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On Secure Distributed Linearly
Separable Computation
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Abstract— Distributed linearly separable computation, where
a user asks some distributed servers to compute a linearly sepa-
rable function, was recently formulated by the same authors and
aims to alleviate the bottlenecks of stragglers and communication
cost in distributed computation. The data center assigns a subset
of input datasets to each server in an uncoded manner, and each
server computes some coded packets on the assigned datasets,
which are then sent to the user. The user should recover the task
function from the answers of a subset of servers, such that the
effect of stragglers could be tolerated. In this paper, we formulate
a novel secure framework for this distributed linearly separable
computation, where we aim to let the user only retrieve the
desired task function without obtaining any other information
about the input datasets, even if it receives the answers of all
servers. In order to preserve the security of the input datasets,
some common randomness variable independent of the datasets
should be introduced into the transmission. We show that any
non-secure linear-coding based computing scheme for the original
distributed linearly separable computation problem, can be made
secure without increasing the communication cost (number of
symbols the user should receive). Then we focus on the case
where the computation cost of each server (number of datasets
assigned to each server) is minimum and aim to minimize the
size of the randomness variable (i.e., randomness size) introduced
in the system while achieving the optimal communication cost.
We first propose an information theoretic converse bound on the
randomness size. We then propose secure computing schemes
based on two well-known data assignments, namely fractional
repetition assignment and cyclic assignment. These schemes are
optimal subject to using these assignments. Motivated by the
observation of the general limitation of these two schemes on
the randomness size, we propose a computing scheme with novel
assignment, which strictly outperforms the above two schemes.
Some additional optimality results are also obtained.
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I. INTRODUCTION

D ISTRIBUTED linearly separable computation, which is
a generalization of many existing distributed computing

problems such as distributed gradient coding [1] and dis-
tributed linear transform [2], was originally proposed in [3]
considering two important bottlenecks in the distributed com-
putation systems: communication cost and stragglers. In this
computation scenario, a user aims to compute a function
of K datasets (D1, . . . , DK) on a finite field Fq through
N distributed servers. The task function can be seen as Kc

linear combinations of K intermediate messages (the nth inter-
mediate message Wn is a function of dataset Dn and contains
L symbols). As pointed out in [3], the task function can be
seen as the product of the demand matrix and the message
matrix. Since the matrix multiplication is one of the key build-
ing blocks underlying many data analytics, machine learning
algorithms and engineering problems, the considered model
also has potential applications in those areas, where each
intermediate message represents the output after some pre-
treatment of the corresponding dataset. The problem contains
three phases, assignment, computing, decoding. During the
assignment phase, the data center with access to the K datasets
assigns M datasets to each server in an uncoded manner, where
M represents the computation cost of each server. During the
computing phase, each server first computes the intermediate
message of each dataset assigned to it, and then transmits a
coded packet of the computed intermediate messages to the
user. During the decoding phase, from the answers of any
Nr servers, the user should recover the task function such
that the system can tolerate N−Nr stragglers. The worst-case
number of symbols (normalized by L) needed to be received
is defined as the communication cost. The objective is to
minimize the communication cost for each given computation
cost. The optimality results for some cases have been founded
in the literature and are summarized below:

• Kc = 1. The computation problem reduces to the
distributed gradient coding problem in [1]. When the
computation cost is minimum (i.e., M = K

N(N−Nr+1)),
the gradient coding scheme in [1] achieves the optimal
communication cost (equal to Nr) as proved in [3]. Then
some extended gradient coding schemes were proposed
in [4], [5] which characterize the optimal communication

0733-8716 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on February 21,2022 at 21:37:20 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8777-7987
https://orcid.org/0000-0002-7970-2245
https://orcid.org/0000-0002-7749-1333
https://orcid.org/0000-0003-4671-3287


WAN et al.: ON SECURE DISTRIBUTED LINEARLY SEPARABLE COMPUTATION 913

Fig. 1. Secure distributed linearly separable computation with K = N = 3,
Nr = 2, Kc = 1, and M = 2.

cost under the constraint of linear coding, for each
possible computation cost.

• Minimum computation cost M = K
N (N − Nr + 1). The

optimal communication cost with the cyclic assignment
(an assignment widely used in the related distributed
computing problems) was characterized in [3], when the
computation cost is minimum.

• For the general case, [6] proposed a computing scheme
under some parameter regimes, which is order optimal
within a factor of 2 under the constraint of the cyclic
assignment.

In this paper, we consider a novel secure framework for
this distributed linearly separable computation problem, where
we aim to let the user only retrieve the desired task function
without obtaining any other information about the K datasets.
We notice that this security model has been widely used in the
literature in the context of secure multiparty computation [7],
[8] and secure aggregation for federated learning [9], [10].

Let us focus on a small but instructive example in Fig. 1,
where K = N = 3, Nr = 2, Kc = 1, M = 2, and the task
function is W1+W2+W3. Assume the field is F3. We use the
cyclic assignment in [1] to assign D1 to servers 1, 3; assign
D2 to servers 1, 2; assign D3 to servers 2, 3. In addition,
for the sake of secure computation, the data center generates
a randomness variable Q uniformly over [Fq]L, which is
independent of the datasets, and assigns Q to each server.
In the computing phase of the novel proposed scheme, server 1
computes 2W1+W2+Q; server 2 computes W2+2W3−Q;
server 3 computes W1 − W3 + Q. It can be seen that from
the answers of any two servers, the user can recover the task
function W1 +W2 +W3. Moreover, even if the user receives
the answers of all servers, it cannot get any other information
about the messages (nor the datasets) because Q is unknown
to it. Notice that the communication cost in this example is 2,
which is the same as the gradient coding scheme in [1].

The above example shows that it is possible to preserve
the security of the datasets (except the task function) from
the user. The main questions we ask in this paper are (i) do
we need additional communication cost to satisfy this security
constraint? (ii) how much randomness is required to guarantee
security?

Compared to the existing works on coded secure distributed
computation on matrix multiplication (such as [11], [12] etc.),
the main differences of the consider secure problem are as
follows: (i) in the above existing works, the data center
assigns a coded version of all input datasets to each distributed
server, while in the considered problem the assignment phase
is uncoded; (ii) the above existing works aim to preserve
the security of the input datasets from the servers where
each distributed server can only access the coded datasets
assigned to it, while in the considered problem we aim to
preserve the security of the input datasets (except the task
function) from the user who may receive all answers of the
servers.

A. Contributions

In this paper, we formulate the secure distributed linearly
separable computation problem, which prevents the user from
obtaining any other information about the datasets except
the task. We first show that any non-secure linear-coding
based computing scheme for the original distributed linearly
separable computation problem, can be made secure with-
out increasing the communication cost. Then we focus on
the secure distributed linearly separable computation problem
where Kc = 1 and M = K

N (N−Nr + 1) (i.e., the computation
cost is minimum), and aim to minimize the randomness
size1 while achieving the optimal communication cost Nr.
To the best of our knowledge, this security issue of the
distributed gradient coding has not been considered before.
Our contributions on this objective are as follows:

• For each possible assignment, we propose an information
theoretic converse bound on the randomness size, which
is also a converse bound on the randomness size while
achieving the optimal communication cost.

• When N− Nr + 1 divides N, we propose a secure com-
puting scheme with the fractional repetition assignment
in [1], which coincides with the proposed converse bound
on the randomness size.

• Under the constraint of the widely used cyclic assign-
ment [1], [3]–[6], [13], [14], we propose an optimal
secure computing scheme in the sense that minimum
randomness size is achieved.

• Motivated by the observation that the computing scheme
with the fractional repetition assignment can only work
for the case where N−Nr+1 divides N and that the com-
puting scheme with the cyclic assignment is highly sub-
optimal in terms of the randomness size, we propose a
new computing scheme with novel assignment strategies.
The novel computing scheme can cover the optimality
results of the computing scheme with the fractional repe-
tition assignment; in general it needs a lower randomness
size while achieving the optimal communication cost than
that of the computing scheme with the cyclic assignment.
We also prove that it is optimal when N−Nr+1

GCD(N,N−Nr+1) ≤ 4.

1 This randomness should be broadcasted from the data center to the servers
and stored at the servers; thus reducing the randomness size can reduce the
communication cost from the data center and the storage cost at the servers.
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B. Paper Organization

The rest of this paper is organized as follows. Section II
introduces the secure distributed linearly separable compu-
tation problem. Section III provides the main results in this
paper and some numerical evaluations. Section IV presents
the proposed secure distributed computing schemes. Section V
concludes the paper. Some of the proofs are given in the
Appendices or in the extended version of this paper [15].

