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Distributed Linearly Separable Computation

Kai Wan , Member, IEEE, Hua Sun , Member, IEEE, Mingyue Ji , Member, IEEE,

and Giuseppe Caire , Fellow, IEEE

Abstract— This paper formulates a distributed computation
problem, where a master asks N distributed workers to compute
a linearly separable function. The task function can be expressed
as Kc linear combinations of K messages, where each message
is a function of one dataset. Our objective is to find the optimal
tradeoff between the computation cost (number of uncoded
datasets assigned to each worker) and the communication cost
(number of symbols the master must download), such that from
the answers of any Nr out of N workers the master can recover
the task function with high probability, where the coefficients of
the Kc linear combinations are uniformly i.i.d. over some large
enough finite field. The formulated problem can be seen as a
generalized version of some existing problems, such as distributed
gradient coding and distributed linear transform. In this paper,
we consider the specific case where the computation cost is
minimum, and propose novel achievability schemes and converse
bounds for the optimal communication cost. Achievability and
converse bounds coincide for some system parameters; when they
do not match, we prove that the achievable distributed computing
scheme is optimal under the constraint of a widely used ‘cyclic
assignment’ scheme on the datasets. Our results also show that
when K = N, with the same communication cost as the optimal
distributed gradient coding scheme proposed by Tandon et al.
from which the master recovers one linear combination of K
messages, our proposed scheme can let the master recover any
additional Nr − 1 independent linear combinations of messages
with high probability.

Index Terms— Distributed computation, linearly separable
function, cyclic assignment.

I. INTRODUCTION

ENABLING large-scale computations for a large dimen-

sion of data, distributed computation systems such as
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MapReduce [1] and Spark [2] have received significant atten-

tion in recent years [3]. The distributed computation system

divides a computational task into several subtasks, which are

then assigned to some distributed workers. This reduces sig-

nificantly the computing time by exploiting parallel computing

procedures and thus enables handling of the computations over

large-scale big data. However, while large scale distributed

computing schemes have the potential for achieving unprece-

dented levels of accuracy and providing dramatic insights

into complex phenomena, they also present some technical

issues/bottlenecks. First, due to the presence of stragglers, a

subset of workers may take excessively long time or fail to

return their computed sub-tasks, which leads to an undesirable

and unpredictable latency. Second, data and computed results

should be communicated among the master who wants to

compute the task, and the workers. If the communication

bandwidth is limited, the communication cost becomes another

bottleneck of the distributed computation system. In order to

tackle these two bottlenecks, coding techniques were intro-

duced to the distributed computing algorithms [4]–[6], with the

purpose of increasing tolerance with respect to stragglers and

reducing the master-workers communication cost. More pre-

cisely, for the first bottleneck, using ideas similar to Minimum

Distance Separable (MDS) codes, the master can recover the

task function from the answers of the fastest workers. For the

second bottleneck, inspired by concepts from coded caching

networks [7], [8], network coding techniques are used to save

significant communication cost exchanged in the network.

In this paper, a master aims to compute a linearly separable

function f (such as linear MapReduce, Fourier Transform,

convolution, etc.) on K datasets (D1, . . . , DK), which can be

written as

f(D1, . . . , DK)=g
(
f1(D1), . . . , fK(DK)

)
=g(W1, . . . , WK).

Wk = fk(Dk) for all k ∈ {1, . . . ,K} is the outcome of

the component function fk(·) applied to dataset Dk, and it

is represented as a string of L symbols on an appropriate

sufficiently large alphabet. For example, Wk can be the

intermediate value in linear MapReduce, an input signal in

Fourier Transform, etc. We consider the case where g(·) is a

linear map defined by Kc linear combinations of the messages

W1, . . . , WK with uniform i.i.d. coefficients over some large

enough finite field; i.e., g(W1, . . . , WK) can be seen as the

matrix product FW, where F is the coefficient matrix and
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W = [W1; . . . ; WK].1 We consider the distributed computation

scenario, where f(D1, . . . , DK) is computed in a distributed

way by a group of N workers. Each dataset is assigned in

an uncoded manner to a subset of workers and the number

of datasets assigned to each worker cannot be larger than M,

which is referred to as the computation cost.2 Each worker

should compute and send coded messages in terms of the

datasets assigned to it, such that from the answers of any

Nr workers, the master can recover the task function with

high probability. Given (K, N, Nr, Kc, M), we aim to find the

optimal distributed computing scheme with data assignment,
computing, and decoding phases, which leads to the minimum

communication cost (i.e., the number of downloaded symbols

by the master, normalized by L).

We illustrate two examples of the formulated distributed

scenario in Fig. 1 where Kc = 1 and Kc = 2, respectively.

In both examples, we consider that K = N = 3, Nr = 2, and

that the number of datasets assigned to each worker is M = 2.

Assume that the characteristic of Fq is larger than 3.

• When Kc = 1, the considered problem (as shown in

Fig. 1a) is equivalent to the distributed gradient coding

problem in [9], which aims to compute the sum of

gradients in learning tasks by distributed workers. The

gradient coding proposed in [9] assigns the datasets to the

workers in a cyclic way, where D1 and D2 are assigned

to worker 1, D2 and D3 are assigned to worker 2, and D3

and D1 are assigned to worker 3. Worker 1 then computes

and sends W1
2 +W2. Worker 2 sends W2−W3, and worker

3 sends W1
2 + W3. From any two sent coded messages,

the master can recover the task function W1 +W2 +W3.

By the converse bound in [10], it can be proved that the

gradient coding scheme [9] is optimal under the constraint

of linear coding in terms of communication cost. Note

that in our paper, from a novel converse bound, we prove

the optimality of the gradient coding scheme [9] when

Kc = 1 by removing the constraint of linear coding.

• When Kc = 2, besides W1 + W2 + W3 we let the master

also request another linear combination of the messages,

e.g., W1 + 2W2 + 3W3. Here, we propose a novel

distributed computing scheme (as shown in Fig. 1a),

1As matrix multiplication is one of the key building blocks underlying

many data analytics, machine learning algorithms and engineering problems,

the considered model also has potential applications in those areas, where
f1, . . . , fK represent the pretreatment of the datasets. For example, each

dataset Dk where k ∈ {1, . . . , K} represents a raw dataset and needs to

be processed through some filters, where Wk represents the filtered dataset

of Dk . For the sake of linear transforms (e.g., Wavelet Transform, Discrete
Fourier Transform), we need to compute multiple linear combinations of the

filtered datasets, which can be expressed as g(W1, . . . , WK). For another

example, D1, . . . , DK are the K “input channels” of a Convolutional Neural

Networks (CNN) stage. Each input channel Dk where k ∈ {1, . . . , K}
is filtered individually by a convolution operation yielding Wk . Then the

convolutions are linearly mixed by the coefficients of g(W1, . . . , WK)
producing Kc new layers in the feature space. Moreover, if F represents
a MIMO precoding matrix, our considered model can also be used in the

MIMO systems.
2We assume that each function fk(·) is arbitrary such that in general it does

not hold that computing less symbols for the result Wk is less costly in terms

of computation. Hence, each worker n computes the whole Wk = fk(Dk)
if Dk is assigned to it. We also assume that the complexity of computing the

messages from the datasets is much higher than computing the desired linear

combinations of the messages. So we denote the computation cost by M.

Fig. 1. Distributed linearly separable computation with K = N = 3 and

Nr = 2. The number of datasets assigned to each worker is M = 2.

which can compute this additional sum but with the same

number of communicated symbols as the gradient coding

scheme. With the same cyclic assignment, we let worker 1
send 2W1+W2, worker 2 send W2+2W3, worker 3 send

−W1 + W3. It can be checked that from any two sent

coded messages, the master can recover both of the two

requested sums. Hence, with the same communication

cost as the gradient coding scheme [9], the proposed

distributed computing scheme allows the master recover

the two requested linear combinations.

Since the seminal works on using coding techniques in

distributed computing [4]–[6], different coded distributed com-

puting schemes were proposed to compute various tasks

in machine learning applications. The detailed comparison

between the considered distributed linearly separable compu-

tation problem and each of the related existing works will be

provided in Section II-B. In short,

• the distributed gradient coding problem considered in [9],

[11], [12] is a special case of the considered problem in

this paper with Kc = 1 (i.e., the master requests one

linear combination of the messages);

• the distributed linear transform problem considered

in [13] is a special case of the considered problem in

this paper where L = 1 (i.e., each message contains one

symbol) and each worker sends one symbol;

• in the distributed matrix-vector multiplication problem

considered in [14]–[16], the distributed matrix-matrix

multiplication problem considered in [4], [17]–[23], and

the distributed multivariate polynomial computation prob-

lem considered in [24], coded assignments are allowed,

i.e., linear combinations of all input datasets can be

assigned to each worker. Instead, in the considered
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TABLE I

OPTIMALITY RESULTS FOR THE DISTRIBUTED LINEARLY SEPARABLE COMPUTATION PROBLEM WHERE M = K
N

(N − Nr + 1) AND N DIVIDES K

problem the data assignment phase is uncoded, such that

each worker can only compute functions of the datasets

which are assigned to it.

A. Contributions

In this paper, we formulate the distributed linearly separable

computation problem and consider the case where N divides

K and the computation cost is minimum, i.e., M = K
N (N −

Nr +1) by Lemma 1. Our main contributions on this case are

as follows.

• We first propose an information theoretic converse bound

on the minimum communication cost, inspired by the

converse bound for the coded caching problem with

uncoded cache placement [25], [26].

• With the cyclic assignment, widely used in the existing

works on the distributed gradient coding problem such

as [9]–[11],3 we propose a novel distributed comput-

ing scheme based on the linear space intersection and

prove its decodability by the Schwartz-Zippel lemma

[28]–[30].4

• Compared to the proposed converse bound, the achievable

scheme is proved to be optimal when N = K, or

Kc ∈
{

1, . . . ,

⌈
K

( N
N−Nr+1)

⌉}
, or Kc ∈

{
K
NNr, . . . ,K

}
. In

addition, the proposed achievable scheme is proved to be

optimal under the constraint of the cyclic assignment for

all system parameters. The optimality results are listed in

Table I at the top of the next page.

• By the derived optimality results, we obtain an interesting

observation: when K = N, for any Kc ∈ {1, . . . ,Nr}, the

optimal communication cost is always Nr. Thus by taking

the same communicatoin cost as the optimal gradient

coding scheme in [9] for the distributed gradient coding

problem (which is the case Kc = 1 of our problem), with

high probability our propose scheme can let the master

recover any additional Nr − 1 linear combinations with

uniformly i.i.d. coefficients over Fq.

3The main advantages of the cyclic assignment are that it can be used for

any case where N divides K regardless of other system parameters, and its
simplicity. According to our knowledge, the other existing assignments, such

as the repetition assignments in [9], [27], can only be used for limited number

of cases. In addition, the cyclic assignment is independent of the task function;

thus if the master has multiple tasks in different times, we need not assign
the datasets in each time.

4Note that the proposed computing is decodable with high probability;

it will be explained in Remark 3 that for some specific tasks, additional

communication cost is needed.

Moreover, for the case where N does not divide K, the cyclic

assignment cannot be directly used and we propose modified

cyclic assignment and computing phases.

