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Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs

quantum wells with two populated subbands are studied in magnetic fields tilted from the normal to the 2D

electron layer at different temperatures T . A decrease of MISO amplitude with temperature increase is observed.

At moderate tilts, the temperature decrease of MISO amplitude is consistent with a decrease of the Dingle

factor due to a reduction of the quantum electron lifetime at high temperatures. At large tilts, a different regime

of strong MISO suppression with the temperature is observed. The proposed model relates this suppression

to magnetic entanglement between subbands, leading to beating in oscillating density of states. The model

yields corresponding temperature damping factor: AMISO(T ) = X/ sinh(X ), where X = 2π 2kT δ f and δ f is

the difference frequency of oscillations of density of states in two subbands. This factor is in agreement with

experiments. A Fermi liquid enhancement of MISO amplitude is observed.
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I. INTRODUCTION

The orbital quantization of electron trajectories and spec-

trum in magnetic fields significantly affects the electron

transport in condensed materials [1–3]. Shubnikov-de Haas

(SdH) resistance oscillations [1] and quantum Hall effect

(QHE) [4] are remarkable effects of the orbital quantization.

These effects occur at a temperature, T , which is less than

the cyclotron energy, �c = h̄ωc, separating Landau levels.

Here ωc is the cyclotron frequency. At high temperatures,

kT > h̄ωc, both SdH oscillations and QHE are absent due

to a spectral averaging of the oscillating density of states

(DOS) in the energy interval, δε ≈ kT , in a vicinity of Fermi

energy, εF .

At high temperatures, kT > h̄ωc, electron systems with

multiple populated subbands continue to exhibit quantum

resistance oscillations [5–10]. These magneto-intersubband

oscillations (MISOs) of the resistance are due to an alignment

between Landau levels from different subbands i and j with

corresponding energies Ei and E j at the bottom of the sub-

bands. Resistance maxima occur at magnetic fields in which

the gap between the bottoms of the subbands, �i j = Ei − E j ,

is a multiple of the Landau level spacing: �i j = kh̄ωc, where

k is an integer [11–15]. At this condition, Landau levels of

two subbands overlap and the electron elastic scattering on

impurities is enhanced due to the possibility of electron tran-

sitions between the overlapped quantum levels of ith and jth

subbands. At magnetic fields corresponding to the condition

�i j = (k + 1/2)h̄ωc, the intersubband electron scattering is
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suppressed since the quantum levels of two subbands are

misaligned. The spectral overlap between two subbands os-

cillates with the magnetic field and leads to MISOs, which are

periodic in the inverse magnetic field.

Recently, we studied transport properties of high quality

GaAs quantum wells with two populated subbands in tilted

magnetic fields [16]. The goals of that study were to detect

effects of the spin (Zeeman) splitting on MISOs, as well as to

investigate the effect of the spin splitting on quantum positive

magnetoresistance (QPMR) [17–20] in a 2D system with two

populated subbands. These experiments have demonstrated a

significant reduction of the QPMR with the application of the

in-plane magnetic field, which was in good agreement with

the modification of the electron spectrum via Zeeman effect

with g factor g ≈ 0.43 ± 0.07. MISOs also have a strong

reduction of the magnitude with the in-plane magnetic field.

However, in contrast to the QPMR, the MISO reduction is

found to be predominantly related to a modification of the

electron spectrum via a magnetic entanglement of two sub-

bands, induced by the in-plane magnetic field [16].

In zero magnetic field, the electron motion in a quantum

well can be separated on two independent parts: the lateral

motion along the 2D layer and the vertical motion (perpen-

dicular to 2D layer), which is quantized. In a perpendicular

magnetic field, the lateral motion is also quantized, forming

Landau levels, but the lateral and vertical motions are still

separable. The eigenstates of the systems can be, therefore,

represented as a product of two wave functions, correspond-

ing to two eigenstates for vertical and lateral motions. The

in-plane magnetic field couples vertical and lateral electron

motions, making these electron motions to be nonsepara-

ble or entangled. As a result, in a tilted magnetic field, the
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eigenstates of the system cannot be presented as a product

of two wave functions, corresponding to lateral and vertical

motions but are presented as a linear superposition of such

products. In this paper, we call this effect magnetic entan-

glement of two subbands since mathematically the effect is

similar to the quantum entanglement of particles in many-

body physics.

It is important to mention that the Hamiltonian Eq. (2),

describing the entangled subbands, appears in QED mod-

els, where a photon mode/harmonic oscillator, represented in

our case by Landau levels, couples to a qubit, represented

by two subbands. Such systems have been used in atomic

physics [21] and quantum optics as well as with supercon-

ducting circuits [22,23]. Recently, this model was exploited

for 2D electrons on the surface of liquid He-4 [24].

In this paper, the temperature dependence of MISO am-

plitude is studied in a broad range of angles θ between the

magnetic field, B, and the normal to the 2D layer. At small

angles, the MISO temperature dependence is controlled by

temperature variations of the electron quantum lifetime enter-

ing the Dingle factor. At large angles θ , a different regime of

the temperature damping of MISO is observed, demonstrating

an exponentially strong decrease of MISO magnitude with the

temperature. The proposed model relates the observed MISO

suppression with the magnetic entanglement of subbands

leading to the MISO damping factor: AMISO(T ) = X/ sinh(X ),

where X = 2π2kT δ f and δ f is the difference frequency of

oscillations of the DOS in two subbands. A comparison with

the model reveals an enhancement of MISO magnitude, which

has a Fermi liquid origin.

The paper has the following organization. Section II

presents details of the experimental setup. Experimental re-

sults are presented in Sec. III. In Sec. IV, the model leading to

MISO is discussed in detail. Section V presents a comparison

and discussion of the experimental results and model out-

comes. Appendix A presents cyclotron mass calculations and

computations of the parameter X for magnetically entangled

subbands. Appendix B contain details of the derivation of

Eq. (10).

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular

beam epitaxy on a semi-insulating (001) GaAs substrate. The

material was fabricated from a selectively doped GaAs sin-

gle quantum well of width d = 26 nm sandwiched between

AlAs/GaAs superlattice screening barriers [25–29]. The stud-

ied samples were etched in the shape of a Hall bar. The width

and the length of the measured part of the samples are W =
50 μm and L = 250 μm. AuGe eutectic was used to provide

electric contacts to the 2D electron gas. Samples were studied

at different temperatures, from 5.5 Kelvin to 12.5 Kelvin in

magnetic fields up to 7 Tesla applied at different angles θ

relative to the normal to 2D layers and perpendicular to the

applied current. The angle θ is evaluated using Hall voltage

VH = B⊥/(enT ), which is proportional to the perpendicular

component, B⊥ = B · cos(θ ), of the total magnetic field B.

The total electron density of sample S1, nT = (8.0 ±
0.03) × 1011cm−2, was evaluated from the Hall measure-

ments taken in classically strong magnetic fields [2]. An

FIG. 1. Dependencies of the dissipative resistivity of 2D elec-

trons, ρxx , on perpendicular magnetic field taken at different

temperatures: from bottom to top T = 5.5, 6.9, 8.5, 10.1, and 10.9 K.

The inset shows the Hall resistivity, ρxy, in a perpendicular magnetic

field at the same set of temperatures as in the main plot. Angle

θ = 0o.

average electron mobility μ ≈ 72 m2/V s was obtained from

nT and the zero-field resistivity. An analysis of the periodicity

of MISOs in the inverse magnetic field yields the gap �12 =
15.15 meV between the bottoms of the conducting subbands,

Fermi energy EF = 21.83 meV and electron densities n1 =
6.12 × 1011cm−2 and n2 = 1.87 × 1011cm−2 in the two popu-

lated subbands. Sample S2 has density nT ≈ 8.0 × 1011cm−2,

mobility μ ≈ 100 × m2/Vs and the gap �12 = 15.10 meV.

Both samples have demonstrated similar behaviors in mag-

netic fields. Below we present data for sample S1.

Sample resistance was measured using the four-point probe

method. We applied a 133 Hz ac excitation Iac = 1 μA

through the current contacts and measured the longitudinal (in

the direction of the electric current, x direction) and Hall ac

(along y direction) voltages (V ac
xx and V ac

H ) using two lock-in

amplifiers with 10 M	 input impedance. The measurements

were done in the linear regime in which the voltages are

proportional to the applied current.

