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Abstract

Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of
components, and often either the connections between these components are not known or the rate equations that
govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and param-
eters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are
either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other
parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present
Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean
networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published
network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how
Boolink can be used to generate testable predictions by extending the network to include CO, regulation of stomatal
movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on
experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO, concentrations (1.5-ppm CO,).
Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signal-
ing model with added CO, signaling components.

Introduction that are interconnected. To gain insights into these
Intracellular signaling networks are essential in almost all networks, it is possible to construct mathematical models.
biological processes. These networks are often complex, in-  One of the strengths of these mathematical models is the

volving a large number of many components (or nodes)  ability to develop predictive outcomes of experimental
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perturbations (Phillips, 2015; Shou et al, 2015). These pertur-
bations can be much more easily implemented in simula-
tions than in experiments. Removing or changing a
component or connection between components is a trivial
task in simulations, but it is usually a task that requires
lengthy wet lab experimental procedures. Predictions devel-
oped through models can enable narrowing the parameters
for subsequent wet lab examinations. Wet lab examinations,
in turn, can be used to iteratively update and correct math-
ematical models. Furthermore, mathematical models can be
used to test potential biological mechanisms or to pinpoint
the most important components of a signaling network
(Brodland, 2015).

One way of constructing mathematical models for signal-
ing networks is to create a rate—equation model. In such a
model, the concentrations for network components can
take on zero and positive rational values, and their change is
governed by differential equations involving rate constants
and the concentration of diverse components (Melke et al,
2006; Muraro et al, 2011; Wang et al, 2017). For example,
the computational platform OnGuard can incorporate
known ion transporters and channels of the guard cell net-
work and can provide simulations of stomatal responses
(Hills et al, 2012). The concentrations of soluble signaling
components, however, are often not well-defined, and the
strength and kinetics of many of the connections between
different nodes of the network are either poorly understood
or not known at all. This results in considerable uncertainty
in parameter values, especially rate constants. This is particu-
larly the case for signal transduction networks of soluble
components for which rate constants are more difficult to
define in a cellular context than, for example, metabolic flux
networks (Feist et al,, 2007).

An alternative to these “analog” networks is to formulate
the problem in terms of Boolean networks (Kauffman,
1969). In these binary networks, each node can be either
“ON” (1, or high) or “OFF” (0, or low) (Bornholdt, 2008;
Wang et al, 2012; Schwab et al, 2020). The state of the
nodes is then determined by an update rule, which involves
information from the upstream nodes, and a single-time
step corresponds to updating all nodes. The most com-
monly applied update rules are synchronous and asynchro-
nous. For synchronous updates, the future state of each
node depends on the state of the network at the current
time step. In the case of asynchronous updates, the future
state of a node depends on the states of nodes already
updated in the current time step and on the previous states
of those nodes that are not yet updated. In our application,
the order of asynchronous updates is chosen in a random
fashion. In Boolean networks, the regulation is no longer
encoded in terms of rate constants, which may or may not
be quantified by experiments, but in terms of NOT, AND,
and OR logic gates. For example, in the case of an AND
gate, a downstream node will be turned on (i.e. 0 transitions
to 1) if and only if the upstream node is on.
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Despite the significant simplification associated with the
binarization, Boolean networks have been shown to be able
to predict behavior in a wide variety of networks, including
genetic networks (Herrmann et al, 2012; Kauffman, 1969),
protein networks (Dahlhaus et al, 2016), synthetic gene net-
works (Zhang et al, 2014), and cellular regulatory networks
(Albert et al, 2017; Lau et al, 2007; Li et al, 2004). However,
the price one has to pay for the simplification is the loss of
dynamic information. Moreover, the order in which the up-
date rules are applied can critically affect the outcome of
the network. Therefore, the networks are mainly used to
probe the attractors of the network, defined as the states
representing the long-term behavior of the system (Schwab
et al, 2020).

In plants, Boolean networks have been applied to genetic
networks to investigate, for example, possible crosstalk
and microbe response (Genoud and Métraux, 1999
Timmermann et al, 2020). Boolean logic has also been ex-
tensively used to study ABA-induced stomatal closure in
Arabidopsis (A. thaliang; Li et al, 2006; Albert et al, 2017;
Waidyarathne and Samarasinghe, 2018; Maheshwari et al.,
2019; Maheshwari et al, 2020). This ABA signal transduction
network contains a large number of components (>80),
with many unknown rate constants, and is thus challenging
to encode using an analog model. In a series of studies, it
was shown that the formulation of a Boolean network for
ABA-induced stomatal closure was able to confirm interest-
ing experimental data (Albert et al, 2017; Maheshwari et al,,
2019, 2020). Furthermore, it was shown that the Boolean
network could function as a vehicle to generate predictions.
Specifically, predictions were generated through perturba-
tions that either removed nodes or set nodes permanently
to the “ON” state. Some of these predictions were subse-
quently tested and validated in quantitative experiments
(Albert et al, 2017; Maheshwari et al., 2019).

