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Enhancing the Spatio-Temporal Observability of
Grid-Edge Resources in Distribution Grids

Shanny Lin , Graduate Student Member, IEEE, and Hao Zhu , Senior Member, IEEE

Abstract—Enhancing the spatio-temporal observability of dis-
tributed energy resources (DERs) is crucial for achieving secure
and efficient operations in distribution grids. This paper puts
forth a joint recovery framework for residential loads by leverag-
ing the complimentary strengths of heterogeneous measurements
in real time. The proposed framework integrates low-resolution
smart meter data collected at every load node with fast-sampled
feeder-level measurements from limited number of distribution
phasor measurement units. To address the lack of data, we exploit
two key characteristics for the loads and DERs, namely the sparse
changes due to infrequent activities of appliances and electric
vehicles (EVs) and the locational dependence of solar photovoltaic
(PV) generation. Accordingly, meaningful regularization terms
are introduced to cast a convex load recovery problem, which
will be further simplified to reduce the computational complex-
ity. The load recovery solutions can be utilized to identify the EV
charging events at each load node and to infer the total behind-
the-meter PV output. Numerical tests using real-world data have
demonstrated the effectiveness of the proposed approaches in
enhancing the visibility of grid-edge DERs.

Index Terms—Distributed energy resources, synchrophasor
data, smart meter, distribution state estimation, subspace
learning.

I. INTRODUCTION

D ISTRIBUTION grids have witnessed an increasing pen-
etration of distributed energy resources (DERs) at the

grid-edge. Electrical vehicles (EVs) and renewable generation
owned by residential customers and aggregators lead to grow-
ing dynamics in distribution systems. High-resolution dynamic
profiles of residential loads have been advocated for validat-
ing EV charging commands [1] and photovoltaic (PV) inverter
control settings [2]. In addition, the instantaneous total heat-
ing/cooling loads and solar PV generation within a feeder are
useful for designing protection systems and demand response
programs [3], [4]. Therefore, it is important to enhance the
spatio-temporal observability of grid-edge DERs for efficient
and secure grid operations.

Nonetheless, distribution systems traditionally lack in
sensing infrastructure and real-time observability. To address
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this issue, different types of distribution sensors have been
advocated recently. At the feeder level, line flow meters and
distribution phasor measurement units (D-PMUs) [5] can pro-
vide fast power measurements of high quality, but only at
selected locations. Meanwhile, almost all residential homes
are equipped with smart meters that can collect the electricity
consumption data over intervals of 15 minutes to an hour [6].
Hence, high resolution D-PMU data can suffer from low spa-
tial diversity, while the ubiquitous smart meter data lack in the
temporal resolution. These two types of measurements provide
complimentary strengths, and the question opens up on how to
jointly utilize them both to enhance the visibility of grid-edge
DERs.

The present work is highly related to the distribution state
estimation (DSE) problem. Traditional DSE methods [7], [8]
have focused on the static setting and identified the lack of
measurements as the main challenge. To tackle this, more
recent DSE methods have considered the coupling between
two consecutive time instances [9] and the spatial correlation
among voltage and power data [10]. All of these approaches
are not directly applicable to the case of different measure-
ment time resolutions. Motivated by the availability of fast
D-PMU data, dynamic DSE methods have been developed by
building on Kalman filtering [11], [12] or prediction-correction
method [13], including a recent extension to asynchronous
data in [14]. These recursive update based methods can well
track slowly varying system changes but may fail to cope with
fast start/end events that are common for residential appli-
ances and DERs. In addition, pseudo measurements using load
forecast have been popularly considered for DSE, such as
the Bayesian estimation approach in [15]. Nonetheless, it is
very difficult to predict appliance activities from historic data.
See [16], [17] for comprehensive reviews of the DSE litera-
ture. Another line of related work is the load disaggregation for
inferring behind-the-meter (BTM) PV output. However, these
approaches typically require prior knowledge such as histori-
cal load data for a subset of customers or the statistical models
for the total consumption; see, e.g., [3], [18] and references
therein. Such information can be difficult to obtain while most
of these approaches only utilize slow smart meter data. Thus,
the problem still remains on how to effectively incorporate
dynamic data streams of various resolutions to enhance the
observability of grid-edge DERs.