III. EXPERIMENTAL RESULTS

Figure 1 shows dependencies of the dissipative resistivity

of 2D electrons on the perpendicular magnetic field B⊥, taken

at different temperatures T and the angle θ = 0◦ between

the direction of the magnetic field B and the normal to the

2D layer. At θ = 0◦, two subbands are disentangled. At T

= 5.5 K and small magnetic field (B⊥ < 0.05 T), the curve

demonstrates an increase related to classical magnetoresis-

tivity [2,16]. At higher magnetic fields, B⊥ > 0.08 T, the

resistivity starts to oscillate with progressively larger mag-

nitude at higher field. These oscillations are MISO. MISO

maxima correspond to the condition

�12 = kh̄ωc, (1)
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FIG. 2. Dependencies of the dissipative resistivity of 2D elec-

trons, ρxx , on perpendicular magnetic field taken at different

temperatures: from bottom to top: T = 5.5, 6.9, 8.5, 10.1, and

10.9 K. The inset shows the Hall resistivity, ρxy, in a perpendicular

magnetic field at the same set of temperatures as in the main plot.

Angle θ = 87.86o.

where �12 = E2 − E1 is the energy difference between bot-

toms of two occupied subbands and the index k is a positive

integer [13,15].

The temperature significantly affects the MISO magnitude.

At temperature 10.9 K, the MISO magnitude is substantially

smaller the one at T = 5.5 K. Furthermore at a higher tem-

perature the oscillations starts at a higher magnetic field. Both

effects are a result of an increase of the quantum scattering

rate of electrons at higher temperature due to the enhancement

of electron-electron scattering [8,9,19]. This rate enters the

Dingle factor, affecting strongly MISO magnitude [see below

Eq. (10)]. The inset to Fig. 1 shows the Hall resistivity at

different temperatures. The inset indicates that the Hall resis-

tivity and thus the total electron density in the system are not

affected by temperature.

Figure 2 shows dependencies of the dissipative resistiv-

ity of 2D electrons on the perpendicular magnetic field B⊥,

taken at different temperatures T but at the angle θ = 87.86 °.

At θ = 87.86◦, two subbands are entangled by the in-plane

magnetic field. At T = 5.5 K and small magnetic field (B⊥ <

0.05 T), the curve continues to demonstrate an increase related

to classical magnetoresistivity [2,16]. At higher magnetic

fields, B⊥ > 0.08 T, the resistivity starts to oscillate but with a

magnitude which is significantly smaller than the one shown

in Fig. 1 for disentangled subbands. The inset to the figure

indicates that the Hall resistivity and the total electron density,

nT , are still temperature independent and stays the same for

disentangled subbands.

To facilitate the analysis of the oscillating content, the

monotonic background ρb
xx, obtained by an averaging of the

oscillations in reciprocal perpendicular magnetic fields, is re-

moved from the magnetoresistivity ρxx(B⊥). Figure 3 presents

the remaining oscillating content of the magnetoresistivistity,

ρMISO, as a function of the reciprocal perpendicular magnetic

FIG. 3. Oscillating content of magnetoresitivity ρxx at two dif-

ferent temperatures as labeled. (a) disentangled subbands at angle

θ = 0o, (b) entangled subbands at angle θ = 87.05o.

field B−1
⊥ for two temperatures as labeled. The thin solid

lines indicate envelopes of the oscillating content used in the

analysis below.

For disentangled subbands, Fig. 3(a) demonstrates that

at the high temperature T = 10.9 K, the MISO magnitude

is smaller than the one at T = 5.5 K. An analysis of the

MISO envelope indicates that the MISO magnitude decreases

exponentially with 1/B⊥ at a small 1/B⊥. The rate of the

exponential decrease is stronger at the higher temperature.

Both the thermal suppression of MISO and the enhancement

of the MISO reduction with 1/B⊥ result from the increase of

the quantum scattering rate of 2D electrons, 1/τq, due to the

increase of electron-electron scattering at high temperatures.

Figure 3(b) demonstrates the dependence of MISO on

1/B⊥ for the magnetically entangled subbands at θ = 87.05◦.

The decrease of MISO magnitude with 1/B⊥ is different from

the exponential decrease of the disentangled subbands. The

magnetic field dependence tends to saturate at small 1/B⊥
in contrast to the one shown in Fig. 3(a). For the entangled

subbands, the MISO magnitude is significantly reduced. Fur-

thermore, a rough analysis indicates that the relative decrease

of the MISO magnitude with the temperature is substantially

stronger than the one for disentangled subbands. In particular,

at 1/B⊥ = 5 (1/T) for the disentangled subbands, the ratio

between MISO magnitudes at T1 = 5.5 K and T2 = 10.9 K is

close to 3, while for the entangled subbands the ratio is larger

and close to 10.

Figure 4 presents an evolution of the temperature depen-

dence of the MISO magnitude with the angle θ at fixed

1/B⊥ = 5 (1/T). Figure 4(a) shows the dependence of the

normalized MISO magnitude on T 2. At a small subband

entanglement (θ = 0◦ and 84.59◦), the MISO magntitude

drops exponentially with T 2 in good agreement with the solid

straight line presenting the T 2 exponential decrease at θ = 0◦.

At larger angles (θ = 87.05◦ and 87.86◦), the MISO drop

becomes stronger and deviates from the T 2 dependence.
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FIG. 4. Temperature dependence of normalized amplitude of

MISO, ρN
MISO = ρMISO/ρxx (B = 0) at B−1

⊥ = 5 (1/T). (a) The depen-

dence is plotted versus T 2, (b) the dependence is plotted versus T .

In Fig. 4(b), the symbols present the dependence of nor-

malized MISO amplitude on temperature T . The solid straight

lines demonstrate the exponential decrease with T . At small

subband entanglement (θ = 0; 84.59º), the MISO magnitude

does not decrease exponentially with T . The dependence de-

viates considerably from the solid straight line. In contrast, at

the largest angle (87.86º), the MISO reduction is consistent

with the exponential decrease with T and follows the solid

straight line. Thus, Fig. 4 shows that the decrease of MISO

amplitude with temperature is qualitatively different for the

entangled subbands, indicating a different mechanism leading

to the MISO damping. This regime of thermal MISO damping

is analyzed below within a model, taking into account the

magnetic entanglement of 2D subbands.

IV. MODEL OF QUANTUM ELECTRON TRANSPORT

In perpendicular magnetic fields (at θ = 0o), a microscopic

theory of MISO is presented in Refs. [13–15]. In this the-

ory, the electron spectra of two subbands evolve in magnetic

fields quite independently. The reason is that at θ = 0o, the

lateral (in the 2D layer) and vertical (perpendicular to the

layer) electron motions are separable and do not affect each

other. In a tilted magnetic field, there is a component of the

field, B‖, which is parallel to the 2D conducting layer. This

parallel component couples the lateral and vertical electron

motions and electron spectra of two subbands become mag-

netically entangled. A MISO model, which takes into account

this magnetic entanglement between two subbands, has been

proposed recently. The model demonstrates a significant de-

crease of MISO amplitude with the magnetic field tilt [16].

A comparison with corresponding experiments indicates that

the magnetic entanglement between subbands is the dominant

mechanism leading to the angular decrease of the MISO am-

plitude in GaAs quantum wells. Zeeman spin splitting is found

to provide a subleading contribution to the effect [16].

Below, this model is used to analyze the temperature de-

pendence of the MISO amplitude in tilted magnetic fields. The

Zeeman effect is ignored. The analysis reveals a universal

temperature-dependent factor which controls the MISO am-

plitude in magnetically entangled subbands. The amplitude

reduction is found to be exponential with the temperature

in the regime of a strong magnetic entanglement. In many

respects, the physics of this additional temperature factor is

similar to the one for SdH oscillations. The obtained factor

describes a general MISO property.

A. Spectrum in tilted magnetic field

Let 2D electrons propagate along the xy plane and the z

axes perpendicular to the plane. In quantum wells, the spatial

subbands are the result of quantization of the electron wave

function in the z direction. Index i = 1(2) labels the low (high)

subband with the energy E1(E2) at the bottom of the subband.

The subband separation is �12 = E2 − E1.

With no in-plane magnetic field applied, the spatial sub-

bands are coupled to each other via elastic scattering. An

in-plane magnetic field, B‖, provides an additional coupling

via Lorentz force coming from the last term of the Hamil-

tonian H presented by Eq. (2). This additional B‖ coupling

preserves the degeneracy of the quantum levels but induces

variations of the electron spectrum, which, due to the rel-

ativistic origin of the Lorentz force, are dependent on the

energy (velocity). These spectrum variations destroy the com-

plete spectral overlap between Landau levels from different

subbands, existing at zero in-plane magnetic field. This leads

to the angular decrease of the MISO amplitude [16]. Below,

we investigate how this decrease depends on the temperature

following to the developed approach [16].