B. Paper Organization

The rest of this paper is organized as follows. Section II

formulates the distributed linearly separable computation prob-

lem and explains the differences from the existing distributed

computation problem in the literature. Section III provides the

main results in this paper. Section IV describes the proposed

achievable distributed computing scheme. Section V discusses

the extensions of the proposed results. Section VI concludes

the paper and some of the proofs are given in the Appendices.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote

vectors and matrices, and sans-serif symbols denote system

parameters. We use |·| to represent the cardinality of a set

or the length of a vector; [a : b] := {a, a + 1, . . . , b}, (a :
b] := {a + 1, a + 2, . . . , b}, [a : b) := {a, a + 1, . . . , b − 1},

(a, b) = {a + 1, a + 2, . . . , b − 1} and [n] := [1 : n]; ⊕
represents bit-wise XOR; E[·] represents the expectation value

of a random variable; a! = a× (a−1)× . . .×1 represents the

factorial of a; Fq represents a finite field with order q; MT

and M−1 represent the transpose and the inverse of matrix

M, respectively; the matrix [a; b] is written in a Matlab form,

representing [a, b]T; rank(M) represents the rank of matrix M;

In represents the identity matrix with dimension n×n; 0m×n

represents the zero matrix with dimension m × n; (M)m×n

represents that the dimension of matrix M is m × n; M(S)r

represents the sub-matrix of M which is composed of the

rows of M with indices in S (here r represents ‘rows’);

M(S)c represents the sub-matrix of M which is composed

of the columns of M with indices in S (here c represents

‘columns’); det(M) represents the determinant matrix M;

Mod(b, a) represents the modulo operation on b with integer

divisor a and in this paper we let Mod(b, a) ∈ {1, . . . , a} (i.e.,

we let Mod(b, a) = a if a divides b); we let
(
x
y

)
= 0 if x < 0

or y < 0 or x < y. In this paper, for each set of integers S,

we sort the elements in S in an increasing order and denote

the ith smallest element by S(i), i.e., S(1) < . . . < S(|S|).
The main network parameters and notations are given in

Table II at the top of the next page.
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TABLE II

MAIN NOTATIONS

II. SYSTEM MODEL

A. Problem Formulation

We formulate a (K, N, Nr, Kc, M) distributed linearly sepa-

rable computation problem over the canonical master-worker

distributed system, as illustrated in Fig. 1. The master wants

to compute a function

f(D1, . . . , DK)

on K independent datasets D1, . . . , DK. As the data sizes

are large, we distribute the computing task to a group of

N workers. For distributed computation to be possible, we

assume the function is separable to some extent. As the

simplest case, we assume the function is separable to each

dataset,

f(D1, . . . , DK) = g
(
f1(D1), . . . , fK(DK)

)
(1a)

= g(W1, . . . , WK), (1b)

where we model fk(Dk), k ∈ [K] as the k-th message Wk

and fk(·) is an arbitrary function. We assume that the K
messages are independent and that each message is composed

of L uniformly i.i.d. symbols over a finite field Fq for some

large enough prime-power q, where L is large enough such

that any sub-message division is possible.5 We consider the

simplest case of the function g(·), the linear mapping. So we

can rewrite the task function as

g(W1, . . . , WK) = F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ =

⎡
⎢⎣

F1

...

FKc

⎤
⎥⎦ , (2a)

where F is a matrix known by the master and the workers

with dimension Kc × K, whose elements are uniformly

i.i.d. over Fq. In other words, g(W1, . . . , WK) contains Kc

linear combinations of the K messages, whose coefficients are

uniformly i.i.d. over Fq. In this paper, we consider the case

where Kc ≤ K.6 Note that each component function fk where

5In this paper, the basis of logarithm in the entropy terms is q.
6For the case where Kc > K, it is straightforward to use the same code for

the case where Kc = K, since all K messages can be decoded individually.

k ∈ [K] is not restricted to be linear. We also assume that K
N

is an integer.7

A computing scheme for our problem contains three phases,

data assignment, computing, and decoding.

1) Data Assignment Phase: We assign each dataset Dk

where k ∈ [K] to a subset of N workers in an uncoded manner.

The set of datasets assigned to worker n ∈ [N] is denoted by

Zn, where Zn ⊆ [K]. The assignment constraint is that

|Zn| ≤ M, ∀n ∈ [N], (3)

where M represents the computation cost as explained in

Footnote 2. The assignment function of worker n is denoted

by ϕn, where

Zn = ϕn(F) ⊆ [K], (4)

ϕn : [Fq]KcK → ΩM(K), (5)

and ΩM(K) represents the set of all subsets of [K] of size not

larger than M. In other words, the data assignment phase is

uncoded.

2) Computing Phase: Each worker n ∈ [N] first computes

the message Wk = fk(Dk) for each k ∈ Zn. Then it computes

Xn = ψn({Wk : k ∈ Zn},F) (6)

where the encoding function ψn is such that

ψn : [Fq]|Zn|L × [Fq]KcK → [Fq]Tn , (7)

and Tn represents the length of Xn. Finally, worker n sends

Xn to the master.

3) Decoding Phase: The master only waits for the Nr

fastest workers’ answers to compute g(W1, . . . , WK). Hence,

the computing scheme can tolerate N − Nr stragglers. Since

the master does not know a priori which workers are strag-

glers, the computing scheme should be designed so that

from the answers of any Nr workers, the master can recover

7The case N does not divide K will be specifically considered in Section V-

A where we extend the proposed distributed computing scheme to the general

case.
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g(W1, . . . , WK). More precisely, for any subset of workers

A ⊆ [N] where |A| = Nr, with the definition

XA := {Xn : n ∈ A}, (8)

there exists a decoding function φA such that

ĝA = φA
(
XA,F

)
, (9)

where the decoding function φA is such that

φA : [Fq]
�

n∈A Tn × [Fq]KcK → [Fq]KcL. (10)

The worst-case probability of error is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA �= g(W1, . . . , WK)}. (11)

In addition, we denote the communication cost by,

R := max
A⊆[N]:|A|=Nr

∑
n∈A Tn

L
, (12)

representing the maximum normalized number of symbols

downloaded by the master from any Nr responding workers.

The communication cost R is achievable if there exists a

computing scheme with assignment, encoding, and decoding

functions such that

lim
q→∞

ε = 0. (13)

The minimum communication cost over all possible achiev-

able computing schemes is denoted by R�. Since the elements

of F are uniformly i.i.d. over larger enough field, F is full-

rank with high probability. By the simple cut-set bound, we

have

R� ≥ Kc. (14)

The following lemma provides the minimum number of

workers to whom each dataset should be assigned.

Lemma 1: Each dataset must be assigned to at least

N − Nr + 1 workers. �
Proof: Assume there exists one dataset (assumed to be

Dk) assigned to only � workers where � < N − Nr + 1. It

can be seen that there exist at least Nr workers which does

not know Dk. Hence, the answers of these Nr workers do

not have any information of Wk , and thus cannot reconstruct

g(W1, . . . , WK) (recall that g(W1, . . . , WK) depends on Wk

with high probability).

In this paper, we consider the case where the computation

cost is minimum, i.e., each dataset is assigned to N − Nr + 1
workers and

M = |Z1| = · · · = |ZN| =
K

N
(N − Nr + 1).

The objective of this paper is to characterize the minimum

communication cost for the case where the computation cost

is minimum.

We then review the cyclic assignment, which was widely

used in the existing works on the distributed gradient cod-

ing problem in [9] (which is a special case of the cons-

dered problem as explained in the next subsection), such as

the gradient coding schemes in [9]–[12]. For each dataset

Dk where k ∈ [K], we assign Dk to worker j, where

j ∈
{

Mod(k, N), Mod(k − 1, N), . . . , Mod(k − N + Nr, N)
}

.8

In other words, the set of datasets assigned to worker n ∈ [N]
is

Zn = ∪
p∈[0: K

N−1]

{
Mod(n, N) + pN, Mod(n + 1, N) + pN, . . . ,

Mod(n + N − Nr, N) + pN
}

(15)

with cardinality K
N (N − Nr + 1). For example, if K = N = 4

and Nr = 3, by the cyclic assignment with p = 0 in (15), we

assign

D1, D2, D3 to woker 1;
D2, D3, D4 to woker 2;
D3, D4, D1 to woker 3;
D4, D1, D2 to woker 4.

The minimum communication cost under the cyclic assign-

ment in (15) is denoted by R�
cyc.

B. Connection to Existing Problems

1) Distributed Gradient Coding: When fk(Dk), k ∈ [K],
represents the partial gradient vector of the loss at the current

estimate of the dataset Dk and F = [1, . . . , 1], we have

f(D1, . . . , DK) = f1(D1) + · · · + fK(DK), (16)

representing the gradient of a generic loss function. In this

case, our problem reduces to the distributed gradient coding

problem in [9]. Hence, the distributed gradient coding problem

in [9] is a special case of the distributed linearly separable

computation problem with Kc = 1. For the case where the

computation cost is minimum, based on the cyclic assignment

in (15) and a random code construction, the authors in [9]

proposed a gradient coding scheme which lets each worker

compute and send one linear combination of the messages

related to its assigned datasets, while the achieved commu-

nication cost of this scheme is optimal under the constraint

of linear coding [10]. Instead of random code construction,

a deterministic code construction was proposed in [11]. The

authors in [12] improved the decoding delay/complexity by

using Reed-Solomon codes.

The authors in [10] characterized the optimal tradeoff

between the computation cost and communication cost for

the distributed gradient coding problem. A distributed com-

puting scheme achieving the same optimal computation-

communication costs tradeoff as in [10] but with lower decod-

ing complexity, was recently proposed in [31].

Some other extensions on the distributed gradient coding

problem in [9] were also considered in the literature. For

instance, the authors in [32] extended the gradient coding

strategy to a tree-topology where the workers are located, and

a fixed fraction of children nodes per parent node may be

straggler. The case where the number of stragglers is not given

in prior was considered in [33]. In [34], each worker sends

multiple linear combinations such that the master does not

always need to wait for the answers of Nr workers (i.e., from

8By convention, we let Mod(b, a) ∈ [1 : a], and let Mod(b, a) = a if a
divides b.

Authorized licensed use limited to: University of North Texas. Downloaded on January 24,2022 at 20:29:22 UTC from IEEE Xplore.  Restrictions apply.



1264 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

some ‘good’ subset of workers with the cardinality less than

Nr, the master can recover the task function). It can be seen

that these extended models are different from the considered

problem in this paper.

2) Distributed Linear Transform: The distributed linear

transform problem in [13] aims to compute the linear trans-

form Ax where x is the input vector and A is a given matrix

with dimension Kc × K. We should design a coding vector

cn for each worker n ∈ [N] (which then computes cnx)

such that from the computation results of any Nr workers

we can reconstruct Ax. Meanwhile, in order to have low

computation cost, each coding vector should be sparse and

the number of its non-zero elements should be no more than

M, where M should be minimized. Hence, the distributed

linear transform problem in [13] can be seen a special case

of the distributed linearly separable computation problem with

Tn = L = 1 for each n ∈ [N] (recall that Tn represents the

number of symbols transmitted by worker n). In other words,

in this paper we consider the case where the computation

cost is minimum and search for the minimum communication

cost, while the authors in [13] considered the case where

L = 1 and the communication cost is minimum, and searched

for the minimum computation cost. A computing scheme

was proposed in [13] which needs M = K
N (N − Nr + Kc).

