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Quasiparticle interference patterns in bilayer graphene with trigonal warping
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We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy descrip-
tion, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities
localized on the A and B sublattices of the first and the second layer, and we obtain closed-form analytical
expressions both in real and Fourier spaces for the oscillatory corrections to the local density of states generated
by the impurities. Finally, we compare our findings with recent experimental and semianalytical 7-matrix results
from Joucken et al. [Nano Lett. 21, 7100 (2021)], and we show that there is a very good agreement between our
findings and the previous results, as well as with the experimental data.
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I. INTRODUCTION

In realistic materials, impurities and defects are ubiquitous
players that often hinder the interpretation of experimental
results when the impurity-associated broadening is larger than
the level spacing. However, certain manifestations of their
presence can be useful to reveal some interesting properties
and to access the parameters of the underlying systems. For
instance, Friedel oscillations in the local density of states
(LDOS) [1], often referred to as “quasiparticle interference
patterns,” allow one to extract the Fermi momentum of the
electrons, as well as to infer the dimension of the system under
consideration. These oscillations arise as a result of impurity
scattering processes and represent interferences between in-
coming and outgoing wave packets.

Quasiparticle interference patterns have been extensively
studied, both theoretically and experimentally, in graphene, be
it single layer or multilayer [2—17]. For instance, it was shown
that in a single-layer graphene sheet, due to the chirality of the
Dirac electrons, the correction to the local density of states in
the presence of impurities decays as 1 /r2 [2,3,6,7], different
from the 1/r behavior prevalent in other more standard two-
dimensional systems [5,6]. However, as was demonstrated in
Ref. [6], the 1/r decay is restored in bilayer graphene. Ex-
perimentally, quasiparticle interference patterns are accessible
via Fourier-transform (FT) scanning tunneling microscopy
[18,19].

It was anticipated theoretically [20-22] and confirmed
experimentally [23-28] that there is a threefold symmet-
ric warping of the bands in bilayer graphene, the so-called
“trigonal warping.” Originating from the interlayer coupling

“vardan.kaladzhyan @phystech.edu

2469-9950/2021/104(23)/235425(13)

235425-1

between nondimer orbitals Al and B2, the latter splits the
Dirac points inherent in graphenelike systems into four Dirac
points, as is shown in Fig. 1 for one of the valleys. Fur-
thermore, as was demonstrated in Refs. [20,22,25-30], the
trigonal warping can have important consequences for the
physical properties of graphitic systems. It is worth noting that
the effect of the trigonal warping observable in experiments is
stronger as one approaches the Dirac points. Finally, note that
some confusion regarding the orientation of the trigonal warp-
ing has been solved both theoretically [31] and experimentally
[24].

In this paper we calculate analytically the quasiparticle
interference patterns in bilayer graphene taking into account
the trigonal warping terms. Using a first-order perturbative
expansion in trigonal warping, and the 7-matrix formalism
[32-37], we find closed analytical expressions for the correc-
tion to the local density of states introduced by four distinct
types of impurities localized at different sublattices and layers
of the bilayer graphene. Our most interesting observations are
that at the energies close to the Dirac points the real-space
oscillations reflect the symmetry of the trigonal warping, and
most saliently, one can extract in a closed analytical form
the values of momenta at which the oscillations occur. By
analyzing our findings both in the real and Fourier space, we
provide a comparison with recent experiments and semiana-
Iytical calculations [24,38], and we show that our results are
in good agreement with the experimental observations.

We proceed as follows: in Sec. II we derive the low-energy
description of bilayer graphene, and in Sec. III we calculate
perturbatively the bare retarded Green’s function of the system
in the real and Fourier space. In Sec. IV we apply the 7 -matrix
formalism to compute the quasiparticle interference patterns
and compare these findings with the experimental results,
leaving the conclusions to Sec. V.

©2021 American Physical Society
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FIG. 1. Equal-energy contours for bilayer graphene in the ab-
sence and in the presence of trigonal warping (left and right panels,
respectively). The corresponding band structures are shown as insets.
In the presence of the trigonal warping the original Dirac point is split
in four, but in our analysis we will consider energies above the point
at which the four Dirac points merge.

II. LOW-ENERGY DESCRIPTION

We start by writing down the simplest lattice model for
bilayer graphene [22,24]. In the basis {y;!, ¥2!, v, v},
where A, B and 1,2 refer to sublattices and layers, respec-
tively, we have

0 —Yof (k) 0 —y3f* (k)
| k) 0 71 0
HB=1 "% 7 (—
—y3f k) 0 —yof* (k) 0
(1)

where we defined f(k) = o/ V3 4 2e7ika/2V3 cog ’%, a=
2.46 A is the lattice constant, the intra- and interlayer hopping
constants are denoted by yp = 3.3 and y; = 0.42 eV, respec-
tively, and the trigonal warping parameter y3 = —0.3 eV. The
sign of the latter stands for the warping orientation.

To derive a low-energy theory, we expand the Hamiltonian
in Eq. (1) around K; = (s%, 0) points, where s = &£ is the
valley index, and we get

V3 .
flk) ~ —7(st — iky)a. @)
To simplify further the calculations, we divide the Hamilto-
nian above by yy~/3/2, thereby rendering it dimensionless,
and we introduce ¢ = ka:

0 sqe"”q 0 y03sqe+i5¢q
= | " 0 Yor 0
v= 0 Y01 0 sge” % |’
Yozsqe "5 0 sqetistq 0
3
where
2H 2]/1 V3
=——, Y= ~0.15, yp3=— = —0.09.
yov/3 Y0+/3 Y0

“

For the sake of simplicity, above we introduced polar coordi-
nates in momentum space, i.e., we replaced ¢ = (qx, gq,) —

FIG. 2. The spectral function at € = 0.018 (equivalent to £ =
47 meV) and the band structure of bilayer graphene (left and right
panels, correspondingly). The red plane on the right panel corre-
sponds exactly to the energy at which we calculate the spectral
function. We set yo; ~ 0.15, yp3 & —0.09, which in dimensionful
units corresponds to y; = 0.42 eV, y3 = —3.3 eV, and we take § =
0.001.