C. Notation Convention

Calligraphic symbols denote sets, bold lower-case letters
denote vector, bold upper-case letters denote matrices, and
sans-serif symbols denote system parameters. We use | · | to
represent the cardinality of a set or the length of a vector;
[a : b] := {a, a + 1, . . . , b}; [n] := [1 : n]; Fq represents a
finite field with order q; MT and M−1 represent the transpose
and the inverse of matrix M, respectively; In represents the
identity matrix with dimension n × n; 0m×n represents the
zero matrix with dimension m×n; the matrix [a; b] is written
in a Matlab form, representing [a, b]T; (M)m×n represents that
the dimension of matrix M is m × n; M(S)r represents the
sub-matrix of M which is composed of the rows of M with
indices in S (here r represents ‘rows’); M(S)c represents the
sub-matrix of M which is composed of the columns of M
with indices in S (here c represents ‘columns’); Mod(b, a)
represents the modulo operation on b with integer divisor a
and in this paper we let Mod(b, a) ∈ {1, . . . , a} (i.e., we
let Mod(b, a) = a if a divides b); GCD(b, a) represents
the Greatest Common Divisor of integers b and a; we let(
x
y

)
= 0 if x < 0 or y < 0 or x < y. In this paper,

for each set of integers S, we sort the elements in S in an
increasing order and denote the ith smallest element by S(i),
i.e., S(1) < . . . < S(|S|).

II. SYSTEM MODEL

We formulate a (K,N,Nr,Kc,M) secure linearly separable
computation problem over the canonical user-server distributed
system, as illustrated in Fig. 1. Compared to the distributed
computing framework in [3], an additional security constraint
will be added.

The user wants to compute a function f(D1, . . . , DK) on
K independent datasets D1, . . . , DK. As the data sizes are
large, the computing task function is distributed over a group
of N servers. For distributed computation to be possible, we
assume that the function is linearly separable with respect
to the datasets, i.e., there exist functions f1, . . . , fK such that
f(·) can be written as

f(D1, . . . , DK) = g
(
f1(D1), . . . , fK(DK)

)
= G [W1; . . . ;WK], (1)

where G is a matrix known by the user and the servers with
dimension Kc × K, whose elements are uniformly i.i.d. over
Fq for some large enough prime-power q. We model fk(Dk),
k ∈ [K], as the k-th message Wk and fk(·) is an arbitrary
function. We assume that the K messages are independent and
each message is composed of L uniformly i.i.d. symbols over

a finite field Fq, where L is large enough such that any sub-
message division is possible. As in [3] we also assume that
K
N is an integer.

A computation scheme contains three phases, data assign-
ment, computing, and decoding.

A. Data Assignment Phase

The data center/global server assigns each dataset Dk where
k ∈ [K] to a subset of the N servers in an uncoded manner.
The set of datasets assigned to server n ∈ [N] is denoted
by Zn, where Zn ⊆ [K]. The assignment constraint is that
|Zn| ≤ M, where it will be clarified soon that M represents
the computation cost. We define Z = (Z1, . . . ,ZN).

As an additional problem constraint, we impose that the
user learns no further information about (D1, . . . , DK) other
than the task function f(D1, . . . , DK). To this purpose, the
data center also generates a randomness variable Q ∈ Q, and
assigns Q to each server k ∈ [K]. Notice that

I(Q;D1, . . . , DK) = I(Q;W1, . . . , WK) = 0. (2)

The randomness size η measures the amount of randomness,
i.e., η = H(Q)

L .

B. Computing Phase

Each server n ∈ [N] first computes the message Wk =
fk(Dk) for each k ∈ Zn. Then it generates Xn = ψn({Wk :
k ∈ Zn}, Q), where the encoding function ψn is such that
ψn : [Fq]|Zn|L × |Q| → [Fq]Tn , and Tn represents the length
of Xn. Finally, server n sends Xn to the user. As in [3],
we assume that the complexity of computing the messages
{Wk : k ∈ Zn} is much higher than computing each function
ψn. Hence, we denote the computation cost by M.

C. Decoding Phase

The computation scheme should tolerate N−Nr stragglers.
As the user does not know a priori which servers are strag-
glers, the computation scheme should be designed so that
from the answers of any Nr servers, the user can recover
G[W1; . . . ;WK]. Hence, for any subset of servers A ⊆ [N]
where |A| = Nr, with the definition

XS := {Xn : n ∈ S}, (3)

there exists a decoding function φA such that

ĝA = φA
(
XA,F

)
, (4)

where the decoding function φA is such that

φA : [Fq]
�

n∈A Tn × [Fq]KcK → [Fq]KcL. (5)

The worst-case probability of error is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA �= g(W1, . . . , WK)}. (6)

Q is unknown to the user, and thus Q cannot be used in the
decoding procedure in (5). In order to protect the security,
even if receiving the answers of all servers in [N], the user
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cannot learn any information about the messages except the
desired task function; it should satisfy that2

I
(
W1, . . . , WK;X[N]|G[W1; . . . ;WK]

)
= 0. (7)

We denote the communication cost by R :=
maxA⊆[N]:|A|=Nr

�
n∈A Tn

L , representing the maximum
normalized number of symbols received by the user from
any Nr responding servers. The communication cost R is
achievable if there exists a computing scheme satisfying the
above constraints and that limq→∞ ε = 0.

When the computation cost is minimum, it was proved
in [3, Lemma 1] that each dataset is assigned to N−Nr +1
servers and each server obtains M datasets, where

M = |Z1| = · · · = |ZN| = K

N
(N− Nr + 1).

In this paper, we mainly focus on the case where Kc = 1 and
the computation cost is minimum, and search for the minimum
communication cost R�. In addition, with the optimal commu-
nication cost, we aim to search for the minimum randomness
size η�. Note that when Kc = 1, without loss of generality,
f(D1, . . . , DK) = G [W1; . . . ;WK] = W1 + · · ·+ WK.3

III. MAIN RESULTS

In this section, we present our main results.
Theorem 1: Any linear-coding based computing scheme S

for the (K,N,Nr,M,Kc) non-secure distributed linearly
separable computation problem where Kc ∈ [K], M =
K
N (N − Nr + m) and m ∈ [Nr], can be made secure without
increasing the communication cost and with the randomness
size ηS = HS

L −Kc, where HS represents the entropy of the
transmissions by all servers in the scheme S .

The proof of Theorem 1 could be found in Appendix A.
From Theorem 1, it can be seen that the additional secu-
rity constraint does not increase the communication cost for
the linear-coding based computing scheme. This is done by
proposing a novel transformation approach which adds the
security guarantee into any linear-coding based non-secure
computing scheme.

Note that the distributed computing scheme in [1] was
shown in [3] to be exactly optimal for the non-secure dis-
tributed linearly separable computation problem with M =
K
N (N − Nr + 1) and Kc = 1. Applying this scheme into
Theorem 1, we can directly obtain the following theorem,
which shows that in this case the optimal communication cost
does not change when the security constraint is added.
Theorem 2: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
N (N−Nr+

1) and Kc = 1, the optimal communication cost is R� = Nr.

2Notice X[N] is a function of (W1, . . . ,WN) and Q. By the data
processing inequality, the security constraint in (7) is equivalent to
I
�
D1, . . . ,DK;X[N]|G[W1; . . . ;WK]

�
= 0.

3 Assume that the task function is d1W1 + d2W2 + · · ·+ dKWK, where
dj ∈ Fq \ {0} for each j ∈ [K]. Note that each Wj is assumed to be
uniformly i.i.d. over [Fq]L. Hence, djWj is also uniformly i.i.d. over [Fq]L.
In addition, the elements in G are uniformly i.i.d. over large enough finite
field. Thus with high probability they are not 0, and we can treat the task as
W1 + · · ·+WK for most possible values of G.

From Theorem 1, we can also add the security into the
distributed computing schemes in [4], [5] for the case that
Kc = 1, into the distributed computing scheme in [3] for
the case that M = K

N (N − Nr + 1), and into the distributed
computing scheme in [6] for the case that Kc ∈ [K] and
M = K

N(N − Nr + m) where m ∈ [Nr], without increasing
the communication cost.

In the rest of this paper, we focus on the (K,N,Nr,Kc,M)
secure distributed linearly separable computation problem with
M = K

N (N − Nr + 1) and Kc = 1, and aim to minimize the
randomness size η while achieving the optimal communication
cost R� = Nr.