To estimate the effect, the electron spectrum of an ideal

two subband system without impurity scattering is computed

numerically in a tilted magnetic field. The impurity scattering

is then introduced by a broadening of the bare quantum levels

using a Gaussian shape of the DOS with the preserved level

degeneracy.

We consider a quantum well of a width d in the z di-

rection formed by a rectangular electrostatic potential V (z)

with infinitely high walls and placed in a tilted mag-

netic field B = (−B‖, 0, B⊥). Electrons are described by the

Hamiltonian [16],

H =
h̄2k2

x

2m0

+
e2B2

⊥
2m0

x2 +
h̄2k2

z

2m0

+ V (z) +
e2B2

‖

2m0

z2

+
e2B⊥B‖

m0

xz, (2)

where m0 is electron band mass. To obtain Eq. (2), we have

used the gauge (0,B⊥x + B‖z,0) of the vector potential and

applied the transformation x → x − h̄ky/eB⊥.

The first four terms of the Hamiltonian describe the 2D

electron system in a perpendicular magnetic field. The corre-

sponding eigenfunctions of the system are |N, ξ 〉, where N =
0,1,2... presents the N th Landau level (the lateral quantization)

and ξ = S, AS describes the symmetric (S) and antisymmetric

(AS) configurations of the wave function in the z direction
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(vertical quantization): |N, S〉 = |N〉(2/d )1/2 cos(πz/d ) and

|N, AS〉 = |N〉(2/d )1/2 sin(2πz/d ).

Using functions |N, ξ 〉 as the basis set, one can present the

Hamiltonian in matrix form. The matrix contains four matrix

blocks: Ĥ = (ÊS, T̂ ; T̂ , ÊAS ), where the semicolon separates

rows. The diagonal matrices, ÊS and ÊAS , represent energy of

the symmetric and antisymmetric wave functions in different

orbital states N :

ES
mn = δmn

[

h̄ωc

(

(n − 1) +
1

2

)

+
e2B2

‖d2[ 1
12

− 1
2π2 ]

2m0

]

,

EAS
mn = δmn

[

h̄ωc

(

(n − 1)+
1

2

)

+�12 +
e2B2

‖d2[ 1
12

− 1
8π2 ]

2m0

]

,

(3)

where �12 = E2 − E1 is the energy difference between the

bottoms of two spatial subbands and indexes m = 1, 2...Nmax

and n = 1, 2...Nmax numerate rows and columns of the matrix,

correspondingly. These indexes are related to the orbital num-

ber N : n, m = N + 1, since the orbital number N = 0, 1, 2...

In numerical computations, the maximum number Nmax is

chosen to be about twice larger than the orbital number NF

corresponding to Fermi energy εF . Further increase of Nmax

shows a very small (within 1%) deviation from the depen-

dencies obtained at Nmax ≈ 2NF . This also indicates that the

contributions of the third and higher spatial subbands with a

higher energy can be ignored in the spectrum computation. It

supports the two subband approximation used in the paper.

The first term in Eq. (3) describes the orbital quantization

of electron motion. The last term in Eq. (3) describes the

diamagnetic shift of the quantum levels and relates to the fifth

term in Eq. (2). In the basis set |N, ξ 〉, the diamagnetic term is

proportional to 〈ξ |z2|ξ 〉. The diamagnetic terms do not depend

on N . The diamagnetic terms lead to an increase of the gap,

Eg, between bottoms of subbands with the in-plane magnetic

field:

Eg(B‖) = �12 +
3

16π2

e2B2
‖d2

m0

. (4)

The off-diagonal matrix T̂ is related to the last term in

Eq. (2). This matrix mixes symmetric and antisymmetric

states. Since x = lB⊥(a∗ + a)/
√

2 works as the raising a∗ and

lowering a operators of the Landau orbits, the last term in

Eq. (2) couples Landau levels with orbital numbers different

by one. Here lB⊥ = (h̄/eB⊥)1/2 is the magnetic length in B⊥.

As a result, for n > m, the matrix element Tmn between states

|N, S〉 and |N + 1, AS〉 is

Tmn = δm+1,n

e2B‖B⊥lB⊥

m0

〈N |
a∗ + a
√

2
|N + 1〉〈S|z|AS〉

= δm+1,n h̄ωc

[ 16B‖d

9π2B⊥lB⊥

]

(n/2)1/2. (5)

The matrix T̂ is a symmetric matrix: Tmn = Tnm.

The Hamiltonian Ĥ is diagonalized numerically at differ-

ent magnetic fields B⊥ and B‖. To analyze the spectrum, the

obtained eigenvalues of the Hamiltonian are numerated in

ascending order using positive integer index l = 1,2...., which

is named below as the Landau level index.

FIG. 5. Dependence of the energy of Landau levels, counted

from the bottom of the lowest subband in GaAs quantum well of

width d = 27 nm, on Landau level index, l , at different in-plane

magnetic fields as labeled. Each symbol corresponds to a Landau

level. Kinks in the dependencies occur at the energy corresponding

to the bottom of the second subband, Eg. Decrease of the slope of the

dependencies at ε < Eg with B‖ indicates increase of the cyclotron

mass mc1 in the first subband. The independence of the slope on B‖
at ε > Eg suggests decrease of the mass mc2 in the second subband

with B‖. Vertical line at l = 75 marks the last populated Landau

level in the studied system. B⊥ = 0.222 T. Inset shows divergence of

cyclotron masses in two subbands with the in-plane magnetic field.

Figure 5 presents a dependence of the Landau-level energy,

counted from the bottom of the first subband, on index l for

different parallel magnetic fields as labeled. In the figure,

each symbol corresponds to a Landau level. At B‖ = 0 T

and ε < Eg = �12, the quantum levels correspond to the first

subband. These levels are evenly separated by the cyclotron

energy �c = h̄ωc, forming a straight line. The slope of this

line is inversely proportional to the electron mass, m0, since

�c ∼ 1/m0. The slope is also inversely proportional to the

DOS since DOS ∼ m0 for 2D parabolic bands. At ε > Eg, the

slope of the straight line is abruptly reduced by a factor of

2. This results from the contribution of the second subband

to the total density of states, which starts at ε > Eg. Since

the mass in the second subband, m0, is the same, the total

DOS is doubled and the slope is reduced by factor of 2. The

transition between these two straight lines occurs at ε = Eg

and corresponds to the energy of the bottom of the second

subband E2.

At B‖ = 7 T and ε < �12, the electron spectrum is differ-

ent. At the same index l , the Landau levels of the first subband

have a lower energy indicating an increase of the cyclotron

mass in the subband: mc1 > m0. This is the effect of the entan-

glement between subbands, induced by the in-plane magnetic

field: the eigenstate �l of electron performing a cyclotron mo-

tion in the tilted magnetic field is now a linear superposition

of the symmetric |N, S〉 and antisymmetric states |N + n, AS〉
of the Hamiltonian [Eq. (2)] at B‖ = 0 T. Although at B‖ =
7 T the open symbols form an apparent straight line, an
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analysis indicates deviations of the data from the linear de-

pendence, revealing a nonparabolicity of the spectrum. To

simplify the presentation, we neglect these deviations and

approximate the spectrum by a straight line. In other words,

we consider the spectrum to be parabolic. Similar to the

spectrum at B‖ = 0 T, the straight line changes its slope due

to the contribution of the second subband to the DOS. The

slope change occurs at a higher energy, Eg: Eg > �12 due to

contribution of the diamagnetic terms to the gap [see Eq. (4)].

Within accuracy of 1%, the changed slope coincides with the

slope obtained at B‖ = 0 T at ε > �12. This indicates that at

ε > Eg, the total density of states is preserved and, therefore,

the effective mass in the second subband is reduced by the

in-plane field B‖: mc2 < m0, since mc1 + mc2 = 2m0 ∼ total

DOS at high energies. Progressively stronger variations of the

masses are seen at higher in-plane field B‖ = 10 T.

The inset to the figure shows relative variations of the

cyclotron masses in the two subbands induced by the in-

plane magnetic field. The inset demonstrates that at small

in-plane magnetic fields, the mass divergence is proportional

to the square of the field. An analysis of the two-subband

model in a small in-plane magnetic field, given in Ap-

pendix A, provides further support to the presented interpre-

tation of the electron spectra.