The goal of this paper is to develop a joint spatio-temporal
DER inference framework by using the respective strengths
of D-PMU and smart meter data. Both types of data are
first modeled as linear transformation of the unknown power
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demands. This model builds upon linearizing the multiphase
power flow equations and generalizes our earlier work [19]
for lossless systems. To tackle the lack of measurements,
two key underlying characteristics of the spatio-temporal load
demand are exploited. First, the on-off activities of house-
hold appliances and EVs typically occur infrequently, leading
to jointly sparse changes of both active and reactive pow-
ers. Second, renewable generation such as rooftop solar PV
demonstrates a strong spatial correlation within a feeder, giv-
ing rise to a low-rank component in the active power demand.
Note that the correlation of localized PV outputs here is dif-
ferent from earlier work [20], [21] on low-rankness of the
load data. These approaches exploit the relation among var-
ious household appliances for disaggregating the total house
load consumption. To promote the low-rank plus sparse change
feature, group L1-norm [22] and nuclear norm [23]–[25] are
introduced as regularization, leading to a convex formulation.
The low-rank component is further simplified into a rank-one
PV component to reduce the computational complexity asso-
ciated with nuclear norm. Numerical tests using real-world
load and DER data have been conducted to demonstrate the
effectiveness of the joint inference formulations in identify-
ing EV events and estimating the total BTM solar output in a
feeder. We have observed that a few D-PMUs can significantly
improve the DER visibility than only using smart meter data,
while the presence of periodic appliance activities can affect
the performance of DER inference.

The main contribution of this work is summarized here.
First, we consider the inference problem for monitoring the
dynamics of residential DERs that can incorporate distribu-
tion system measurements of different time resolutions and
spatial availability in Section II. Second, the proposed spatio-
temporal inference framework has exploited the underlying
low-rank and sparse-change characteristics to improve the
recovery performance of residential DERs in Section III. Last,
the proposed methods have been successfully applied to cru-
cial grid-edge monitoring tasks such as identifying the exact
timing of EV events and estimating the BTM solar generation
in Section IV. Conclusions and future directions are drawn in
Section V.

Notation: Upper (lower) boldface symbols stand for matri-
ces (vectors); (·)T stands for matrix transposition; (·)∗ complex
conjugate; ‖ · ‖∗ denotes the matrix nuclear norm; ‖ · ‖g the
group L1-norm; ‖ · ‖2 the L2-norm; ⊗ denotes the Kronecker
product; I (1) stands for the identity matrix (all-one vector)
of appropriate size; diag(·) represents the diagonal matrix;
and symbols using ·̌ indicate vectors of all non-reference bus
quantities.

II. SYSTEM MODEL

Consider a multiphase distribution feeder with residential
loads at the feeder ends shown by Fig. 1. We are interested
in the spatio-temporal complex load matrix (P + jQ) ∈ C

N×T ,
or the real-valued version X := [P; Q] ∈ R

2N×T , where N
denotes the number of single-phase loads and T the number
of time slots. The temporal resolution represents the fastest
sampling rate of all available measurements. For example, the

Fig. 1. Overview of a simple distribution feeder system with four residential
loads and various types of power measurements.

sampling rate can be at the sub-second scale which corre-
sponds to the time resolution of D-PMUs [5]. Without loss
of generality (Wlog), this paper uses the fast sampling rate at
every minute.

Two types of measurement data will be mainly utilized,
namely the smart meter data for each load and the aggregated
feeder-level measurements. Residential houses are equipped
with smart meters to record the average electricity consumed
over intervals of 15 minutes to an hour [6]. Here we assume
both real and reactive powers are collected every 15 minutes.
Using this down-sampling rate to obtain Ts = T/15 samples,
one can form the smart meter data matrix of size 2N × Ts as

� =
[
�P

�Q

]
=

[
P
Q

]
A + N� (1)

where the T × Ts matrix A = (1/15)I ⊗ 1 is the time averag-
ing operator, while N� denotes the measurement noise matrix.
We extend (1) to the case of asynchronized sampling, by
using a node-specific averaging An according to its sampling
intervals. As shown by the numerical tests later on, this gen-
eralization can be easily included by the rest of analysis as
the measurement model is still linear.