We first introduce a novel converse bound on η for a fixed
assignment, whose proof can be found in Appendix B.
Theorem 3: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
N

(N − Nr + 1) and Kc = 1, for a fixed assignment Z =
(Z1, . . . ,ZN), if there exists an ordered set of servers in [N]
denoted by s = (s1, . . . , s|s|), such that

Zsi \
(Zs1 ∪ · · ·Zsi−1

) �= ∅, ∀i ∈ [|s|], (8)

it must hold that

η ≥ |s| − 1. (9)

Notice that while deriving the converse bound in Theorem 3,
we do not use the constraint that communication cost is
minimum. Hence, it is a converse on the randomness size,
which is also a converse bound on the randomness size while
achieving the optimal communication cost.

A general converse bound over all possible assignments is
directly obtained from Theorem 3.
Corollary 1: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
N(N −

Nr + 1) and Kc = 1, it must hold that

η� ≥ min
Z

max
s:Zsi

\
(
Zs1∪···Zsi−1

)
�=∅,∀i∈[|s|]

|s| − 1. (10)

To solve the min-max optimization problem in (10) is highly
combinatorial and becomes a part of on-going works. For
some specific cases, this optimization problem has been solved
in this paper (see Theorems 4 and 7). In the following, we
provide a generally loosen version of the converse bound
in (10).
Corollary 2: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
N(N −

Nr + 1) and Kc = 1, it must hold that

η� ≥
⌈

N

N− Nr + 1

⌉
− 1. (11)

Proof: By definition, there are K datasets in the library and
we assign K

N (N−Nr+1) datasets to each server. Hence, for any

possible assignment, we can find
⌈
K
M

⌉
=

⌈
N

N−Nr+1

⌉
servers,

where each server has some dataset which is not assigned to
other

⌈
N

N−Nr+1

⌉
− 1 servers. By Theorem 3, we have η� ≥⌈

N
N−Nr+1

⌉
− 1.

For the achievability part, we use the proposed transfor-
mation approach in Theorem 1 to add the security guarantee
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for the non-secure computing scheme, with the randomness
size equal to the number of transmitted linear combinations
of messages by all servers in the original non-secure scheme
reduced by 1. Hence, under our construction, minimizing the
randomness size is equivalent to minimize the total number of
transmitted linear combinations in the non-secure scheme.

We then characterize the optimal randomness size for the
case where N− Nr + 1 divides N.

Theorem 4: For the (K,N,Nr,Kc,M) secure distributed
linearly separable computation problem where M = K

N (N −
Nr + 1), Kc = 1, and N − Nr + 1 divides N, to achieve the
optimal communication cost, the minimum randomness size is

η� =
N

N− Nr + 1
− 1. (12)

Proof: The converse part of (12) directly comes from
Corollary 2. For the achievable scheme, we apply Theorem 1
with the non-secure computing scheme with the fractional
repetition assignment [1], in which the number of transmitted
linear combinations of messages by all servers is N

N−Nr+1 .
Hence, from Theorem 1, to make it secure, the needed
randomness size is as in (12).

In the following theorem, we focus on the cyclic assignment.
Theorem 5: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
N(N −

Nr + 1) and Kc = 1, to achieve the optimal communication
cost, the minimum randomness size under the constraint of the
cyclic assignment is

η�
cyc = Nr − 1. (13)

Proof: Achievability. we note that in the non-secure
computing scheme with the cyclic assignment in [3], in which
the number of transmitted linear combinations of messages by
all servers is Nr. By Theorem 1, the needed randomness size
is Nr − 1.

Converse. If the cyclic assignment is used, let us focus on
an ordered set of Nr neighbouring servers

s =
(
Nr,Nr − 1, . . . , 1

)
. (14)

For each n ∈ [Nr], dataset Dn is assigned to servers in
{n, Mod(n − 1,N), . . . , Mod(n − N + Nr,N)}; thus servers
in {Nr,Nr − 1, . . . , n + 1} do not know Dn. Hence, the
ordered set s in (14) satisfies the constraint in (8), and we
have η�

cyc ≥ |s| − 1 = Nr − 1, which proves (13).
Comparing Theorems 4 and 5, it can be seen that the

computing scheme with the cyclic assignment is highly sub-
optimal where the multiplicative gap to the optimality could
be unbounded.4 However, when N−Nr+1 does not divide N,
the fractional repetition assignment in [1] cannot be used. On
the observation that most of existing works on this distributed
linearly separable computing problem (without security) are
either based on the cyclic assignment (such as [1], [3]–[6],
[14]) or the fractional repetition assignment (such as [1], [16]),

4 For example, when N = 2(N−Nr +1) and N is very large, the optimal
randomness size is 1 as shown in (12), while the needed randomness size of
the computing scheme with the cyclic assignment is Nr − 1 = N

2
.

we need to design new assignments for the considered secure
computation problem.

For the ease of notation, we define that

M′ := N− Nr + 1. (15)

In Section IV, we will propose five novel achievable
schemes for different ranges of system parameters. The perfor-
mance of the combined scheme given in the following theorem
is based on a recursive algorithm illustrated in Fig. 2, which
will be explained in Remark 1.
Theorem 6: For the (K,N,Nr,Kc,M) secure distributed

linearly separable computation problem with M = K
NM

′ and
Kc = 1, to achieve the optimal communication cost, the
randomness size η = h(N,M′) − 1 is achievable, where the
output of the function h(N,M′) is given by the recursive
algorithm illustrated in Fig. 2 with the following properties:

• By directly using the scheme with the fractional repetition
assignment for Theorem 4,

h(N, 1) = N. (16)

• By Scheme 1 described in Section IV-A,

h(N,M′) = h

(
N

GCD(N,M′)
,

M′

GCD(N,M′)

)
. (17)

• For the case where N > 2M′, by Scheme 2 described in
Section IV-B,

h(N,M′)=h
(
N−�N/M′−1�M′,M′)+�N/M′−1�.

(18)

• For the case where 1.5M′ ≤ N < 2M′ and M′ is even,
by Scheme 3 described in Section IV-C,

h(N,M′) = h

(
N−M′,

M′

2

)
+ 1. (19)

• For the case where 1.5M′ ≤ N < 2M′ and M′ is odd, by
Scheme 4 described in Section IV-D,

h(N,M′) = N− 3M′ − 5
2

. (20)

• For the case where M′ < N < 1.5M′, by Scheme 5
described in Section IV-E,

h(N,M′) = h(M′, 2M′ − N). (21)

It will be clarified later that there must exist an output for
each input case in the flow diagram illustrated in Fig. 2. Notice
that, the needed randomness size of the combined scheme for
Theorem 6 is

h(N,M′)− 1 ≤ K

N
(N−M′ + 1)− 1 = Nr − 1,

where Nr−1 is the needed randomness size of the computing
scheme with the cyclic assignment for Theorem 5. In addition,
the multiplicative gap between the needed randomness sizes
of the computing scheme with the cyclic assignment for
Theorem 5 and the combined scheme for Theorem 6, could
be unbounded (see the numerical evaluations at the end of this
section).
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Fig. 2. Flow diagram of the combined scheme in Theorem 6. Notice that the condition to use Scheme 5 is that M′ < N < 1.5M′; in this case, 2M′−N > 1.

Remark 1 (High-Level Ideas for Theorem 6): We divide the
K datasets into N non-overlapping and equal-length groups,
where the ith group denoted by Gi = {k ∈ [K] : Mod(k,N) =
i} contains K

N datasets, for each i ∈ [N]. Group Gi is assigned
to M′ = N − Nr + 1 servers, each of which can compute
the merged message W ′

i . Hence, we treat the (K,N,Nr, 1,M)
secure distributed linearly separable computation problem as
the (N,N,Nr, 1,M′) secure distributed linearly separable com-
putation problem.

As in Appendix A, the design on the computing phase
contains two stages.

• In the first stage, we do not consider the security
constraint in (7). We let each server send one linear
combination of merged messages which it can compute,
such that from any set of Nr responding servers, the user
can recover W ′

1+· · ·+W ′
N. Assume that from the answers

of all servers, the user can recover F[W ′
1; . . . ;W

′
N] where

the dimension of F is λ×N and λ represents the number
of totally transmitted linearly independent combinations
of merged messages. Thus the transmission of server
n ∈ [N] can be expressed as snF[W ′

1; . . . ;W ′
N],

where sn represents the transmission vector of
server n.

