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ARTICLES

Analyzing multi-scale spatial point patterns in a pyramid modeling framework
Yi Qiang a, Barbara Buttenfield b and Jinwen Xu a

aSchool of Geosciences, University of South Florida, Tampa, FL, USA; bDepartment of Geography, University of Colorado – Boulder, Boulder, 
CO, USA

ABSTRACT
Many spatial analysis methods suffer from the scaling issue identified as part of the Modifiable 
Areal Unit Problem (MAUP). This article introduces the Pyramid Model (PM), a hierarchical data 
framework integrating space and spatial scale in a 3D environment to support multi-scale analysis. 
The utility of the PM is tested in examining quadrat density and kernel density, which are 
commonly used measures of point patterns. The two metrics computed from a simulated point 
set with varying scaling parameters (i.e. quadrats and bandwidths) are represented in the PM. The 
PM permits examination of the variation of the density metrics computed at all different scales. 3D 
visualization techniques (e.g. volume display, isosurfaces, and slicing) allow users to observe 
nested relations between spatial patterns at different scales and understand the scaling issue 
and MAUP in spatial analysis. A tool with interactive controls is developed to support visual 
exploration of the internal patterns in the PM. In addition to the point pattern measures, the PM 
has potential in analyzing other spatial indices, such as spatial autocorrelation indicators, coeffi
cients of regression analysis and accuracy measures of spatial models. The implementation of the 
PM further advances the development of a multi-scale framework for spatio-temporal analysis.
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1. Introduction

Multi-scale analysis of spatial pattern is a long- 
standing challenge in GIScience. Analyses conducted 
at different spatial scales often create different results. 
The importance of scale in spatial analysis has been 
epitomized in the well-known Modifiable Areal Unit 
Problem (MAUP) (Openshaw 1983). Ideally, spatial 
data should be analyzed at the level where spatial 
processes become evident, are best understood and/or 
where spatial relationships are maximized (Lam 1983; 
Wagner and Fortin 2005). However, most spatial ana
lyses and modeling are conducted at a pre-defined 
scale or the scale where data is collected, which may 
miss critical processes and relationships concealed at 
other scales. Currently, the increasing diversity of 
geospatial data collected at different resolutions (e.g. 
satellite, UAV, and field-survey data) poses challenges 
for data integration and model coupling in existing GIS 
platforms and spatial analysis tools. Given the complex 
and multi-scale nature of big geospatial data, there is 
a pressing need for developing novel modeling frame
works and analytical tools to understand the multi- 
scale processes and relationships in various geographi
cal phenomena.

The challenge of multi-scale analysis can be attrib
uted to the traditional presentation of geospatial data. 
In prevalent geographic information systems (GIS), 
space is conventionally represented in “flat layers” 
and spatial analysis tools usually operate at a single 
scale. For instance, with a predefined bandwidth, ker
nel density can detect clusters of spatial features at 
a certain scale. To examine the clustering patterns at 
other scales, the bandwidth needs to be adjusted, often 
using a “trial-and-error” approach. Such snapshots of 
spatial patterns at discrete scales are inefficient and 
inconsistent in showing variation of spatial patterns 
across scales. Additionally, the patterns of focal statis
tics (e.g. mean and standard deviation) and local spa
tial indicators (e.g. spatial autocorrelation) may vary 
with the size of a moving window. Spatial modeling 
tasks (e.g. image classification and land cover change 
modeling) often incorporate neighborhood conditions 
within such moving windows (Chica-Olmo & Abarca- 
Hernández, 2000; Wu, 2002). However, the choice of 
window size is often subjectively determined, leading 
to modeling results that only capture spatial relation at 
a single scale. A common solution to this issue is 
repeating the analysis at a few selected scales or 
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different sizes of moving windows. Discrete sampling 
in the scale dimension cannot fully uncover the con
tinuous variation of spatial pattern across different 
scales.