The aforementioned studies have clearly demonstrated
the potential value of casting signaling pathways into
Boolean networks. However, encoding these networks, espe-
cially the ones with a large number of components, might
present a significant impediment to widespread use of
Boolean networks to probe, analyze, and understand signal-
ing networks. Motivated by the challenge of creating
Boolean networks that can be used by the community for
independent simulations, we present in this article an open-
source, user-friendly algorithm that can simulate Boolean
networks, which can be easily formulated by the users. This
algorithm, which we term Boolink, uses a graphical user in-
terface (GUI) and allows the users to define nodes and their
internode connections, add nodes, subtract nodes, introduce
mutations, and analyze the results. Unlike other algorithms
that also use GUIs, the equations are implemented in the
programming language C+4+-, which results in computation-
ally efficient simulations. A further comparison between
Boolink and existing algorithms is provided in the
“Discussion”. Boolink can be freely downloaded from the
GitHub repository (https://github.com/dyhe-2000/Boolink-
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Boolink: Graphical Interface for Boolean Networks

GUI or https://github.com/Rappel-lab/Boolink-GUI). User-
friendly instructions for downloading and using Boolink are
provided in the Supplemental data. Although Boolink can
be applied to any Boolean network, we verify its use using
the ABA signaling network described by Albert et al.
(2017). We then describe an extension of this network that
incorporates input from the stimulus CO, and examine
the ABA-induced stomatal closing, while clamping CO,
concentration in the leaf to very low levels (Raschke, 1975;
Zhang et al, 2018). Finally, we test predictions from this
extended network using quantitative experiments, and
results from these experiments were used to update possi-
ble testable CO, input mechanisms into the network.

Results

Algorithm

Our algorithm, Boolink, simulates a Boolean network with
user-defined variables and interactions. Each node of the
network corresponds to a Boolean variable that can be in ei-
ther of the two states: 0 (OFF) or 1 (ON). In biophysical
terms, an ON state of a node corresponds to a concentra-
tion of its active form that is high enough to effect change
through its interactions in the system. Conversely, an OFF
state corresponds to a low concentration, which is not able
to effect change. Nodes can flip their states because of their
interactions with other nodes, and these interactions are
encoded using an update equation. Some nodes denoting
external conditions or inputs remain fixed, but affect the
states of other nodes.

An update equation for a given node relates its future
state to the current states of all upstream nodes. While
there are several ways of formulating an update equation,
our algorithm uses the so-called Sum of Products form that
is intuitive and easy to formulate (Kime and Mano, 2003).
This form consists of a series of terms linked by the OR logic
operator. Each of these terms is a product, which contains
Boolean variables connected by the AND operator. Note
that these variables may be preceded by the operator NOT.
A typical example used here to exemplify Boolean logic and
extracted from the model of Albert et al. (2017), reads:

AnionEM = SLAC1|SLAH3&QUAC1

where the symbols “|” and “&” stand for OR and AND, re-
spectively. In this example, the future state of node
AnionEM, which represents the anion efflux through the
plasma membrane, is determined by the current states of
three other nodes that encode two major classes of anion
channels in guard cells: SLAC1, SLAH3, and QUACI.
Specifically, AnionEM is set to 1 or remains 1 if either (1)
SLACT is 1 or (2) both SLAH3 and QUACT are 1 (Albert et
al, 2017). In this simplification, if neither condition is met,
AnionEM remains 0 or is set to 0. Using Boolink, this
Boolean logic step, and any other step in the network, can
be easily modified by users, and outcomes can be simulated.
The Supplemental data has a brief primer on Boolean
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algebra and several illustrations for formulating Boolean
equations using the Sum of Products form.

In a typical simulation in Boolink, there are a few nodes
that affect the nodes downstream of them but do not have
any nodes upstream. As such, their states remain unchanged
during the simulation. These nodes are called “input” nodes.
There is typically one “output” node denoting the product
or end state of the pathway, which can be monitored to de-
termine the function of the network. For example, in the
case of the ABA signaling network, ABA, Nitrite, GTP, etc,,
are inputs, and the output node, termed “Closure”, repre-
sents stomatal closure (Albert et al, 2017). The initial states
of other network nodes can be specified, based on prior
knowledge, or can be assigned a random (0 or 1) value.

Once the initial states of all the nodes are specified, the
program evaluates the update equations in a random order
and exactly once for each node, with the output node evalu-
ated last. The update for a single node is based on the cur-
rent state of the network so that some of its upstream nodes
may already have been updated in the same time step. This
so-called asynchronous updating is motivated by the fact that
many of the reaction rates are unknown, resulting in nonde-
terministic outcomes. A single-time step in the simulation
corresponds to each node being updated once. The number
of time steps, corresponding to one iteration over all the
nodes, can be chosen by the user and should be large enough
for the system to reach a steady state. Furthermore, the user
also specifies the number of simulations, each with randomly
chosen initial conditions. All parameters, equations, and initial
conditions can be easily entered into Boolink using an intui-
tive graphical interface. Finally, Boolink is able to display
graphs of the dynamics of one or more nodes, and all varia-
bles are stored for later analysis.

Simulations
Boolean network introductory and training example

As a first example, we investigate a very simple Boolean net-
work, shown in Figure 1A. This network contains an input
node (IN), an output node (OUT), and three intermediate
nodes X, Y, and Z. The input node does not depend on any
other nodes, which is simply written as IN = IN.
Furthermore, X and Y reinforce each other, and X inhibits Z
through a NOT link (denoted by the symbol ~ in the equa-
tions and flat arrowheads in Figure 1A), while IN inhibits X;
Y inhibits OUT and Z activates OUT. For both X and OUT,
the two inputs combine according to the AND logic as
denoted by a “&”. The Boolean update equations can thus
be simply written as follows:

IN = IN
X=Y& ~ IN
Y=X
Z=~X
OUT =~ Y&Z

The dynamics of this network can be worked out by hand
or, since it only contains three nodes, can be analyzed
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Figure 1 Simple Boolean network and its implementation into
Boolink. A, Schematic of the network. Pointed arrowheads indicate
positive regulation and flat arrowheads indicate negative regulation.
For nodes X and OUT, the two inputs combine using AND logic, indi-
cated by the symbol ‘&’. B, State space and dynamics, represented by
arrows, in the absence of input (IN = 0). The two possible attractors,
(0,0,1) and (1,1,0), are indicated by red dots. C, State space and dy-
namics in the presence of input (IN = 1). The only attractor, (0,0,1), is
indicated by a red dot and leads to OUT = 1. D, Representation of
the Boolean model in the Boolink GUI. Green and magenta arrows in-
dicate positive and negative regulation, respectively. An arrow within
the node indicates self-regulation. In this representation, one can
“search” for upstream and downstream nodes of a given node. Here, X
(colored in orange) has two downstream nodes, colored in cyan, and
one upstream node, colored in magenta. Other node(s) are colored in
yellow. E, Percentage of OUT = 1 versus time step in an asynchronous
update scheme starting with randomly assigned initial states for the
intermediate nodes when the input is present (IN = 1, orange line)
and absent (IN = 0, blue line).

graphically. One feature of an asynchronous update scheme
is that the updated state is always the “nearest neighbor” of
the previous state. Therefore, the evolution of the states can
be represented as a continuous trajectory through the state
space, with dimensions equal to the number of nodes. This
is shown in Figure 1, B and C, for our simple model in the
absence (IN = 0; B) and in the presence of input (IN = 1;
C). The 3D state space is spanned by X, Y, and Z, and all
possible states of the intermediate nodes are points in this
3D space that are connected by arrows according to the
rules of the Boolean network. By following these arrows, the
attractors for the model can be determined. For example, in
the absence of input (Figure 1B), the state X=1, Y=0, and
Z =0, compactly written as (1,0,0), can transition to either
(0,0,0) or (1,1,0). Since no arrows originate from (1,1,0), this
is an attractor of the system: this state will remain
unchanged indefinitely. Furthermore, the only permissible
transition from (0,0,0) is to (0,0,1), which can easily be seen
as an attractor as well. Since only (0,0,1) leads to the ON

Karanam et al.

state of the OUT node, we find that OUT =1 in 50% of the
possible initial conditions. However, in the presence of input
(IN=1), it is easy to verify that the only possible attractor is
(0,0,1), and thus, OUT = 1 for all initial conditions.
Calculations and further analysis on this simple network are
provided in the Supplemental data.

The implementation in Boolink is shown in Figure 1D,
obtained after specifying the input files in the subfolder
“sample_data_files/simple_network_data_files” of the reposi-
tory (https://github.com/dyhe-2000/Boolink-GUI or https://
github.com/Rappel-lab/Boolink-GUI). Here, the green/ma-
genta arrows indicate positive/negative regulation and an ar-
row within the IN node indicates self-regulation. In Boolink,
all nodes are visualized in yellow by default. However, con-
nections between a particular node and other network
nodes can be easily visualized by double-clicking on the spe-
cific node, after which it changes its color to orange.
Upstream nodes will then change their color to magenta,
while downstream nodes will turn cyan. In the example of
Figure 1D, this procedure has been carried out by clicking
on node X. Note that the color scheme for the nodes can
be changed by the user. (See Supplementary data section 2,
“Downloading and Running Boolink”.)

This network was simulated using Boolink, choosing five
time steps and 50 different sets of initial conditions. The
results of these simulations are shown in Figure 1E, where
we plot the state of the output node, expressed as the per-
centage of runs in which OUT =1, in the absence (blue line,
IN = 0) and presence (orange line, IN = 1) of input. Note
that time in these plots indicates the iteration number. The
state of the simulation that is of physiological relevance is
the steady state; here it is reached after two steps.
Consistent with the arguments presented above, the simula-
tions show that this percentage is 50% when IN=0 and
100% when IN=1.

ABA network

Next, we applied Boolink to the ABA-induced stomatal
closure network formulated by Albert et al. (2017). The input
file for this network, containing all components by name and
their interactions, can be found in the subfolder
“sample_data_files/ABA_data_files/” of the repository for the
Boolean equations and for the names of the nodes (https://
github.com/dyhe-2000/Boolink-GUl  or  https://github.com/
Rappel-lab/Boolink-GUI). The reconstruction of the published
ABA signaling network (Albert et al, 2017), within the
Boolink interface here, will enable any user to use and ma-
nipulate components of this network and develop experi-
mental predictions and to modify the Boolean network
depending on experimental outcomes or to predict out-
comes for modified network models. A screenshot of our
implemented network encoded within the Boolink GUI is
presented in Figure 2, with the input ABA node shown in
red and the “Closure” output node shown in green. This net-
work contains 81 nodes, including input and output nodes,
and was constructed by and adapted from Albert et al.
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Figure 2 Implementation of ABA signaling into Boolink A: Visualization of the Boolean network for ABA-induced stomatal closure (Albert et al,,
2017), rendered here by the Boolink GUI. The input ABA and output Stomatal Closure are colored in red and green, respectively. The node denot-
ing cytoplasmic pH (pHc), colored in orange, has its upstream nodes colored in magenta and downstream nodes in cyan. Connections for any
node can be viewed by double-clicking on the node of interest (see Results). B: Simulated stomatal conductance as a function of time steps in the
simulation for wild type (with and without ABA) and the mutants ost1 and ghr1, and alteration of cytosolic pH (pHc) based on the model of
Albert et al. (2017) (see Results). A conductance level of 1 corresponds to maximal relative stomatal conductance while 0 represents complete
stomatal closure. The violet triangle shows the point in the simulation where ABA is introduced (except for the case ABA=0).