The inset in Fig. 2 presents the Hall resistance taken at

large tilt: θ = 86.87º. The data indicates that the Hall coeffi-

cient, RH = 1/enT , which is the slope of the shown line, does

not depend on the in-plane magnetic field. This suggests that

the total density nT = n1 + n2 and, thus, the electron popula-

tion of Landau levels at fixed B⊥: lp ≈ nT /n0 do not depend

on B‖. Here n0 = eB⊥/(π h̄) is the degeneracy of the Landau

level (including the spin degeneracy) and lp is the index of the

highest populated level. In Fig. 5, the vertical line at l = 75

marks the highest populated Landau level at B⊥ = 0.222 T

in the studied sample. At a fixed electron density (electron

population), the increase of the electron mass mc1 drives the

Fermi energy, EF , down, while the increase of the energy

gap Eg between the subbands moves the Fermi energy up. An

interplay between these two effects results in a weak decrease

of the Fermi energy with the in-plane magnetic field in the

studied system.

The presented analysis above indicates that in tilted

magnetic fields, the cyclotron masses in two subbands are

different: mc1 > mc2. Different cyclotron masses lead to dif-

ferent frequencies of the DOS oscillations induced by the

orbital quantization in the energy space. Namely, in the first

subband the DOS ν1(ε) oscillates at frequency f1 = 1/h̄ωc1 ∼
mc1, while in the second subband, the DOS, ν2(ε) oscillates

at frequency f2 = 1/h̄ωc2 ∼ mc2, where ωci is the cyclotron

frequency in ith subband. Thus, at the same B⊥, the frequency

f1 is higher than f2 since mc1 > mc2. The difference between

frequencies results in a beating of the total DOS oscillations

in the energy space as shown in Fig. 6.

Figure 6 demonstrates the total DOS in a vicinity of Fermi

energy: δε = ε − εF at fixed perpendicular magnetic field

B⊥ = 0.244 T and different in-plane magnetic field B‖ as

labeled. The DOS is evaluated via numerical diagonaliza-

tion of Hamiltonian Eq. (2) and consecutive broadening of

the Landau levels. To demonstrate the DOS beating clearly,

we use the same quantum scattering time for both subbands

FIG. 6. Energy dependence of the normalized density of states

in the vicinity of Fermi energy: δε = ε − εF in quantum well of

width d = 33 nm with two populated subbands, placed in perpen-

dicular magnetic field B⊥ = 0.244 T and in-plane magnetic fields

B‖ as labeled. At B‖ > 0, the dependencies, shifted up for clarity,

demonstrate beating pattern. The beating is related to the cyclotron

mass divergence presented in the inset to Fig. 5. Quantum scattering

time τ (1)
q = τ (2)

q = 4 ps.

τ (1)
q = τ (2)

q = 4 ps. The obtained DOS oscillations are well

described by an interference of two cosine functions. At B‖ =
0 T, the DOS oscillations are significantly suppressed. This

suppression is due to a destructive interference of the DOS

oscillations in two subbands oscillating in the antiphase. This

π phase shift between the DOS oscillations leads to a MISO

minimum, while two in-phase DOS oscillations should inter-

fere constructively and lead to a MISO maximum (not shown).

A noticeable property of the pattern is that the destructive

interference at B‖ = 0 T does not depend on the energy. This

property is tightly related to the fact that the DOS oscillates at

the same frequency f = 1/h̄ωc in both subbands at B‖ = 0 T.

The DOS oscillations at B‖ = 0.66 T present an example

of a partially constructive interference. A noticeable property

of these oscillations is an increase of the amplitude of the

oscillations with the energy. This property is due to the fact

that, in contrast to the DOS interference at B‖ = 0 T, the

frequencies of two DOS oscillations at B‖ = 0.66 T are dif-

ferent: f1 > f2. Thus, the interference pattern between these

oscillations depends on the energy, exhibiting the beating. The

DOS oscillations at B‖ = 2.29, 2.75, and 3.45 T demonstrate

the beating pattern with progressively shorter beating periods.

The decrease of the beating period or increase of the beat-

ing frequency, fb, is related to the increase of the difference

frequency δ f = f1 − f2 = 2 fb with B‖. This increase is due

to the mass divergence, shown in the inset to Fig. 5, since

fi ∼ mi.

Below we explain qualitatively why the DOS beating leads

to a temperature damping of MISOs. A more detailed consid-

eration is given in the next section. The electron conductivity

is determined by electrons in the kT vicinity of the Fermi en-

ergy εF [2]. The MISO amplitude is determined by the square
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of the amplitude of the DOS oscillations averaged within the

kT interval [13,15]. Let’s assume that the energy interval kT

is much less than the beating period (∼ 1/δ f ): kT δ f � 1. At

this condition, the MISO minimum (maximum) occurs when

a node (antinode) of the beating pattern is located in the kT

vicinity of εF , since at the node (antinode), the DOS oscilla-

tions have a small (large) magnitude. At large temperatures

kT δ f 
 1, the kT interval contains both node (s) and antin-

ode (s) and the averaged square of the DOS oscillations does

not depend on the particular location of the beating pattern

with respect to εF . At this condition, MISO oscillations should

be suppressed. This consideration advocates for a decrease

of the MISO amplitude with the temperature in magnetically

entangled subbands.

B. Temperature damping of MISO in magnetically

entangled subbands

We consider a 2D electron system with two populated

parabolic subbands placed in a small quantizing perpendic-

ular magnetic field B⊥ and an in-plane magnetic field B‖:

B = (B⊥, B‖). In accordance with the presented numerical

analysis of the electron spectrum (see also Appendix A) at

nonzero B‖ the cyclotron masses, mc1 > mc2 and frequencies,

ωc1 < ωc2, are different. This difference leads to the DOS

oscillating at different frequencies, fi, in different subbands:

fi = 1/h̄ωci, where index i = 1(2) corresponds to the first

(second) subband.

At a small quantizing magnetic fields ωciτq < 1 the main

contribution to MISO comes from the fundamental harmonics

of DOS oscillations. The DOS of the ith spatial subband,

νi(ε), reads [3,20]

ν1(ε � 0)

ν01

= 1 − 2δ1 cos(2π f1ε),

ν2(ε � Eg)

ν02

= 1 − 2δ2 cos[2π f2(ε − Eg)], (6)

where ν0i represents DOS at zero perpendicular magnetic

field, δi = exp(−π/ωciτ
(i)
q ) is the Dingle factor and τ (i)

q is the

quantum scattering time in ith subbands. The parameters ν0i

describe the DOS in a kT vicinity of the Fermi energy. Within

the kT interval, the energy dependence of these parameters in

a weakly nonparabolic spectrum of 2D electrons, induced by

the in-plane magnetic field, is neglected.

The 2D conductivity σ is obtained from the following

relation:

σ (B) =
∫

dεσ (ε)

(

−
∂ fT

∂ε

)

= 〈σ (ε)〉. (7)

The integral is an average of the conductivity σ (ε) taken

essentially for energies ε inside the temperature interval kT

near Fermi energy, where fT (ε) is the electron distribution

function at a temperature T [2,3]. The brackets represent this

integral below. We consider the regime of high temperatures:

fikT 
 1. In this regime, SdH oscillations are suppressed but

MISO survive.

The conductivity σ (ε) is proportional to square of the

total density of states: σ (ε) ∼ (ν1(ε) + ν2(ε))2 [20,30]. This

relation yields the following term leading to MISO at small

quantizing magnetic fields [13,15]:

σMISO(ε) = σ
(12)
D ν̃1(ε)ν̃2(ε), (8)

where ν̃i(ε) = νi(ε)/ν0i are the normalized density of states in

each spatial subband. The parameter σ
(12)
D (B⊥) is Drude-like

conductivity, accounting for inter-subband scattering [13,15].

A substitution of Eqs. (8) and (6) into Eq. (7) yields the

following expression for the MISO of conductivity:

σMISO(B) = 4σ
(12)
D δ1δ2〈cos(2π f1ε) cos[2π f2(ε − Eg)]〉.

(9)

An energy integration (see details in Appendix B) yields

the final result,

σMISO(B) = 2σ
(12)
D δ1δ2

X

sinh(X )
cos(2π f2Eg + 2πδ f εF ),

(10)

where parameter X = 2π2kT δ f and δ f = f1 − f2.