• In the second stage, we take the security constraint in (7)
into consideration. We introduce λ − 1 independent ran-
domness variables Q1, . . . , Qλ−1, where Qi, i ∈ [λ − 1],
is uniformly i.i.d. over [Fq]L. We then generate the matrix
F′ = [(F)λ×N, (S)λ×(λ−1)], where S = [01×(λ−1);S′]
and S′ is full-rank with dimension (λ − 1)× (λ − 1).
We let each server n ∈ [N] transmit
snF′[W1,1; . . . ;WK;Q1; . . . ;Qλ−1]. It is proved in
Appendix A that the resulting scheme is decodable
and secure. The needed randomness size η is equal
to λ − 1.

The second stage can be immediately obtained once the first
stage is fixed. Hence, now we only need to focus on
the first stage where we aim to minimize the number
of totally transmitted linearly independent combinations
(i.e., λ) for the (N,N,Nr, 1,M′) non-secure distributed
linearly separable computation problem (for the sake of
simplicity, we will call it (N,M′) non-secure problem since
Nr = N−M′ + 1).
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The flow diagram of the combined scheme for Theorem 6
whose output value λ is assigned to h(N,M′), is given in
Fig. 2. The procedure in the flow diagram is finished when
either M′ = 1 or 1.5M′ ≤ N < 2M′ and M′ is odd. There
must exist an output for each input case because when none
of the above two constraints are satisfied, M′ will be further
reduced.

For the secure computing scheme in Theorem 6, the
decoding complexity (i.e., the number of multiplications)
is O (h(N,M′)L), while the computation complexity at
the server side is mainly due to the computation on
the messages from the assigned datasets (as stated in
Section II). �

Comparing the achievable scheme in Theorem 6 with
the proposed converse bounds in Corollaries 1 and 2,
we can characterize the following optimality result, whose
proof could be found in the extended version of this
paper [15, Appendix C].
Theorem 7: For the (K,N,Nr,Kc,M) secure distributed lin-

early separable computation problem with M = K
NM

′, Kc = 1,
and M′

GCD(N,M′) ≤ 4, to achieve the optimal communication

cost, the minimum randomness size is h(N,M′) − 1, where
h(·, ·) is defined in Theorem 6.

Notice that when M′
GCD(N,M′) = 1, M′ divides N; in this case

Theorem 7 reduces to Theorem 4.
At the end of this section, we provide some numerical

evaluations to compare the needed randomness sizes of the
computing scheme with the cyclic assignment for Theorem 5
(equal to Nr − 1) and the combined scheme for Theorem 6
(equal to h(N,M′) − 1), while achieving the optimal com-
munication cost. We consider the (K,N,Nr,Kc,M) secure
distributed linearly separable computation problem with K =
N, M = K

NM
′, and Kc = 1. In Fig.3a, we fix N = 22

and plot the tradeoffs between M and η. In Fig. 3b, we
fix M = 8 and plot the tradeoffs between N and η. From
both figures, it can be seen that the combined scheme for
Theorem 6 needs a much lower randomness size than that
in Theorem 5.

IV. NOVEL ACHIEVABLE SCHEMES FOR THEOREM 6

As explained in Remark 1, by a grouping strategy, we
treat the (K,N,Nr, 1,M) secure distributed linearly sepa-
rable computation problem as the (N,N,Nr, 1,M′) secure
distributed linearly separable computation problem. For the
ease of notation, in this section we directly consider the
case where K = N; thus we also have M = M′.
In the rest of this section, we consider a (N,N,Nr, 1,M)
non-secure distributed linearly separable computation prob-
lem (a.k.a., (N,M) non-secure problem), and aim to mini-
mize the number of totally transmitted linear combinations
of messages λ while achieving the optimal communication
cost Nr.

The proofs of the decodability of Schemes 4 and 5 follow
the decodability proof in [3, Appendix C], based on the
Schwartz-Zippel lemma [17]–[19]. Due to the limitation of
pages, we put those proofs in the extended version of this
paper [15].

Fig. 3. Numerical evaluations for the considered secure distributed linearly
separable computation problem.

A. Scheme 1 for (17)

We consider the (N,M) non-secure problem where
GCD(N,M) > 1, and aim to construct a scheme (Scheme 1)
to prove (17). Intuitively, we want to consider a set of
GCD(N,M) messages as a single message and a set of
GCD(N,M) servers as a single server. Thus Scheme 1 is a
recursive scheme which is based on the proposed scheme for
the

(
N

GCD(N,M) ,
M

GCD(N,M)

)
non-secure problem. We assume

that the latter scheme has been designed before, whose num-
ber of totally transmitted linearly independent combinations
of messages is h

(
N

GCD(N,M) ,
M

GCD(N,M)

)
.

We first partition the N datasets into N
GCD(N,M) groups, where

the ith group is

Ki = [(i − 1)GCD(N,M) + 1 : i GCD(N,M)]

for each i ∈
[

N
GCD(N,M)

]
. In addition, we let Mi =

∑
k∈Ki

Wk;
thus the task function could be expressed as W1+ · · ·+WN =
M1 + · · ·+ M N

GCD(N,M)
.

We also partition the N servers into N
GCD(N,M) groups, where

the ith group of servers is

Ui = [(i − 1)GCD(N,M) + 1 : i GCD(N,M)]

for each i ∈
[

N
GCD(N,M)

]
.

Authorized licensed use limited to: University of North Texas. Downloaded on February 21,2022 at 21:37:20 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON SECURE DISTRIBUTED LINEARLY SEPARABLE COMPUTATION 919

We now prove that the proposed scheme for the(
N

GCD(N,M) ,
M

GCD(N,M)

)
non-secure problem can be directly

applied to the (N,M) non-secure problem.

In the proposed scheme for the
(

N
GCD(N,M) ,

M
GCD(N,M)

)
non-

secure problem, we assume that the set of assigned datasets to
each server n′ ∈

[
N

GCD(N,M)

]
is Z ′

n′ ⊆
[

N
GCD(N,M)

]
; obviously,

|Z ′
n′ | = M

GCD(N,M) . In the computing phase, server n′ computes

a linear combination of the N
GCD(N,M) messages, where the

coefficients of the messages with indices in
[

N
GCD(N,M)

]
\Z ′

n′

are 0. We assume that the vector of the coefficients in this
linear combination is vn′ , containing N

GCD(N,M) elements. From

the answers of any N
GCD(N,M) − M

GCD(N,M) +1 servers, the user

can recover the sum of the N
GCD(N,M) messages.

We then apply the above scheme to the (N,M) non-secure
problem.
1) Assignment Phase: For each i ∈

[
N

GCD(N,M)

]
, we assign

all datasets in group Ki to each server in group Uj where

j ∈
[

N
GCD(N,M)

]
and i ∈ Z ′

j . As each group of servers

contains GCD(N,M) servers, each dataset is assigned to
GCD(N,M) M

GCD(N,M) = M servers; as each group of datasets
contains GCD(N,M) datasets, the number of datasets assigned
to each server is GCD(N,M) M

GCD(N,M) = M. Thus the assign-
ment constraints are satisfied.
2) Computing Phase: For each i ∈

[
N

GCD(N,M)

]
, we let each

server in group Ui compute

vn

[
M1; . . . ;M N

GCD(N,M)

]
,

where vn represents the vector of the coefficients in the linear
combination sent by server n in the

(
N

GCD(N,M) ,
M

GCD(N,M)

)
non-secure problem.
3) Decoding Phase: Following the original scheme for the(

N
GCD(N,M) ,

M
GCD(N,M)

)
non-secure problem, for any set A ⊆[

N
GCD(N,M)

]
where |A| = N

GCD(N,M) − M
GCD(N,M) +1, if the user

receives the answers of the servers in A, it can recover the
task function.

Let us go back to the (N,M) non-secure problem. The user
can receive the answers of N−M+1 servers. As each group
of servers contains GCD(N,M) servers, it can be seen that

these N − M + 1 servers are from at least
⌈

N−M+1
GCD(N,M)

⌉
=

N
GCD(N,M) − M

GCD(N,M) +1 groups. Hence, the user recovers the
task function.

In conclusion, we proved h(N,M) = h
(

N
GCD(N,M) ,

M
GCD(N,M)

)
, coinciding with (17).

B. Scheme 2 for (18)

We will start with an example to illustrate the main idea.
Example 1: We consider the (N,M) = (5, 2) non-secure

problem. It can be seen that in this example Nr = N −
M + 1 = 4. For the sake of simplicity, while illustrating the
proposed schemes through examples, we assume that the field
is a large enough prime field. In general this assumption on
prime field size is not necessary in our proposed schemes,

since we only need the field size to be large enough such
that the Schwartz-Zippel lemma could be used to show the
decodability.
Assignment phase. We assign the datasets as follows.