(2017) following an extensive survey of more than 100 peer-
reviewed articles. As in the simple example, the interactions
between nodes in the GUI are color-coded, with green
arrows representing positive interactions and magenta arrows
representing negative interactions. Using the Boolink GUI,
the user can move nodes around by simply dragging them
to a new location. Furthermore, to facilitate examining inter-
node connections, double-clicking on a node reveals all
downstream and upstream interactions of that node (Figure
2A). (See https://github.com/dyhe-2000/Boolink-GUI  or
https://github.com/Rappel-lab/Boolink-GUI; detailed instruc-
tions can be found in the Supplemental data).

Results of the Boolink simulations for 25 time steps and
averaged over 2,500 initial conditions are presented in Figure
2B. In this and subsequent curves, following Albert et al.
(2017), we chose to illustrate the predicted stomatal con-
ductance level as a function of simulation (time) step.
However, and as discussed above, this time step does not
equate to “real time”, and only the steady state following a
change in network architecture or input can be compared
to experimental results. This conductance level, computed
as 1-Closure, varies between 0 (corresponding to closed sto-
mata and Closure=1) and 1 (corresponding to open sto-
mata and Closure=0) and facilitates comparison with
experiments in which the stomatal conductance is pre-
sented (Figures 3 and 4). In the absence of ABA, simulated
by setting the input node ABA to 0 throughout the simula-
tion, the output node Closure is 0 for all time steps, corre-
sponding to no stomatal closure and a conductance level of
1 (black triangle curve). In the presence of ABA, modeled by
changing ABA from 0 to 1 at time step five, the network
reaches a conductance level of 0 (stomatal closure) after ap-
proximately 15 time steps (blue curve, labeled as wild-type
[WT]). By implementing the model of Albert et al. (2017),

A gL

(GHrD)

0 ©

—— Low £0;
~a— High CO;

Conductance jevel

] 5 10 18 20 5
Time steps

Figure 3 Stomata 2.0 and Boolink. A, ABA-driven stomatal closure
model extended with a CO, branch, indicated in blue, which positively
regulates GHR1. The box denotes all the intermediate nodes of the
original ABA network shown in Figure 2, with only GHR1 and its im-
mediate upstream and downstream nodes shown. B, Predicted relative
stomatal conductance levels obtained by implementing Stomata
2.0 into Boolink for two concentration levels of CO,: low (CO, = 0;
red line and symbols) and high (CO, = 1; blue line and symbols). The
triangle shows the point in the simulation where ABA is introduced
(ABA = 1).

we have also computed the relative stomatal conductance
for several mutants, labeled in Figure 2B, following the intro-
duction of ABA after five time steps. Knocking out the
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Figure 4. ABA-mediated stomatal closing responses of WT leaves dur-
ing CO, “starvation”. A-C, Intact excised leaves of WT plants (n = 3
to 4 independent leaves per treatment and experimental set) were
equilibrated at 400 ppm CO, or ~1.5 ppm CO, for 60 min prior to
stomatal conductance measurements. Stomatal conductances were
measured with a LI-6400XT Portable Photosynthesis System. D, Time-
resolved stomatal conductance responses to ABA in intact excised
leaves (n = 5 independent leaves per treatment) equilibrated at ~2
ppm CO, or 400 ppm CO, for 2 h prior to ABA application.
Experiments were carried out using a LI-6800 Portable Photosynthesis
System. In each experimental set, 2-\LM ABA was applied through the
transpiration stream via the petiole at time = 0 min. CO, concentra-
tions in the intercellular spaces of leaves (Ci) equilibrated under CO,
starvation were computed using the gas exchange analyzer (see
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Open Stomata 1 (OST1) protein kinase, which corresponds
to forcing the node OST1 to 0 at all times, results in a con-
ductance level that remains 1 (no stomatal closure) after
setting ABA=1 (orange diamond curve). Furthermore,
knocking out guard cell hydrogen peroxide resistant 1
(GHR1) results in a conductance level of 0.5 (50% stomatal
closure) following the introduction of ABA (green square
curve) and manipulating the cytosolic pH through the node
pHc leads to a conductance level of approximately 0.65 (red
X curve). These control predictions are identical to the
ones obtained in the original publication (Albert et al,
2017), further validating reconstruction of this network in
our interactive graphical user interface.

CO, network

We next applied our GUI to examine and explore the guard
cell signaling network. We used the original ABA network of
Albert et al. and first extended it with a putative branch that
models the input of CO,. Elevated CO, triggers stomatal clo-
sure and some elements of CO, signaling overlap with those
of ABA signaling, whereas others affect stomatal closure
through separate pathways (Hsu et al, 2018; Merilo et al,
2015; Zhang et al, 2020). Based on previous experimental
data, we modeled the CO, branch to be upstream of GHR1
in the ABA network (Horak et al, 2016; Jakobson et al,
2016). The added branch contains CO, as input, which is
then catalyzed by the beta carbonic anhydrases BCA4 and
BCA1 in parallel (Hu et al, 2010, 2015). These then activate
the node Mitogen-Activated Protein Kinase 4 and 12 (MPK4
and MPK12) via mechanisms that are yet unknown. This
node inhibits the negative-regulator of CO,-induced stomatal
closing, the high temperature 1 (HT1) protein kinase, which,
in turn, regulates the convergence of blue light and CO, 1
and 2 (CBC1 and CBC2) protein kinases either directly or in-
directly (Hashimoto et al,, 2006; Horak et al., 2016; Hiyama et
al, 2017). Finally, CBC1/CBC2 enters the ABA network
through an assumed inhibitory link to GHR1 (Figure 3A).