At the feeder level, D-PMUs or other meters installed on
power lines can measure quantities such as aggregated demand
at a fast rate. To model the feeder-level data, we briefly intro-
duce the multiphase ac power flow equations; see, e.g., [26] for
a comprehensive overview. Let the substation or feeder head
be the reference bus 0, and use Nb denote the number of other
buses (PQ buses). Wlog, all the buses are three-phase con-
nected, and for simplicity, only wye-connected single-phase
loads are considered. Let vectors š ∈ C

3Nb and v̌ ∈ C
3Nb

collect the complex power injections and phase-to-ground volt-
ages at every phase of the PQ buses. The power injection š is
quadratically related to the voltage v̌, as

š = diag
(
v̌
)
ǐ∗ = diag

(
v̌
)(

YL
[
v0; v̌

])∗ (2)

where v0 ∈ C
3 is the given reference voltage vector at

feeder head, while matrix YL ∈ C
3Nb×3(Nb+1) is the subma-

trix of the full admittance (Ybus) matrix Y = [Y0; YL] ∈
C

3(Nb+1)×3(Nb+1) that consists of rows of all non-reference
PQ buses. Similarly, the power injection to the reference bus
s0 ∈ C

3, or the total aggregated power demand, becomes

s0 = diag(v0)Y∗
0

[
v0; v̌

]∗ (3)
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where Y0 ∈ C
3×3(Nb+1) is the submatrix of Ybus with

rows corresponding to the reference bus. In general, s0 and
the power/current flow elsewhere in the feeder are fully
determined by the voltage profile v̌.

To simplify the solution of v̌, one can adopt linearized power
flow approximations such as the fixed-point method (FPM)
developed in [27], [28]. Consider the linearized version of (2)
given by

ṽ = Mx̌ + w̌ (4)

where x̌ := [Re{s}; Im{s}] ∈ R
6Nb has the full nodal injection

and w̌ ∈ C
3Nb is the complex voltage solution under zero-

loading condition. Basically, the FPM-based approximation
is the linear interpolation of w̌ and another voltage solu-
tion (hence the term fixed-point). Substituting the linearized
voltage model (4) into (3) yields

s̃0 = diag(v0)Y∗
0LM∗x̌ (5)

where Y0L ∈ C
3×3Nb is the submatrix of Y0 = [Y00, Y0L]

formed by the PQ-bus columns only. Note that the additional
offset term is canceled in (5) so that s̃0 = 0 under the zero-
loading condition. Wlog, let x̌ include only the load nodes of
non-zero injection, and thus it reduces to a (2N × 1) vector
x which matches the dimension of matrix X. By stacking (5)
across T time slots, we obtain the measurement model for the
aggregated demand as

Z =
[

ZP

ZQ

]
= HX + NZ ∈ R

6×T (6)

where NZ is the measurement error matrix.
Remark 1 (Measurement types and accuracy): The FPM-

based measurement model (6) can encompass a variety of
feeder-level quantities in addition to aggregated power, such
as the data on line power/current flow and nodal voltage pha-
sor/magnitude as measured by D-PMUs; see more discussions
in [16]. Intuitively, the larger the amount of available data, the
better the performance a recovery algorithm would attain. For
example, our numerical experiences (not included due to space
limit) confirm that the proposed joint recovery framework
using both D-PMU and smart meter data clearly outperforms
the recovery using the latter only. As for the accuracy of
the FPM-based linear approximation, it depends on the fixed
power flow solution used to form M, as shown in [27], [28].
Ideally, this fixed point should closely approach the actual
power flow solution. Using the latest smart meter data, one
can update matrix M of (5) for improved accuracy of lin-
earization. As the aggregated demand model (6) would still
be linear in X, this time-varying M scenario can be easily
considered by the rest of analysis as shown by our numerical
tests later on.

Even though encompassing various measurements, the
problem of recovering X is expected to be severely under-
determined. For the measurement models in (1) and (6), the
total number of equations equals (2NTs + 6T) which is much
smaller than (2NT), the number of unknowns. This motivates
one to exploit the special characteristics of the load matrices
for improving the recovery performance.

Fig. 2. Residential load profiles of active power from Pecan Street’s
Dataport [32] for 30 houses, 15 of which have rooftop PVs.

III. MONITORING DERS VIA LOAD RECOVERY

We first discuss the characteristics of residential load matri-
ces that are amendable for formulating the load recovery
problem. Typically, residential load profiles consist of the base
loading and household appliance activities; see, e.g., [29].
Hence, each residential load can be approximated by the
aggregation of its own rectangular waveforms that are inde-
pendent from other locations. DERs such as EVs are operated
as household appliances of large power ratings, and thus their
load profiles also follow the rectangular waveform condition.
For example, Fig. 2 plots the active power profiles of 30 actual
residential homes, of which the large night-time rectangular
waveforms correspond to EV charging activities. A major-
ity of appliance activities are observed to occur infrequently
throughout the day, and have a non-unity inductive power fac-
tor [30]. Hence, they can be represented as sparse changes in
the household load profile, in both active and reactive power.
Notice that this sparse-change characteristic was also exploited
in [9] for static distribution system state estimation. Some peri-
odic appliances such as HVACs may violate this condition, as
discussed later in Remark 5.