Server 1 Server 2 Server 3 Server 4 Server 5
D1 D1 D3 D4 D5

D2 D2 D4 D5 D3

Computing phase. We let servers 1 and 2 compute W1+W2.
We then focus on servers 3, 4, 5. It can be seen that datasets

D4, D5, D6 are assigned to servers 3, 4, 5 in a cyclic way.
Hence, as the computing scheme illustrated in the Introduction,
we let server 3 compute 2W3 + W4; let server 4 compute
W4 + 2W5; let server 5 compute W3 − W5.
Decoding phase. Among the answers of any Nr = 4 servers,

there must exist W1 +W2 and two answers of servers 3, 4, 5.
From any two answers of servers 3, 4, 5, the user can recover
W3+W4+W5. Together with W1+W2, the user can recover
W1 + · · ·+ W5.
It can be seen that the number of linearly independent

combinations transmitted by servers 3, 4, 5 is two. Hence, the
number of totally transmitted linearly independent combina-
tions is h(5, 2) = 3, which is equal to h(3, 2) + 1 coinciding
with (18). �

We now consider the (N,M) non-secure problem where N >
2M, and aim to construct a scheme (Scheme 2) to prove (18).
Scheme 2 is a recursive scheme which is based on the
proposed scheme for the (N− �N/M− 1�M,M) non-secure
problem. We assume that the latter scheme has been designed
before, whose number of totally transmitted linearly indepen-
dent combinations of messages is h (N− �N/M− 1�M,M).
1) Assignment Phase: We divide the whole system into

�N/M� blocks. For each i ∈ [�N/M�], the ith block contains
datasets {Dk : k ∈ Bi} and servers in Bi, where

Bi =

{
[(i − 1)M+ 1 : iM] , if i ∈ [�N/M− 1�] ;
[�N/M− 1�M+ 1 : N] , if i = �N/M� .

(22)

The datasets in one block are only assigned to the servers in
the same block. More precisely, for each i ∈ [�N/M�],

• if i ∈ [�N/M− 1�], we assign all datasets in {Dk : k ∈
Bi} to each server in Bi;

• if i = �N/M�, the block contains N − �N/M− 1�M
servers and N − �N/M− 1�M datasets, where each
dataset should be assigned to M servers and each
server should obtain M datasets. Hence, we can apply
the assignment phase of the proposed scheme for the
(N− �N/M− 1�M,M) non-secure problem, to assign
the datasets {Dk : k ∈ Bi} to the servers in Bi.

2) Computing Phase: For each i ∈ [�N/M− 1�], we let the
servers in the ith block compute∑

k∈Bi

Wk.

We then focus on the ith block where i = �N/M�
(i.e., the last block), to which we apply the computing
phase of the proposed scheme for the (N− �N/M− 1�M,M)
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non-secure problem. In the proposed scheme for the
(N− �N/M− 1�M,M) non-secure problem, server n′ ∈
[N− �N/M− 1�M] computes a linear combination of
the N−�N/M− 1�M messages, where the coefficients of the
messages it cannot compute are 0. We assume that the vector
of the coefficients in this linear combination is vn′ , containing
N− �N/M− 1�M elements.

Go back to the ith block, where i = �N/M�, of the (N,M)
non-secure problem. For each j ∈ [|Bi|], we let server Bi(j)
compute5

vj

[
W�N/M−1�M+1;W�N/M−1�M+2; . . . ;WN

]
,

where vj represents the vector of the coefficients in the linear
combination sent by server j in the (N− �N/M− 1�M,M)
non-secure problem.
3) Decoding Phase: The user receives the answers of

Nr = N − M + 1 servers. In other words, the user does
not receive the answers of M − 1 servers. Recall that in
each of the first �N/M− 1� blocks there are M servers; in
the last block there are N − �N/M− 1�M servers. Hence,
among these Nr = N − M + 1 responding servers, there
must be at least one server in each of the first �N/M− 1�
blocks, and at least N − �N/M− 1�M − M + 1 servers in
the last block. By construction, from the answers of any
N − �N/M− 1�M − M + 1 servers in the last block, the
user can recover

∑
k∈[�N/M−1�M+1:N] Wk. Together with the

transmissions of the first �N/M− 1� blocks, the user can
recover W1 + · · ·+ WN.

In conclusion, we proved h(N,M) = �N/M− 1� +
h (N− �N/M− 1�M,M), coinciding with (18). In addition,
it can be seen that M < N− �N/M− 1�M < 2M if N > 2M
and M does not divide N.

C. Scheme 3 for (19)
We first provide an example to illustrate the main idea.
Example 2: We consider the (N,M) = (7, 4) non-secure

problem. Notice that Nr = N−M+ 1 = 4.
Assignment phase. We assign the datasets as follows.

Server 1 Server 2 Server 3 Server 4
D1 D1 D1 D1

D2 D2 D5 D5

D3 D3 D6 D6

D4 D4 D7 D7

Server 5 Server 6 Server 7
D2 D3 D4

D5 D6 D7

D3 D4 D2

D6 D7 D5

Computing phase. We let servers 1, 2 compute a same linear
combination of messages, assumed to be A1. Similarly, we let
servers 3, 4 compute a same linear combination of messages,
assumed to be A2. Recall that Nr = 4. Thus from A1 and
A2, the user should recover the task function. We construct
A1 and A2 such that from A1 and A2, we can recover the
following two linear combinations, F1 = W1 + · · · + W7

and F2 = W2 + W3 +W4 + 2(W5 +W6 + W7). This can be

5Recall that Bi(j) represents the j th element in Bi.

done by letting A1 = 2F1 − F2 = W1 + W2 + W3 + W4,
which can be computed by servers 1, 2, and letting A2 =
F2−F1 = −W1+W5+W6+W7, which can be computed by
servers 3, 4.
We then focus on servers 5, 6, 7. The assignment for servers

5, 6, 7 can be expressed as follows. We divide the datasets in
[2 : 7] into three pairs, P1 = {2, 5},P2 = {3, 6}, P3 = {4, 7}.
The three pairs of datasets are assigned to servers 5, 6, 7 in
a cyclic way. We also let P1 = W2 + 2W5, P2 = W3 +
2W6, P3 = W4 + 2W7. Hence, we can treat servers 5, 6, 7
and P1, P2, P3 as a (3, 2) non-secure problem, where from
the answers of any two servers we can recover F2 = P1 +
P2+P3. We construct the answers of servers 5, 6, 7 (denoted by
A3, A4, A5, respectively) as A3 = 2P1 +P2, A4 = P2 +2P3,
and A5 = P1 − P3.
Decoding phase. As shown before, if the set of Nr = 4

responding servers contains one server in [2] and one server
in {3, 4}, the user can recover the task function from A1

and A2.
We then consider the case where from the answers of the

responding servers, the user can only receive one of A1

and A2. In this case, the set of responding servers must contain
at least two servers in [5 : 7]. By construction, from the
answers of any two servers in [5 : 7], the user can recover F2.
Together with A1 = 2F1−F2 or with A2 = F2−F1, the user
can recover F1, which is the task function.
The number of totally transmitted linearly independent

combinations is h(7, 4) = 3, which is equal to h(3, 2) + 1
coinciding with (19). �

We now consider the (N,M) non-secure problem where
1.5M ≤ N < 2M and M is even, and aim to construct a
scheme (Scheme 3) to prove (19). Scheme 3 is a recursive
scheme which is based on the proposed scheme for the(
N−M, M

2

)
non-secure problem. We assume that the latter

scheme has been designed before, whose number of totally
transmitted linearly independent combinations of messages is
h

(
N−M, M

2

)
.

We define that N = 2M− y. In this case, we have y ≤ M/2
and Nr = N−M+ 1 = M− y + 1 ≤ M.
Assignment phase. We first focus on the assignment for the

servers in [M], which is given as follows,

Server 1 · · · Server M
2 Server M

2 + 1 · · · Server M
D1 · · · D1 D1 · · · D1

· · · · · · · · · · · · · · · · · ·
Dy · · · Dy Dy · · · Dy

Dy+1 · · · Dy+1 DM+1 · · · DM+1

· · · · · · · · · · · · · · · · · ·
DM · · · DM DN · · · DN

It can be seen that we assign D1, . . . , Dy to all servers in [M],
and assign each dataset Dk where k ∈ [y+1 : N] to M

2 servers
in [M].