The authors in [35] further improved the distributed linear

transform scheme in [13] by proposing a computing scheme to

let each worker n ∈ [N] only access M′
n elements in x, where

K(N − Nr + Kc) − NNr <
∑

n∈[N] M
′
n < NK

N (N − Nr + Kc).
The authors in [36] considered another distributed linear

transform problem with a different sparsity constraint com-

pared to [13]. The distributed linear transform problem in [36]

can be seen as a special case of the distributed linearly

separable computation problem with Tn = L = 1 and Kc = K.

3) Distributed Matrix-Vector and Matrix-Matrix Multipli-
cations: Distributed computing techniques against stragglers

were also used to compute matrix-vector multiplication as

Ab [14]–[16] and matrix-matrix multiplication as AB [4],

[17]–[23]. The general technique is to partition each input

matrix into sub-matrices and assign some linear combinations

of all sub-matrices (from MDS codes, polynomial codes, etc.)

to the workers without considering the sparsity of the coding

vectors/matrices. Thus, the assignment phase is coded.

4) Distributed Multivariate Polynomial Computation: Sim-

ilar difference as above also appears between the consid-

ered distributed linearly separable computation problem and

the distributed multivariate polynomial computation problem

in [24]. It was shown in [24] that the gradient descent can

be computed distributedly by using a coding scheme based

on the Lagrange polynomial. However, the assignment phase

of the Lagrange distributed computing scheme in [24] is

coded.

In summary, compared to the distributed computing

schemes with coded assignment phase, the main challenge of

designing computing schemes with uncoded assignment phase

is that besides the decodability constraint, we should addition-

ally guarantee that in the transmitted linear combination(s)

by each worker, the coefficients of the unassigned elements

are 0.

III. MAIN RESULTS

We first propose a converse bound on the minimum commu-

nication cost in the following theorem, which will be proved

in Appendix A inspired by the converse bound for the coded

caching problem with uncoded cache placement [25], [26].

Theorem 1 (Converse): For the (K, N, Nr, Kc, M) distrib-

uted linearly separable computation problem with M = K
N(N−

Nr + 1),

• when Kc ∈
[⌈

K

( N
N−Nr+1)

⌉]
, we have

R� ≥ NrKc. (17a)

• when Kc ∈
(⌈

K

( N
N−Nr+1)

⌉
: K

]
, we have

R� ≥ max

{
Nr

⌈
K(
N

N−Nr+1

)
⌉

, Kc

}
. (17b)

�
For the case with Kc = 1 and M = K

N(N − Nr + 1) which

reduces to the distributed gradient coding problem in [9], from

Theorem 1 and the gradient coding scheme in [9] (each worker

sends one linear combination of the assigned messages), we

can directly prove the following corollary.

Corollary 1: For the (K, N, Nr, Kc, M) distributed linearly

separable computation problem with M = K
N(N−Nr + 1) and

Kc = 1, we have

R� = Nr. (18)

�
Note that the optimality of the gradient coding scheme in [9]

for the distributed gradient coding problem was proved in [10],

but under the constraint that the encoding functions in (7) are

linear. In Corollary 1, we remove this constraint.

With the cyclic assignment in Section II-A, we then pro-

pose a novel achievable distributed computing scheme whose

detailed proof could be found in Section IV.

Theorem 2 (Proposed Distributed Computing Scheme):
For the (K, N, Nr, Kc, M) distributed linearly separable

computation problem with M = K
N(N − Nr + 1), the

communication cost Rach is achievable, where

• when Kc ∈
[
1 : K

N

)
,

Rach = NrKc; (19a)

• when Kc ∈
[

K
N : K

NNr

]
,

Rach =
K

N
Nr; (19b)

• when Kc ∈
(

K
NNr : K

]
,

Rach = Kc. (19c)

�
In Theorem 2, we consider three regimes with respect to

the value of Kc and the main ingredients are as follows.

1) Kc ∈
[
1 : K

N

)
. By some linear transformations on the

request matrix F, we treat the considered problem as

Kc sub-problems in each of which the master requests
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one linear combination of messages. Thus by using the

coding scheme in Corollary 1 for each sub-problem, we

can let the master recover the general task function.

2) Kc ∈
[

K
N : K

NNr

]
. This is the most interesting case,

where we propose a computing scheme based on the

linear space intersection (see Remark 2 for further

explanations), with the communication cost equal to the

case where Kc = K
N . We generate K

NNr − Kc virtually

requested linear combinations of messages such that the

master totally recover K
NNr effective linear combinations

of messages from the responses of any Nr workers. Each

worker transmits K
N linear combinations of messages

which lie in the intersection of the linear spaces of

its known messages and the effective demanded linear

combinations. From a highly non-trivial proof based on

the Schwartz-Zippel lemma [28]–[30], where the main

challenge is to prove that the multivariate polynomials

are generally non-zero (see Appendix D), we show that

the responses of any Nr workers are linearly independent

with high probability, and thus are able to reconstruct the

effective demanded linear combinations.

3) Kc ∈
(

K
NNr : K

]
. To recover Kc linear combinations of

the K messages, we propose a computing scheme to let

the master totally receive Kc coded messages with L
symbols each, i.e., R� = Kc is achieved.

Remark 1: Note that, when the operations are on the field

of real numbers, the proposed computing scheme in Theorem 2

can work with high probability if each element in F is

uniformly i.i.d. over a large enough finite set of real numbers

or over an interval of real numbers. �
By comparing the proposed converse bound in Theorem 1

and the achievable scheme in Theorem 2, we can directly

derive the following optimality results.

Theorem 3 (Optimality): For the (K, N, Nr, Kc, M) distrib-

uted linearly separable computation problem with M = K
N(N−

Nr + 1),
• when K = N, we have

R� =

{
Nr, if Kc ∈ [Nr];
Kc, if Kc ∈ (Nr : K];

(20a)

• when Kc ∈
[⌈

K

( N
N−Nr+1)

⌉]
, we have

R� = NrKc; (20b)

• when Kc ∈
[

K
NNr : K

]
, we have

R� = Kc. (20c)

�
From Theorem 3, it can be seen that when K = N and

Kc ∈ [Nr], the optimal communication cost is always Nr (i.e.,

each worker sends one linear combination of the messages

from its assigned datasets). Thus we prove that with the same

communication cost as the optimal gradient coding scheme

in [9] for the distributed gradient coding problem (from which

the master recovers W1 + · · ·WK), our propose scheme can let

the master recover any additional Nr − 1 linear combinations

of the K messages whose coefficients are uniformly i.i.d. over

Fq with high probability.

In general, the minimum communication cost in the regime

where Kc ∈
(⌈

K

( N
N−Nr+1)

⌉
: K

NNr

)
is still open. The following

theorem claims that the proposed achievable scheme is optimal

under the constraint of the cyclic assignment in [9], whose

proof is in Appendix B.

Theorem 4 (Optimality Under the Cyclic Assignment
in [9]): For the (K, N, Nr, Kc, M) distributed linearly separable

computation problem with M = K
N(N−Nr +1), the minimum

communication cost under the cyclic assignment is

R�
cyc = Rach, (21)

where Rach is given in (19). �

IV. ACHIEVABLE DISTRIBUTED COMPUTING SCHEME

In this section, we introduce the proposed distributed com-

puting scheme with the cyclic assignment in [9]. As shown

in Theorem 2, we divide the range of Kc (which is [K]) into

three regimes, and present the corresponding scheme in the

order, Kc ∈
[

K
N : K

NNr

]
, Kc ∈

[
1 : K

N

)
, and Kc ∈

(
K
NNr : K

]
.

A. Kc ∈
[

K
N : K

NNr

]
We first illustrate the main idea in the following example.

Example 1 (N = 3, K = 6, Kc = 4, Nr = 2, M = 4): In

this example, it can be seen that Kc = K
NNr. For the sake

of simplicity, in the rest of this paper while illustrating the

proposed schemes through examples, we assume that the field

is a large enough prime field. It will be proved that in general

this assumption is not necessary in our proposed schemes

where we only need the field size q is large enough. Assume

that the task function is

f(D1, . . . , D6) =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ = F

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6
1, 0, 2, 3, 5, 4
1, 2, 1, 4, 4, 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

1) Data Assignment Phase: By the cyclic assignment

described in Section II-A, we assign that

Worker 1 Worker 2 Worker 3

D1 D2 D1

D2 D3 D3

D4 D5 D4

D5 D6 D6
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2) Computing Phase: We first focus on worker 1, who first

computes W1, W2, W4, and W5 based on its assigned datasets.

In other words, Wi where i ∈ {3, 6} cannot be computed by

worker 1. We retrieve the ith column of F where i ∈ {3, 6},

to obtain

F({3,6})c =

⎡
⎢⎢⎣

1, 1
3, 6
2, 4
1, 0

⎤
⎥⎥⎦ . (22)

We then search for a vector basis for the left-side null

space of F({3,6})c . Note that F({3,6})c is a full-rank matrix

with dimension 4 × 2. Hence, a vector basis for its left-side

null space contains 4 − 2 = 2 linearly independent vectors

with dimension 1 × 4, where the product of each vector and

F({3,6})c is 01×2 (i.e., the zero matrix with dimension 1 × 2).

A possible vector basis could be the set of vectors (−6, 1, 0, 3)
and (0,−2, 3, 0). It can be seen that

−6F1+1F2 + 0F3 + 3F4=−2W1 + 2W2 + 10W4 + 11W5,

(23a)

0F1 − 2F2 + 3F3+0F4 = W1 − 4W2 + W4 + 5W5, (23b)

both of which are independent of W3 and W6. Hence, the two

linear combinations in (23) could be computed and then sent

by worker 1.

For worker 2, who can compute W2, W3, W5, and W6,

we search for the a vector basis for the left-side null space

of F({1,4})c . A possible vector basis could be the set of

vectors (0,−1, 0, 1) and (−1,−2, 3, 0). Hence, we let worker

2 compute and send

0F1 − 1F2 + 0F3 + 1F4 = −2W3 − W5 − 6W6, (24a)

− 1F1 − 2F2 + 3F3 + 0F4 = −5W2 − W3 + 4W5 − W6.

(24b)

For worker 3, who can compute W1, W3, W4, and W6,

we search for the a vector basis for the left-side null space

of F({2,5})c . A possible vector basis could be the set of

vectors (−2,−2, 0, 3) and (10,−5, 3, 0). Hence, we let worker

3 compute and send

− 2F1 − 2F2 + 0F3 + 3F4 = −W1 − 5W3 + 2W4 − 14W6,

(25a)

10F1 − 5F2 + 3F3 + 0F4 = 8W1 + W3 − W4 − 8W6.

(25b)

In summary, each worker sends two linear combinations of

(F1, F2, F3, F4).
3) Decoding Phase: Assuming the set of responding work-

ers is {1, 2}. The master receives

X{1,2} =

⎡
⎢⎢⎣

−6, 1, 0, 3
0,−2, 3, 0
0,−1, 0, 1
−1,−2, 3, 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ := C{1,2}

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ .

(26)

Since matrix C{1,2} is full-rank, the master can recover

[F1; F2; F3; F4] by computing C−1
{1,2}X{1,2}.

Similarly, it can be checked that the four linear combinations

sent from any two workers are linearly independent. Hence,

by receiving the answers of any two workers, the master can

recover task function.

4) Performance: The needed communication cost is
2L+2L

L = 4, coinciding with the converse bound R� ≥ Kc = 4.

�
We are now ready to generalize the proposed scheme in

Example 1. First we focus on Kc = K
NNr. During the data

assignment phase, we use the cyclic assignment described in

Section II-A.