To this end, let SP, SQ ∈ R
N×T denote the respective sparse-

change components of P and Q corresponding to infrequent
appliance activities. These two matrices will have piece-wise
constant rows and the respective consecutive time differences
of the entries, denoted by matrices DP and DQ, are sparse.
In other words, SP becomes sparse under the linear transfor-
mation SP = DPU where U ∈ R

T×T is the upper triangular
matrix of all ones; and similarly for SQ = DQU. This way,
the number of non-zero entries DP

n,t and DQ
n,t, that indicate the

start/end of appliance activities, is much less compared to the
total number of entries. Furthermore, each pair {DP

n,t, DQ
n,t} is

jointly sparse, as any appliance activities could manifest in
synchronized changes of active/reactive power demand. This
joint sparsity will be explored later for the load recovery
problem.

Different from residential appliances, DERs like rooftop
PVs would demonstrate correlated behaviors among nearby
locations. Typically, PV generation output depends on local-
ized factors such as solar irradiance and weather condi-
tions [31]. Hence, the active power generated by rooftop PVs
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within a neighborhood would share the same temporal pat-
tern. This can be observed in Fig. 2 where half of the houses
have PV installation and share a negative day-time compo-
nent. We denote this underlying spatial correlation in P by a
low-rank component L ∈ R

N×T of highly correlated rows. It
will be further considered as a rank-one component later on.
It is worth mentioning that the proposed low-rank plus sparse
change model includes typical residential appliances and thus
it encompasses general types of electricity consumption or
generation in residential loads. For the interest of grid-edge
monitoring, it will be mainly used for demonstrating the appli-
cations to EV event identification and BTM solar PV recovery
later on.

Remark 2 (Reactive power support): Reactive power is
assumed to have no spatial correlation which follows from
the unity power factor setting under the IEEE Standard
1547-2018 [33]. This is currently the most common DER
operation mode which does not provide grid reactive power
support. Nonetheless, certain reactive power functions from
DERs can be included, such as constant (non-unity) power
factor or general Watt-Var curve where Q would share the
same temporal pattern as P. Hence, for general DER modes,
we can slightly modify the data model to have the low-rank
component also present in Q.

Under the two load characteristics, the active power matrix
can be decomposed into P = L + DPU. This representa-
tion mimics the one in robust principal component analysis
(RPCA), namely a low-rank plus sparse model [23]. To better
reveal this model, we use the linear transformation that essen-
tially computes the differences between consecutive columns
(time instances) and obtain P = (K+DP)U where K := LU−1

is also of low rank. This is because of the temporal pattern in L
leads to strong correlation of the differences as well. Similarly,
we have Q = DQU which could include a low-rank compo-
nent (see Remark 2). Clearly, the measurements in (1) and (6)
are still linearly related to the unknown matrix components,
namely K, DP and DQ.

The problem now boils down to recovering the low-rank
and sparse matrix components, for which useful regulariza-
tion terms can be introduced. The nuclear norm regulariza-
tion is widely adopted in low-rank matrix recovery such as
RPCA [23], subspace learning [24], and collaborative filter-
ing [25]. It is defined as the sum of matrix’s singular values,
given by

‖K‖∗ :=
N∑

i=1

σi(K) (7)

where σi(·) denotes the i-th largest singular value. The nuclear
norm is a convex norm since it is the dual function of the
matrix spectral norm; see [34, p. 637]. As for the sparse com-
ponents, the popular L1-norm regularization defined as the
sum of entry-wise absolute values is useful. The L1-norm is
a tight convex relaxation of the L0 pseudo-norm (the total
number of nonzero entries), and it has been shown to effi-
ciently attain the sparse signal representation as widely used
in compressed sensing and sparse signal recovery [35], [36].
Entries of D := [DP; DQ] are not only sparse but also jointly

sparse, because each appliance activity induces simultaneous
changes in {DP

n,t, DQ
n,t}. Accordingly, we use the following

group L1-norm definition:

‖D‖g :=
N∑

n=1

T∑
t=1

∥∥∥[
DP

n,t; DQ
n,t

]∥∥∥
2
. (8)

This group L1-norm can be thought of as the L1-norm for the
jointly sparse pairs, and has been popularly used to promote
sparsity at the group level [22]. Note that it is also convex as
each summand term is the convex L2-norm.