We then focus on the assignment for the servers in [M+1 :
N]. We need to assign N− y = 2(N−M) datasets (which are
in [y + 1 : N]) to totally N − M servers, where each dataset
is assigned to M

2 servers and each server obtains M datasets.
We divide datasets in [y+1 : N] into N−y

2 = N−M pairs, where
the ith pair is Pi = {y+i,M+i} for each i ∈ [N−M]. Hence,
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we can apply the assignment phase of the proposed scheme for
the

(
N−M, M

2

)
non-secure problem, to assign N−y

2 = N−M
pairs to N−M servers where each pair is assigned M

2 servers
and each server obtains M

2 pairs.
Computing phase. We first focus on the servers in [M].

We let the servers in
[
M
2

]
with the same datasets compute a

same linear combination of messages, which is denoted by
A1. Similarly, we let the servers in

[
M
2 + 1 : M

]
with the

same datasets compute a same linear combination of messages,
which is denoted by A2. We construct A1 and A2 such that
from A1 and A2, we can recover the following two linear
combinations

F1 = W1 + · · ·+ WN; (23a)

F2 = Wy+1 + · · ·+ WM + 2(WM+1 + · · ·+ WN). (23b)

This can be done by letting

A1 = 2F1 − F2 = 2(W1 + · · ·+ Wy) + Wy+1 + · · ·+ WM

which can be computed by servers in
[
M
2

]
, and letting

A2 = F2 − F1 = −(W1 + · · ·+ Wy) + WM+1 + · · ·+ WN

which can be computed by servers in
[
M
2 + 1 : M

]
.

We then focus on the servers in [M+ 1 : N]. For each pair
of datasets Pi = {y + i,M + i} where i ∈ [N − M], we let
Pi = Wy+i + 2WM+i. Hence, we can express F2 in (23b) as
P1 + · · ·+ PN−M. Next we apply the computing phase of the
proposed scheme for the

(
N−M, M

2

)
non-secure problem. In

the proposed scheme for the
(
N−M, M

2

)
non-secure problem,

server n′ ∈ [N−M] computes a linear combination of the
N−M messages, where the coefficients of the messages that
server n′ cannot compute are 0. We assume that the vector of
the coefficients in this linear combination is vn′ , containing
N−M elements.

Go back to the (N,M) non-secure problem. We let each
server n ∈ [M+ 1 : N] compute

An−M+2 = vn−M [P1; . . . ;PN−M],

where vn−M represents the vector of the coefficients in the
linear combination sent by server n −M in the

(
N−M, M

2

)
non-secure problem.
1) Decoding Phase: If the set of Nr = N − M + 1

responding servers contains one server in
[
M
2

]
and one server

in
[
M
2 + 1 : M

]
, from A1 and A2 the user can recover the task

function.
We then consider the case where from the answers of

the responding servers, the user can only receive one of A1

and A2. In this case, the set of Nr responding servers contains
at least Nr − M

2 = N− 3M
2 + 1 servers in [M+ 1 : N]. Notice

that in the
(
N−M, M

2

)
non-secure problem, the answers of

any N −M − M
2 + 1 = N − 3M

2 + 1 servers can re-construct
the task function. Hence, in the (N,M) non-secure problem,
the answers of any N − 3M

2 + 1 servers in [M + 1 : N]
can re-construct P1 + · · · + PN−M = F2. Together with
A1 = 2F1 − F2 or with A2 = F2 − F1, the user can recover
the task function F1.

It can be seen that the number of linearly independent
combinations transmitted by servers in [M + 1 : N] is

h
(
N−M, M

2

)
, the linear space of which contains F2. In

addition, the number of linearly independent combinations
transmitted by servers in [M] is two, the linear space of
which also contains F2. Hence, the number of totally trans-
mitted linearly independent combinations is h(N,M) = 2 +
h

(
N−M, M

2

)−1 = h
(
N−M, M

2

)
+1, coinciding with (19).

D. Scheme 4 for (20)

We first provide an example to illustrate the main idea.
Example 3: We consider the (N,M) = (8, 5) non-secure

problem. It can be seen that in this example Nr =
N−M+ 1 = 4.
Assignment phase. We assign the datasets as follows.

Server 1 Server 2 Server 3 Server 4
D1 D1 D1 D1

D2 D2 D2 D2

D3 D3 D6 D6

D4 D4 D7 D7

D5 D5 D8 D8

Server 5 Server 6 Server 7 Server 8
D1 D3 D3 D3

D2 D4 D4 D4

D6 D5 D5 D5

D7 D6 D7 D8

D8 D7 D8 D6

Computing phase. We let each user send one linear
combination of messages, such that the user can recover
F [W1; . . . ;WN] from the answers of any Nr responding
servers, where

F =


f1f2
f3


 =


1 1 1 1 1 1 1 1
0 0 2 2 2 1 1 1
0 0 0 0 0 ∗ ∗ ∗




=


1 1 1 1 1 1 1 1
0 0 2 2 2 1 1 1
0 0 0 0 0 1 2 3


, (24)

and each ‘∗’ is uniformly i.i.d. over Fq and in this exam-
ple we assume that the last three ‘∗’ in f3 are simply 1,
2, and 3, respectively. We also define that [F1;F2;F3] =
F [W1; . . . ;WN].
We let servers 1, 2 with datasets D1, . . . , D5 compute X1 =

X2 = F1 − F2 = W1 + W2 − W3 − W4 − W5.
For servers in [3 : 5] with datasets D1, D2, D6, D7, D8, we

construct their transmissions such that from the answers of any
two of them we can recover 2F1 −F2 = 2W1 +2W2 +W6 +
W7 +W8 and F3 = 2W6+W7. Notice that both of 2F1−F2

and F3 can be computed by each server in [3 : 5]. Hence,
each server in [3 : 5] computes a random linear combination of
(2F1−F2) and F3. For example, we let servers 3, 4, 5 compute
X3, X4, X5, respectively, where X3 = (2F1−F2)+F3; X4 =
(2F1 − F2) + 2F3; X5 = (2F1 − F2) + 4F3.
For servers in [6 : 8], we construct their transmissions such

that from the answers of any two of them we can recover F2

and F3. This can be done by letting servers 6, 7, 8 compute
X6, X7, X8, respectively, where X6 = 3F2 − F3 = 6W3 +
6W4+6W5+2W6+W7; X7 = F2−F3 = 2W3+2W4+2W5−
W7−2W8; X8 = 2F2−F3 = 4W3+4W4+4W5+W6−W8.
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Decoding phase. For any set of Nr = 4 servers, A, we are
in one of the following three cases:

• Case 1: A contains at least two servers in [3 : 5]. From
the answers of any two servers in [3 : 5], the user can
recover 2F1 − F2 and F3. Besides, A contains at least
either one server in [2] or one server in [6 : 8]. It
can be seen that each of X1, X2, X6, X7, X8 is linearly
independent of 2F1 − F2 and F3. Hence, the user then
recovers F1.

• Case 2: A contains at least two servers in [6 : 8]. From
the answers of any two servers in [6 : 8], the user can
recover F2 and F3. Besides, A contains at least one
server in [5]. It can be seen that in the transmitted linear
combination of each server in [5] contains F1. Hence, the
user then recovers F1.

• Case 3: A contains servers 1, 2, one server in [3 : 5], and
one server in [6 : 8]. In this case, we can also check that
the user receives three independent linear combinations
in F1, F2, F3, such that it can recover F1.

It can be seen that the number of totally transmitted lin-
early independent combinations is h(8, 5) = 3, coinciding
with (20). �

We now consider the (N,M) non-secure problem where
1.5M ≤ N < 2M and M is odd, and aim to construct a scheme
(Scheme 4) to prove (20). We also define that N = 2M− y.
1) Assignment Phase: The assignment is given at the top

of the next page. In the assignment, we divide the N datasets
into three parts, where the first part contains D1, . . . , Dt

(later we will explain the reason to choose t = M−1
2 ) which

are all assigned to servers in [M]; the second part contains
Dt+1, . . . , DM which are all assigned to servers in [y]∪[M+1 :
N]; the third part contains DM+1, . . . , DN, which are assigned
to servers in [y + 1 : M] in a cyclic way where each server
obtains M − t neighbouring datasets in

[
M−1
2 + 1 : N

]
. The

datasets DM+1, . . . , DN are also assigned to servers in [M+1 :
N] in a cyclic way where each server obtains t neighbouring
datasets in

[
M−1
2 + 1 : N

]
.

As we assign the datasets in [M + 1 : N] to the servers in
[y + 1 : M] in a cyclic way where each server obtains M− t
datasets, we can choose N−M−(M− t)+1 = N−2M+ t+1
neighbouring servers in [y + 1 : M] satisfying the constraint
in (8); in addition, server 1 has Dt+1, . . . , DM, which are not
assigned to the servers in [y+1 : M]. Hence, the ordered set of
the above N−2M+ t+2 servers satisfies the constraint in (8).