5) Computing Phase: Recall that by the cyclic assignment,

the set of datasets assigned to worker n ∈ [N] is

Zn = ∪
p∈[0: K

N−1]

{
Mod(n, N) + pN, Mod(n + 1, N) + pN, . . . ,

Mod(n + N − Nr, N) + pN
}

as defined in (15). We denote the set of datasets which are not

assigned to worker n by Zn := [K]\Zn. We retrieve columns

of F with indices in Zn to obtain F(Zn)c . It can be seen that

the dimension of F(Zn)c is Kc× K
N(Nr−1) = K

NNr× K
N(Nr−1),

and the elements in F(Zn)c are uniformly i.i.d. over Fq. Hence,

a vector basis for the left-side null space F(Zn)c is the set of K
N

linearly independent vectors with dimension 1 × K
NNr, where

the product of each vector and F(Zn)c is 01× K
N (Nr−1).

We assume that a possible vector basis contains the vectors

un,1, . . . ,un, K
N

. For each j ∈
[

K
N

]
, we focus on

un,jF

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ . (27)

Since un,jF(Zn)c = 01× K
N (Nr−1), it can be seen that (27)

is a linear combination of Wi where i ∈ Zn, which could be

computed by worker n.

After computing Wi = fi(Di) for each i ∈ Zn, worker n
then computes

X{n} =

⎡
⎢⎣

un,1

...

un, K
N

⎤
⎥⎦F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ := C{n}F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ , (28)

which is then sent to the master. It can be seen that X{n}
contains K

N linear combinations of the messages in Zn, each

of which contains L symbols. Hence, worker n totally sends
K
NL symbols, i.e.,

Tn =
K

N
L. (29)

6) Decoding Phase: We provide the following lemma which

will be proved in Appendix C based on the Schwartz-Zippel

lemma [28]–[30].

Lemma 2: For any set A ⊆ [N] where |A| = Nr, the vectors

un,j where n ∈ A and j ∈
[

K
N

]
are linearly independent (i.e.,

CA is full-rank) with high probability. �
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Assume that the set of responding workers is A =
{A(1), . . . ,A (Nr)} where A ⊆ [N] and |A| = Nr. Hence,

the master receives

XA =

⎡
⎢⎣

XA(1)

...

XA(Nr)

⎤
⎥⎦ =

⎡
⎢⎣

CA(1)

...

CA(Nr)

⎤
⎥⎦F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦

:= CAF

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ . (30)

By Lemma 2, matrix CA is full-rank. Hence, the master

can recover the task function by taking

C−1
A XA = F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ .

7) Performance: From (29), the number of symbols sent by

each worker is K
NL. Hence, the communication cost is K

NNr.
Remark 2: The proposed scheme can be explained from

the viewpoint on linear space. The request matrix F can be

seen as a linear space composed of K
NNr linearly independent

vectors, each of which has the size 1 × K. The assigned

datasets to each worker n ∈ [N], are Di where i ∈ Zn.

Thus all the linear combinations which can be sent by worker

n are located at a linear space composed of the vectors

(0, . . . , 0, 1, 0, . . . , 0) where 1 is at ith position for i ∈ Zn.

The intersection of these two linear spaces contains K
N linearly

independent vectors. In other words, the product of each of

the K
N vectors and [W1; . . . ; WK] can be sent by worker n.

In addition, considering any set of Nr workers, Lemma 2

shows that the total K
NNr vectors are linearly independent, such

that the master can recover the whole linear space generated

by F. �
For each Kc ∈

[
K
N : K

NNr

)
, the master generates a

matrix G with dimension
(

K
NNr − Kc

)
× K, whose ele-

ments are uniformly i.i.d. over Fq. The master then requests

F′[W1; . . . ; WK], where F′ = [F;G]. Hence, we can then use

the above distributed computing scheme with Kc = K
NNr to let

the master recover F′[W1; . . . ; WK], and the communication

cost is also K
NNr, which coincides with (19b).

As stated in Footnote 2, the computation complexity of each

worker is mainly due to the computation on the messages

from the assigned datasets. Recall that L is large enough. For

the proposed computing scheme in this case, the decoding

complexity (i.e., the number of multiplications) of the master

is O
(
Kc

K
NNrL

)
.

B. Kc ∈
[
1 : K

N

)
We also begin with an example to illustrate the main idea.

Example 2 (N = 3, K = 9, Kc = 2, Nr = 2, M = 6):
Assume that the task function is

f(D1, . . . , D9) =
[

F1

F2

]
= F

⎡
⎢⎣

W1

...

W9

⎤
⎥⎦

=
[

1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 9

]⎡⎢⎣
W1

...

W9

⎤
⎥⎦ .

By the cyclic assignment described in Section II-A, we

assign that

Worker 1 Worker 2 Worker 3

D1 D2 D1

D2 D3 D3

D4 D5 D4

D5 D6 D6

D7 D8 D7

D8 D9 D9

Note that by the cyclic assignment, we can divide the K = 9
datasets into N = 3 groups, where in each group there are K

N =
3 datasets. The first group contains D1, D4, D7, which are

assigned to workers 1 and 3. The coefficients of (W1, W4, W7)
in F1 are (1, 1, 1) and in F2 are (1, 4, 7). We define that

W ′
1,1 = W1 + W4 + W7, (31a)

W ′
2,1 = W1 + 4W4 + 7W7, (31b)

which are computed by workers 1 and 3. Similarly, the

second group contains D2, D5, D8, which are assigned to

workers 1 and 2. The coefficients of (W2, W5, W8) in F1 are

(1, 1, 1) and in F2 are (2, 5, 8). We define that

W ′
1,2 = W2 + W5 + W8, (32a)

W ′
2,2 = 2W2 + 5W5 + 8W8, (32b)

which are computed by workers 1 and 2. The third group

contains D3, D6, D9, which are assigned to workers 2 and 3.

The coefficients of (W3, W6, W9) in F1 are (1, 1, 1) and in

F2 are (3, 6, 9). We define that

W ′
1,3 = W3 + W6 + W9, (33a)

W ′
2,3 = 3W3 + 6W6 + 9W9, (33b)

which are computed by workers 2 and 3.

Now we treat this example as two separated sub-

problems, where each sub-problem is a (K′, N′, N′
r, K

′
c, M

′) =
(3, 3, 2, 1, 2) distributed linearly separable computation prob-

lem. In the first sub-problem, the three messages are W ′
1,1,

W ′
1,2, and W ′

1,3, and the master aims to compute W ′
1,1 +

W ′
1,2 + W ′

1,3. In the second sub-problem, the three messages

are W ′
2,1, W ′

2,2, and W ′
2,3, and the master aims to compute

W ′
2,1 + W ′

2,2 + W ′
2,3. Hence, each sub-problem can be solved

by the proposed scheme in Section IV-A with communication

cost equal to K′
N′N

′
r = 2. The total communication cost is 4. �

We are now ready to generalize Example 2. For each

integer n ∈ [N], we focus on the set of messages{
Wn+pN : p ∈

[
0 : K

N − 1
]}

. We define

W ′
j,n =

∑
p∈[0: K

N−1]
fj,n+pNWn+pN, ∀j ∈ [Kc], (34)

where fj,n+pN is the element located at the jth row and (n +
pN)th column of matrix F. Note that each message Wn+pN can

be computed by workers in [n : Mod(n − N + Nr)]. Hence,
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W ′
j,n can also be computed by workers in [n : Mod(n − N +

Nr)].
We can re-write the task function as

f(D1, . . . , DK) =

⎡
⎢⎣

F1

...

FKc

⎤
⎥⎦ =

⎡
⎢⎣

W ′
1,1 + · · · + W ′

1,N
...

W ′
Kc,1 + · · · + W ′

Kc,N

⎤
⎥⎦ .

(35a)

We then treat the problem as Kc separate sub-

problems, where in the jth sub-problem, the master requests

W ′
j,1+· · ·+W ′

j,N. Hence, each sub-problem is equivalent to the

(K′, N′, N′
r, K

′
c, M

′) = (N, N, Nr, 1, N− Nr + 1) distributed

linearly separable computation problem. Each sub-problem

can be solved by the proposed scheme in Section IV-A with

communication cost equal to K′
N′N

′
r = Nr. Hence, considering

all the Kc sub-problems, the total communication cost is KcNr,

which coincides with (19a).

For the proposed computing scheme in this case, the decod-

ing complexity of the master is O (KcNrL).

C. Kc ∈
(

K
NNr : K

]
We still use an example to illustrate the main idea.

Example 3 (N = 3, K = 3, Kc = 3, Nr = 2, M = 2):
Assume that the task function is

f(D1, . . . , D3) =

⎡
⎣ F1

F2

F3

⎤
⎦ = F

⎡
⎣ W1

W2

W3

⎤
⎦

=

⎡
⎣ 1, 1, 1

1, 2, 3
1, 4, 9

⎤
⎦
⎡
⎣ W1

W2

W3

⎤
⎦ .

By the cyclic assignment described in Section II-A, we

assign that

Worker 1 Worker 2 Worker 3

D1 D2 D1

D2 D3 D3

For each message Wk where k ∈ [K], we divide Wk into

2 non-overlapping and equal-length sub-messages, denoted

by Wk,1 and Wk,2. We then use a (3, 2) MDS (Maximum

Distance Separable) code to obtain 3 MDS-coded packets:

Wk,{1,2} = Wk,1, Wk,{1,3}=Wk,2, Wk,{2,3}=Wk,1+Wk,2.

Next we treat this example as 3 sub-problems, where each

sub-problem is a (K′, N′, N′
r, K

′
c, M

′) = (3, 3, 2, 2, 2) distrib-

uted linearly separable computation problem. In the first sub-

problem, the three messages are W1,{1,2}, W2,{1,2}, W3,{1,2},

and the master requests

F({1,2})r

⎡
⎣ W1,{1,2}

W2,{1,2}
W3,{1,2}

⎤
⎦=[ W1,{1,2} + W2,{1,2} + W3,{1,2}

W1,{1,2} + 2W2,{1,2} + 3W3,{1,2}

]
.

In the second sub-problem, the three messages are

W1,{1,3}, W2,{1,3}, W3,{1,3}, and the master requests

F({1,3})r

⎡
⎣ W1,{1,3}

W2,{1,3}
W3,{1,3}

⎤
⎦=[ W1,{1,3} + W2,{1,3} + W3,{1,3}

W1,{1,3} + 4W2,{1,3} + 9W3,{1,3}

]
.

In the third sub-problem, the three messages are

W1,{2,3}, W2,{2,3}, W3,{2,3}, and the master requests

F({2,3})r

⎡
⎣ W1,{2,3}

W2,{2,3}
W3,{2,3}

⎤
⎦=[W1,{2,3} + 2W2,{2,3} + 3W3,{2,3}

W1,{2,3} + 4W2,{2,3} + 9W3,{2,3}

]
.

Each sub-problem can be solved by the proposed scheme

in Section IV-A, where each worker sends K′
N′ = 1 linear

combination of sub-messages with L
2 symbols. Hence, each

worker totally sends 3L
2 symbols, and thus the communication

cost equal to 3LNr
2L = 3.

Now we show that by solving the three sub-problems, the

master can recover the task, i.e., F1 = W1 + W2 + W3, F2 =
W1 + 2W2 + 3W3, and F3 = W1 + 4W2 + 9W3.