Analytical tools and modeling frameworks have been 
developed to detect spatial patterns at multiple scales 
and measure the scales of processes underlying observed 
geographic phenomena. Notable work includes 
Multiscale Geographically Weighted Regression 
(MGWR) developed by (Fotheringham et al., 2017), 
which relaxes the GWR’s assumption of single band
width by allowing it to vary among predictive variables. 
Some cluster detection techniques, such as DBSCAN 
(Ester et al., 1996) and Kulldorff’s scan statistic 
(Kulldorff, 1997), can detect spatial clusters of various 
shapes and sizes. The detected clusters may signal spa
tial processes operating at different scales but fail to 
reveal the hierarchy and nested relations between multi- 
scale processes. Additionally, a variogram is a common 
metric used to measure the scale of spatial dependence 
(Behrens et al., 2019) and neighborhood effect (Lam 
et al., 2018). The range in a variogram indicates the 
scale range within which a variable is spatially autocor
related. Another notable example occurs when aggre
gating spatial data into areal units. The scale effect may 
invoke the Modifiable Areal Unit Problem (MAUP), 
which refers to the phenomena that analysis conducted 
in different sizes (scale) and shapes (zoning) of spatial 
units may lead to different results. MAUP in different 
types of analysis has been extensively investigated in the 
literature (e.g. Ye, 2021; Ye & Rogerson, 2021). To 
mitigate MAUP in spatial analysis, Chen et al. (2019) 
used a nugget–sill ratio in semi-variograms as an indi
cator to determine the optimal scale for spatial aggrega
tion. Duque et al. (2018) introduced a nonparametric 
statistical test (S-maup) to measure the sensitivity of 
spatial variables to the effect of MAUP.

The research on MAUP increases our understanding 
about the scale effect in spatial analysis and provides 
actionable tools to identify optimal scales for spatial 
analysis and modeling. Existing multi-scale analysis 
approaches tend to treat space and scale as two separate 
variables. They either analyze changes of a spatial metric 
at different scales (e.g. comparing semi-variogram at 
multiple scales) or compare scales of spatial processes 
at different locations (e.g. MGWR). However, the exist
ing approaches cannot fully reveal hierarchical struc
tures and nested relations between spatial processes at 
different scales. The solution to this challenge requires 
a modeling framework that can seamlessly integrate 
space and scale to represent spatial metrics varying in 
both location and scale. Despite advances in data mod
els that couple traditional views of space and time 

(Hägerstraand, 1970; Kraak, 2003; Miller, 1991), tight 
couplings of spatial data across progressions of scale are 
at present limited to indirect or inferential methods. 
Recently, Qiang et al. (2014) developed a multi-scale 
temporal model and subsequently extended it into 
a Pyramid Model (PM) that integrates spatial location 
and spatial scale in a true 3D space (Qiang et al., 2018; 
Qiang & Van de Weghe, 2019). The PM affords the 
opportunity to directly link spatial patterns across 
scale but has not yet been applied to analytic tasks. 
This paper demonstrates that the PM seamlessly inte
grates space and scale in a 3D tool that supports simul
taneous monitoring and assessment of spatial patterns 
across a range of scales. By extending conventional 
spatial statistical methods to operate within the PM 
framework, this paper undertakes that challenge, mod
ifying conventional spatial analytic tools for multi-scale 
point pattern analysis. The contribution of the work is 
to demonstrate how the PM implementation offers 
insights about density variation and cluster emergence 
across spatial scales that are not directly available when 
such analyses are conducted at individual or discrete 
processing scales.

The remainder of the article is organized as follows. 
First, common methods for density-based point pattern 
analysis are reviewed, and the scale issues in these 
methods are discussed. Next, the PM is introduced as 
well as relevant model variants in the multi-scale analy
sis framework. Then, kernel density and quadrat density 
metrics are implemented in the PM. Application to 
density estimation and point clustering is demonstrated 
for a synthetic dataset to explore the types of interpreta
tions and insights that can be gained. Finally, the find
ings and contributions of this study will be discussed, 
and future work will be proposed.

2. Density-based point pattern analysis

2.1. Quadrat density

Quadrat density is a density-based measure of point 
pattern, which divides the space into sub-regions (i.e. 
quadrats) and computes the point density in each quad
rat (O’Sullivan & Unwin, 2010; Yuan et al., 2020). For 
example, in Figure 1(b), the study area is divided into 
uniformly shaped quadrats, and point density in each 
quadrat is the ratio between total points and quadrat 
area. In addition, quadrats can take different shapes, 
such as hexagons, squares, triangles, and Voronoi poly
gons. Despite the simplicity in computing and interpre
tation, quadrat density analysis seriously suffers from 
the Modifiable Areal Unit Problem (MAUP). The ana
lysis result is highly sensitive to the size of the quadrat 
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and only reflects point patterns at a single scale. A small 
quadrat size can detect subtle point clusters at a local 
scale (Figure 1(b)), but mask out general patterns at 
a coarser scale. A large quadrat size does the opposite: 
detecting coarse-scale density patterns while missing 
subtle clusters at local scales (Figure 1(c)). Even with 
the same quadrat size, the analysis result may differ if 
the alignment of the quadrat changes (Figure 1(d)). In 
most studies, the choice of quadrat size, shape, and 
arrangement is based on subjective decisions. Uniform 
quadrats may not equally fit the entire data sets in which 
clustering patterns are prominent at different scales.