Similarly, we assign the datasets in [M+1 : N] to the servers
in [M + 1 : N] in a cyclic way where each server obtains t
datasets, we can choose N−M− t + 1 neighbouring servers
in [M + 1 : N] satisfying the constraint in (8); in addition,
server 1 has D1, . . . , Dt, which are not assigned to the servers
in [M+1 : N]. Hence, the ordered set of the above N−M−t+2
servers satisfies the constraint in (8).

Similar to the derivation of (34c), by the chain rule of
entropy, under the above assignment,

H(X[N])/L ≥ max{N− 2M+ t + 2,N−M− t + 2}
t=M−1

2= N−M− M− 1
2

+ 2 =
M+ 5

2
− y.

Hence, we let t = M−1
2 .

2) Computing Phase: We design the computing phase such
that the total number of independent transmitted linear com-
binations of messages by all servers is M+5

2 − y. These linear
combinations are in F [W1; . . . ;WN] where

Notice that a represents a symbol uniformly over Fq\{0, 1},
and ‘∗’ represents a symbol uniformly i.i.d. over Fq. We
divide matrix F into three column-wise sub-matrices, F1

with dimension
(
M+5
2 − y

) × M−1
2 which corresponds to the

messages in
[
M−1
2

]
, F2 with dimension

(
M+5
2 − y

) × M+1
2

which corresponds to the messages in
[
M+1
2 : M

]
, and F3

with dimension
(
M+5
2 − y

) × (N − M) which corresponds
to the messages in [M + 1 : N]. We also define that
Fi = fi[W1; . . . ;WN] for each i ∈ [

M+5
2 − y

]
. Thus the

transmission of each server could be expressed as a linear
combination of

[
F1; . . . ;FM+5

2 −y

]
.

As each server n ∈ [y] cannot compute WM+1, . . . , WN, we
let it compute

sn F [W1; . . . ;WN]
= [1,−1, 0, . . . , 0] F [W1; . . . ;WN] (25a)
= W1 + · · ·+ WM−1

2
+ (1− a)(WM+1

2
+ · · ·+ WM),

(25b)

such that the coefficients of WM+1, . . . , WN which it cannot
compute are 0.

For the servers in [y + 1 : M], we construct their transmis-
sions such that from the answers of any M+3

2 − y servers in
[y + 1 : M], the user can recover aF1 − F2, F3, . . . , FM+5

2 −y.

More precisely, we let server n ∈ [y + 1 : M] compute

sn

[
af1 − f2; f3; . . . ; fM+5

2 −y

]
[W1; . . . ;WN], (26a)

where[
af1 − f2; f3; . . . ; fM+5

2 −y

]

.

We design sn as follows. Notice that W1, . . . , WM−1
2

can be
computed by server n; and that in the linear combination (26a)
the coefficients of WM−1

2 +1, . . . , WM are 0. Hence, in order to
guarantee that in (26a) the coefficients of the messages which
server n cannot compute are 0, we only need to consider the
messages in WM+1, . . . , WN, whose related columns are in F′

3.
Server n cannot compute N−M− M+1

2 = M−1
2 − y messages

in WM+1, . . . , WN; thus the column-wise sub-matrix of F′
3
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Server 1 · · · Server y Server y + 1 Server y + 2 · · · Server M Server M+1 Server M+ 2 · · · Server N
D1 · · · D1 D1 D1 · · · D1 DM−1

2 +1 DM−1
2 +1 · · · DM−1

2 +1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
DM−1

2
· · · DM−1

2
DM−1

2
DM−1

2
· · · DM−1

2
DM DM · · · DM

DM−1
2 +1 · · · DM−1

2 +1 DM+1 DM+2 · · · DN DM+1 DM+2 · · · DN

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
DM · · · DM D 3M+1

2
D 3M+1

2 +1 · · · D 3M+1
2 −1 D 3M−1

2
D 3M−1

2 +1 · · · D 3M−1
2 −1

corresponding to these M−1
2 − y messages has the dimension(

M+3
2 − y

) × (
M−1
2 − y

)
. In addition, each ‘∗’ is uniformly

i.i.d. over Fq. Hence, the left-hand side nullspace of this sub-
matrix contains M+3

2 − y − (
M−1
2 − y

)
= 2 vectors, each

of which has M+3
2 − y elements. We let sn be a random

linear combination of these two vectors, where each of the
two coefficients is uniformly i.i.d over Fq.

Finally, we focus on the servers in [M + 1 : N]. We
construct their transmissions such that from any the answers
of any M+3

2 − y servers in [M + 1 : N], the user can recover
F2, F3, . . . , FM+5

2 −y. More precisely, we let server n ∈ [M+1 :
N] compute

sn

[
f2; f3; . . . ; fM+5

2 −y

]
[W1; . . . ;WN]. (27)

We design sn as follows. Notice that in the linear combi-
nation (27) the coefficients of W1, . . . , WM−1

2
are 0; and that

WM+1
2

, . . . , WM can be computed by server n. Hence, in order
to guarantee that in (27) the coefficients of the messages which
server n cannot compute are 0, we only need to consider the
messages in WM+1, . . . , WN, whose related columns are in

F([2:M+5
2 −y])r

3 .6 Server n cannot compute N − M − M−1
2 =

M+1
2 − y messages in WM+1, . . . , WN; thus the column-wise

sub-matrix of F([2:M+5
2 −y])r

3 corresponding to these M+1
2 − y

messages has the dimension
(
M+3
2 − y

) × (
M+1
2 − y

)
. In

addition, each ‘∗’ is uniformly i.i.d. over Fq. Hence, the left-
hand side nullspace of this sub-matrix contains M+3

2 − y −(
M+1
2 − y

)
= 1 vector, which has M+3

2 − y elements. We let
sn be this vector.

Due to the limitation of the pages, we skip the proof of the
decodability and please refer to [15, Section IV-D] for further
details.

By the above scheme, the number of linearly independent
transmissions by all servers is equal to the number of rows in
F, i.e., M+5

2 − y = N− 3M−5
2 , coinciding with (20).

E. Scheme 5 for (21)

Finally, we consider the case where M < N < 1.5M, and
aim to construct a scheme (Scheme 5) to prove (21). Scheme 5
is a recursive scheme which is based on the proposed scheme
for the (M, 2M − N) non-secure problem. We assume that
the latter scheme has been designed before, whose number
of totally transmitted linearly independent combinations of
messages is h(M, 2M− N).

6 Recall that M(S)r represents the sub-matrix of M which is composed of
the rows of M with indices in S .

1) Assignment Phase: We first assign datasets
D1, . . . , DN−M to each server in [M]. Then we assign
datasets DN−M+1, . . . , DN to each server in [M + 1 : N]. So
far, each server in [M+1 : N] has obtained M datasets, while
each server in [M] has obtained N − M < M datasets. In
addition, each dataset in [N − M + 1 : N] has been assigned
to N − M < M servers. Hence, in the next step we should
assign each dataset Dk where k ∈ [N − M + 1 : N] to
M − (N − M) = 2M − N servers in [M], such that each
server in [M] obtains M − (N − M) = 2M − N datasets in
[N − M + 1 : N]. Thus we can apply the assignment phase
of the proposed scheme for the (M, 2M − N) non-secure
problem, to assign datasets DN−M+1, . . . , DN to servers
in [M].

2) Computing Phase: Let us first focus on the (M, 2M−N)
non-secure problem, where the M messages are assumed to be
W ′′

1 , . . . , W ′′
M. In the proposed scheme for the (M, 2M − N)

non-secure problem, each server computes a linear combina-
tion of the M messages. Considering the transmitted linear
combinations by all servers, the number of linearly indepen-
dent combinations is denoted by h(M, 2M − N) and these
h(M, 2M− N) linear combinations can be expressed as

F4 [W ′′
1 ; . . . ;W

′′
M]. (28)

The transmission of each server n′ ∈ [M] can be expressed as

sn′ F4 [W ′′
1 ; . . . ;W

′′
M].