From the first and second sub-problems, the master can

recover

W1,{1,2} + W2,{1,2} + W3,{1,2} = W1,1 + W2,1 + W3,1,

(36a)

W1,{1,3} + W2,{1,3} + W3,{1,3} = W1,2 + W2,2 + W3,2.

(36b)

Hence, by concatenating (36a) and (36b), the master can

recover F1.

From the first and third sub-problems, the master can

recover

W1,{1,2} + 2W2,{1,2} + 3W3,{1,2} = W1,1 + 2W2,1 + 3W3,1,

(37a)

W1,{2,3} + 2W2,{2,3} + 3W3,{2,3} = (W1,1 + W1,2)+
2(W2,1 + W2,2) + 3(W3,1 + W3,2). (37b)

From (37a) and (37b), the master can first recover W1,2 +
2W2,2 + 3W3,2, which is then concatenated with (37a). Hence,

the master can recover F2.

From the second and third sub-problems, the master can

recover

W1,{1,3} + 4W2,{1,3} + 9W3,{1,3} = W1,2 + 4W2,2 + 9W3,2,

(38a)

W1,{2,3} + 4W2,{2,3} + 9W3,{2,3} = (W1,1 + W1,2)
+ 4(W2,1 + W2,2) + 9(W3,1 + W3,2). (38b)

From (38a) and (38b), the master can first recover W1,1 +
4W2,1+9W3,1, which is then concatenated with (38a). Hence,

the master can recover F3. �
We are now ready to generalize Example 3. We divide each

message Wk into
( Kc−1

K
N Nr−1

)
equal-length and non-overlapped

sub-messages, Wk =
(

Wk,1, . . . , Wk,( Kc−1
K
N

Nr−1)

)
, which are

then encoded by a
(( Kc

K
N Nr

)
,
( Kc−1

K
N Nr−1

))
MDS code. Each

MDS-coded packet is denoted by Wk,S where S ⊆ [Kc]
where |S| = K

NNr. Since Wk,S is a linear combination of
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(
Wk,1, . . . , Wk,( Kc−1

K
N

Nr−1)

)
, we define that

Wk,S = vS

⎡
⎢⎢⎣

Wk,1

...

W
k,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ , ∀S ⊆ [Kc] : |S| =

K

N
Nr,

(39)

where vS with
( Kc−1

K
N Nr−1

)
elements represents the generation

vector to generate the MDS-coded packet Wk,S . Note that

each MDS-coded packet has L

( Kc−1
K
N

Nr−1)
symbols.

Next we treat the problem as
( Kc

K
N Nr

)
sub-problems,

where each sub-problem is a (K′, N′, N′
r, K

′
c, M

′) =(
K, N, Nr,

K
NNr, M

)
distributed linearly separable computation

problem. For each S ⊆ [Kc] where |S| = K
NNr, there

is a sub-problem. In this sub-problem the messages are

W1,S , . . . , WK,S , and the master requests

F(S)r

⎡
⎢⎣

W1,S
...

WK,S

⎤
⎥⎦ .

Each sub-problem can be solved by the proposed scheme in

Section IV-A, where each worker sends K
N linear combination

of sub-messages with L

( Kc−1
K
N

Nr−1)
symbols. Hence, each worker

totally sends (
Kc
K
NNr

)
K

N

L( Kc−1
K
N Nr−1

) =
LKc

Nr

symbols, and thus the communication cost equal to Nr
LKc
NrL

=
Kc, which coincides with (19c).

Now we show that by solving all the sub-problems, the

master can recover the task, i.e., for each j ∈ [Kc] the master

can recover

Fj = F({j})r [W1; . . . ; WK] = fj,1W1 + · · · + fj,KWK (40a)

= fj,1

⎡
⎢⎢⎣

W1,1

...

W
1,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ + · · · + fj,K

⎡
⎢⎢⎣

WK,1

...

W
K,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ ,

(40b)

where we define that F({j})r := [fj,1, . . . , fj,K].
For each S ⊆ [Kc] where |S| = K

NNr and j ∈ S, in the

corresponding sub-problem the master has recovered

F({j})r [W1,S ; . . . ; WK,S ] = fj,1W1,S + · · · + fj,KWK,S

(41a)

= fj,1vS

⎡
⎢⎢⎣

W1,1

...

W
1,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ + · · · + fj,KvS

⎡
⎢⎢⎣

WK,1

...

W
K,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ .

(41b)

We assume that all the sets S ⊆ [Kc] where |S| = K
NNr

and j ∈ S, are S1, . . . ,S( Kc−1
K
N

Nr−1)
. By considering all the sub-

problems corresponding to the above sets, the master has

recovered

fj,1

⎡
⎢⎢⎣

vS1

...

vS( Kc−1
K
N

Nr−1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

W1,1

...

W
1,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ + · · ·+

fj,K

⎡
⎢⎢⎣

vS1

...

vS( Kc−1
K
N

Nr−1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

WK,1

...

W
K,( Kc−1

K
N

Nr−1)

⎤
⎥⎥⎦ := Hj . (42)

Note that

⎡
⎢⎢⎣

vS1

...

vS( Kc−1
K
N

Nr−1)

⎤
⎥⎥⎦ is full-rank with size

( Kc−1
K
N Nr−1

)
×

( Kc−1
K
N Nr−1

)
, and thus invertible. Hence, the master can recover

Fj in (40b) by taking

⎡
⎢⎢⎣

vS1

...

vS( Kc−1
K
N

Nr−1)

⎤
⎥⎥⎦
−1

Hj .

For the proposed computing scheme in this case, the decod-

ing complexity of the master is O
(
Kc

( Kc−1
K
N Nr−1

)
L
)

.

Remark 3: By using the Schwartz-Zippel Lemma, we prove

that the proposed scheme is decodable with high probability if

the elements in the demand matrix F are uniformly i.i.d. over

some large field. However, for some specific F, the proposed

scheme is not decodable (i.e., CA is not full-rank) and we

may need more communication load.

Let us focus on the (K, N, Nr, Kc, M) = (3, 3, 2, 2, 2)
distributed linearly separable computation problem. In this

example, there is only one possible assignment, which is as

follows,

Worker 1 Worker 2 Worker 3

W1 W2 W1

W2 W3 W3

Noting that in this case we have N = K and Kc = Nr. From

Theorem 3, the proposed scheme in Section IV-A is decodable

with high probability if the elements in the demand matrix F
are uniformly i.i.d. over some large field, and achieves the

optimal communication cost 2.

In the following, we focus on a specific demand matrix

F′ =
[

1, 1, 1
2, 1, 1

]⎡⎣ W1

W2

W3

⎤
⎦ =

[
W1 + W2 + W3

2W1 + W2 + W3

]
. (43)

Note that the demand is equivalent to (W1, W2 + W3). If

we use the proposed scheme in Section IV-A, it can be seen

that C{1} = [1,−1], C{2} = [2,−1], and C{3} = [1,−1]. So

we have C{1,3} =
[

1,−1
1,−1

]
is not full-rank, and thus the

proposed scheme is not decodable. In the following, we will
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prove that the optimal communication cost for this demand

matrix is 3.

[Converse]: We now prove that the communication cost is

no less than 3. Note that from X1 and X3, the master can

recover W1 and W2 + W3. Hence, we have

0 = H(W2 + W3|X1, X3) (44a)

≥ H(W2 + W3|X1, X3, W1, W3) (44b)

= H(W2 + W3|X1, W1, W3) (44c)

= H(W2|X1, W1, W3) (44d)

= H(W2|X1, W1), (44e)

where (44c) comes from that X3 is a function of

(W1, W3) and (44e) comes from that W3 is independent

of (W1, W2, X1). Since the master can recover W1 from

(X1, X3), (44e) shows that from (X1, X3) the master can also

recover W2, i.e.,

H(W1, W2|X1, X3) = 0. (45)

Moreover, we have

0 = H(W2 + W3|X1, X3) (46a)

≥ H(W2 + W3|X1, X3, W1, W2) (46b)

= H(W3|X1, X3, W1, W2) (46c)

= H(W3|X1, X3), (46d)

where (46d) comes from (45). Hence, we have

H(W1, W2, W3|X1, X3) = 0. (47)

Note that from X1 and X2, the master can recover W1

and W2 + W3. Since the master can recover W1 from

(X1, X2), (44e) shows that from (X1, X2) the master can also

recover W2, i.e.,

H(W1, W2|X1, X2) = 0. (48)

Moreover, we have

0 = H(W2 + W3|X1, X2) (49a)

≥ H(W2 + W3|X1, X2, W1, W2) (49b)

= H(W3|X1, X2, W1, W2) (49c)

= H(W3|X1, X2), (49d)

where (49d) comes from (48). From (48) and (49d), we have

H(W1, W2, W3|X1, X2) = 0. (50)

Similarly, we also have

H(W1, W2, W3|X2, X3) = 0. (51)

From (47), (50), and (51), it can be seen that for any set

of workers A ⊆ [3] where |A| = 2, we have (recall that

XA := {Xn : n ∈ A})

H(XA) ≥ 3L, (52)

Hence, we have the communication cost is no less than 3.

[Achievability]: We can use the proposed scheme in Exam-

ple 3 to let the master recover 3 linearly independent linear

combinations of (W1, W2, W3), such that the master can

recover each message and then recover (W1, W2 + W3). The

needed communication cost is 3 as shown in Example 3, which

coincides with the above converse bound.

From the above proof, we can also see that for the

(K, N, Nr, Kc, M) = (3, 3, 2, 2, 2) distributed linearly separable

computation problem,

• if the demand matrix is full-rank and it contains a sub-

matrix with dimension 2 × 2 which is not full-rank, the

optimal communication cost is 3;

• otherwise, the optimal communication cost is 2.

It is one of our on-going works to study the specific demand

matrices for more general case. �

V. EXTENSIONS

In this section, we will discuss about the extension of the

proposed scheme in Section IV. In Section V-A, we propose

an extended scheme for the general values of K and N
(i.e., N does not necessarily divide K). In Section V-B, we

provide an example to show that the cyclic assignment is

sub-optimal.

A. General Values of K and N

We assume that K = aN + b, where a is a non-negative

integer and b ∈ [N− 1]. Since we still consider the minimum

computation cost and each dataset should be assigned to at

least N−Nr +1 workers, thus now the minimum computation

cost is⌈
K

N
(N − Nr + 1)

⌉
= a(N − Nr + 1) +

⌈
b

N
(N − Nr + 1)

⌉
.

(53)

It will be explained later that in order to enable the extension

of the cyclic assignment to the general values of K and N, we

consider the computation cost

M1 := a(N − Nr + 1) +

⌈
N − Nr + 1⌊

N
b

⌋
⌉

, (54)

which may be slightly larger than the minimum computation

cost in (53).

We generalize the proposed scheme in Section IV by

introducing N − b virtual datasets, to obtain the following

theorem, which is the generalized version of Theorem 2.

Theorem 5: For the (K, N, Nr, Kc, M) distributed linearly

separable computation problem with K = aN+b and M = M1

where a is a non-negative integer and b ∈ [N − 1], the

communication cost R′
ach is achievable, where

• when Kc ∈
[⌊

K
N

⌋]
,

R′
ach = NrKc; (55a)

• when Kc ∈
[⌈

K
N

⌉
:
⌈

K
N

⌉
Nr

]
,

R′
ach =

⌈
K

N

⌉
Nr; (55b)

• when Kc ∈
(⌈

K
N

⌉
Nr : K

]
,

R′
ach = R� = Kc, (55c)
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where R� represents the optimal communication cost for

this case. �
Proof: We first extend the cyclic assignment in Section II-

A to the general case by dividing the K datasets into two

groups, [aN] and [aN + 1 : K], respectively.