The obtained expression reproduces the results for disen-

tangled subbands at B‖ = 0 T [13,15]. Indeed, at B‖ = 0 T,

the difference frequency δ f = 0 and the temperature damp-

ing factor AMISO(T ) = X/ sinh(X ) = 1. The MISO maxima

correspond to the condition f2Eg = j, where j is a positive

integer, which is equivalent to Eq. (1) since f2 = f1 = 1/h̄ωc

and Eg = �12 at B‖ = 0 T. Finally, the MISO magnitude

is proportional to the product of two Dingle factors δ1 and

δ2 [13,15].

For entangled subbands δ f > 0 and the temperature

damping factor AMISO(T ) = X/ sinh(X ) decreases the MISO

amplitude. This temperature decrease becomes exponential

for X > 1 since sinh(X ) ∼ exp(X ) for X > 1. The parame-

ter X is proportional to the temperature and the difference

frequency δ f = f1 − f2. At small in-plane magnetic fields,

B‖, the difference frequency is proportional to B2
‖. This is

shown in the inset to Fig. 5 since δ f = f (mc1 − mc2)/m0 and

(mc1 − mc2)/m0 ≈ χB2
‖ at small B‖, where χ is a constant.

Thus, at small in-plane magnetic fields the parameter X =
2π2kT f χB2

‖ = [2π2km0/(eh̄)]χ tan2(θ )T B⊥ is proportional

to T and B⊥. At larger B‖, the mass divergence becomes

weaker than B2
‖, indicating a presence of high order terms of

B2
‖. Within the order of B6

‖ the parameter X reads

X =
2π2km0

eh̄
χ (1 − ξB2

‖ + ηB4
‖ ) tan2(θ )T B⊥, (11)

where χ , ξ and η are constants. In Appendix A, the constants

χ = 1.12 × 10−5[d (nm)]2 and ξ = 1.91 × 10−5[d (nm)]2 are

computed analytically for the magnetically entangled sub-

bands. Below we use the relation Eq. (11) to compare

experiments with the expression Eq. (10).

In many respects, the MISO temperature damping factor

AMISO(T ) is similar the one for SdH oscillations, ASdH(T ) =
XSdH/ sinh(XSdH), where XSdH = 2π2kT/(h̄ωci ) [1]. The main

difference is that the factor AMISO depends on the difference

frequency δ f whereas the ASdH depends on the frequency fi =
1/h̄ωci. For parabolic subbands with the same masses, δ f = 0

and the MISO damping factor AMISO = 1 is irrelevant. The

MISO damping factor is important for nonparabolic spectra

or parabolic spectra with different cyclotron masses in two

subbands.
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FIG. 7. Dependence of normalized MISO amplitude ρMISO/ρxx (0) on reciprocal magnetic field, 1/B⊥, at different temperatures from top

to bottom T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.93 K and at angles as labeled. Solid lines represent experimental data. Dashed

lines are numerical computations of MISO magnitude multiplied with normalizing function FN (B⊥) = 0.55 cos(0.096/B⊥). (a) The numerical

computations use quantum scattering times τ (1)
q = τ (2)

q as fitting parameters to match with the experiment at different temperatures. In the inset,

filled symbols present the obtained total quantum scattering rate: 1/τ tot
q = 2/τ (1)

q . Open symbols present the rate determined from slopes of the

thin straight lines shown in (a); (b)–(d) determined in (a) rates 1/τ tot
q are used to compute MISO magnitude. The computed dependencies are

shifted vertically to match with experiment, using normalizing factor K (T ). d = 26 nm. Sample S1.

V. TEMPERATURE DEPENDENCE OF MISO

IN TILTED MAGNETIC FIELD

In this section, we compare the described model above and

numerical computations of MISOs with experiment. We start

with the comparison between the numerical estimations and

experiment.

Figure 7 presents dependence of MISO amplitude on recip-

rocal magnetic field, 1/B⊥, measured at different temperatures

between 5.5 K and 10.9 K. Figures 7(a)–7(d) show the de-

pendencies taken at different angles θ between the normal

to 2D layer and the direction of the magnetic field B. The

dashed lines present results of numerical computations of

MISO magnitude.

Figure 7(a) presents the dependencies taken at θ = 00. At

this angle the entanglement between subbands is absent and

AMISO = 1. The MISO magnitude decreases strongly with

the reciprocal magnetic field, 1/B⊥. This decrease is due

to the exponential decrease of Dingle factors δi with 1/B⊥:

δi = exp(−π/ωciτ
(i)
q ). In accordance with Eq. (10), the MISO

magnitude is proportional to the product of the Dingle factors.

For disentangled subbands, the cyclotron frequencies ωc1 and

ωc2 are the same since mc1 = mc2 = m0. Thus, the dependen-

cies of the MISO amplitude on 1/B⊥, plotted in semilog scale,

should be straight lines with the slope proportional to the sum

of quantum scattering rates in two subbands: 1/τ (1)
q + 1/τ (2)

q .

In Fig. 7(a), thin solid straight lines present the linear approxi-

mation of the measured dependencies. At higher temperature,

the slope of the lines becomes larger, indicating an increase

of the quantum scattering rate with the temperature increase.

In the inset to Fig. 7(a), open symbols presents the temper-

ature dependence of total quantum scattering rate 1/τ tot
q =

1/τ (1)
q + 1/τ (2)

q , extracted from these slopes.

A noticeable feature of the linear approximation is the con-

vergence of the straight lines to the single point at 1/B⊥ = 0 T.

This feature follows from Eq. (10) since δ1δ2 → 1 and, thus,

becomes temperature independent at 1/B⊥ → 0. Another no-

ticeable feature is the apparent deviation of the measured

dependencies from the straight lines at 1/B⊥ > 10 (1/T). The

origin of this deviation is under investigation and is not the

focus of this paper. We have found that a normalization of

Eq. (10) by a temperature-independent function FN (B⊥) leads

to a good agreement between experiment and the model.

In Fig. 7(a), the dashed lines present results of the numeri-

cal evaluation of the MISO magnitude. For each temperature,

the MISO magnitude is evaluated numerically with only one

fitting parameter—the total quantum scattering rate 1/τ tot
q .

The computed dependence is multiplied by the normalizing

function FN (B⊥) = 0.55 cos(0.096/B⊥), which bends down
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the linear dependence at 1/B⊥ > 10, providing good agree-

ment with the experiment. Obtained via this procedure, the

total scattering rate is shown by filled symbols in the inset to

the figure. This scattering rate is found to be slightly lower

than the one obtained via the first procedure (open sym-

bols). Both dependencies essentially demonstrate the same

variations of the quantum scattering rate with the temper-

ature, δ(1/τ tot
q ) ∼ T 2, indicating the dominant contribution

of the electron-electron scattering to the quantum electron

lifetime [8,9,19].

For entangled subbands, the cyclotron frequencies ωc1 and

ωc2 are different since mc1 > mc2. The difference leads to

variations of the product of Dingle factors with the in-plane

magnetic field in Eq. (10). Both numerical and analytical

investigations of these variations demonstrates weak (within

a few percent) corrections to MISO magnitude in the studied

range of parameters. At τ (1)
q = τ (2)

q , these corrections are ab-

sent. Below we neglect these corrections and use τ (1)
q = τ (2)

q .

Figure 7(b) presents the magnetic field dependence of the

MISO magnitude at θ = 86.25◦. At this angle, the magnetic

entanglement between two subbands leads to modifications

of the MISO magnitude. Indeed, at 1/B⊥ ≈ 5 (1/T) and

T = 5.5 K, the relative MISO magnitude is 0.058, which

is considerably smaller the one shown in Fig. 7(a): 0.094.

At higher temperature T = 10.9 K, the ratio between these

two magnitudes becomes even smaller: 0.37. The numerical

evaluations demonstrate the decrease of the MISO magnitude

with the magnetic field tilt and temperature and mostly capture

the changes in the dependence shape. To better compare vari-

ations of the shape of the dependencies, the overall magnitude

of the numerical MISO is multiplied by a factor of K (T ),

which is shown in the inset to Fig. 9. In Figs. 7(b)–7(d), the

factor K moves the computed dependencies vertically provid-

ing a better overlap with the experiment.
Figures 7(c) and 7(d) present the magnetic field depen-

dence of the MISO magnitude at θ = 87.05◦ and θ = 87.86º.
At larger tilts, the entanglement between subbands becomes
stronger, leading to stronger suppression of the MISO mag-
nitude. The numerical computations continue to demonstrate
good correlations with the shape of the magnetic field depen-
dencies at different temperatures. These dependencies are not
only quantitatively but qualitatively different from the ones
shown in Fig. 7(a) for the disentangled subbands. In particular,
the convergence of the responses at 1/B⊥ → 0, which is ap-
parent in Fig. 7(a), disappears in Figs. 7(c) and 7(d). Another
noticeable feature is a consistent increase of variations of the
normalizing coefficient K with the temperature and the tilt,
which is shown in the inset to Fig. 9. This MISO property will
be discussed later.