2.2 Kernel Density

Whereas quadrat density simply counts points within 
quadrat cells, kernel density develops a continuous sur
face that can aid the detection of clusters and “hot spots” 
where spatial point patterns are concentrated. A kernel 
function is applied to each point, measuring the point 
density within the kernel “envelope.” In addition to the 
number of points in a kernel, the distance from other 
points is taken into account, allowing the kernel to take 
on various shapes and sizes (Yin, 2020). The surface is 
generated by aggregating individual kernel functions. In 
GIS, the most commonly used are the quartic function 
(biweight) and Gaussian function, both of which can 
create a relatively smooth density surface. The shape of 
the kernel is determined by the bandwidth h, which is 
the scaling or smoothing factor for kernel density maps. 
Larger h creates more widespread kernels. Thus, kernel 
density functions with a larger h are smoother and can 
highlight general patterns at a coarser scale, while 
a smaller h can detect clusters at a finer (local) scale. 

Despite the importance of h, there is no general con
sensus on the choice of h for a particular dataset, 
although specific disciplines tend to adopt specific 
fixed estimation methods (see, for example, Diggle 
et al. (2005) or Gatrell et al. (1996) for spatial epidemiol
ogy). In most cases, users either arbitrarily set a fixed 
value for h based on their experience, or use the 
Silverman’s “rule-of-thumb” bandwidth (Silverman, 
1986) in spite of cautionary assumptions about applying 
this method for non-Gaussian distributions. However, 
a fixed bandwidth may not perform equally well in local 
areas, as it may undersmooth areas with sparse features 
and oversmooth high-density areas. To address this 
issue, adaptive kernel estimators are developed to 
apply varying h over space according to the local density 
(Mills, 2011; Van Kerm, 2003). Tiwari and Rushton 
(2005, 2010) demonstrated that spatially adaptive kernel 
can equalize the variance in estimated density while 
maximizing the amount of geographic details portrayed 
on the map. In addition to the interpretation difficulties 
for maps created by adaptive estimators, there are also 
debates on whether the adaptive kernel estimators really 
bring advantages with the extra computational com
plexity (Terrell & Scott, 1992).

Regardless of how the bandwidth is determined, ker
nel density surfaces are often mapped to visualize the 
clusters as a “heat map” (Figure 1(e-g)). Using existing 
(fixed or adaptive) methods, a kernel density map only 
represents density estimation at a single scale at each 
location. In a single map, it is impossible to observe the 
evolving spatial pattern across multiple scales, or how 
the local clusters at local scales converge or cancel each 
other at coarser scales. The PM is proposed as a method 
to overcome the single-scale limitation for either quad
rat or kernel density by organizing a framework linking 
density estimates across scales.

3. The pyramid model framework

In the PM, each point represents a specific spatial 
unit (a pixel) in geographic space. The horizontal 
position (x, y) of the point represents the spatial 
location of the unit, which is usually defined as the 
centroid of the unit. The vertical position (z) indi
cates the size of the unit (Figure 2). Using raster data 
as an example, the spatial units at the finest resolu
tion are pixels, which are represented as points at the 
lowest level of the pyramid. Points at the second 
level represent the aggregation of spatial units in 
a window (2 × 2 pixels). Points at the nth level 
represent windows of n × n pixels. In such a way, 
windows of progressive sizes are projected onto 
a lattice of points in the 3D space, where the (x,y) 

Figure 1. Pattern variations of quadrat density and kernel den
sity at different scales. a) a simulated point set. b) point density 
in small quadrats. c) point density in large quadrats. d) point 
density in large quadrats with shifted position. e) – g) kernel 
density maps with different bandwidths (BW: bandwidth).
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coordinates of a point represent the horizontal posi
tion of the centroid of each window, and z represents 
the size of the window. Points at the same z level 
may represent overlapping windows of the same size 
(e.g. f1,1,2 and f2,1,2 in Figure 2), which overcomes the 
limitation of non-overlapping aggregation in quadrat 
density. Not limited to square shape, the windows 
can be other circles or hexagons but have to remain 
consistent within a PM.