• For each dataset Dk where k ∈ [aN], we assign

Dk to worker j, where j ∈
{

Mod(k, N), Mod(k −
1, N), . . . , Mod(k − N + Nr, N)

}
. Hence, the assignment

on the datasets in the first group is the same as the cyclic

assignment in Section II-A. The number of datasets in

the first group assigned to each worker is

a(N − Nr + 1). (56)

• For the second group, we introduce N−b virtual datasets

and thus there are totally N effective (real or virtual)

datasets. We then use the cyclic assignment in Section II-

A to assign the N effective datasets to the workers,

such that the number of effective datasets assigned to

each worker is N − Nr + 1. To satisfy the assignment

constraint (i.e., |Zn| ≤ M for each n ∈ [N]), it can be

seen from (54) and (56) that the number of real datasets

in the second group assigned to each worker should be

no more than

⌈
N−Nr+1

�N
b �

⌉
. Hence, our objective is to

choose b datasets from N effective datasets as the real

datasets, such that by the cyclic assignment on these N
effective datasets the number of real datasets assigned

to each worker is no more than

⌈
N−Nr+1

� N
b �

⌉
. We will

propose an allocation algorithm in Appendix E which can

generally attain the above objective. Here we provide an

example to illustrate the idea, where K = b = 3, a = 0,

N = 6, and Nr = 4. We have totally 6 effective datasets

denoted by, E1, . . . , E6. By the cyclic assignment, the

number of effective datasets assigned to each worker is

N − Nr + 1 = 3. Thus we assign that

By choosing E1, E3, and E5 as the real datasets, it can

be seen that the number of real datasets assigned to each

worker is no more than

⌈
N−Nr+1

� N
b �

⌉
= 2.

After the data assignment phase, each worker then computes

the message for each assigned real dataset. The virtual mes-

sage which comes from each virtual dataset, is set to be a vec-

tor of L zeros. We then directly use the computing phase of the

proposed scheme in Section IV for the (K′, N′, N′
r, K

′
c, M

′) =
((a + 1)N, N, Nr, Kc, (a + 1)(N − Nr + 1)) distributed lin-

early separable computation problem, to achieve the commu-

nication cost in Theorem 5.

B. Improvement on the Cyclic Assignment

In the following, we will provide an example which shows

the sub-optimality of the cyclic assignment.

Example 4 (K = 12, N = 4, Nr = 3, Kc = 3, M = 6):
Consider the example where K = 12, N = 4, Nr = 3, Kc = 3,

and we assign M = K
N (N − Nr + 1) = 6 datasets to each

worker. Each dataset is assigned to N − Nr + 1 = 2 workers.

By the proposed scheme with the cyclic assignment for the

case where Kc = K
N in Theorem 2, the needed communication

cost is K
NNr = 9, which is optimal under the constraint of

the cyclic assignment. However, by the proposed converse

bound in Theorem 1, the minimum communication cost is

upper bounded by 6. We will introduce a novel distributed

computing scheme to achieve the minimum communication

cost. As a result, we show the sub-optimality of the cyclic

assignment.

1) Data Assignment Phase: Inspired by the placement phase

of the coded caching scheme in [7], we assign that

Worker 1 Worker 2 Worker 3 Worker 4

D1 D1 D3 D5

D2 D2 D4 D6

D3 D7 D7 D9

D4 D8 D8 D10

D5 D9 D11 D11

D6 D10 D12 D12

More precisely, we partition the 12 datasets into
(
4
2

)
= 6

groups, each of which is denoted by HT where T ⊆ [4] where

|T | = 2 and contains 2 datasets. In this example, we let

H{1,2} = {1, 2}, H{1,3} = {3, 4}, H{1,4} = {5, 6},
H{2,3} = {7, 8}, H{2,4} = {9, 10}, H{3,4} = {11, 12}.

For each set T ⊆ [4] where |T | = 2, we assign dataset

Dk where k ∈ HT to workers in T . Hence, each dataset is

assigned to 2 workers, and the number of datasets assigned

to each worker is 2
(
4−1
2−1

)
= 6 (e.g., the datasets in groups

H{1,2},H{1,3},H{1,4} are assigned to worker k), satisfying

the assignment constraint.

2) Computing Phase: We assume that the task function is

f(D1, . . . , DK) =

⎡
⎣ F1

F2

F3

⎤
⎦ = F

⎡
⎢⎣

W1

...

W12

⎤
⎥⎦

=

⎡
⎣ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1, 0, 3, 2, 8, 4, 1, 2, 9, 4, 5, 10

⎤
⎦
⎡
⎢⎣

W1

...

W12

⎤
⎥⎦ .

Note that the following proposed scheme works for any

request with high probability, where the elements F are

uniformly i.i.d.

We now focus on each group HT where T ⊆ [6] and

|T | = 2. When T = {1, 2}, we have H{1,2} = {1, 2}. We

retrieve the sub-matrix

F({1,2})c =

⎡
⎣ 1, 1

1, 2
1, 0

⎤
⎦ ,
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i.e., columns with indices in H{1,2} = {1, 2} of F. Since

the dimension of F({1,2})c is 3 × 2, the left-side null-space

of F({1,2})c contains one vector. Now we choose the vector

(−2, 1, 1), where (−2, 1, 1)F({1,2})c = (0, 0). Hence, in the

product (−2, 1, 1)[F1; F2; F3], the coefficients of W1 and W2

are 0. We define that

UT = U{1,2} := (−2, 1, 1)[F1; F2; F3] = −2F1 + 1F2 + 1F3

(57a)

= 0W1 + 0W2 + 4W3 + 4W4 + 11W5 + 8W6 + 6W7

+ 8W8 + 16W9 + 12W10 + 14W11 + 20W12. (57b)

Similarly, when T = {1, 3}, we have H{1,3} = {3, 4}. By

choosing the vector (−6, 1, 1) as the left-side null-space of

F({3,4})c , and define that

U{1,3} := (−6, 1, 1)[F1; F2; F3] = −6F1 + 1F2 + 1F3

(58a)

= −4W1 − 4W2 + 0W3 + 0W4 + 7W5 + 4W6 + 2W7

+ 4W8 + 12W9 + 8W10 + 10W11 + 16W12. (58b)

When T = {1, 4}, we have H{1,4} = {5, 6}. By choosing

the vector (−28, 4, 1) as the left-side null-space of F({5,6})c ,

and define that

U{1,4} := (−28, 4, 1)[F1; F2; F3] = −28F1 + 4F2 + 1F3

(59a)

= −23W1 − 20W2 − 13W3 − 10W4 + 0W5 + 0W6+1W7

+ 6W8 + 17W9 + 16W10 + 21W11 + 30W12. (59b)

When T = {2, 3}, we have H{2,3} = {7, 8}. By choosing

the vector (6,−1, 1) as the left-side null-space of F({7,8})c ,

and define that

U{2,3} := (6,−1, 1)[F1; F2; F3] = 6F1 − 1F2 + 1F3 (60a)

= 6W1 + 4W2 + 6W3 + 4W4 + 9W5 + 4W6

+ 0W7 + 0W8 + 6W9 + 0W10 + 0W11 + 4W12. (60b)

When T = {2, 4}, we have H{2,4} = {9, 10}. By choosing

the vector (−54, 5, 1) as the left-side null-space of F({9,10})c ,

and define that

U{2,4} := (−54, 5, 1)[F1; F2; F3] = −54F1 + 5F2 + 1F3

(61a)

= −48W1 − 44W2 − 36W3 − 32W4 − 21W5 − 20W6

− 18W7 − 12W8 + 0W9 + 0W10 + 6W11 + 16W12.

(61b)

When T = {3, 4}, we have H{3,4} = {11, 12}. By choosing

the vector (50,−5, 1) as the left-side null-space of F({11,12})c ,

and define that

U{3,4} := (50,−5, 1)[F1; F2; F3] = 50F1 − 5F2 + 1F3

(62a)

= 46W1 + 40W2 + 38W3 + 32W4 + 33W5 + 24W6

+ 16W7 + 12W8 + 14W9 + 4W10 + 0W11 + 0W12.

(62b)

Our main strategy is that for any set of two workers
S ⊆ [4] where |S| = N−Nr + 1 = 2, from the transmitted
coded messages by the workers in S, the master can
recover U[4]\S .

• Assume that the straggler is worker 4. From work-

ers 1 and 2, the master can recover U{3,4}; from

workers 1 and 3, the master can recover U{2,4}; from

workers 2 and 3, the master can recover U{1,4}. In

addition, it can be seen that U{1,4}, U{2,4}, and U{3,4}
are linearly independent. Hence, the master can recover

F1, F2, and F3.

• Assume that the straggler is worker 3. The master can

recover U{1,3}, U{2,3}, and U{3,4}, which are linearly

independent, such that it can recover F1, F2, and F3.

• Assume that the straggler is worker 2. The master can

recover U{1,2}, U{2,3}, and U{2,4}, which are linearly

independent, such that it can recover F1, F2, and F3.

• Assume that the straggler is worker 1. The master can

recover U{1,2}, U{1,3}, and U{1,4}, which are linearly

independent, such that it can recover F1, F2, and F3.

In the following, we provide a code construction such that the

above strategy can be achieved.

When S = {1, 2}, workers 1 and 2 should send

cooperatively

U{3,4} = 46W1 + 40W2 + 38W3 + 32W4 + 33W5 + 24W6

+ 16W7 + 12W8 + 14W9 + 4W10 + 0W11 + 0W12.

Between workers 1 and 2, it can be seen that W3, W4, W5,

and W6 can only be computed by worker 1, while W7, W8,

W9, and W10 can only be computed by worker 2. In addition,

both workers 1 and 2 can compute W1 and W2. Hence, we

let worker 1 send

A1,{3,4} = x5W1+x6W2 + 38W3 + 32W4 + 33W5 + 24W6,

and let worker 2 send

A2,{3,4} = x11W1+x12W2+16W7+12W8+14W9 + 4W10,

where A1,{3,4}+A2,{3,4} = U{3,4}. Note that x5, x6, x11, and

x12 are the coefficients which we can design. Hence, we have

x5 + x11 = 46; (63)

x6 + x12 = 40. (64)

Similarly, by considering all sets S ⊆ [4] where |S| = 2,

the transmissions of worker 1 can be expressed as

A1,{2,3} = 6W1 + 4W2 + 6W3 + 4W4

+ x1W5 + x2W6, (65)

A1,{2,4} = −48W1 − 44W2 + x3W3 + x4W4

− 21W5 − 20W6, (66)

A1,{3,4} = x5W1 + x6W2 + 38W3 + 32W4

+ 33W5 + 24W6. (67)
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The transmissions of worker 2 can be expressed as

A2,{1,4} = −23W1 − 20W2 + x7W7 + x8W8

+ 17W9 + 16W10, (68)

A2,{1,3} = −4W1 − 4W2 + 2W7 + 4W8 + x9W9

+ x10W10, (69)

A2,{3,4} = x11W1 + x12W2 + 16W7 + 12W8

+ 14W9 + 4W10. (70)

The transmissions of worker 3 can be expressed as

A3,{1,2} = 4W3 + 4W4 + 6W7 + 8W8

+ x13W11 + x14W12, (71)

A3,{1,4} = −13W3 − 10W4 + x15W7 + x16W8

+ 21W11 + 30W12, (72)

A3,{2,4} = x17W3 + x18W4 − 18W7 − 12W8

+ 6W11 + 16W12. (73)

The transmissions of worker 4 can be expressed as

A4,{1,2} = 11W5 + 8W6 + 16W9 + 12W10

+ x19W11 + x20W12, (74)

A4,{1,3} = 7W5 + 4W6 + x21W9 + x22W10

+ 10W11 + 16W12, (75)

A4,{2,3} = x23W5 + x24W6 + 6W9 + 0W10

+ 0W11 + 4W12. (76)

The coefficients of (x1, . . . , x12) should satisfy (63), (64),

and

x1 + x23 = 9; (77)

x2 + x24 = 4; (78)

x3 + x17 = −36; (79)

x4 + x18 = −32; (80)

x7 + x15 = 1; (81)

x8 + x16 = 6; (82)

x9 + x21 = 12; (83)

x10 + x22 = 8; (84)

x13 + x19 = 14; (85)

x14 + x20 = 20. (86)

Finally, we will introduce how to choose (x1, . . . , x12) such

that the above constraints are satisfied. Meanwhile, the rank of

the transmissions of each worker is 2 (i.e., among the three sent

sums by each worker, one sum can be obtained by the linear

combinations of the other two sums), such that we can let each

worker send only two linear combinations of messages and the

needed communication cost is 2Nr = 6, which coincides with

the proposed converse bound in Theorem 1.