(g, ¢4), where q = /q> +q}2, >0, and ¢, € [0, 27) with

otists — qxEisqgy .

The Hal%iltonian in Eq. (3) provides a low-energy de-
scription for bilayer graphene with trigonal warping. We find
the unperturbed Green’s function as Gy(q, €) = [e — H(g)]™',
and we plot the spectral function —%Imtrgo(q, € +1id) in
Fig. 2. As expected, the latter reflects the trigonal warping of
the bands.

III. PERTURBATIVE CALCULATION OF THE RETARDED
GREEN’S FUNCTION

In what follows we calculate the bare retarded Green’s
function in momentum space and in real space. The former is
easily feasible; however, the latter requires a very complicated
Fourier transform. Therefore, below, we adopt a different
strategy, and we resort to a perturbative approach for both the
momentum-space and real-space calculations.

A. Momentum space

We rewrite the Hamiltonian in Eq. (3) as a sum of H(q),
which is unperturbed by trigonal warping, and V(g), embody-
ing the trigonal warping:

0 sqe” 5% 0 0
Hig) = sqet % 0 Yo1 (3
0 Yot 0 sqe” %
0 0 sgetist 0
Holg)
0 0 0 ypsqet™™d
n 0 0 O 0 . )
0 0 O 0
Yo3sge % 0 0 0
Vig)

Below we calculate the Matsubara Green’s function
G(iw, q) = [iw — H(g)]™" and then perform an analytic
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continuation replacing iw — € + i0™ to recover the retarded
Green’s function G (e, q).

In what follows we will consider that the trigonal warping
term is small with respect to the bandwidth. This is indeed
the case for the values considered here since yp3 = y3/y0 =
—0.09 « 1. Thus we can perform a perturbative expansions
of our results in yp3, and the first-order perturbation theory in
Y03 ylelds

Gliwn, q) = lio — Ho(g) — V(@)™

= [G; (v, 9) = V(@] ~ Goliw, 9) + G (i, q),

where G (iw, ) = Gy(iw, q)V(q)Go(iw, q) is the first-order
correction in yp3. Finally, in momentum space we have

o @) @ @
Gotio, g) = - & & & <g%)1>: _
Dyley & & (&)

gé(l)l gzl g%)l gé)l

(6)

Here, D, = (¢* — (iw)* + iwyn )¢ — (iw)* — iwyo), while
gloj denotes the (ij)th element of the matrix gg, with

g})I = ia)((ia))2 — yozl) — ia)qz, g%)z = (ia))3 — (ia))qz,
g%)l — (ia))2 ] Sqeis¢,, _ Sq3eis¢,,’ g?)l

g’ = (iw) o,

= iy - 5qe%,
g0 = yor - g’e*. ©)
We use the » symbol to denote replacing ¢, — —¢,, e.g.,
(g%1 ) =iwyor - sqe’”‘ﬁq.
The first-order correction in trigonal warping is given by
g @ @ @y
wld & E @y
piled @

g g g &

Giliw,q) = ®)

where gilj are defined in Appendix A2.

B. Bare retarded Green’s function in real space

In this section we calculate the Fourier transform of the
Matsubara Green’s function obtained perturbatively in the
previous section. For this we need to calculate the two fol-
lowing integrals:

400 d 2 d )
G(iw, r) = / Khia| &Go(iw, q)e' " 05 Ga=r)
0 2w Jo 27w

Go(iw,r)

400 d 2 d )
+ / 999 [ 200G, (1o, gyeiareosios
0 2 0 2

G (iw,r)

€))

Above we introduced polar coordinates in real space, as well
as in momentum space, i.e., r = (x, y) — (r, ¢,), where r >
0 and ¢, € [0, 27). For the sake of brevity, we leave the
final real-space form of the Green’s functions, as well as the
lengthy integral calculations to Appendixes B1 and B2.

IV. QUASIPARTICLE INTERFERENCE PATTERNS

In what follows we introduce localized delta-function im-
purities into the system, and we calculate the associated
quasiparticle interference patterns via the 7-matrix formal-
ism. To simplify the derivation, we assume that impurities are
localized on a specific sublattice and in a specific layer, and
we define their amplitudes as

0

Vai=U L, Va1 =U

Vao=U , Vo =U

o R, O O O O O O
- o O O O O O O

[=lele e =l e e
S O OO o o O
O O OO O o o O
SO O OO O o o o
SO O OO O o = O
SO O oo O o o o

(10)

where U denotes the magnitude of the impurity potential. We
should note that we consider the effect of a single impurity
alone, or equivalently a very low impurity concentration. To
first approximation, the impurity concentration will affect the
results by broadening the energy, i.e., iw — E + i§, where
8 embodies the broadening. In our analytics we set § = 0,
thereby assuming that there is no additional disorder in the
system except for the single localized impurity inducing the
ripples in the local density of states. To obtain reasonable
results, the disorder broadening § should be much smaller
than the energy E at which we observe the local density of
states. In other words, as long as the disorder concentration is
small enough to avoid interference between the ripples in the
local density of states originating from different impurities,
the results are valid.