Based on the two norm terms, we can formulate the
following recovery problem:

min
K,D

‖K‖∗ + λ‖D‖g (9a)

s. to − E ≤ � −
[

K + DP

DQ

]
UA ≤ E (9b)

− E ≤ Z − H
[

K + DP

DQ

]
U ≤ E (9c)

where the coefficient λ > 0 can balance between the two
norms, while E and E contain the pre-determined entry-wise
error bounds for the measurements. Measurement error can be
bounded based on the metering accuracy or the model mis-
match. If only measurement noise is considered, the bounds
are set according to the largest metering error level for each
datum. As Remark 1 points out, the linearized model (6) for Z
would suffer from approximation error, which is included by
the maximum deviation bounds in E. Other types of error met-
rics may be used as well, such as the Frobenius norm which
is preferred for Gaussian distributed error terms. For simplic-
ity, the entry-wise maximum error bounds (9b)-(9c) have been
used as linear constraints. Additional physics-based constraints
such as non-negative Q may be considered as well.

Remark 3 (Choice of λ): To select λ, earlier work [23],
[24] suggests to scale it with the matrix dimension as
O(1/

√
T) for T 	 N. We have followed this scaling with

additional parameter tune-up. As mentioned earlier, this hyper-
parameter balances between the two matrix norms. Therefore,
the value of λ would control the sparsity level of the recovered
D, or equivalently, the frequency of load changes. For very
large λ, the recovered load profiles will be entirely contained
in L with all-zero D, and thus all loads are completely corre-
lated with minimal individual activities. Similarly, under very
small λ, there will be low correlation among the recovered
profiles. Without the actual profiles available for validation,
we have chosen the value of λ according to the typical occur-
rence of load change activities after adopting the O(1/

√
T)

scaling. Our numerical experiences suggest that the recovery
performance is pretty robust to the λ choice. Thus, the param-
eter tuning step by matching the frequency of load changes
can attain a satisfactory performance for the load recovery
problem.

Since both norms are convex functions, (9) is a convex
problem. The computational time associated with the nuclear
norm, however, grows very quickly with the problem dimen-
sion as the resultant semidefinite program having a cubic
computational complexity and a quadratic memory require-
ment [37]. To tackle this issue, we can simplify problem (9)
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by assuming that the (relative) solar capacity is known for
each house. This information can be obtained from customer
reporting or historical data analysis by solving (9). Hence,
the solar PV output is represented using a rank-one matrix as
K = uvT, where each entry of u is proportional to the solar
capacity per house. This way, the problem now becomes a
linear estimation one for v and D, as given by

min
v,D

1

2
‖v‖2

2 + λ‖D‖g (10a)

s. to − E ≤ � −
[

uvT + DP

DQ

]
UA ≤ E (10b)

− E ≤ Z − H
[

uvT + DP

DQ

]
U ≤ E (10c)

where the squared L2-norm of vector v is used to replace
the nuclear norm regularization. This change follows from an
alternative characterization of the nuclear norm of a rank-one
matrix [25]. We will implement this simplified formulation for
a large number of nodes.

Remark 4 (BTM solar disaggregation): The solar PV tem-
poral pattern can be estimated by ρ̂

T = v̂TU, where v̂
represents either the solution to (10) or the first right singu-
lar vector of the estimated K by (9). The estimated ρ̂ can be
used to recover the total BTM solar output from the aggregated
measurement ZP. To this end, the aggregated measurement per
phase φ can be modeled as zP

φ
∼= (α1 + βρ̂) + UTdP

φ , where
the unknown coefficients α and β transforms the solar pattern
to the actual PV output while vector dP

φ is the total sparse load
change for phase φ. Given ρ̂ and solar outputs being zero at
non-daytime hours, one can use this linear model of zP

φ to
estimate the three unknowns. The estimated (α1 + βρ̂) can
separate the total solar outputs on phase φ.

Remark 5 (Periodic appliances): Appliance activities are
assumed uncorrelated among houses, which may not hold for
certain periodic loads such as HVACs. Residential HVAC con-
sumption highly depends on local weather conditions, and thus
its periodicity is really similar for co-located houses. As a
result, the HVAC demand component can be thought of as
the Fourier series expansions of a same periodicity, which is
of low-rank as well. Theoretical results for the RPCA frame-
work [23] imply that accurate recovery of the unknown matrix
requires that the low-rank and sparse components do not over-
lap. Loosely speaking, the low-rank K is not sparse while the
sparse D is not of low rank. Hence, the periodic appliance
component, both sparse and low-rank, would be present in the
recovered temporal pattern ρ̂, as demonstrated by numerical
tests soon. A band-pass filter could resolve this issue by filter-
ing out the signal of the HVAC periodicity (if known), which
is out of scope for the present work.