Each point in the 3D point lattice is associated 
with a spatial index (fx;y;z) computed in the window 
the point represents. The index fx;y;z can represent 
a summary statistic (e.g. mean, standard deviation 
or density), or a spatial autocorrelation metric (e.g. 
Moran’s I), or fragmentation index (e.g. fractal 
dimension). The index fx;y;z in different windows 
thus reflects spatial patterns in a particular place 
and at a particular scale. In other words, the PM 
stacks 2D spatial indices along the z-axis into a 3D 
matrix, where the horizontal dimensions (the x and 
y axes) represent the space and the vertical dimen
sion (the z axis) represents the scale at which the 
indices are computed. If the windows are con
strained to fit completely within a study area, the 
size of the layer shrinks as the window size 
increases, until reaching the top of the pyramid 
that covers the entire study area. For intuitiveness, 
a square study area is used in the experiment in 
this study. However, the PM has various configura
tions to represent spatial data in other tessellations 
(hexagons, Voronoi polygons and irregular poly
gons), where the coordinates of points in the 3D 
space (x, y, z) are defined differently to meet spe
cific analytical purposes. Additionally, the PM can 
be developed in other shapes if the study area is 
not a square.

4. Density-based point pattern analysis in PM

4.1. Dataset

A simulated point set in a 500 × 500 units artificial study 
area is used to test the utility of the PM for point pattern 
analysis. These points imitate individual events such as 
crime incidents or disease victims distributed over geo
graphic space. As an aside, the point values could be raw 
counts or ratios (for example, number of disease mortal
ities per 100,000 population). To create complex and 
multi-scale patterns, the point set is combined from four 
clustered point sets simulated using the Python Spatial 
Analysis Library (PySal; Rey & Anselin, 2007). The four 
clustering point sets were simulated in a Poisson cluster 
process. For each point set, n parent points are randomly 
distributed in the study area, and then m child points are 
simulated within a radius r centered around each parent. 
This simulation creates a known clustering pattern of the 
child points. By varying m, n, r, four sets of child points 
with different clustering patterns are generated and then 

Figure 2. Conceptual framework of PM.

Figure 3. The simulated point set. a) – d) four clustered point 
sets simulated using different parameters. e) the composite 
point set combining a) – d).
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combined by overlay into a single-point set (Figure 3). In 
the following analyses, the combined point set is used to 
test the ability of the PM for detecting multi-scale point 
patterns.

4.2. Representing quadrat density in PM
Quadrat density suffers effects of MAUP when choosing 
quadrat size, as discussed above. In this session, we 
demonstrate the PM representations of quadrats of the 
simulated point set. The configuration of the PM for 
quadrat density is the same as demonstrated in Figure 4. 
Point density is computed in square quadrats of differ
ent sizes, which are projected to points in a 3D space. 
Unlike the traditional quadrat analysis in a fixed tessel
lation, point density in the PM is computed in a moving 
window rolling through the point set (Figure 4(a,b)). 
This process is repeated for different window sizes. 
Next, the computed density D of each window is pro
jected to a point (x, y, z) in the 3D PM, where x and y are 
the centroid of the window and z corresponds to the 
window size. For computation and visualization, the 
point lattice in the PM is implemented as a 3D matrix 
where each voxel represents a specific window. In other 
words, the construction of a PM stacks density rasters 
computed for different window sizes into a 3D pyramid 
(Figure 4(c–e)). Here, we define z as equal to half of the 
length of one side of the window. Thus, a voxel at (x, y, 

z) represents a window whose centroid is at (x, y) and 
the side length is 2z. As such, the point density com
puted for all window sizes is represented by voxels in 
a 500*500*250 pyramid.

The result of spatial analysis often varies at different 
scales. Even the answer to a simple question “where are 
the points densest” can differ when computed at differ
ent scales. To demonstrate this phenomenon, the global 
density peak at each height (z) in the PM is selected and 
linked into a sequence. A global density peak is the 
position where the point density is highest when mea
sured at a specific scale (window size). The density peak 
is represented by the point at (x, y, z) where (x, y) 
denotes the centroid of the window and z indicates the 
window size. Figure 5 illustrates the sequence of global 
density peaks measured in different window sizes, and 
in four different views. Altitude is the angle of the view 
point to the horizon. Altitude ranges from 0 degree (a 
horizontal, profile view) to 90 degrees (a vertical, over
head view). Azimuth is the direction of the view point 
along the horizon (0 degree points to the north). From 
the sequence in Figure 5, we can observe that the density 
peak constantly changes its position in the horizontal 
dimension (x, y), indicating that the area with the den
sest points is located at different positions when mea
sured at different scales. The density peak at lower levels 
(small z) moves dramatically in the horizontal dimen
sions, implying that multiple density peaks compete for 