Below we proceed in two steps: First, with the help of the
real-space form of the Green’s function defined in Egs. (9),
(B1), and (B7)—(B14), we compute the T matrix that accounts
for all-order impurity scattering processes. Second, we find
the correction to the local density of states in the presence of
impurities.

A. T matrix

To find the T matrix, we need to evaluate the following
expression [32-37]:

-1
T(iw) = []1 —V -lim G(io, r)] v, (11)
where G(iw, r) = Gy(iw, r) + Gi(iw, r), and V = Vyy, Vpy,
Va2, Vi, depending on the chosen impurity type. The first-
order correction to the Green’s function does not contribute to
the 7' matrix, since lim,_, ¢ G(iw,r) = 0 due to the angular
parts. Thus the corresponding 7' matrices are given by

f(iw) 0 0 0 0 0 0 0

T = 0 0 0 0 i 0 gliw) 0 0
0 0 0 Of o o0 o0 of
0 0 0 0 0 0 0 0
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00 0 0 0 0 0 0
so_|00 0o o 0 0 0 0
2710 0 glw) Oof 7 lo o o o [
00 0 0 0 0 0 flio)
(12)
where we defined
U
W) = s 13
Her=1_y lim,_¢ [io((iw)? — v ) oo — iwles ] ()
. U
gliw) = (14)

1 = U limy_, [(iw)*Ioo — iwlo3]’

We leave the calculation of the limits in Egs. (13) and (14) to
Appendix C, and we present the final result here:
lim fog = ———— (824 — ), (15)
r—0 47 ypriw

1 Qsa
limlp; = ——— Q2 +2m—=1, (16
r—0 0 47 ypriw ;o[yg o T2 2 :| (16)
where ye is the Euler-Mascheroni constant, £, =
Jio(Eyp — iw), and the lattice constant a is used as an
infrared cutoff. Substituting Eqgs. (15) and (16) into Egs. (13)
and (14), we obtain the final analytical form for f(iw) and
g(iw).

B. Local density of states

To find the first-order correction in yy3 to the local density
of states, we use Eq. (9), and we proceed as follows:

Splio,r) = —%Imtrl[G(iw, T (i0)G(iw, —r)]

1
~ ——Imtr|[Gy(iw, )T (iw)Gy(iw, —r)
b4

+ Goliw, r)T (iw)G (iw, —r)
+ G (iw, )T (iw)Go(iw, —1)], a7y

where we only take the trace of the first-layer components of
the matrix, i.e., triyM = M;; + M. We choose to calculate
only a partial trace because the scanning tunneling micro-
scope tip measures mostly the electronic density of states of
the topmost layer. Since we are dealing with a perturbative
calculation in yy3 up to the first order, we omitted the term
Gi(iw, r)T (iw)G1 (iw, —r) proportional to y023. Note also that
Go(iw, r) and G| (iw, r) were calculated in polar coordinates
and thus replacing r — —r is equivalent to ¢, — 7 + ¢,. We
also keep in mind that to calculate the physical response, we
should use the retarded Green’s functions, in other words,
we should replace iw — € + i§, where € is the energy and
8 — +0 is a positive infinitesimal shift.

1. Real space

Considering the form of the T matrix presented in Eq. (12),
we can calculate analytically via Eq. (17) the corrections to the
local density of states induced by each type of impurity. The
exact analytical expressions for 841 (€, 1, ¢,), g1 (€, 1, @r),
dpaz(e, 1, @,), and Sppo (€, 1, ¢,) can be found using Eq. (17)
and Appendixes B and C. We plot the corresponding expres-
sions in Fig. 3. We should note that the value of U chosen
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FIG. 3. Corrections to the local density of states calculated for
Al, Bl1, A2, and B2 impurities, plotted as a function of x and y
taken in the units of interatomic distance a* = a/+/3 = 1.42 A. We
set yo1 & 0.15, yo3 & —0.09, U ~ —105, € ~ 0.018, which in di-
mensionful units corresponds to y; = 0.42 eV, y3 = =3.3eV,U =
—300 eV, E =50 meV.

to obtain these results is renormalized by the cutoff that is
used for the low-energy theory. In this respect, the value of U
should not be perceived as the literal amplitude of the defect
potential. In Appendix E we discuss the dependence of the
real-space oscillations on the value of U. To sum up the point
of this, the value of U affects the amplitudes of the oscillations
but does not alter their periodicity in the asymptotic limit.

We can clearly see that the panels for A2 and B2 impurities
in Fig. 3 show strong threefold-symmetric features originating
from the trigonal warping terms. Using the asymptotic forms
of the local density of states calculated at r — +oo from
Egs. (D1)-(D4) shown in Appendix D, we present below
their simplified forms at energies such that 0 < € < yp;. In
this range of energies we can neglect the exponentially fast

decaying terms, i.e., the terms containing e~>%+" factors, and
thus we get
~ a_ sin3e,
Spay = —Im f(e) q Y + Y032 sin 3¢ 2] s
m | 32me r
1 [ag(e € + Y032 sin 3¢,
Spg1 = —Im &J/m 703 ¢ 2| (19)
T | 327 Q. r
[g(€) € — ynQ_sin3g, o
) = —I 2r 7 _r , 20
paz T m | 327 Yo Q_r ¢ (20)
1 fle)  vor —y3R_sin3¢, _,q ,
81032 = ——Im Yo1 ! e 2Q_ . (21)
T 327 Q. r

Note that for negative energies € < 0 we should keep the
terms with e~2%+" factors and discard those with e=2%-".
Furthermore, it is worth emphasizing that the asymptotic
expansions above describe the LDOS well only at large
distances from the origin, namely, at r > max(ﬁ”, ﬁ).
Therefore, to recover correctly the features in the vicinity of
the impurity, we have to consider the full expressions provided
in Egs. (D1)—(D4).