All numerical dependencies, shown in Figs. 7(b)–7(d), are

obtained at fixed d = 26 nm, providing the best agreement

with the shapes of experimental dependencies. The quantum

scattering rates are determined from the response of disen-

tangled subbands shown in Fig. 7(a). Thus, in Figs. 7(b)–7(d),

the only variable fitting parameter is the normalizing factor K ,

which moves the dependencies vertically but does not change

their shape. Thus, as for the functional dependence presented

in Figs. 7(b)–7(d), comparison between experiment and the

model uses only one fitting parameter—the width of the quan-

tum well d . The obtained width d = 26 nm coincides with

FIG. 8. Dependence of ratio of MISO magnitude at θ = 87.05o

to the one at θ = 0o, normalized by X , on parameter X at

different temperatures T : 5.5, 7.74, 8.54, 9.34, and 10.9 K.

The parameter X is computed from Eq. (11), using χ = 1.12 ×
10−5[d (nm)]2, ξ = 1.91 × 10−5[d (nm)]2, (see Appendix A), and

η = 4 × 10−10[d (nm)]4. Thin straight lines present linear dependen-

cies with a unity slope, expected from Eq. (10). Upper inset presents

temperature variations of slope magnitude, obtained from linear fit

of the normalized ratio. Lower inset presents temperature evolution

of the intersect y0 of the linear fit with y axis.

the actual width of the studied 2D layer. Thus, the presented

model captures the variations of the shape of the dependency

of MISO on 1/B⊥.

Presented in Fig. 7, comparison with the numerical MISO

is done under assumptions that the quantum scattering rates

1/τ (i)
q and the Drude-like conductivity σ

(12)
D do not vary with

the entanglement between subbands. The obtained agreement

supports these assumptions, which we follow below.

To reveal the temperature damping factor AMISO(X ) =
X/ sinh(X ), we compare our experimental data with the an-

alytical expression Eq. (10) containing this factor. There are

other factors (δi, σ
(12)
D ) entering the expression. The presented

comparison above with the numerical MISO as well as ana-

lytical considerations indicate that the product of these factors

vary very weakly with the entanglement between subbands.

Below we neglect these variations. To remove effects of these

factors in the comparison between Eq. (10) and experiment,

we divide each dependence in Figs. 7(b)–7(d) (entangled

subbands) by the dependence from Fig. 7(a) (disentangled

subbands) taken at the same temperature T . This ratio Rexp =
ρMISO(θ )/ρMISO(0) is compared with the one obtained from

Eq. (10). In accordance with Eq. (10) at τ (1)
q = τ (2)

q , the ra-

tio of the MISO magnitudes Rmod = X/ sinh(X ) and depends

only on the parameter X . Thus, plotted versus X , the ratio

Rexp(X ) should follow AMISO(X ) = X/ sinh(X ). To facilitate

the comparison at X > 1, both ratios are divided by X , yield-

ing Rmod/X ≈ 2 exp(−X ) at X > 1. At large X ln(R/X ) vs X

is, thus, a straight line with a unity slope intersecting y axis at

y0 = 2.

Figure 8 presents the dependence of the ratio

Rexp/X = ρMISO(θ )/ρMISO(0)/X on parameter X for data at
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FIG. 9. Dependence of the ratio R of MISO magnitude obtained

at angle θ to the one at θ = 86.25o normalized by X and K∗:

R∗ = R/X/K∗ on parameter X at different temperatures T : 5.5, 6.14,

6.93, 7.74, 8.54, 9.34, 10.13, and 10.9 K and different angles θ =
84.62, 86.25, 87.05, and 87.86º (see text for detail). The parame-

ter X is computed from Eq. (11), using χ = 1.12 × 10−5[d (nm)]2,

ξ = 1.91 × 10−5[d (nm)]2, which are evaluated in Appendix A, and

η = 4 × 10−10[d (nm)]4 at d = 26 nm. Dashed line presents the

dependence 1/ sinh(X ) expected from Eq. (10). Thin straight line

presents the linear dependence R/X vs X with a unity slope and

intersect y0 = 2, expected from Eq. (10) at X > 1. The inset presents

temperature dependence of normalizing coefficients K(filled sym-

bols) and K∗(open symbols) at different angles as labeled.

θ = 87.05o. The parameter X is evaluated from

Eq. (11), using parameters χ = 1.12 × 10−5[d (nm)]2 and

ξ = 1.91 × 10−5[d (nm)]2, computed in Appendix A and

parameter η = η0[d (nm)]4, where η0 is a fitting parameter.

At d = 26 nm for all temperatures, the experimental

dependencies ln(R/X ) vs X follow the straight lines with

unity slope. Some of the straight lines and the dependencies

are shown in Fig. 8. The upper inset to Fig. 8 demonstrates

the magnitude of slopes obtained by a linear fit of the

data. The slope magnitudes fluctuate around the expected

value 1.

At T = 5.5 K, the intersect of the corresponding straight

line with the y axis yields y0 ≈ 1.72. This value is slightly

below the expected value 2. With an increase of temperature,

the intersect y0 increases. The lower inset presents the increase

of the intersect y0 with the temperature obtained from the

linear fit of the data. Thus, similar to the comparison with the

numerical MISO, shown in Fig. 7, the comparison in Fig. 8

advocates for an additional factor K∗(T, θ ) controlling the

MISO magnitude.

At different temperatures and angles, the normalizing fac-

tor K∗ is determined by the best overlap of experimental

data with the expected dependence 1/ sinh(X ). To cancel

effects related to this factor, the experimental data Rexp =
ρMISO(θ )/ρMISO(0) is divided by K∗(T, θ ). This procedure

leads to a collapse of experimental dependencies on the single

curve 1/ sinh(X ), shown in Fig. 9.

Figure 9 presents the dependence of the normalized ratio

R∗ = ρMISO(θ )/ρMISO(0)/X/K∗ on the parameter X for differ-

ent temperatures and angles. The figure shows that for a broad

range of temperatures and subband entanglement, the normal-

ized MISO magnitude, R∗, depends on the single parameter X ,

demonstrating good agreement with the modified MISO tem-

perature damping factor AMISO/X = 1/ sinh(X ), shown by the

dashed line in the figure. Thus, both comparisons, which are

presented in Figs. 7–9, indicate that variations of MISO mag-

nitude with the reciprocal magnetic field 1/B⊥, temperature

T , angles θ agree with the model and are controlled by MISO

temperature damping factor AMISO = X/ sinh(X ).

Both comparisons also indicate that there is another con-

trolling factor K∗(θ, T ) ≈ K (θ, T ), which is beyond the

presented model. The inset to Fig. 9 shows temperature depen-

dencies of normalizing coefficients K (filled symbols) and K∗

(open symbols), obtained by different fitting procedures. Both

procedures indicate the same temperature increase of both

factors at a given angle. The data shows that the temperature

variations of parameters K and K∗ are larger at larger θ .

At large angles θ = 87.05o and θ = 87.86o, the unity

slope of the dependencies R∗(X ) is observed for all tempera-

tures. However at smaller angles (θ = 84.62o and θ = 86.25o)

and high temperatures (T > 9 K), the dependencies R∗(X )

demonstrate slopes with magnitudes which are distinctly

smaller than the unity. These dependencies are not shown in

Fig. 9. The presence of these deviations suggests a transi-

tional function Ftr(δ f , θ, T ) between regimes of a weak and

strong subband entanglement with a property Ftr(δ f , θ, T ) →
K∗(θ, T ) at a large X . The transitional function has not been

investigated in this study. At large angles θ and tempera-

tures (large X ), where the normalizing coefficient K∗ and the

function Ftr(δ f , θ, T ) are measurable, the access to small X

requires a very small B⊥ [see Eq. (11)]. At this small B⊥, the

Dingle factors strongly suppress the MISO amplitude making

the amplitude measurements not accurate. Measurements at

smaller angles indicate the presence of the transitional func-

tion. However, the magnitude of this function is small, making

an analysis of the function to be not informative.