Figure 4. Representing point density in different sizes of moving windows in a 3D PM. a) moving window rolling through a point set. 
b) color-coded point density in moving windows. c) a point set in a 2D space. d) point density in different sizes of moving windows. e) 
a 3D pyramid representing all moving windows.
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the global peak at the local scales. The horizontal posi
tion of density peak begins to stabilize as z increases, 
except for another large shift occurring when z is about 
100, as well as some moderate shifts in the middle range. 
The movement of the global density peak in the PM 
visualizes the process of how spatial analysis result 
changes at different scales. It is important to note that 
positional shifts and extreme magnitude variations are 
readily apparent within the PM framework, but would 
be more difficult to identify exhaustively in a single- 
scale or selective-scale analysis. The ability to visualize, 
extract, and analyze progressive changes in summary 
statistics at different scales and locations is one of the 
several advantages contributed by the use of the PM 
framework.

In addition to the global density peak, moving 
windows in which the density exceeding a certain 
threshold can be selected and displayed as voxels in 
the PM. As the distribution of point density varies 
in different window sizes, we use percentiles as the 
threshold to select high-density windows. In 
Figure 6, voxels in the 99th percentile of point 
density at each z level are displayed in the PM. 
These voxels represent the top 1% high-density 
areas measured in each window size. In an inter
active 3D view, one can navigate to observe the 
structure of the displayed voxels from different 
view angles. Many subtle high-density voxels are 

scattered at lower z levels, indicating that many 
small point clusters exist at a fine scale. As the 
scale becomes coarser (z increases), the scattered 
voxels converge to larger clusters of voxels. These 
clusters represent spatial locations and scales where 
the point density is high. For example, Cluster 1 
(denoted as C1) develops at fine scales, spans a wide 
range of scales, and disappears when z (window 
size) increases to 140. Analogously, C2 emerges 
where z ≈ 70 and ends where z reaches 170. The 
long shapes of C1 and C2 indicate two point clus
ters that are detectable across a wide range of scales. 
In contrast, C3 is smaller in size and floats at 
medium height in the PM. This floating voxel clus
ter represents a point cluster that only appears 
within a specific range of scales and is not detect
able at other scales. The isolation of C3 from other 
voxels means that it is formed by several point 
clusters at fine scales. Unlike C1 and C2 that are 
detectable on a wide range of scales, C1 is a kind of 
spatial pattern that can be easily missed in spatial 
analysis with randomly chosen window sizes.

4.3. Representing kernel density in PM

The configuration of PM for kernel density maps is slightly 
different from that for quadrat density. In a PM, kernel 
density maps created with different bandwidths are placed 

Figure 5. Sequence of the global density peak in the PM in four different view angles.

Figure 6. Voxels in the 99th percentile of point density measured in different window sizes. The colored line indicates the sequence of 
the global density peak as shown in Figure 5.
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at different heights in the 3D space. As the default function 
in most GIS, kernels are created using the quartic 
(biweight) function. In the PM, each voxel at (x, y, z) 
represents the kernel density computed using a specific 
bandwidth z at the horizontal position (x, y). As shown in 
Figure 7, the global density peak in a kernel density map 
changes with the bandwidth. The horizontal location of the 
density peak shifts dramatically at low z levels (small 
bandwidths). As z (bandwidth) increases, the density 
peak stabilizes and gradually moves toward the center of 
the study area. The global peaks of kernel density (color 
line in Figure 7) and quadrat density (dotted line) generally 
follow the same trend, both of which shift from east to west 
at the fine scales, and gradually move toward the center at 
medium and coarse scales. However, the two global peaks 
do not completely align due to different calculations of the 
two density measures. The moving window for quadrat 
density rolls through each location in the study area, while 
kernel density map aggregates kernels centered at each 
point. Compared with quadrat density, the global peak of 
kernel density is more stable with relatively fewer move
ments in location. In particular, at medium and coarse 
scales (i.e. bandwidth >50), the peak of kernel density has 
a very smooth transition from the eastern side to the center 
of the study area. This implies that spatial pattern displayed 
in kernel density maps is less sensitive to scale changes 
compared to quadrat density maps. This seems logical 
given that kernel density creates a continuous surface, 
while quadrats are discretized according to quadrat cell 
size. Herein lies a second benefit of the PM, namely, the 
capability to compare multi-scale patterns across multiple 
methods of computation (here, a discrete and a continuous 
example). Computing both metrics across single or selec
tive scales would provide only a single snapshot or 
a sampling of densities, leaving the analyst to infer inter
mediary outcomes.