235425-4



QUASIPARTICLE INTERFERENCE PATTERNS IN ...

PHYSICAL REVIEW B 104, 235425 (2021)

The results presented in Fig. 3 are in nearly perfect agree-
ment with the semianalytical 7-matrix calculations based on
a lattice model and presented in Refs. [38,39].

Furthermore, the orientation of the triangles flips with the
sign of yp3. This can be straightforwardly seen in the asymp-
totic forms of the corrections derived in Eqs. (18)—(21) for
r — +00, which can be rewritten in the simplified form

ot Byo3 sin 3¢, o
r

p ) (22)
where «, 8, and €2 can be inferred from Eqgs. (18)—(21).

In the equation above, the term generated by trigonal
warping is proportional to sin 3¢, /r, while the first term pro-
portional to 1/r is known in the literature as the quasiparticle

J

1 @2 [yor Folp, 22-) 4 yos - F1(p, 2Q)] — f*(€)QE [yo1 Fo(p, 2€7) + yo3 2% F1(p, 2€27)]

interference pattern for bilayer graphene in the absence of
trigonal warping [6].

We should note that, as expected from the band structure,
the smaller the energy at which we calculate the quasiparticle
interference patterns, the more visible are the effects of the
trigonal warping.

2. Momentum space

In what follows we analyze theoretically momentum-space
quasiparticle interference patterns experimentally accessi-
ble via Fourier-transform scanning tunneling microscopy.
It is clear that the Fourier transform of Eq. (22) yields
both rotationally symmetric and angular-dependent parts. We
Fourier-transform Egs. (18)—(21), and we get

8pa1 = , 23
pat 2mi 32me 23)
1 S eFo(p. 2Q0) + v Q- Fi(p. 292-)] — £2[eFo(p. 2Q%) + y03 2% Fi (p, 2Q1)]
3ol = =—o1 ) (24)
2mi 32
L eFo(p. 2Q-) — Y3 Q- Fi(p. 22.)] — 52 [€ Fo(p, 2Q% ) — v Fi(p. 2Q7)]
3042 = =—o1 ) (25)
2mi 32
1 R Fop.290) — v Q- Fi(p. 22001 — L2 1y Fo(p. 22°) — yos Q% Fi(p. 227)]
Spp2 = —5—o1 ; (26)
2mi 32
[
where Fy and JF; are calculated in Appendix D and are all types of impurities contribute to the local response. In the
given by right panel of Fig. 4 we show the corresponding experimental
measurement in dimensionless momentum space (py, py) =
2 1 (kya, kya), where the lattice constant a = 2.46 A. We see
Folp, Q) = ——, 27 that the analytical and experimental results are in a good
€ 4 g_z, agreement, i.e., pres ~ 0.095 is very close to the analytically
. calculated value using Eq. (29):
Fi(p, Q) = 2misin 3¢,
5 p? ) P 2F 2)/1 2F
P(=3+/1+5&)+4Q l+4/1+ 5 Dres = 2 ( + ~ 0.1, (30)
x ) 2( ) N wV3\nv3 V3
3 /1 + £
b Tt where we set E = 47 meV.
(28)

Using these definitions and the Fourier transforms in
Egs. (23)-(26), we infer the position of the ringlike resonance
in momentum space

Pres = —2iQ_ =2 G(VOI + G). (29)

Above, we denoted € = %, where E is the energy at

(U
which we calculate the response. In the left panel of Fig. 4
we plot the absolute of the sum of Fourier transforms in
Egs. (23)-(26) simulating a large-sample experiment in which

To derive the FT LDOS, we used the asymptotic expan-
sions in Egs. (18)—(21), and since we work with asymptotic
expansions at r — oo obtained within a low-energy approx-
imation, the hexagonal shape of the resonance is lost in the
analytically computed FT versus the experimental one (left
versus right panels of Fig. 4). In Egs. (23)—(26) the reminis-
cence of hexagonal symmetries is carried solely by the phase
factor sin 3¢, in the definition of F(p, ©2), and it is reflected
in the inset of the left panel of Fig. 4.

The results obtained above are also qualitatively consistent
with the numerical T-matrix calculations presented in Ref.
[38], with the only difference being the hexagonal shape of the
resonance in the latter. This discrepancy stems from the fact
that in this paper we use a low-energy approximation, while
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Py Px

FIG. 4. Analytically calculated and experimentally measured
quasiparticle interference patterns are presented in dimensionless
momentum space in the left and right panels, respectively. The an-
alytical panel and its inset are obtained respectively as the absolute
value, and the imaginary part of the sum of the responses to differ-
ent types of impurities given in Eqgs. (23)-(26) (normalized by the
response without trigonal warping). The inset (the imaginary part of
the result) demonstrates the hexagonal symmetry of the problem. The
right panel shows a fast Fourier transform of an experimental scan-
ning tunneling microscopy dI/dV map obtained on Bernal-stacked
bilayer graphene, reproduced from Fig. 2g of Ref. [38] (see Ref. [38]
for experimental details). It was acquired at E = 47 meV, within the
valence band. Both panels show a ringlike resonance appearing at
Pres = 0.1 given by Eq. (30) and defined by the energy at which
the local density of states is calculated, as well as by the intra- and
interlayer coupling constants. We take the same values of parameters
asin Fig. 2ginRef. [38]: yp = 3.3eV,y; =042¢eV, 3 = -0.3 eV,
E =47 meV. Additionally, we set U = —300 eV, while in Ref. [38]
U=-10eV.