IV. NUMERICAL TESTS

We have conducted numerical studies using real-world
load datasets to evaluate the effectiveness of both recovery
approaches (9) and (10). We have constructed two multi-
phase test systems by modifying the R2-12.47-3 feeder from
the GridLab-D taxonomy feeder deposit [38]. We have one
small 33-node feeder that can host 30 residential houses and

another 111-node one with 100 residential houses. In both
systems, half of the houses are installed with solar PVs, and
the minute-level active power matrix P has been obtained from
the PecanStreet’s Dataport [32] for homes located in Austin,
TX. Active power data obtained for the months of December
and July have been used to generate the winter and summer
datasets, respectively. An example daily load profile for the 30
houses during a winter day is shown in Fig. 2. The reactive
power matrix Q was formed by randomly selecting a power
factor in the range [0.9, 0.95]. In addition, both P and Q were
scaled to match the original loading of the R2-12.47-3 feeder.

To generate the D-PMU measurement data, we have run the
nonlinear multiphase power flow simulation using GridLab-
D [39] for both systems. Random noise was added to the
simulated data to form the measurement Z. We used the uniform
distribution in the range of [−0.02%, 0.02%] error for generating
the noise in each D-PMU power measurement, per the total
vector error of ±0.01% in a typical D-PMU datasheet [40]. The
first D-PMU is always placed at the feeder head. Additional D-
PMUs are placed at lateral heads to aggregate different subsets
of down-stream loads. Intuitively, more D-PMUs can provide
new information while the location of D-PMUs matters too.
For example, D-PMUs installed at load nodes at the end of
feeder are not as useful as those installed at the head of feeder
or laterals. Hence, we have picked the D-PMU locations to
aggregate as many load nodes as possible. As for the smart
meter data, it was obtained by the averaging over every 15-
minute window as in (1). We used the ±0.2% accuracy from the
ANSI C12.20 Standard [41] to randomly generate uniformly-
distributed additive noise for every smart meter measurement.

We have tested the original recovery Algorithm (9) using
the 30-house system and the simplified one (10) using the
100-house system. Their performances in detecting night-time
EV charging events and recovering the day-time BTM solar
output have been evaluated. Actual load data during both winter
and summer seasons have been considered to demonstrate the
impact of large periodic appliances as discussed in Remark 5.
To set up the optimization problem, the sparsity coefficient λ

was fixed at 0.05 according to the O(1/
√

T) scaling. The smart
meter error boundsE were determined using the aforementioned
metering accuracy as 0.2% error for each entry. As for the
D-PMU measurements, the error bounds E were set to be 0.2%
per measurement base on analyzing the linear approximation
error of (5). Moreover, the smart meter measurements for the
30-house system are assumed to asynchronous, while the 100-
house system is assumed to be synchronous. Hence, we fix
the measurement matrix H in (6) for the 30-house system
according to the average loading. Meanwhile, this matrix has
been updated using the latest smart meter data in the 100-house
system (see Remark 1). Recovery Algorithms (9) and (10) are
implemented using the CVX toolbox [42] with the MOSEK
solver in the MATLAB R2020b simulator on a desktop with
Intel Core i5 CPU @ 3.40 GHz and 16 GB of RAM.

A. Test Case 1 on 30-House Night-Time Data

We first demonstrate the capability of recovery Algorithm
(9) in detecting EV events on the small feeder using the winter
night-time dataset. We have increased the number of D-PMUs
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Fig. 3. Receiving operating curves (ROCs) of EV detection in Test Case 1
for the (a) winter and (b) summer night-time datasets under different number
of D-PMUs.

from only one at the feeder head to a total of κ = 4 covering
the full system. Recall that the additional D-PMUs are placed
at lateral heads. The performance based on only smart-meter
data is also included as denoted by κ = 0 (no D-PMUs).
The EV start/end events are detected by selecting a threshold
value as a percentage of the EV power rating, and a success-
ful detection is declared only if both the actual house and
time instance have been correctly identified. To evaluate the
detection performance, the receiving operating curve (ROC) is
plotted in Fig. 3(a) by comparing the false positive rate (FPR)
versus the true positive rate (TPR) for the varying detection
threshold. Thus, the closer the ROC is to the top left corner
(TPR = 1 and FPR = 0), the better the detection performance
is. To better visualize the ROCs, we have smoothed the curves
using an exponential function fitting of all the points. For
the case of κ = 0, Fig. 3(a) indicates that it is only possi-
ble to detect 8.7% of EV events with only smart meter data.
This is exactly due to its low temporal resolution under the
15-minute averaging. By incorporating the total feeder power
measurements using just one D-PMU, more than 94% of EV
events can be correctly detected. Additional D-PMUs can fur-
ther improve the TPR to detect almost 99% of EV events,
thanks to the their high temporal resolution. For all D-PMU
cases (κ ≥ 1) the FPR is very small, since regular house-
hold appliances have much lower power ratings than EVs and
it is unlikely to mistakenly declare their activities for an EV
event. We have selected one residential house to illustrate the

