(XN)ap = (XN)p/ as the main variable on the y-axis, with 7/T; shown on the right hand
axis. This is essentially just an inverted version of Fig. 6 of the main text, and conforms
more closely to the typical theoretical representation of SCFT phase diagrams in terms of

the Flory-Huggins parameters.
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Figure S11: Identical to Figure 6 of the main text, but with a dot placed at each point
for which we have obtained data. The lines are interpolated between data points using a

third-order spline.

baB

524



28 =
— 0.9
27 —
bccgc + Laves | Laves + bccpg — 0.95
26 —
it
m
—
< 25— — 1.0
> <]
= -
" bccpc " ¥ bccap =~
K t | -
= 24 — bciB’C bciB’C L o5
5 fCCAB bCCAB .
23 =
fccpc + fccp — 1.1
e fCCB/c fCCAB
— 1.15
dis
21 — 1o
| | | | '
0.0 0.2 0.4 0.6 0.8 1.0

baB

Figure S12: Identical to Figure 6 of the main text, but with the left and right y-axes switched.
Here, it is plotted in terms of (xV) ,p = (XIV) g/, With T'/Tj plotted on the right hand y-axis.
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