J

the numerical 7 -matrix calculations were performed within a
lattice model.

V. CONCLUSIONS

We have calculated analytically the form of the quasipar-
ticle interference patterns in bilayer graphene for four types
of impurities localized on different layers and sublattices,
taking into account perturbatively the trigonal warping of the
bands. First and foremost, our results both in real space and
in Fourier space are in good agreement with the experimental
measurements and 7'-matrix-based semianalytical simulations
of such patterns [24,38]. Most importantly, the fact that our
analytical results can be expressed in closed form provides us
with an understanding of the origin of the observed triangular
features in real space. Thus we clearly see that they originate
in the trigonal warping terms and flip orientation when the
trigonal warping is changing sign. Also our results allow
us to predict the value of the momentum corresponding to
the ringlike resonances visible in momentum space and to
the real-space oscillations; this seems to be independent of
the value of the trigonal warping.
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APPENDIX A: GREEN’S FUNCTIONS IN MOMENTUM SPACE

1. Zeroth order

1

Goliw, q) =

with g'g denoting the (i j)th element of the matrix go.

g5 = (io)* — (iw)g?,
2 2is¢y

gz)l = icu((ia))2 — y021) — ia)qz,

&F = (io)y, & =vo-q

(¢* — (iw)* + ioyn )(¢* — (iw)? —ivyo) | &' & 2
1

The symbol % denotes replacing ¢, — —@,, e.g., (g3))* = iwyo; - sge"*%.

2. First order

The first-order correction in trigonal warping is given by

Y03

Gi(iw, q) =

where

gl = —yorio[sq’ e + sge 73] — yoio (v — (i0)?) [sg e + sqPe %],

& = —yiio[sq’ e + 5q7e ] + yo1 (i) [sq7 P 4 sqde ],

(¢* — (iw)? + ioyo)) (¢* — (iw? —ioyn)* | &' &2 g

g @) @) @@
&2 & & (@)
I Al
(@) v
& & &% &
g%)l = (iw)? - sqe’? — sq’e™%, g%l = iwyy - sqe™%,
(A2)
gt @ @ @t
g & @ @
@ |
g & A o
(A3)
(A4)
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g%l = —yy [qﬁe4is¢q] + y01(iw)2[q4e4is¢q _ q4e—2is¢q] _ 7/01(ia))2(1/()21 _ (ia))z) [qze—zmm], (A5)
g = io[q®e %] + y5iio[q* e %] + iw(v5 — 2>iw)?)[g e %] — (i) (v5, — (iw)*)[g7e %], (A6)
g1 = [sqe %] = 2(iw)*[sq’e %] + (iw)*[sq’e %] + v, (iw)*[sqg° €], (A7)

g‘}' = y021 [sqsesmf"’] + (iw)? [sqse_imq] + 2(iw)? (3/021 — (ia))z)[sq3e_is¢"] + (ia))z(yoz1 - (ia))z)z[sqe_”%]. (A8)

APPENDIX B: INTEGRALS TO DEFINE GREEN’S FUNCTIONS IN REAL SPACE

1. Integrals for the zeroth order

We can write the zeroth-order Green’s function in real space as follows:

la)((la))2 — )/021)100 — iwly (la))zl(;l — 1074 y01ia)lo’l J/Q]I(;z
G (za) r) (ia))zl(;rl — Igz iw3100 — ia)103 y01(ia))2100 y()lia)l(i (Bl)
0 9 = . . . . . — — 9
Yorioly; vor(iw)? oy iw’loo — iwlo3 (i0) Iy — Iy
yolgh yorioly; (i1 — I, io((i0)* = yd )l — iwly
/ /+oo qdq /27‘[ d¢q eiquOS(¢q_¢»')
00 = - - ; ; ; :
o 2m Jo 27 (¢* — (iw)* + yniw)(g? — (iw)* — yoiiw)
B /*“’ dg aJo(qr)
0 271 (¢ — (io) + yoiw)(g? — (io)? — yiw)
1
= —4—.[Ko($2+r) — Ko(2_1)], (B2)
TTYo1lw
Ii _ /+m qd_q /27‘[ % Sqeiisq&,,eiqrcos(%—q&,)
o o 27 Jo 27 (¢* — (iw)* + yniw)(g® — (iw)* — yoiiw)
B /‘+°° dq ise 5 g J1 (gr)
o 27 (¢> — (iw)? + yoriw)(g? — (iw)?> — yoriw)
: o, tiso,
= [KI(247) — 2-K(2-7)], (B3)
TTY01lWp
Ii _ /-‘roo qd_q 2 % q26i2i;r¢qeiqrcos(¢q—¢,.)
27 o 2r Jo 27 (@2 — (i0)? + yorio)(g* — (iw)? — yorio)
B /+OO dq _e:l:Zisqb,qSJz(qr)
0o 21 (¢% — (iw)? + yoiiw)(g* — (iw)* — yoiiw)
oE2is0r
= o[ — QLK (@), (B4)
T Yo1lw
+00 qdq 2 d¢q q2€iqrcos(¢q7¢,)
Iz = = =
” [o 21 Jo 27 (g2 = (i0)? + yoiw)(g? — (i)? — yorio)
_ /*‘” dq ¢ ho(qr)
0o 21 (¢% — (iw)? + yoiiw)(g* — (iw)* — yoiiw)
= W[QiKO(QJrV) - QZ,KO(QJ”)], (B5)
I:t _ /+oo qd_q /27‘[ dﬂ Sq3e:tis¢qeiqrcos(¢q7¢,)
* 2t Jo 27 (¢ — (io) + yoiio)(g? — (i0)? — yoio)
_ /+m ﬁ iseiis¢,q4J1(qr)
o 27 (¢* — (iw)? + yniw)(g? — (iw)* — yoriw)
—ﬂ[SPK(Q — QK (Q B6
=3 — [ 23 K1 (S247) Y Ki(Q-r)], (Bo)
TTYo1lw

where we denoted Q4 = /iw(+yy — iw), and K;(z) is the ith modified Bessel function of the second kind.
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2. Integrals for the first order