The above summarized CO, branch can be translated into
the following Boolean equations:

C02 = COZ
BCA1 = CO,
BCA4 = CO,

MPK12/MPK14 = BCA4|BCAT
HT1 =~ MPK12/MPK14
CBC1/CBC2 = HT1
GHR1 =~ ABI2&ROS& ~ CBC1/CBC2

Note that the equation for GHR1 is adapted from Albert
et al. and takes into account the existing connections from

“Materials and methods”), with Ci values <20 ppm (A-C) and <3
ppm (D) before application of ABA. E-H, Changes (differences) in sto-
matal conductance at the indicated time points after ABA application
compared to 0 min. Data present mean *sem. *P < 0.05 and **P <
0.01 Student’s t test in E-H.
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the ABA network (from ABI2 and ROS) and the new input
from the CO, branch. This simplified CO, signaling model,
which can be accessed in the online Boolink repository,
termed Stomata 2.0, includes presently identified and con-
firmed early CO, signaling mechanisms that have been
found to function in the CO, signaling pathway upstream
of the merging with the ABA-induced stomatal closing path-
way (Hsu et al, 2018; Zhang et al, 2018, 2020).

Based on this model, we then determined how the ex-
tended network responds in simulations to ABA under high
and low CO, conditions (Figure 3B), simulated by setting
the input node for CO, to either 0 (very low concentration)
or 1 (high concentration) and again averaging over 2,500 ini-
tial conditions. For CO, = 1, the introduction of ABA at
time step five results in a decrease of conductance level
from 1 to 0 (Figure 3B, blue curve), identical to the WT re-
sponse shown in Figure 2 (blue curve). This can be under-
stood as the added CO, branch having little or no effect on
the ABA network since CBC1/CBC2 is 0 when CO, = 1.
Note that in this model, the starting steady-state stomatal
conductance of 1 is similar at each background CO, concen-
tration, which will be addressed in updated simulations
further below. When simulating very low CO, conditions,
our simulations predicted that introduction of ABA also
induces stomatal closure and, thus, a decrease in the con-
ductance level. However, the ABA-induced conductance
level in the presence of low (nominally 0) CO,, was found
to be reduced from 1 to 0.5 (Figure 3B, red curve).

To test our predictions experimentally, we analyzed
ABA-mediated stomatal closure under either 400 ppm or
near-zero ppm (~15 ppm) CO, by conducting gas-
exchange experiments with ABA application to the transpi-
ration stream of excised intact leaves (Ceciliato et al,, 2019).
Our results showed that application of 2-uM ABA induced
robust stomatal closure in leaves exposed to 400-ppm CO,
as expected (Figure 4, A-D, blue curves). As stomatal
responses are known to show biological noise, and as ABA-
induced stomatal closing in Arabidopsis spp. has not been
previously analyzed at near-zero CO,, we conducted four in-
dependent sets of experiments (Figure 4). In all four experi-
ments, leaves exposed to 1.5-ppm CO, showed robust
stomatal closing in response to 2-uM ABA, with a degree of
expected biological variation (Figure 4, A-D, red curves). By
analyzing the steady-state stomatal conductance in leaves, it
appears that the response to ABA at low CO, was reduced
in three of these experiments (Figure 4, A, C, and D). We
also compared the difference (change) in steady-state sto-
matal conductance before and after applying ABA (Figure 4,
E-H). This analysis shows that independent of whether
leaves are exposed to 400-ppm CO, or 1.5-2-ppm CO,, the
ABA responses had a similar magnitude in three of the
experiments, and there was a stronger ABA response in one
of the experiments (Figure 4F). Furthermore, our data show
that in the absence of ABA, leaves exposed to low CO,
show a higher stomatal conductance than leaves exposed to
400-ppm CO,. This is consistent with a reduction in
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stomatal conductance upon CO, elevation. In addition, anal-
yses of an early time point of the ABA response, 10 min af-
ter ABA addition, show a slightly, but significantly, slowed
initial ABA response in three of four experiments when
compared with controls exposed to 400-ppm ambient CO,
(Figure 4, E, G, and H). Taken together, our experimental
data show that the steady-state stomatal conductance
responses to ABA in Arabidopsis remain, to a large degree,
intact even at very low, near-zero CO, concentration and as
an approximation indicate a steady-state additive effect of
low CO, on the stomatal conductance prior to ABA
exposure.