Fig. 4. Recovered load data for one residential home with an EV charging
event in Test Case 1 for the (a) winter and (b) summer night-time datasets.

estimated profile from 4 D-PMUs during the night-time EV
charging session, as shown in Fig. 4(a). Compared to the smart
meter data, our estimated profile well matches the EV start/end
charging time. Hence, by using just a few D-PMUs, recovery
Algorithm (9) can effectively improve the spatial observability
of the grid-edge DERs by identifying the exact location of EV
typed activities in the feeder system.

We further test the small feeder using a summer night-time
dataset, with the ROCs plotted in Fig. 3(b). As mentioned
in Remark 5, HVAC loads in the summer violate the data
modeling assumption for our proposed method, and thus have
affected the detection performance. Compared to the winter
results, the ROCs in Fig. 3(b) show reduced detection rates
for all cases of κ . For one D-PMU, only 74.6% of EV events
can be correctly identified, decreased from 94% earlier on.
Additional D-PMUs have again enhanced the accuracy to over
80%, but all cases experience an increase of FPR to be around
0.1. This rising probability of false alarms is due to the high
power rating of HVACs, which causes their activities to be
declared as EV events by mistake. One estimated load profile
during an EV start event (around 20:55) is also illustrated in
Fig. 4(b). Compared to the winter recovery, the summer one
again confirms the capability of identifying EV events, yet
periodic HVAC activities are much more difficult to recover.
Overall, our proposed method jointly utilizing D-PMU and
smart meter data has attained enhanced spatial observability
at the grid-edge.
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Fig. 5. Ground-truth PV outputs from (a) the winter and (b) summer datasets
in Test Case 2 for all 30 houses.

B. Test Case 2 on 30-House Day-Time Data

We also test recovery Algorithm (9) for recovering the BTM
solar profile. The time window from hours 7:00-19:00 was
used for the winter season and hours 6:00-21:00 for summer.
These hours cover the entire day-time periods from sunrise
to sunset. Figs. 5(a)–(b) plots the ground-truth PV outputs at
all the houses for both datasets, respectively. The winter solar
outputs exhibit high level of variability possibly due to cloud
effects, while the summer ones tend to follow a smooth pattern
of perfect solar irradiance. Due to the computer memory lim-
itations, the recovery problem (9) has been solved for shorter
time periods of 5-6 hours, with the (normalized) temporal
patterns ρ̂ recovered from the low-rank matrix solutions (as
discussed in Remark 4) plotted in Fig. 6. The recovered winter
solar pattern in Fig. 6(a) well matches the ground-truth pro-
files and even captures their fast variations around the noon
hours for example. The summer solar pattern in Fig. 6(b) also
well follows the parabolic trend of the ground-truth data, while
showing an additional oscillation at a periodicity of 10-35 min-
utes. As discussed in Remark 5, the periodic HVAC activities
would also affect the low-rank component, giving rise to this
periodic behavior in the summer temporal pattern. To deal with
this issue, we have used a simple band-pass filter to remove
the frequency components in the periodicity range of 10-35
minutes from the estimated solar pattern (blue) to achieve a
smoother pattern (red) as shown in Fig. 6(b). The recovered
winter and filtered summer patterns have been effective for

Fig. 6. Recovered temporal patterns for the (a) winter and (b) summer
day-time datasets in Test Case 2.

estimating the total solar output from the D-PMU aggregated
power data, as shown by Fig. 7. Using the processing dis-
cussed in Remark 4, we scaled the temporal pattern to estimate
the total BTM solar output from each aggregated power pro-
file. While the winter solar estimation can perfectly recover
the actual PV output, the summer one has some mismatch
in the peak magnitude. Thanks to the capability of recover-
ing the temporal pattern, the proposed method is useful for
enhancing the temporal observability regarding the BTM solar
generation. An important future direction will be utilizing his-
torical data and direct solar PV measurements to improve the
scaling of BTM solar estimation.