We can write componentwise the first-order Green’s function in real space as follows:

G = yoa[—yomioss +I53) = yorio (s — (i0)?) (55 + I53)]. B
G = yos[—yvoio(3 + I3) + you () (I + I33)], B%
G = yos[—0u s + yor 1) I — i) = yor (0 (43, — (G0 5], B9
GY' =y [iwlg, + Voriolfy + iw(Vo21 - 2(iw)2)143 — (i)’ (7’021 - (iw)z)I{Z]’ (B10)
GY* = yos|l7; — 2>i0)I5; + (i)' I35 + v (i)’ 15 ], 1D
GY' =y [Vm 55+ (0)L5 +2>i0)* (v5) — (i0)*) L + ()’ (v — (©)?) 111] (B12)
G =Gt al'=al'. af=al. of=a. o

GP=G'=G'"(++-), G’=G'=G'(+<-), G'=G'(+< -), G’ =G+ < —). (Bl4)

Ii _ /+oo qd_q 2 dﬂ sqeiisqﬁqeiqrcos(d)q—qﬁ,)
Pl 2n )y 27 (@2 = (i) + yeiie) (@ — (i) — yoio)’
_ /““’O dq ise™ ¢ g J1 (gr)
0 27 (¢ — (io)? + yoiw) (g2 — (iw)? — yniw)*
l-se:tisq&, )
= — 5 5 [2(Q K (Q47) — QK (7)) + iwyo r(Ko(247) + Ko(§2-r))], (B15)
167y, (iw)
Ii _ /+oo qd_q 2w % sq3eiis¢qeiqrcos(¢q—¢,)
Tl 2 o 27 (@ (i) + yoiie) (P — (iw)? — yorio)
_ /-FOO dq ise:tis¢,.q4jl(qr)
0 27 (g% — (io)? + yoiw) (g2 — (iw)? — yniw)*
se:tisq}, )
= ﬁ[le(ShKl (Q47) — QUK (Q_1)) — Y11 (2% Ko(Q47) + Q2 Ko(Q2-1))], (B16)
167y, (iw)
Ii _ /~+oo qd_q 2 dﬂ SqSeiisqﬁqeiqrcos(q&q—qb,)
o o 2w Jo 27 (¢ — (iw)? + yoiw)* (¢ — (iw)? — yoriw)?
_ /-FOO dq ise:tis¢,.q6jl(qr)
0 27 (¢ — (iw)? + yoiw) (g2 — (iw)? — yniw)*
se:tisqb, ) )
= ———— 2oy — (0 )NQ-K(Q-r) — Q. Ki(Q41) + yar(QLKo(Qr) + Q4 Ko(R-r)],  (B17)
167 y;5, (iw)
Iziz _ /+oo qd_q 2 dﬁ q26i2i‘v¢qeiqrcos(¢q—¢,)
0o 27 Jo 27 (¢ — (iw) + yoiw)(g? — (iw)? — yoriw)?
_ /+00 ﬁ _ei2is¢,.q312(qr)
0 27 (¢ — (io) + ynio) (g — (o) — ynio)’
e:l:2is¢, )
= —ﬁ[z(gilﬁ(g#’) — Q2K (Q-1)) + iwyn H(Q4: K1 (247) + QK (Q_1))], (B13)
167y, (iw)
Iis _ /+oo qd_q 2 d& q4e:l:2is¢qeiqrcos(¢,,—¢,)
o 2m o 27 (@ — (i0)* + yoiiw)*(¢? — (i®)? — yoriw)
_ /-H)o ﬁ _ei2ix¢,-q512(qr)
0 27 (¢ — (io) + ynio) (g — (o) — ynio)’
e:|:2is¢, )
= —————[2i(Q K (Q4r) — Q2 K(Q_1)) — yor (LK (Q47) + Q2 K1(Q-r))], (B19)

167y, (iw)?
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o /+oo 4dg 2 do, | 4 eiznj@, eziqrcos(qﬁ,,—.d),) _
o 2m Jo 27 (¢* — (iw)* + yniiw) (¢* — (iw)?* — yoriw)
[t dg —e2isbr g1 [ (ar)
B /0 27 (¢ — (i) + i) (@ — (i) — yorie)?
+isg,
lew[ziw(y& — (i) )( QL K(Q4r) — Q2K(Q-7)) — yor (LK1 (Q47) + QLK1 (Q-1))],
¥ gdg 27 dg, 5qP &30 gitr o5, —,)
/0 2 /0 27 (@ — (0P + ymio (g — (i0) — yoio)’
_ [t®dq —ise gt I3 (qr)
a /0 27 (% — (i) + yoriw) (% — (i0)? — yoriw)?
ise* st 3 3 . 2 2
_W[2(9+K3(Q+r) — QIK3(Q-1r)) + iwyo 1 (2 Ko (1) + Qsz(QJ”))],
0 gdg 27 dg, 5 350, giar cos(d, )
/0 2 Jy 27 (% - (i0)* + yoio)(g? — (i) — yoio)
> dg —ise*359r g® 13 (gr)
/0 27 (2 — (i0)? + yoriw)(¢* — (i) — yorio)?
ise*30r . 3 3 4 4
—W[len(Q+K3(Q+r) — QY K3(Q_r) — yor (K (1) + QLK (2-1))],
¥ gdg 27 dg, 5 €359 gitr o5, ~,)
/0 2 Jo 27 (@ — (0P + yniw) (g2 — (i0)? — yoriw)’
t° dg —ise®3 g8 I3 (gr)
/(; 27 (% — (i0)* + yoiw)2(g* — (i)? — yorie)
iset3iser