A comparison of our experimental results and model pre-
dictions in the absence of ABA reveals that Stomata 2.0
(Figure 3B) is not able to fully capture the dependence of
the steady-state conductance levels on CO,. This suggests
that additional modifications of the ABA network are re-
quired to reproduce the observed reduction of stomatal
conductance in the presence of CO,. To explore possible
modifications that result in model predictions that are more
consistent with our experimental steady-state response
results, we utilized the ability of Boolink to easily modify,
simulate, and visualize modified Boolean network outcomes.
We found that we were able to better reproduce experi-
mental data if we modified the Boolean equations for four
network components (Figure 5A). Specifically, we modified
the nodes cytosolic calcium (Ca2c), which is linked in the
ABA model (Albert et al, 2017) to Ca’" influx across the
plasma membrane (CalM), microtubule depolymerization
(microtubule), and water efflux through the plasma mem-
brane (H2OEfflux) to:

Ca2c = ~Ca2ATPase & (CIS | CalM) | (ABA&CO,)

CalM = ~ABH1 & (NtSyp121 | MRP5 | GHR1) | ~ERA1 | Actin | CO,
Microtubule = TCTP | Microtubule & ABA

H20Efflux = AnionEM & PIP21 & KEfflux & ~Malate | CO,

where the modifications are underlined. Introducing a CO,
dependence on calcium signaling was motivated by experi-
mental evidence that Ca2c was involved in CO,-induced
stomatal closure (Webb et al, 1996; Schwartz et al, 1988;
Schulze et al, 2021). Furthermore, findings that anion efflux
and water efflux functions in the CO, response and that
GHR1 functions in CO,-induced stomatal closure were in-
cluded (Horak et al, 2016; Jakobson et al., 2016). Addition of
an ABA component to microtubule function was motivated
based on recent findings (Rui and Anderson, 2016; Qu et al,,
2018). These modifications, their associated Boolean logic
operations, and their effect on stomatal closure are further
detailed in the Supplementary data. When simulating this
modified and updated network, termed Stomata 2.1, we
found that the steady-state conductance level now depends
on CO, and is reduced for high CO, conditions (Figure 5B).
Furthermore, and also approximately consistent with the
experiments, the introduction of ABA reduces stomatal con-
ductance by similar absolute conductance changes for both
low and high CO, conditions (Figure 5B). The Stomata 2.1
network is able to reproduce experimental results better.
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Figure 5. Stomata 2.1 and Boolink. A, ABA-driven stomatal closure
model extended with a CO, branch, indicated in blue, which positively
regulates GHR1, and additional modifications represented by the or-
ange links (read the study for details). B, Predicted relative stomatal
conductance levels obtained by implementing Stomata 2.1 into
Boolink for two concentration levels of CO,: low (CO, = 0; red line
and symbols) and high (CO, = 1; blue line and symbols). The triangle
shows the point in the simulation where ABA is introduced.

We have included the network files for both Stomata 2.0
and 2.1 in the folder “sample_data_files/in the Boolink
repositories”. We anticipate that community members will
be able to use Boolink as a starting point to easily introduce
modifications and iteratively test predictions.

Discussion

Large signaling networks are common in biology, in general,
and plant physiology. The published ABA signaling network
we implemented into Boolink, for example, contains more
than 80 components (Albert et al, 2017). The vast majority
of the interaction strengths and kinetic parameters between
these components are not known, making it difficult to for-
mulate mathematical models of these networks. Motivated
by the simplicity and utility of Boolean networks and the
challenges associated with formulating detailed rate
equation-based models for these large networks, we have
presented here a software package with a GUI that can sim-
ulate, visualize, and plot the results of a user-defined
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Boolean network. Our package, named Boolink, is free to
use and distribute and is built from free and open-source
software. The interface is intuitive, and users do not require
extensive coding knowledge to use it. The Supplementary
data contains detailed instructions on downloading, instal-
ling, and running Boolink on Windows, Mac, and Linux-
based machines. In addition to this open-source version, we
also packaged the software in a “Docker container”, which
allows execution of Boolink in an even more facile and di-
rect computer operating system-independent fashion.
Instructions on how to obtain the Docker container is also
provided in the Supplementary data.

Boolink platform and advantages

As reviewed by Schwab et al. (Schwab et al, 2020), a num-
ber of computational platforms exist that are able to simu-
late Boolean networks and can be useful in certain
applications. Boolink, however, is distinct from these plat-
forms for several reasons, making it uniquely capable of ana-
lyzing the large-scale Boolean networks addressed in this
study. First of all, many of the existing packages, including
BoolSim (Garg et al, 2008), ChemChains (Helikar and
Rogers, 2009), MaBoSS (Stoll et al, 2012), Pint (Paulevé,
2017), BooleanNet (Albert et al, 2008), BoolNet (Missel et
al, 2010), and PyBoolINet (Klarner et al, 2017), do not use
GUIs and cannot visualize the network. Obtaining an intui-
tive understanding of networks without a graphical interface
becomes increasingly difficult as the number of nodes
increases. Furthermore, having the Boolink GUI allows users
to determine connections between nodes with a simple
click on the graphical representation. Furthermore, the pack-
ages SQUAD (Di Cara et al, 2007), SimBoolNet (Zheng et
al, 2010), and Polynome (Dimitrova et al, 2011) either are
no longer available or use Java versions that are no longer
supported. In addition, CellNetAnalyzer (Klamt et al, 2007),
is implemented in MATLAB and is, thus, not open source.
Also, BooleSim (Bock et al., 2014) and CellNOptR (Terfve et
al, 2012) only use synchronous updating and cannot imple-
ment the evaluation of nodes in an asynchronous order.
Finally, ViSiBool (Schwab and Kestler, 2018), GINsim
(Gonzalez et al, 2006), and The Cell Collective (Helikar et
al, 2012) can only run a single initialization at a time. This
means that performing the computational studies reported
in Figures 3 and 4, which used 2,500 randomly chosen initial
conditions, would require manually starting 2,500 separate
simulations.