A. Effects of electron-electron interaction on MISO

Both Fig. 8 and the inset to Fig. 9 demonstrate an increase

of the deviation between the experiment and model with the

temperature increase. The increase of the deviation correlates

with the increase of the temperature dependent contribution to

the electron lifetime. Indeed, the inset to Fig. 7(a) shows that

at T = 10.9 K the contribution of electron-electron scattering

to the quantum scattering rate is about four times larger than at

T = 5.5 K and becomes dominant. This correlation suggests

that effects of electron-electron interaction or Fermi-liquid

effects may play an important role, leading to the deviation

between Eq. (10) and experiment. Indeed, although ignored

in the presented model, such effects are important for quan-

tum oscillations, resulting in a renormalization of the electron

mass and g factor—the effects, which have been intensively

investigated both theoretically and experimentally for several

decades [3].

Effects of the electron-electron interactions on the quan-

tum scattering time, controlling the magnitude of quantum
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oscillations, are less frequently studied. Existing theory pre-

dicts that the amplitude of the fundamental harmonic of SdH

oscillations is resilient to the temperature variations of the

quantum scattering time, induced by the electron-electron

interaction [31,32]. In other words, the quantum scattering

time, entering the Dingle factor for the fundamental harmonic

of SdH oscillations, is a temperature-independent parame-

ter. This can be considered as a result of a modification

of the electron lifetime by the electron-electron interaction.

The modification leads to contributions, enhancing the SdH

amplitude and compensating the temperature-dependent part

of the quantum scattering rate in the Dingle factor. In con-

trast the quantum scattering rate, entering the Dingle factor

for the MISO amplitude, is a temperature-dependent property,

as shown in the inset to Fig. 7(a).

To the best of our knowledge, Fermi liquid effects related

to MISOs in magnetically entangled subbands have not been

investigated. Assuming a similarity of the Fermi liquid con-

tributions to the magnitude of SdH oscillations and MISOs

in entangled subbands, one should expect a relative increase

of the MISO magnitude, which may explain the increase of

factors K and K∗ with the temperature. The resilience of SdH

amplitude to the electron-electron interactions can be obtained

via an account of the interaction-induced dependence of the

electron-electron scattering rate on the energy ε [33]. The

electron-electron collision rate for an electron at energy ε

counted from the Fermi energy εF is

1

τee(ε, T )
=

ε2 + π2(kT )2

4π h̄εF

ln
qsvF

max(kT, h̄ωc(ωcτtr )1/2),

(12)

where vF is Fermi velocity, τtr is transport scattering time, and

qs = 2πe2ν is inversion screening length [30,33].

The energy dependence of the electron scattering rate

makes the Dingle factors δi be energy dependent parameters,

δi(ε, T ) = exp
(

−
τ−1

im + τ−1
ee (ε, T )

ωci/π

)

, (13)

where τim is quantum scattering time due to impurity scat-

tering. The time τim does not depend on the temperature

while the electron-electron scattering time τee is temperature

dependent. The time τee provides the T 2 contribution to the

quantum scattering rate shown in the inset to Fig. 7(a) for the

disentangled subbands.

The energy dependence of the Dingle factors δi is not

accounted for in the above-presented analysis. The ef-

fect of the energy dependence of the e − e scattering rate

on the relative MISO magnitude: ρMISO(θ )/ρMISO(0o) =
σMISO(θ )/σMISO(0o) is evaluated below. Substitution of the

relations Eqs. (8), (6), and (13) into Eq. (7) leads to the

following expression for the relative MISO magnitude:

ρMISO(θ )

ρMISO(00)
=

〈

exp
(

− ε2/ε2
0

)

cos(2πδ f ε)
〉

〈

exp
(

− ε2/ε2
0

)〉 , (14)

where ε0 = (2ε∗
F h̄ωc)1/2. In the estimation, a possible dif-

ference in the e − e scattering rate in two subbands and the

temperature/magnetic field dependencies of the logarithmic

factor in Eq. (12) are ignored. As a result, in Eq. (14) the only

fitting parameter is ε∗
F ∼ ε

(i)
F / ln(qsv

(i)
F / max(kT, h̄ωc(ωc)1/2.

FIG. 10. Dependence of ratio of MISO magnitude at θ = 87.05o

to the one at θ = 0o, normalized by X on parameter X . The depen-

dence is computed at ε∗
F = 8 meV and different temperatures from

bottom to top T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.9K

using Eq. (14). The parameter X is computed from Eq. (11), using

χ = 1.12 × 10−5[d (nm)]2, ξ = 1.91 × 10−5[d (nm)]2, obtained in

Appendix A, and η = 4 × 10−10[d (nm)]4. Thin straight lines present

linear dependencies with a unity slope. Dashed line displays free

electron response 1/ sinh(X ). The inset shows temperature evolution

of factors K∗ and Kee, characterizing maximal deviation of the ex-

perimental and model data from the free electron response.

Figure 10 demonstrates the dependence of normalized rel-

ative MISO magnitude, ρMISO(θ )/ρMISO(00)/X on parameter

X obtained from Eq. (14) at angle θ = 87.050, temperatures

T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.9K and

ε∗
F = 8 meV. The angle and temperatures correspond to the

experimental dependencies of the normalized relative MISO

magnitude presented in Fig. 8. In Fig. 10, the dashed line

shows the dependence 1/ sinh(X ) for free 2D electrons com-

puted at ε0 → ∞. The obtained behavior suggests that the

relative MISO magnitude can be presented as a product of

X/ sinh(X ) and a finite function Ftr(X, θ, T ):

ρMISO(θ )

ρMISO(00)
= Ftr(X, θ, T )

X

sinh(X )
. (15)

Below we investigate properties of the function

Ftr(X, θ, T ). In Fig. 10, at small X < 1 the dependencies

converge for all temperatures. This is related to the reduction

of the difference frequency: δ f → 0 at X → 0 since δ f is

proportional to X . At δ f → 0 in Eq. (14) the cosine function

tends to 1 and the ratio of the two integrals approaches

unity. Thus, at X → 0 the function Ftr(X, θ, T ) → 1 since

X/ sinh(X ) → 1.

At large X → ∞ but a finite temperature, the function

Ftr(X, θ, T ) also tends to unity. To understand this property,

we note that in accordance with Eq. (11) a large X corresponds

to a large B⊥ and, thus, to large h̄ωc and ε0. At ε0 
 kT in

Eq. (14), the Gaussian functions can be neglected that leads to

the free electron result Eq. (10).

At an intermediate X, the function Ftr(X, θ, T ) deviates

from unity and reaches a maximum. The increase of the
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function Ftr(X, θ, T ) from unity is a result of the electron-

electron interaction and thus is a Fermi liquid effect. The

electron-electron interaction leads to a decrease of the quan-

tum lifetime of quasiparticles with the energy ε away from

the Fermi energy [31,32]. Equations (12) and (13) take into

account this lifetime decrease and yields in Eq. (14) the

Gaussian exp(−ε2/ε2
0 ), which enhances the MISO amplitude.

Mathematically, the effect is due to a reduction of the range

of the energy integration in Eq. (14) from (−kT, kT ), settled

by the distribution function fT for free electrons, to a smaller

range, which for the interacting electrons is additionally af-

fected by the range narrowing factor exp(−ε2/ε2
0 ). The energy

averaging of the oscillating content [cos(2πδ f ε)] in narrower

energy intervals leads to a suppression of the averaging and

results in a larger value of the integral and, thus, the function

Ftr(X, θ, T ) [33].

In the experimentally studied range of parameters, the

maximum of the function Ftr(X, θ, T ) appears to be quite flat

and can be approximated by a straight horizontal line, which

acquires a unity slope in Fig. 10. This property agrees with

the experiment. Three of these lines are shown in Fig. 10. A

coefficient Kee(T ) ≈ max[Ftr(X, T )] characterizes the verti-

cal displacement of these lines from the free electron response

1/ sinh(X ) (dashed line). Figure 10 demonstrates that the co-

efficient Kee(T ) increases with the temperature. This behavior

is also in agreement with the experiment shown in Fig. 8.

The inset to Fig. 10 demonstrates a comparison be-

tween coefficient K∗, obtained from experimental data

presented in Fig. 8 and coefficient Kee, obtained from the

model data presented in Fig. 10. At ε∗
F = 8 meV, both

coefficients K∗, Kee and variations of these coefficients

with the temperature are close to each other. Further-

more, an evaluation of the temperature dependence of the

quantum scattering rate, using the temperature-dependent

part of Eq. (12), yields τ−1
q (T ) − τ−1

q (0 K) = τ−1
ee (ε = 0) =

π (kT )2/(4h̄ε∗
F ) ≈ 1.2(GHz)T 2. This value is close to the in-

elastic scattering rate obtained in the experiment at θ = 0o

and shown in the inset to Fig. 7(a): τ−1
q (T ) − τ−1

q (0 K) ≈
1.5 (GHz) T 2. Thus, the account of the electron-electron in-

teraction improves the agreement between the experiment

and model, revealing the interaction induced enhancement of

MISO amplitude.