+
lf 64

; 5 5 6 6
W[ZLQ)”(QJFKI(QJJ) — Q2 K1(2-1r)) — yorr (23 Ko(241) + Q2 Ko ($2-7))

. 2 (i0)2
06D g5 .1y 2 )|

400 qdq 2 d¢q q4ei4is¢qeiqrcos(¢q—¢,)
/0 27 /o 27 (@ — (i0)? + y01i0) (¢ — (i) — ypio)’
/+oo dq e:t4is¢,q5J4(qr)
0 27 (¢* — (i0)* + yoiiw)* (2 — (iw)? — yo1iw)?
et4isd
= — [2Q* Ki(Q2.r) — QP Ki(Q2-1)) + iwyor 7 (22 K3(Q.r) + Q2 K3(Q_r))],
1671)/031(ia))3[ (25 Ka(217) — QLKL (2-1)) Yorr (K3 (Q47) + 22 K3(Q_r))]
400 qdq 2 d¢q q6e:t4is¢qeiqrcos(¢q—¢,)
/0 2 Jo 27 (¢ — (i) + yoio)(g? — (i) — yorie)
/-‘roo dC] ei4ix¢,q7J4(qr)
0 27 (q* — (i0)* + yoiiw)* (¢ — (iw)? — yo1iw)?
e*Hr . 4 4 5 5
W[le(Q+K4(Q+”) — QYKU(Q-1r)) — yor(QLK3(247) + 22 K3(2-1))].
+00 qdq 2 d¢q SqSe:l:Sis(bqeiqrcos(qﬁq—qﬁ,-)
/0 27 Jo 27 (¢ — (i) + yorio) (g? — (i) — yoiio)’
/+w dq iseiSisqb,.qﬁ]S(qr)
0 27 (q* — (i0)* + yoiw)* (2 — (iw)? — yo1iw)?
- E5isg,
L [2QKs(R47) — 2 K5(Qr) + iwyor H(2 Ka(R47) + 2 Ky(2_r))].
167y, (iw)?
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APPENDIX C: T-MATRIX CALCULATION

With the help of Gy(iw, r) and G, (iw, r) we can calculate the 7 matrix, whose expression is given by

-1
T (i) = [1[ ~V - lim Gio, r)] V. (1)
Here, G(iw, r) = Go(iw, r) + G (iw, r), and V takes one of the following forms:
1 0 0 O 0 0 0 O 0 0 0 O 0 0 0 O
Ve —U 0O 0 0 O Ve = U 0O 1 0 O Vo = U 0 0 0 O Voo = U 0 0 0 O
M=o 0o 0o of " "|o o 0o off ™ "|o o 1 off " "|o o o of
0O 0 0 O 0O 0 0 O 0 0 0 O 0 0 0 1

with U denoting the magnitude of the impurity potential. Atr = 0 the value of all the integrals that have angular dependence goes
to zero; therefore G| (iw, r = 0) = 0. Thus in order to determine the value of the 7" matrix, we need to calculate the following:

io((iw)* =y ) oo — iwlys 0 0 0
0 i) oo — il i), 0
lim Go(iw. r) = lim (iw) 00 210) C V031 (iw) oo )
r—0 r—0 0 vo1(iw)Ioo (iw)’lpo — iwlp3 0
0 0 0 io((iw)* =y oo — iwlys
The limit above depends on lim,_, o Iy and lim,_, ;¢ Ip3. For the first limit we get
1 1
lim Iyo = ———— lim [Ko(Q247r) — Ko(-r)] = ——— (24 — Q). (C3)
r—+0 47 yoriw r—+0 4 yoriow
The second limit is given by
lim Jos = —— lim [Q2 Ko(Q47) — Q2 Ko(2_1)] = b dim @2 ) 2y —m T
r—>+0 03 47 yo1iw r—+0 +R0RE —RORRe 47 yp1iew r—+0 + € 2 - € 2
1 Qr Q_r
=——— lim Q-+ —Q’In , C4
4 yoriew 40 [)/g( + e 2 -2 )

where y¢ is the Euler-Mascheroni constant. The expressions above display a logarithmic divergence at r = 0, and we need to
introduce a small-r cutoff. This divergence is a consequence of using a low-energy theory and losing the natural high-energy
(small-distance) cutoff of the tight-binding model. The natural cutoff is r. = a, where a is the lattice constant. Since we set the
lattice constant to unity above, and all the distances are measured in those units, we can set . = 1.