To further distinguish Boolink from existing packages,
we have performed a benchmarking study to compare the
computational efficiency of our platform with that of two
existing packages, GINsim and The Cell Collective, that are
GUl-based, are open source, can perform asynchronous
updating, and can plot results. Both of these packages are
implemented using Java, which can be expected to be less
efficient than our C+--based platform (Hundt, 2017;
Prechelt, 2000). To benchmark GINsim, we used a published
Boolean network comprising 18 nodes that models the cel-
lular cycle in budding yeast (Irons, 2009). Computing 2'®
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asynchronous updates for all possible states of this network
took 35.83 s in GINsim. Simulating the same network in
Boolink and for 50 time steps and 2,500 initial conditions,
corresponding to 2500*50*18 =225 x 10° asynchronous
updates, took 8.2 s. Comparing the Central Processing Unit
(CPU) time per update reveals that Boolink is faster than
GINsim by a factor of 38: 3.64 x 107 s per update versus
137 x 107* s per update. To benchmark The Cell
Collective, we simulated our simple five-node network
(Figure 1) for one initialization and 10,000 time steps. This
simulation required approximately 1 min and 45 s or around
0.01 s per time step using The Cell Collective. In contrast,
Boolink was able to complete this simulation in 0.338 s,
with a difference in speed of approximately 340. This consid-
erable advantage in computational efficiency can become
particularly attractive for large-scale networks that need to
be run multiple times, as is the case for our CO, signaling
network. Coupled to a user-friendly graphics interface, our
C++ implementation should thus provide a fast and user-
friendly platform for the exploration of Boolean networks.
Furthermore, our platform is independent of operating sys-
tem and can be installed on Linux, Windows, and Mac oper-
ating systems. The explicit instructions and the Docker
container we provide should facilitate this installation.

Boolink uses asynchronous and random order of updates,
which is best suited to simulate a network of chemical reac-
tions in which the outcome of one reaction then affects the
outcome of another in the near future (hence asynchro-
nous), and when the relative rates of different reactions in
the network are unknown (hence random order of update).
Besides nodes and connections, users may also specify the
number of time steps or iterations to run the simulations
and the number of initial conditions to get a statistically ro-
bust sample output. Once a system is defined, it may be vi-
sualized as a network in Boolink. Visualization includes
identifying the upstream and downstream nodes of a given
node and the type of connections (activating or inhibiting)
between them, by simply double-clicking on the node of in-
terest. The steady states of nodes of the system after simula-
tion can be quickly plotted within Boolink. The trajectory of
the entire simulation is stored in a NumPy array; a Jupyter
notebook is provided with the package, which can be used
to further analyze the system starting from the NumPy
array, including producing publication-ready plots of the
simulation.

Guard cell CO, signaling iterative modeling

We first tested and verified Boolink using a published ad-
vanced model for stomatal closure in guard cells as medi-
ated by ABA and verified that our simulations were
consistent with those of Albert et al. (2017). We then ex-
tended the network to include the effects of CO, on stoma-
tal movements. Previous research indicated that CO, might
mediate signal transduction via the OST1 protein kinase, as
ostT mutant leaves were impaired in their stomatal response
to CO, elevation (Merilo et al, 2013; Xue et al, 2011).
However, more recent studies unexpectedly showed that, in
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contrast to ABA, CO, elevation does not activate the OST1
protein kinase (Hsu et al, 2018; Zhang et al, 2020). This re-
search further provided experimental evidence that basal
OST1 protein kinase activity and basal ABA signaling are re-
quired for WT-like CO,-induced stomatal closure (Hsu et al.,
2018; Zhang et al, 2020; Figures 3 and 4). Thus, merging
CO, signaling into the extant ABA signaling model is rea-
sonable. The biochemical link by which CO, signaling
merges with ABA signaling is proposed to lie downstream of
the OST1 protein kinase but remains unknown. In the
present study, to test a simplified model merging the ABA
signaling and CO, signaling networks, we modeled this link
to occur at the level of the transmembrane receptor-like
(pseudo)kinase GHR1 (Hua et al., 2012; Sierla et al., 2018).

The simulations of this simplified network predicted that
the response to ABA should depend on the CO, concentra-
tion (Figure 3). This prediction was then subsequently
analyzed, and ABA-mediated stomatal closure of intact
Arabidopsis spp. leaves was measured while leaves were
either exposed to ambient 400-ppm CO, or near-zero (1.5
ppm) CO, (Figure 4). Interestingly, our data show that
leaves exposed to 1.5-ppm CO, exhibited a robust response
to ABA. Under low CO, conditions, the stomatal conduc-
tance remained higher prior to ABA application at a steady
state than at 400-ppm CO, (Figure 4A). When comparing
true steady-state stomatal conductance responses, it appears
that CO, and ABA may in part have additive responses in
Arabidopsis as a first-order approximation. (Note that basal
ABA signaling amplifies or accelerates the CO, response
[Hsu et al, 2018], such that the starting stomatal conduc-
tance was much higher at low CO, due to the lack of CO,-
induced stomatal conductance reduction [Figure 4A]).