We let A1,{2,3} + A1,{2,4} = A1,{3,4}. Hence, we have

x1 =54, x2 =44, x3 = 32, x4 = 28, x5 = −42, x6 = −40.

With x5 = −42 and x6 = −40, from (63) and (64) we can

see that

x11 = 88, x12 = 80.

Since we fix x11 = 88 and x12 = 80, if the rank of the

transmissions of worker 2 is 2, we should have

x7 = −11, x8 = −29/2, x9 = −89/10, x10 = −7.

With x3 = 32 and x4 = 28, from (79) and (80) we can see

that

x17 = −68, x18 = −60.

Since we fix x17 = −68 and x18 = −60, if the rank of the

transmissions of worker 3 is 2, we should have

x13 = 6, x14 = 192/25, x15 = 12, x16 = 41/2.

With x1 = 54 and x2 = 44, from (77) and (78) we can see

that

x23 = −45, x24 = −40.

Since we fix x23 = −45 and x24 = −40, if the rank of the

transmissions of worker 4 is 2, we should have

x19 = 8, x20 = 308/25, x21 = 418/20, x22 = 15.

With the above choice of (x1, . . . , x12), we can find that

x7 + x15 = −11 + 12 = 1, satisfying (81);

x8 + x16 = −29/2 + 41/2 = 6, satisfying (82);

x9 + x21 = −89/10 + 418/20 = 12, satisfying (83);

x10 + x22 = −7 + 15 = 8, satisfying (84);

x13 + x19 = 6 + 8 = 14, satisfying (85);

x14 + x20 = 192/25 + 308/25 = 20, satisfying (86).

In conclusion the above choice of (x1, . . . , x12) satisfies

all constraints in (63), (64), (77)-(86), while the rank of the

transmissions of each worker is 2.

Note that the above assignment based on coded caching

can only be used for very limited number of cases in our

problem, i.e., when
(

N
N−Nr+1

)
divides K. In addition, it is part

of on-going works to generalize the above computing phase

under the coded caching assignment to the general case where(
N

N−Nr+1

)
divides K. �

VI. CONCLUSION

In this paper, we introduced a distributed linearly separable

computation problem and studied the optimal communication

cost when the computation cost is minimum. We proposed a

converse bound inspired by coded caching converse bounds

and an achievable distributed computing scheme based on

linear space intersection. The proposed scheme was proved to

be optimal under some system parameters. In addition, it was

also proved to be optimal under the constraint of the cyclic

assignment on the datasets.

Further works include the extension of the proposed scheme

to the case where the computation cost is increased, the design

of the distributed computing scheme with some improved

assignment rather than the cyclic assignment, and novel

achievable schemes on specific demand matrices for general

case.
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APPENDIX A

PROOF OF THEOREM 1

Recall that the computation cost is minimum, and thus each

dataset is assigned to N − Nr + 1 workers. For each set S ⊆
[N] where |S| = N − Nr + 1, we define GS as the set of

datasets uniquely assigned to all workers in S. For example,

in Example 1, G{1,2} = {2, 5}, G{1,3} = {1, 4}, and G{2,3} =
{3, 6}.

Let us focus one worker n ∈ [N]. Since the number of

datasets assigned to each worker is K
N(N − Nr + 1), we have

∑
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | =
K

N
(N − Nr + 1). (87)

From (87), it can be seen that

max
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | ≥
⌈

K(N − Nr + 1)
N
(

N−1
N−Nr

)
⌉

(88a)

=

⌈
K(
N

N−Nr+1

)
⌉

. (88b)

In addition, with a slight abuse of notation we define that

Smax = arg max
S⊆[N]:|S|=N−Nr+1,n∈S

|GS | (89)

Consider now the set of responding workers S1 = {n} ∪
([N]\Smax). Note that among the workers in S1, each dataset

Dk where k ∈ GSmax is only assigned to worker n. In addition,

since the elements in F are uniformly i.i.d. over a large enough

field, matrix F(GSmax )c (representing the sub-matrix containing

the columns with indices in GSmax of F) has the rank equal

to min {Kc, |GSmax |} with high probability. In addition, each

message has L uniformly i.i.d. symbols. Hence, we have

Tn ≥ H(Xn) ≥ min {Kc, |GSmax |}L. (90)

Now we consider each A ⊆ [N] where |A| = Nr as

the set of responding worker. From the definition of the

communication cost in (12), we have

R ≥
∑

n1∈A Tn1

L
(91a)

≥ Nr min {Kc, |GSmax |}L

L
(91b)

≥ Nr min

{
Kc,

⌈
K(
N

N−Nr+1

)
⌉}

, (91c)

where (91b) comes from (90) and (91c) comes from (88b).

By the definition of the minimum communication cost and

the fact that R� ≥ Kc, from (91c) we prove Theorem 1.

APPENDIX B

PROOF OF THEOREM 4

We fix an integer n ∈ [N]. By the cyclic assignment

described in Section II-A, each dataset Dn+pN where p ∈[
0 : K

N − 1
]

is assigned to N − Nr + 1 workers. The set of

these N − Nr + 1 workers is

S1 =
{
n, Mod(n − 1, N), . . . , Mod(n − N + Nr, N)

}
.

Now we assume the set of the responding workers is R1 =
{n} ∪ ([N] \ S1). It can be seen that among the workers in

R1, each dataset Dk where k ∈
{
n + pN : p ∈

[
0 : K

N − 1
]}

is only assigned to worker n. In addition, since the elements

in F are uniformly i.i.d. over a large enough field, matrix

F({n+pN:p∈[0: K
N−1]})c has the rank equal to min

{
Kc,

K
N

}
with

high probability. In addition, each message has L uniformly

i.i.d. symbols. Hence, we have

Tn ≥ H(Xn) ≥ min
{

Kc,
K

N

}
L. (92)

Now we consider each A ⊆ [N] where |A| = Nr as the set

of responding worker. We have

R ≥
∑

n1∈A Tn1

L
(93a)

≥
Nr min

{
Kc,

K
N

}
L

L
, (93b)

where (93b) comes from (92). Hence, when Kc ≤ K
N , we have

R ≥ NrKc; when Kc ≥ K
N , we have R ≥ Nr

K
N . Together with

R ≥ Kc, we obtain the converse bound in Theorem 4.

APPENDIX C

PROOF OF LEMMA 2

We first focus one A ⊆ [N] where |A| = Nr. We assume

that A = {A(1), . . . ,A(Nr)} where A(1) < · · · < A(Nr).
Recall that Kc = K

NNr and that the task function is (recall

that (M)m×n indicates that the dimension of matrix M is

m × n)

(F) K
N Nr×K([W1; . . . ; WK])K×L,

where each element in F is uniformly i.i.d. over large enough

finite field Fq. By the construction of our proposed achievable

scheme, each worker A(i) where i ∈ [Nr] sends

C{A(i)}F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ =

⎡
⎢⎣

uA(i),1

...

uA(i), K
N

⎤
⎥⎦F

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦ , (94)

where uA(i),jF(ZA(i))c = 01× K
N (Nr−1) for each j ∈

[
K
N

]
,

and ZA(i) ⊆ [K] represents the set of datasets which are not

assigned to worker A(i). To simplify the notations, we let

FA(i) := F(ZA(i))c , (95)

with dimension Kc× K
N(Nr−1) = K

NNr× K
N(Nr−1). By some

linear transformations on the rows of C{A(i)} (we will prove

very soon that this transformation exists with high probability),

we have (96), shown at the bottom of the next page. In other

words, we let⎡
⎢⎣

cA(i),1, K
N (i−1)+1 · · · cA(i),1, K

N i

...
. . .

...

cA(i), K
N , K

N (i−1)+1 · · · cA(i), K
N , K

N i

⎤
⎥⎦ = I K

N
(97)

where I K
N

represents the identity matrix with dimension K
N× K

N .
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Recall that M(S)r represents the sub-matrix of M which is

composed of the rows of M with indices in S. From

C{A(i)}FA(i) = 0 K
N× K

N (Nr−1), (98)

we have

C
([ K

N Nr]\[ K
N (i−1)+1: K

N i])c
{A(i)} FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

= −FA(i)
([ K

N (i−1)+1: K
N i])r :=

⎡
⎢⎢⎣

fA(i), K
N (i−1)+1

...

fA(i), K
N i

⎤
⎥⎥⎦ , (99)

where each vector fA(i),j , j ∈
[

K
N (i − 1) + 1 : K

N i
]
, is with

dimension 1 × K
N (Nr − 1).

By the Cramer’s rule, it can be seen that

cA(i),j,m =
det(YA(i),j,m)

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])

r

) , (100)

∀m ∈
[

K
NNr

]
\
[

K
N (i − 1) + 1 : K

N i
]
. Assuming m is the

sth smallest value in
[

K
NNr

]
\
[

K
N (i − 1) + 1 : K

N i
]
, we define

YA(i),j,m as the matrix formed by replacing the sth row of

FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])r by fA(i),j .

In addition, det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
is the deter-

minant of a K
N (Nr − 1) × K

N(Nr − 1) matrix, which can be

viewed as a multivariate polynomial whose variables are the

elements in F. Since the elements in F are uniformly i.i.d. over

Fq, it is with high probability that the multivariate polynomial

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
is a non-zero multivariate

polynomial (i.e., a multivariate polynomial whose coefficients

are not all 0) of degree K
N (Nr − 1). Hence, by the Schwartz-

Zippel Lemma [28]–[30], we have

Pr{cA(i),j,m exsits}

= Pr
{

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
is non-zero

}
(101a)

≥ 1 − K(Nr − 1)
Nq

. (101b)

Note that the above probability (101b) is over all possible

realizations of F whose elements are uniformly i.i.d. over Fq.