Finally, the resulting forms for the 7" matrices are given by

1 0 0 0 00 0 0 00 0 0
e o]0 00O a0 oo oo 0o
m=Jlofo g g o =gty o g o] Te=si@f, 5 o]
00 0 0 00 0 0 00 0 0
00 0 0
T = fGo)| 0 0 00 (C5)
=L 0 o ol
00 0 1
where we defined
. U . U
fliw) = , gliw) = (Co)

1 — Ulim,— 4 [io((i®)? — v ) oo — iol] 1 = Ulim,— o [(iw)3Too — iwlp3]

APPENDIX D: LOCAL DENSITY OF STATES
1. Real space

Asymptotically, at large r we have

1 fliw) —2Q,r Q. r . 2 .. . 2 . e~ (e or
Spar(e, r,¢,) = —;Im 397 o Y01 (Q+e —Q_e ) — 21(0()/01 — lw(la) — i/ V5 — (iw) ))m -

. in 36,
+ Y03 Sfliow) [Qie—ZQJrr _ Qz_e—ZQ,r + @\/E(Q_i'_ _ Q_)e—(Qr‘er)r] sin 3¢ }’ (D1)

32 iw r
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some. 90 = ] L [ (C ) iy + 200 ! (D2)
€, 1 Q) = ——1m |10 _ iw B -
& T 7 |7 ey Q2 VRV
gliow) o L 2a . ) e~ FQr ] sin 3¢, }
N - - Q —iw)2_ ,
Y335 [(Vm iw)e + (Yo + iw)e + (o1 + iw)Q2 + (o1 — iw) )mm -
spmte.r. ) = —1m [ i (o~ N iy + a0y
T 32n Q4 Q_ SN
M 3 n» 2 . N2 i N3) =29 3 . 2 ) L3N —2ar
T 30n Yé (rir = 2ieoyg; +20) yor = ())e + (vo1 + 2iwyg) + 2(i0) yor + (iw)’)e
01

3 .9 .2 .3 3 . 2 . w . 3 e~ (20 T 5in 3¢,
_((yol +4la)]/01 + 2(l(1)) Yo1 — (iw) )QJr + ()/01 - 4la)y01 + 2(la)) Yo1 + (iw) )Qi)

Ve ] o
+y03%iw(y§1 — (iw)?) [%e—mw _ %e_m’r + 2iw f/_;j;] Sinr2¢’ } (D3)
s f3 (21':) |:(y01 —iw)e I 4 (yor + i0)e 2 4 3((yor + i0)Qs + (Yor — iw)sz)\/_;jg_j Si“f‘b’ }

(D4)

2. Momentum space

Below, we assume that the energy € > 0, and hence the terms with _ in Eqgs. (18)—(21) provide the dominant contribution
to the asymptotic behavior of the local density of states. If we chose negative energies, i.e., € < 0, then the terms with 2, would
dominate. To perform Fourier transforms, we will use the two following integrals:

€7Qr e—Qr ) 00 27 .
Folp, Q) = ]—"|: i| = /dr e P — f dre’Q’/ d¢re*mr008(¢r7¢p)
r r 0 0

o0 27 1
=27 f drlo(prye™¥ = — ———— | (D53)
, Q 1+ 2/

—Qr

e—Qr ) 0 2w )
sin 3¢,j| = /dr sin3¢, e " = [ dre_Q’/ d¢, sin 3¢, e PP =9y
0 0

r

Fi(p. ¢p. Q) = f[e

r

* (=3 + 1+ p2/Q2) +4Q% (=1 + /1 + p2/Q2
= 27isin 3¢,,/ dr Js(pr)e® = 2xisin3¢," ( P/ ( P/ (D6)
0 P+ p/Q2
where (p, ¢,,) are the polar coordinates in momentum space. Thus the Fourier transforms read
Spa — L F(OR_[yorFo(p, 2Q-) + yo3 2 F1(p, 2Q)] — f* (€)% [yo1 Fo(p, 2% ) + yo3 Q% F1(p, 2€27)] D7)
PAL= i 32me ’
L e Fo(p, 2Q2) + v Q- F1(p. 22)] — L2 [e Fo(p. 29%) + yo3 2= Fi (p. 2224)]
3pp1 = z—7Yo1 , (D8)
2mi 32
L9 e Folp. 2Q-) — Y3 Q- Fi(p. 2Q)] — 52 Fo(p, 2Q°) — v * Fi(p. 22%)]
8paz = =701 , (D9)
2mi 32
1 B Fop.290) — v Q- Fi(p. 22001 — L2y Folp. 29%) — yo3 @ Fi(p. 2Q%)]
dpp2 = 50 o ) (D10)

From the equations above we find the positions of ringlike resonances in momentum space. Indeed, both functions Fy(p, 2€2_)
and Fi(p, ¢,, 2Q2_) have resonances at

Pres = —2iQ_ = 2\/€(yo1 + €). (D11)

If we chose negative energies, i.e., € < 0, then the resonances would appear at p.s = —2iQ2 = 2./]€|(Yo1 + |€]).
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FIG. 5. Corrections to the local density of states calculated for A1, B1, A2, and B2 impurities, plotted as a function of x at y = 0 taken
in the units of interatomic distance a* = a/+/3 = 1.42 A. Curves of different shades correspond to different values of the impurity potential
amplitude U, which varies from —3.5 to —38.5 in steps of 7. The larger is the absolute value of U, the darker is the corresponding curve.
We set yo1 & 0.15, yp3 & —0.09, € = 0.018, which in dimensionful units corresponds to y; = 0.42 eV, y3 = =3.3 eV, E = 50 meV, and U

changing from 10 to 110 eV in steps of 20 eV.

APPENDIX E: DEPENDENCE ON IMPURITY POTENTIAL
AMPLITUDE U

Here, we show that the results in Fig. 3 for the local density
of states in the presence of different types of impurities de-
pend only quantitatively and not qualitatively on the impurity

potential amplitude U. In Fig. 5 we set y = 0, and we plot cuts
of the plots in Fig. 3 along the x axis for different values of the
impurity potential amplitude U . It is clear from the panels that
the main difference between different values of U manifests
in the amplitudes of the oscillatory patterns, while the periods
remain the same in the asymptotic limit.
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