In contrast to our experimental data (Figure 4), Stomata
2.0 predicted identical conductance levels for low and high
CO, concentration in the absence of ABA (Figure 3B). In an
illustration of the use of Boolink, we modified the ABA net-
work further, with as goal to incorporate CO, dependence
on steady-state conductance levels when ABA is absent.
Creating this updated network, Stomata 2.1, was greatly fa-
cilitated by the ability of Boolink to easily implement
changes and generate predictions. We introduced CO,
dependence on calcium signaling based on experimental evi-
dence that Ca2c is involved in CO,-induced stomatal closure
(Schwartz et al, 1988; Schulze et al, 2021; Webb et al,
1996). Furthermore, it is well-established that anion efflux
and water efflux from guard cells are essential for the CO,-
induced reduction in stomatal conductance. Furthermore,
findings that GHR1 functions in CO,-induced stomatal
closure (Horak et al, 2016; Jakobson et al, 2016) were ex-
panded to include GHR1 predictions of the original ABA sig-
naling model (Albert et al, 2017). Addition of an ABA
component to microtubule function was motivated based
on recent findings on roles of guard cell microtubules (Qu
et al, 2018 Rui and Anderson, 2016). The output of
Stomata 2.1 was able to better incorporate effects of CO,
and the present experimental data (Figure 5B). As described
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earlier, important gaps exist in the understanding of the
CO, signaling pathway, including that the primary CO, or
bicarbonate sensors remain unknown in guard cells and the
mechanisms by which HT1, CBC1, and CBC2 link to one an-
other and to stomatal closing mechanisms are unknown.
Expansion of the present model will be required.

In the present study, ABA responses were analyzed at
near-zero CO, in the C3 model plant Arabidopsis. The
robust decrease of steady-state stomatal conductance at
near-zero CO, by ABA addition was also found in the C3
species such as Oats (Avena sativa), Cotton (Gossypium hir-
sutum), and Cocklebur (Xanthium strumarium) but was not
found in the C4 species such as Amaranth (Amaranthus
powellii) and Maize (Zea mays; Dubbe et al, 1978), suggest-
ing a species variability in the response. The converse re-
sponse was also analyzed in which CO, responses were
observed in the absence of exogenously added ABA in these
C3 and C4 species (Dubbe et al, 1978). Interestingly, a varia-
tion among species was detected, in which either CO,
responses proceeded in the C4 species or were impaired in
the C3 species (Dubbe et al, 1978). These findings are con-
sistent with recent findings that CO, signaling requires basal
ABA signaling and would be predicted to depend on varia-
tion in basal levels of ABA in guard cells depending on plant
species and growth conditions (Hsu et al, 2018; Zhang et al,,
2020). These classical findings (Dubbe et al, 1978; Raschke,
1975) corresponds to a model in which ABA and basal ABA
signaling plays an important role for other stomatal closing
stimuli.

Our proposed additions to the existing ABA network,
which illustrate the potential use of Boolink, are meant as a
starting point for further explorations, and further research is
needed to determine the precise mechanism by which CO,
signaling merges with ABA signal transduction. Nevertheless,
several improvements can be suggested. First, it is conceiv-
able that CO, affects yet unknown mechanisms. Second, the
CO, pathway may contain feedback loops, which can be eas-
ily implemented within Boolink (Figure 1;Dubbe et al,, 1978).
Finally, we should point out that Boolean networks do not
incorporate explicit rate constants and contain nodes that
can only take one of two values (0 or 1). Therefore, these
networks are not able to address the time dependence of
responses nor how they respond to graded inputs.

Importantly, the GUI platform and stomatal signaling
model we developed can be used and altered by the public
community of users to generate diverse testable predictions
to add expanded components, or to modify the ABA and
CO, signaling models. Furthermore, the methods and open-
access software tools we have presented can be of interest
to the wider life sciences and plant biology community in-
terested in physiological pathways.

Materials and methods

Software
Boolink is implemented using Python and C++ and can be
freely downloaded from the GitHub repository (https://
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github.com/dyhe-2000/Boolink-GUI and https://github.com/
Rappel-lab/Boolink-GUI). It requires a current version of
Python and C++4 and a detailed manual, including installa-
tion instructions, is provided in the GitHub repository.
These instructions are provided for Windows, Mac, or
Linux-based computers. Boolink can also be run as a Docker
container, a self-contained environment that includes all the
required packages and utilities, on MacOS and Linux-based
systems. The advantage of this method is that users only
need to install the desktop client for Docker and not the
dependencies like C++ and Python. A detailed explanation
of instructions to install the Docker client and the required
script to run the container are given in the Supplementary
data and in the GitHub repository.

Experiments

Plants of the Arabidopsis (A. thaliana) accession Columbia
(Col-0) were grown as described by Hsu et al. (2018).
Stomatal conductance measurements in response to ABA
were performed in detached intact leaves of 5.5- to 7-week-
old plants in Arabidopsis leaves following the procedure de-
scribed previously (Ceciliato et al, 2019) using a LI-6800
Portable Photosynthesis System with an integrated
Multiphase  Flash  Fluorometer  (6800-01A;  LI-COR
Biosciences, Lincoln, Nebraska, USA). Detached leaves were
clamped in the leaf chamber and kept at ~1.5 ppm or 400
ppm CO,, 135 pmol m~? s~ red light combined with 15
pmol m~2 s~ blue light, 70 * 0.5% or 65 * 0.5% relative air
humidity, 21°C heat exchanger temperature, and 500
pmol-s~ " incoming air flow rate for at least 2 h until stoma-
tal conductance equilibrated and stabilized. Stomatal con-
ductances were recorded every 30 s under ~1.5-ppm or
400-ppm CO, for 10 min. ABA (2 uM) was then added to
the transpiration stream via the petiole, and stomatal
conductances were recorded as shown in the figures. In
each independent set of experiments, intact leaves from in-
dependent plants were analyzed per experimental condition.

Supplemental data

The following materials are available in the online version of
this article.

Supplemental Text. Contains a primer on Boolean logic,
details of Stomata 2.1, and installation and operating
instructions of Boolink.
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