By the probability union bound, we have

Pr
{

cA(i),j,m exsits, ∀i ∈ [Nr], j ∈
[
K

N

]
,

m ∈
[
K

N
Nr

]
\
[
K

N
(i − 1) + 1 :

K

N
i

]}

≥ 1 − K(Nr − 1)
Nq

N
K

N

K

N
(Nr − 1) (102a)

= 1 − K3(Nr − 1)2

N2q
(102b)

q→∞−→ 1. (102c)

Hence, we prove that the coding matrix of each worker A(i)
where i ∈ [Nr], CA(i) in (94), exists with high probability.

In the following, we will prove that matrix

CA :=

⎡
⎢⎣

CA(1)

...

CA(Nr)

⎤
⎥⎦ (103)

is full-rank with high probability.

Note that CA is a matrix with dimension K
NNr × K

NNr. We

expand the determinant of CA as follows,

det(CA) =
∑

i∈[( K
N Nr)!]

Pi

Qi
, (104)

which contains
(

K
NNr

)
! terms. Each term can be expressed

as Pi

Qi
, where Pi and Qi are multivariate polynomials whose

variables are the elements in F. From (100), it can be seen

that each element in CA is the ratio of two multivariate

polynomials whose variables are the elements in F with

degree K
N(Nr − 1). In addition, each term in det(CA) is a

multivariate polynomial whose variables are the elements in

CA with degree K
NNr. Hence, Pi and Qi are multivariate

polynomials whose variables are the elements in F with degree(
K
N

)2
Nr(Nr − 1).

We then let

PA := det(CA)
∏

i∈[( K
N Nr)!]

Qi. (105)

If CA exists and PA �= 0, we have det(CA) �= 0 and thus

CA is full-rank.

To apply the Schwartz-Zippel lemma [28]–[30], we need to

guarantee that PA is a non-zero multivariate polynomial. To

this end, we only need one specific realization of F so that

(
C{A(i)}

)
K
N× K

N Nr
=

⎡
⎢⎣

cA(i),1,1 cA(i),1,2 · · · cA(i),1, K
N Nr

...
...

. . .
...

cA(i), K
N ,1 cA(i), K

N ,2 · · · cA(i), K
N , K

N Nr

⎤
⎥⎦ (96a)

=

⎡
⎢⎢⎢⎢⎣

cA(i),1,1 · · · cA(i),1, K
N (i−1) 1 0 · · · 0 cA(i),1, K

N i+1 · · · cA(i),1, K
N Nr

cA(i),2,1 · · · cA(i),2, K
N (i−1) 0 1 · · · 0 cA(i),2, K

N i+1 · · · cA(i),2, K
N Nr

...
. . .

...
...

...
. . .

...
...

. . .
...

cA(i), K
N

,1 · · · cA(i), K
N

, K
N
(i−1) 0 0 · · · 1 cA(i), K

N
, K
N

i+1 · · · cA(i), K
N

, K
N
Nr

⎤
⎥⎥⎥⎥⎦ (96b)
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PA �= 0 (or alternatively det(CA) �= 0 and Qi �= 0 at the same

time). We construct such specific F in Appendix D such that

the following lemma can be proved.

Lemma 3: For the (K, N, Nr, Kc, M) =(
K, N, Nr,

K
NNr,

K
N (N − Nr + 1)

)
distributed linearly separable

computation problem, PA in (105) is a non-zero multivariate

polynomial. �
Recall that Pi and Qi are multivariate polynomials with

degree
(

K
N

)2
Nr(Nr − 1). Thus the degree of PA is less than(

K
NNr

)2
. Hence, by the Schwartz-Zippel lemma [28]–[30] we

have

Pr{PA �= 0} ≥ 1 −
(

K
NNr

)
!
(

K
NNr

)2

q
. (106)

Hence, from (102b) and (106), we have

Pr{CA is full-rank}
≥ 1 − Pr{CA does not exist} − Pr{PA = 0} (107a)

≥ 1 − K3(Nr − 1)2

N2q
−

(
K
NNr

)
!
(

K
NNr

)2

q
. (107b)

Finally, by considering all A ⊆ [N] where |A| = Nr, we

have

Pr{CA is full-rank, ∀A ⊆ [N] : |A| = Nr} (108a)

≥ 1 −
∑

A⊆[N]:|A|=Nr

Pr{CA is not full-rank} (108b)

≥ 1 −
(

N

Nr

)(
K3(Nr − 1)2

N2q
+

(
K
NNr

)
!
(

K
NNr

)2

q

)
(108c)

q→∞−→ 1. (108d)

Hence, we prove Lemma 2.

APPENDIX D

PROOFS OF LEMMA 3

A. N = K

We first consider the case where N = K. We aim to construct

one demand matrix F where det(CA) �= 0, such that we can

prove Lemma 3 for this case.

Note that when N = K, we have that Kc = K
NNr = Nr and

that the dimension of F is Nr×N. We construct an F such that

for each i ∈ [Nr] and j ∈ ZA(i), the element located at the ith

row and the jth column is 0. Recall that the number of datasets

which are not assigned to each worker is |ZA(i)| = Nr − 1
and that by the cyclic assignment, the elements in ZA(i) are

adjacent; thus the ith row of F can be expressed as follows,

F({i})r = [∗, ∗, · · · , ∗, 0, 0, · · · , 0, ∗, ∗, · · · , ∗], (109)

where the number of adjacent ‘0’ in (109) is Nr − 1 and each

‘∗’ represents a symbol uniformly i.i.d. over Fq.

To prove that P(A) in (105) is non-zero, we need to prove

1) det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])

r

)
�= 0 for each

i ∈ [Nr], such that CA exists (see (100)); thus∏
i∈[( K

N Nr)!] Qi �= 0.

2) det(CA) �= 0.

First, we prove that CA exists. We focus on worker

A(i) where i ∈ [Nr]. Matrix FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])r

is with dimension (Nr − 1) × (Nr − 1). Each row of

FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])r corresponds to one worker in A\
{A(i)}. There are three cases:

• if this worker is Mod(A(i) + j, N) where j ∈ [Nr − 2],
the corresponding row is

[∗, · · · , ∗, 0, · · · , 0],

where the number of ‘∗’ is j and the number of ‘0’ is

Nr − 1 − j;

• if this worker is Mod(A(i) − j, N) where j ∈ [Nr − 2],
the corresponding row is

[0, · · · , 0, ∗, · · · , ∗],

where the number of ‘0’ is j and the number of ‘∗’ is

Nr − 1 − j;

• otherwise, the corresponding row is

[∗, · · · , ∗].

By the above observation, it can be seen that each column of

FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])r contains at most (Nr−2) ‘0’, and

that there does not exist two columns with (Nr −2) ‘0’ where

these two columns have the same form (i.e., the positions

of ‘0’ are the same). Hence, with some row permutation on

rows, we can let the elements located at the right-diagonal

of FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])r are all ‘∗’. In other words,

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
is a non-zero multivariate

polynomial where each ‘∗’ in FA(i)
([ K

N Nr]\[ K
N (i−1)+1: K

N i])
r is

a variable uniformly i.i.d. over Fq. By the Schwartz-Zippel

lemma [28]–[30], it can be seen that

Pr
{

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])

r

)
�= 0

}
q→∞−→ 1.

(110)

By the probability union bound, we have

Pr
{

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
�=0, ∀i ∈ [Nr]

}
q→∞−→ 1.

(111)

Hence, there must exist some F such that

det

(
FA(i)

([ K
N Nr]\[ K

N (i−1)+1: K
N i])r

)
�= 0 for each i ∈ [Nr]; thus

we finish the proof on the existence of CA.

Next, we prove the proposed scheme is decodable.

Obviously,

F({i})r

⎡
⎢⎣

W1

...

WN

⎤
⎥⎦

can be sent by worker A(i). With N = K, each worker sends
K
N = 1 linear combination of messages. By the construction,

we can see that for each i ∈ [Nr], the coding matrix is

CA(i) = [0, · · · , 0, 1, 0, · · · , 0], (112)
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where 1 is located at the ith column and the dimension of

CA(i) is 1 × Nr. Hence, it can be seen that

CA =

⎡
⎢⎣

CA(1)

...

CA(Nr)

⎤
⎥⎦ (113)

is an identity matrix and is thus full-rank, i.e., det(CA) �= 0.

B. N Divides K

Let us then focus on the (K, N, Nr, Kc, M) =(
aN, N, Nr, aNr, a(N−Nr + 1)

)
distributed linearly separable

computation problem, where a is a positive integer. Similarly,

we also aim to construct one demand matrix F where

det(CA) �= 0.

More precisely, we let (recall that 0m×n represents the

zero matrix with dimension m × n; (M)m×n represents the

dimension of matrix M is m × n)

F =

⎡
⎢⎢⎢⎣

(F1)Nr×N 0Nr×N · · · 0Nr×N

0Nr×N (F2)Nr×N · · · 0Nr×N

...
...

...
...

0Nr×N 0Nr×N · · · (Fa)Nr×N

⎤
⎥⎥⎥⎦ , (114)

where each element in Fi, i ∈ [a], is uniformly i.i.d.

over Fq. In the above construction, the (K, N, Nr, Kc, M) =(
aN, N, Nr, aNr, a(N − Nr + 1)

)
distributed linearly sepa-

rable computation problem is divided into a independent

(K, N, Nr, Kc, M) = (N, N, Nr, Nr, N − Nr + 1) distributed

linearly separable computation sub-problems. In each sub-

problem, assuming that the coding matrix of the workers

in A is C′
A, from Appendix D-A, we have C′

A �= 0
with high probability. Hence, in the (K, N, Nr, Kc, M) =(
aN, N, Nr, aNr, a(N−Nr + 1)

)
distributed linearly separable

computation problem with the constructed F in (114), we also

have that det(CA) �= 0 with high probability.

APPENDIX E

AN ALLOCATION ALGORITHM FOR THE CYCLIC

ASSIGNMENT IN THE GENERAL CASE

Recall that our objective is to choose b datasets from

N effective datasets as the real datasets, such that by the

cyclic assignment on these N effective datasets the number

of real datasets assigned to each worker is no more than⌈
N−Nr+1

� N
b �

⌉
. By the cyclic assignment, each effective dataset

(denoted by Ek where k ∈ [N]) is assigned to workers

in
{

Mod(k, N), Mod(k − 1, N), . . . , Mod(k − N + Nr, N)
}

.

The set of effective datasets assigned to worker n ∈ [N]
is

{
Mod(n, N), Mod(n + 1, N), . . . , Mod(n + N − Nr, N)

}
.

We propose an algorithm based on the following integer

decomposition.

We decompose the integer N − b into b parts, N − b =
p1 + · · · + pb, where p1 ≤ · · · ≤ pb and pi is either

⌈
N−b

b

⌉
or

⌊
N−b

b

⌋
for each i ∈ [b]. More precisely, by defining

α = b
⌈

N−b
b

⌉
− (N − b), we let

p1 = · · · = pα =
⌊

N − b

b

⌋
; (115a)

pα+1 = · · · = pb =
⌈

N − b

b

⌉
. (115b)

We then choose datasets

E1, E2+p1 , E3+p1+p2 , . . . , Eb+p1+···+pb−1

as the real datasets. It can be seen that between each two real

datasets, there are at least
⌊

N−b
b

⌋
virtual datasets. Hence, in

each adjacent N − Nr + 1 datasets, there are at most⌈
N − Nr + 1⌊

N−b
b + 1

⌋
⌉

=

⌈
N − Nr + 1⌊

N
b

⌋
⌉

real datasets. Hence, we prove that by the above choice, the

number of real datasets assigned to each worker is no more

than

⌈
N−Nr+1

� N
b �

⌉
.
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