Let us then go back to the (N,M) non-secure problem.
We construct the answer of the N servers, such that the
transmissions of all servers totally contain h(M, 2M − N)
linearly independent combinations and these h(M, 2M − N)
linear combinations can be expressed as F[W1; . . . ;WN],
where (each ai where i ∈ [h(M, 2M − N) − 1] represents
a symbol uniformly i.i.d. over Fq)

Each ‘+’ represents an element of F4 in (28). Notice that
the dimension of F5 is

(
h(M, 2M− N) − 1

) × (N−M) and
the dimension of F4 is

(
h(M, 2M− N)− 1

) ×M.
For each server n ∈ [M], by the construction of the

assignment phase, datasets D1, . . . , DN−M are assigned to
it and the assignment on the datasets DN−M+1, . . . , DN is
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from the assignment phase of the proposed scheme for the
(M, 2M − N) non-secure problem. Hence, we let server n
compute snF[W1; . . . ;WN], where sn is the same as the
transmission vector of server n in the (M, 2M−N) non-secure
problem.

For each server n ∈ [M + 1 : N], it cannot compute
W1, . . . , WN−M, which correspond to the column-wise sub-
matrix F5, whose rank is 1. So the left-hand side null
space of F5 contains h(M, 2M−N)− 1 linearly independent
vectors, each of which has h(M, 2M − N) elements. We let
the transmission vector of server n, denoted by sn, be a
random linear combinations of these h(M, 2M−N)−1 linearly
independent vectors, where the h(M, 2M−N)−1 coefficients
are uniformly i.i.d. over Fq; in other words, server n computes
snF[W1; . . . ;WN].

Due to the limitation of the pages, we skip the proof of the
decodability and please refer to [15, Section IV-E] for further
details.

In conclusion, we have h(N,M) = h(M, 2M − N), which
coincides with (21).

V. CONCLUSION

We formulated the secure distributed linearly separable
computation problem, where the user should recover the
desired task function without retrieving any other information
about the datasets. It is interesting to see that to add this
security constraint into a non-secure computing scheme, we
do not need to increase the communication cost if the orig-
inal computing scheme is based on linear coding. We then
focused on the problem where Kc = 1 and the computation
cost is minimum. In this case, while achieving the optimal
communication cost, we aim to minimize the size of the
randomness variable which is independent of the datasets and
is introduced in the system to preserve the security. For this
purpose, we proposed an information theoretic converse bound
on the randomness size for each possible assignment. A novel
secure computing scheme was proposed, which outperforms
the optimal computing schemes with the well-know fractional
repetition assignment and cyclic assignment in terms of the
randomness size and leads some additional optimality results.

APPENDIX A
PROOF OF THEOREM 1

We consider the non-sercure distributed linearly separable
computation problem in [6] where M = K

N (N − Nr + m) for
m ∈ [Nr] and the user requests Kc ∈ [K] linearly independent
combinations of messages. We now describe on a general
linear coding computing scheme S . In this scheme, we divide
each message Wk where k ∈ [K] into � non-overlapping and
equal-length sub-messages, Wk = {Wk,i : i ∈ [�]}. Server
n ∈ [N] sends �Tn

L linearly independent combinations of
W1,1, W1,2, . . . , WK,�.

Considering the transmitted linear combinations by all
servers, the number of linearly independent combinations is
denoted by λ and these λ linear combinations can be expressed
as F[W1,1;W1,2; . . . ;WK,�], where the ith row of F is fi, for
each i ∈ [λ]. Notice that any linear scheme can be transformed

in the above manner. Among these λ linear combinations,
fi[W1,1;W1,2; . . . ;WK,�] where i ∈ [�Kc] represent the desired
task function of the user. The transmission of each server
n ∈ [N] can be express as

Sn F [W1,1;W1,2; . . . ;WK,�], (29)

where the dimension of Sn is �Tn

L × λ.
For any set of Nr responding servers (denoted

by A = {A(1), . . . ,A(Nr)}), the user receives
SA F [W1,1;W1,2; . . . ;WK,�] where SA represents the
row-wise sub-matrix of

[
SA(1); . . . ;SA(Nr)

]
which has the

same rank as
[
SA(1); . . . ;SA(Nr)

]
. Assume SA contains

rA rows. In the decoding phase, the user multiplies
SAF[W1,1;W1,2; . . . ;WK,�] by DA with dimension �Kc× rA
where

DA SA = [I�Kc ,0�Kc×(rA−�Kc)], (30)

In represents the identity matrix with dimension n × n, and
0m×n represents the zero matrix with dimension m × n.
Hence, the user can recover the desired task function from
DASAF[W1,1;W1,2; . . . ;WK,�].

Now we take the security constraint (7) into considera-
tion, and extend the above general linear coding scheme.
We introduce λ − �Kc independent randomness variables
Q1, . . . , Qλ−�Kc , where Qi, i ∈ [λ − �Kc], is uniformly
i.i.d. over [Fq]

L
� . We then let F′ = [F,S], where S =

[0�Kc×(λ−�Kc);S
′] and S′ is full-rank with dimension (λ −

�Kc)× (λ − �Kc).
We let each server n ∈ [N] transmit

Sn F′ [W1,1;W1,2; . . . ;WK,�;Q1; . . . ;Qλ−�Kc ], (31)

where Sn is the same as that in (29). It can be seen that in
the transmitted linear combinations (31), the coefficients of
the sub-messages which server n cannot compute are still 0
as the original non-secure scheme.

For any set of Nr responding servers A, the user receives
SA F′ [W1,1;W1,2; . . . ;WK,�], and recovers its desired
task from DASAF′[W1,1;W1,2; . . . ;WK,�;Q1; . . . ;Qλ−�Kc ],
since (30) holds.

Finally, we will prove that the above scheme is secure. From
the answers of all servers, the user can only recover totally λ
linearly independent combinations, which are

F′ [W1,1;W1,2; . . . ;WK,�;Q1; . . . ;Qλ−�Kc ]. (32)

In addition, S′ is full-rank (with rank equal to λ−�Kc). Hence,
the user can only recover the desired task function (i.e., the
first �Kc linear combinations in (32)) without Q1, . . . , Qλ−�Kc ,
and thus the above scheme is secure. We introduce λ − �Kc

randomness variables, each of which has L
� symbols. Hence,

the total needed randomness size is η = (λ−�Kc)L/�
L = λ

� −
Kc = HS − Kc.

APPENDIX B
PROOF OF THEOREM 3

By the security constraint in (7), the user can only obtain
W1 + · · ·+WK without knowing any other information about
the messages after receiving the answers of all servers. Recall
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that XS = {Xn : n ∈ S}. Intuitively by [20], we need a key
with length at least H(X[N])− H(W1 + · · ·+ WK) such that
except W1+· · ·+WK, the other information about W1, . . . , WK

transmitted in X[N] is hidden. More precisely, from (7) we have

0 = I
(
W1, . . . , WK;X[N]|W1 + W2 + · · ·+ WK

)
(33a)

= H(X[N]|W1 + W2 + · · ·+ WK)− H(X[N]|W1, . . . , WK)
(33b)

≥ H(X[N]|W1 + W2 + · · ·+ WK)
−H(Q, W1, . . . , WK|W1, . . . , WK) (33c)

= H(X[N]|W1 + W2 + · · ·+ WK)− H(Q) (33d)

= H(X[N])− I(X[N];W1 + W2 + · · ·+ WK)− H(Q)
(33e)

≥ H(X[N])− H(W1 + W2 + · · ·+ WK)− H(Q) (33f)

where (33c) comes from that the X[N] is a function of
Q, W1, . . . , WK, (33d) comes from that Q is independent of
W1, . . . , WK. Hence, from (33f) and we have

ηL ≥ H(Q) ≥ H(X[N])− H(W1 + · · ·+ WK) (34a)

= H(X[N])− L ≥ H(Xs1 , . . . , Xsv)− L (34b)

= H(Xs1) + H(Xs2 |Xs1) + · · ·
+H(Xsv |Xs1 , . . . , Xsv−1)− L, (34c)

Let us then focus on each entropy term in (34c),
H(Xsi |Xs1 , . . . , Xsi−1) where i ∈ [v]. Recall that server si

can compute some message (assumed to be message Wj )
which cannot be computed by servers s1, . . . , si−1, and
that each message cannot be computed by Nr − 1 servers.
We assume that the set of servers which cannot compute Wj

is Aj . Obviously, {s1, . . . , si−1} ⊆ Aj . Now consider that
the set of responding servers is Aj ∪ {si}, totally containing
Nr servers. As Wj can only be computed by server si among
the servers in Aj ∪ {si}, and from the answers of servers in
Aj ∪ {si} the user should recover W1 + · · ·+ WK, we have

H(Xsi |Xs1 , . . . , Xsi−1) ≥ H(Xsi |Xk : k ∈ Aj) ≥ L.

(35)

Hence, we take (35) into (34c) to obtain, ηL ≥ vL− L, which
proves (9).
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