C. Test Case 3 on 100-House Night-Time Data

We demonstrate the computational improvement of the sim-
plified method (10) by applying it to the 111-node feeder in
this test case. The settings are similar to Test Case 1, and
both winter and summer datasets are considered. The number
of D-PMUs in the system has been varied from only one at
the feeder head to a total of κ = 7. The ROCs comparing
the FPR versus TPR are plotted in Figs. 8(a)–(b) for win-
ter and summer respectively. Similarly to Test Case 1, the
EV detection performance based on only smart meter data
(κ = 0) is very poor due to its low temporal resolution.
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Fig. 7. Estimated solar PV outputs from the aggregated D-PMU power data
for the (a) winter and (b) summer datasets in Test Case 2.

Less than 10% of the EV events were correctly detected for
both winter and summer datasets. By incorporating the D-
PMU power data, Fig. 8(a) shows that the proposed method
using (10) can increase the detection rates to 78.3% − 95.5%
for the winter dataset. Compared to the small system results
in Fig. 3(a), a larger number of D-PMUs is needed here to
maintain the high identification accuracy due to the increase
of house locations. Similar observations can be made for the
summer EV detection shown in Fig. 8(b), where the maximum
TPR ranging from 54% − 73.4% is lowered than the values
in Fig. 3(b). Comparing between the two plots in Fig. 8 again
reveals the effects of HVAC loads in increasing the likelihood
of false alarms (larger FPR values) during the summer recov-
ery. Overall, the FPR is relatively small as most household
appliances have smaller power ratings than EVs. Therefore,
the large system tests demonstrate our simplified method (10)
can still effectively enhance the spatial observability regarding
DER activities at the grid-edge.

D. Test Case 4 on 100-House Day-Time Data

We also used the simplified method (10) for recovering the
BTM solar profile. The time windows and key steps all fol-
low from Test Case 2. The procedure in Remark 4 was used
to estimate the total BTM solar outputs as plotted in Fig. 9.
A band-pass filter has again been implemented to smooth the
recovered summer pattern in Fig. 9(b). Clearly, the recovered

Fig. 8. ROCs of EV detection in Test Case 3 for the (a) winter and (b)
summer night-time datasets with different number of D-PMUs.

TABLE I
AVERAGE RUNTIMES OF (10) FOR VARYING NUMBER D-PMUS

patterns well capture the trend of the actual solar PV out-
puts. Similar to Test Case 2, the recovered winter pattern can
retain the fast solar transients while the summer one shows
good match with the BTM PV output. Hence, the simpli-
fied method (10) using a rank-one component maintains the
capability of effectively recovering the underlying temporal
pattern in the residential loads. As a result, it has attained
good accuracy in estimating the total BTM solar output from
the aggregated power measurements in distribution systems.

Finally, Table I lists the average runtime for the simplified
formulation (10) versus the number of D-PMUs κ for a 4-hour
time period and the larger feeder. The runtime grows gradually
with κ . Hence, additional D-PMUs can attain better monitoring
performance (as shown by Test Case 3) at the cost of a slower
runtime. Additionally, the runtime is affected by the length of
load data due to the increasing problem dimension. We plan
to develop adaptive online implementation in future to address
this computational issue.
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Fig. 9. Estimated solar PV outputs from the aggregated D-PMU power data
for (a) winter and (b) summer datasets in Test Case 4.

V. CONCLUSION

This paper developed a spatio-temporal learning approach
that can jointly harness the respective strengths of D-PMU
and smart meter measurements to enhance the observability of
DERs. To tackle the lack of measurements, we exploited the
underlying characteristics of residential loads and connected
DERs. Activities of EVs and other appliances are considered to
be infrequent events, and a group L1-norm is used to enforce
jointly sparse changes of active/reactive power. The strong cor-
relation of solar generation within a feeder is modeled by
a low-rank component, for which a nuclear norm is used.
These two regularization terms have led to a convex recovery
problem with linear constraints, which was further simplified
by fixing the spatial scaling using the PV capacity information.
Solutions to the recovery problems have been utilized to locate
EV activities across the feeder and to infer the total BTM
solar generation. Numerical tests using real-world load data on
representative feeder systems have demonstrated the effective-
ness of the proposed methods for monitoring DERs, although
performance degradation has been observed in the presence of
periodic HVAC loads.

Interesting future research directions open up for this work.
We are currently working on improving the solar pattern recov-
ery by utilizing additional data sources such as direct solar
metering. Furthermore, we plan to investigate efficient algo-
rithms for accelerated computation time and to incorporate the

identified load characteristics to the development of modeling
and control approaches for distribution systems.
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