VI. SUMMARY

MISOs of highly mobile 2D electrons in symmetric GaAs

quantum wells with two populated subbands are studied at

different temperatures and at different angles θ between mag-

netic field B and the normal to 2D layer. The experiments

indicate that the MISO magnitude decreases strongly with

the temperature. For angles θ < 80o, the MISO reduction is

related to the increase of the quantum scattering rate due to the

enhancement of electron-electron scattering at high tempera-

tures. For angles θ > 80o, a different regime of strong MISO

damping with the temperature is identified.

Proposed model considers the magnetic entanglement be-

tween subbands, which is induced by in-plane magnetic field,

as the main reason for the new temperature damping. The

entanglement changes the electron spectrum and leads to

different cyclotron masses in two subbands. As a result, the

density of states exhibits beating with the difference frequency

δ f proportional to the mass difference. The model yields

universal temperature damping factor AMISO = X/ sinh(X ),

where X = 2π2kT δ f .

A comparison of the model with the experiment demon-

strates the presence of the factor AMISO but indicates an

additional factor K (T ), which is beyond the free electron

model. The factor K leads to an effective enhancement of

the MISO amplitude at high temperatures. An account of

the electron-electron interaction explains the enhancement

of the MISO amplitude and reveals the Fermi liquid origin

of the factor K.
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APPENDIX A: COMPUTATION OF

DIFFERENCE FREQUENCY

In this Appendix, the spectrum of the entangled subbands

is computed at θ = 90o. The cyclotron masses, mci and dif-

ference frequency δ f ∼ (mc1 − mc2), are evaluated then for

the quasiclassical electron motion in a small B⊥. The goal is

estimation of the variations of the parameter X ∼ δ f with the

magnetic field B‖ leading to Eq. (11).

At B⊥ = 0 T (B = (−B‖, 0, 0)), the Hamiltonian Eq. (2) is

presented in the following form:

H =
h̄2k2

x

2m0

+
h̄2(ky + eB‖z

h̄
)2

2m0

+
h̄2k2

z

2m0

+ V (z) = H0 + H1,

H0 =
h̄2

2m0

(

k2
x + k2

y + k2
z

)

+ V (z),

H1 = h̄ω‖kyz +
1

2
m0ω

2
‖z2, (A1)

where ω‖ = eB‖/m0 is the cyclotron frequency in in-plane

magnetic field, B‖. At B‖ = 0 T, the corresponding eigen-

functions |k, ξ 〉 of the system are plane waves, propagating

in x − y plane, and standing waves in the z direction, where

wave vector k describes the lateral motion and ξ = S, AS

describes the symmetric (S) and antisymmetric (AS) con-

figurations of the wave function in the z direction (vertical

quantization): |k, S〉 = |k〉(2/d )1/2 cos(πz/d ) and |k, AS〉 =
|k〉(2/d )1/2 sin(2πz/d ).

Using functions |k, ξ 〉 as the basis set, one can present the

Hamiltonian as a 2 × 2 matrix:

Hi j = ε0
i δi j + (1 − δi j )h12,

ε0
i =

h̄2

2m0

(

k2
x + k2

y

)

+ Ei +
1

2
mω2

‖Z2
i ,

h12 = h̄ω‖kyZ0, (A2)

where δi j presents 2 × 2 unit matrix, Z0 = 16d/(9π2), Z2
1 =

(1/12 − 1/(2π2))d2 and Z2
2 = (1/12 − 1/(8π2))d2. Indexes

i, j = 1,2 describes first (1) and second (2) subbands. Energy

Ei corresponds to the bottom of i-th subband at B‖ = 0 T.
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At h12 � ε0
2 − ε0

1 , diagonalization of the Hamiltonian Hi j

leads to the following spectrum:

εi(k) ≈ ε0
i (k) ±

h2
12

ε0
2 − ε0

1

(

1 −
h2

12
(

ε0
2 − ε0

1

)2

)

≈ ε0
i (k) ± A

h̄2k2
y

2m0

(

1 −
A

Eg

h̄2k2
y

2m0

)

= Ei +
h̄2k2

x

2mxi

+
h̄2k2

y

2myi

∓ γ0k4
y ,

A =
2m0Z2

0

Eg

ω2
‖; Eg = �12 +

m0

(

Z2
2 − Z2

1

)

2
ω2

‖,

(A3)

where lower (upper) sign corresponds to the first (i = 1)

[second (i = 2)] subband, γ0 = h̄4A2/[(2m0)2Eg] and �12 =
E2 − E1. Equation (A3) indicates that due to the presence

of the in-plane magnetic field the spectrum is anisotropic

but still parabolic in the lowest order of B‖ (∼ B2
‖ ). The

parameter A controls the strength of the anisotropy leading

to an increase (decrease) of the mass, my1 = m0/(1 − A)1/2

(my2 = m0/(1 + A)1/2) in the y direction for lower (upper)

subband. In the x direction, masses do not change: mxi = m0.

For a parabolic spectrum, the cyclotron mass is mc =
(mxmy)1/2 [2]. To compute the cyclotron masses in the vicinity

of Fermi energy εF for the nonparabolic spectrum we use the

relation mc = (h̄2/2π )(∂S/∂ε), where S(ε) is the area within

the contour εi(k) = εF .[2] For the spectrum Eq. (A3), the

result is

mc1 = (mx1my1)1/2

(

1 −
3

4

m2
y1

m2
0

A2

Eg

εF1

)

,

mc2 = (mx2my2)1/2

(

1 +
3

4

m2
y2

m2
0

A2

Eg

εF2

)

, (A4)

where εFi is Fermi energy counted from the bottom of ith

subband. The result agrees with the numerical computation

of the cyclotron masses presented in the inset to Fig. 5:

mc1 (mc2) increases (decreases) with the in-plane magnetic

field. Furthermore, the sum of the masses stays the same:

mc1 + mc2 = 2m0 within the computed order B4
‖.

Within the same order for difference frequency Eq. (A4)

yields

δ f ≈ f

(

A −
3

4

εF1 + εF2

Eg

A2

)

≈ f [χB2
‖(1 − ξB2

‖ )],

χ =
2e2Z2

0

�12m0

; ξ =
3

4

ε0
F1 + ε0

F2

�12

χ +
1

2

2e2
(

Z2
2 − Z2

1

)

�12m0

, (A5)

where ε0
Fi is Fermi energy counted form the bottom of

ith subband at zero magnetic field. For the studied sys-

tem ε0
F1 = 21.83 (meV); ε0

F2 = 6.68 (meV) and �12 =
15.15(meV) yield χ = 1.12 × 10−5[d (nm]2 and ξ = 1.91 ×
10−5[d (nm]2. These results are used to compute the parameter

X in Eq. (11) up to terms proportional to B4
‖.

APPENDIX B: COMPUTATION OF INTEGRAL IN EQ. (9)

The expression Eq. (9) contains energy integration of a

product of two cosine functions. To perform the integration,

we represent this product as a sum of two cosines, oscillating

at frequencies f1 + f2 and δ f = f1 − f2. An integration of the

cosine, oscillating at frequency f1 + f2, leads to an exponen-

tially small term ∼ exp(−2π2( f1 + f2)kT ). Since fikT 
 1,

this term is neglected.

To perform the integration in the kT vicinity of Fermi

energy εF , we substitute ε = u + εF . After the substitution

the phase of the second cosine, oscillating at frequency δ f

is a sum of two terms: α = πδ f u ∼ u and β = 2π ( f2�g +
δ f εF ) = const. The cosine can be rewritten using the identity

cos(α + β ) = cos(α) cos(β ) − sin(α) sin(β ). An integration

of the product of two sine functions in the vicinity of the Fermi

energy yields zero, since sin(α) is an odd function of variable

u, whereas ∂ fT (u)/∂u is even function of u. As a result,

the integral is proportional to 〈cos(2πδ f u)〉 cos(2π f2�g +
2πδ f εF ). The integration versus u yields 〈cos(2πδ f u)〉 =
X/ sinh(X ), where X = 2π2kT δ f [2], leading to Eq. (10).
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