In addition to the global peak, local peaks (also 
known as local maxima) can reveal additional point 
clusters. A local peak reflects a point (x,y) where the 
value (i.e. density) is higher than values at the 

surrounding points. As the bandwidth increases, 
subtle clusters at local scales are gradually smoothed 
out and general clusters at coarser scales start to 
emerge. In this study, the algorithm developed by 
Natan (2021) was used to detect local peaks in kernel 
density maps. The algorithm repeats for each band
width to create multi-scale kernel density maps in 
the PM. Local density peaks detected with different 
bandwidths are projected as 3D points in the PM, 
where (x, y) represent horizontal locations of the 
peaks, and z represents the bandwidths. As shown 
in Figure 8, most local peaks are detected at lower 
z levels (bandwidth <20). A few linear sequences of 
local peaks extend to higher z levels with changing 
positions in the horizontal dimension. These linear 
streams represent point clusters that are prominent 
across a wider range of scales. These streams visua
lize the progression of local point clusters into gen
eral clusters at a coarser scale and create linkages 
between local-scale and large-scale clusters. The 
length of the streams in the z-dimension indicates 
the range of scales (bandwidths) within which the 
point clusters are detectable, effectively highlighting 
the most dominant clusters in the pyramid.

Figure 9 displays voxels with a density in the 99th 

percentile measured in each bandwidth (z). These voxels 
represent high-density areas detected at different scales. 
Unlike Figure 6 for quadrat density, the high-density 
voxels of kernel density are in smoother shapes and 
linearly extend along the z-dimension. At fine scales 
(z < 10), the high-density voxels are scattered at differ
ent positions in the horizontal dimensions, which repre
sent many clusters detected at finer scales. As the 
z (bandwidth) increases, the scattered voxels disappear, 
leaving only a cylinder of voxels around the density 
peak. The PM provides a complete view of the evolution 
of the point pattern across different scales. For example, 
when zooming in to lower z levels (0 ≤ z ≤ 30; Figure 9 
(b–e)), one can observe the locations of point clusters as 
well as the range of bandwidths where these clusters are 

Figure 7. The color line is the sequence of global peaks in kernel density maps of different bandwidths. For comparison, the gray 
dotted line is the sequence of the global peaks of quadrat density shown in Figure 5.
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detectable. Additionally, one can observe how the local 
clusters disappear or converge to general clusters in 
a continuous view. As an example, the box in 
Figure 9(d) highlights a convergence of several small 
clusters to a general cluster at a coarser scale.

In addition to navigating in the 3D environment, 
interactive controls have been developed to adjust the 
visualization parameters. For example, a kernel density 
map with a specific bandwidth can be added to the PM 
(Figure 10(a)). Using a slider, the kernel density map 

Figure 8. Visualizing local peaks of kernel density at different scales in the PM. a) local peaks detected in kernel density maps created 
with three different bandwidths. b) – e) local peaks detected in kernel density maps in all bandwidths: b) Azimuth: 45°, altitude: 15°; c) 
Azimuth: 0°, altitude: 90°; d) Azimuth: 90°, altitude: 0°; e) Azimuth: 0°, altitude: 0°.

Figure 9. Voxels with a density in the 99th percentile at each scale. a) the full view at an oblique view angle. b) – e) zoomed-in views to 
local scales (0 � z � 30) with linearly stretched z axis.
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Figure 10. Using interactive controls to adjust visualization parameters. a) adding and moving kernel density maps in the PM. b) 
adjusting the selection threshold of high-density voxels. The solid volumes are voxels with a density in the 99th percentile, while the 
semitransparent volumes are voxels in the 95th percentile.

Figure 11. Comparing the PM representation of kernel density between the simulated point set and a random point set at two 
different view angles. a1) – a4) global density peak of kernel density; b1) – b4) 99th percentile high-density voxels; c1) – c4) local 
density peaks.
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can move to different z-values, showing density patterns 
computed with different bandwidths. Combining the 
kernel density map with the PM provides an intuitive 
transition from a kernel density map to its multi-scale 
representation in the PM. It also allows users to observe 
the continuous progression of clustering patterns across 
scales and the hierarchy between the clusters. 
Additionally, the threshold can be adjusted to select 
voxels with a density of different percentiles 
(Figure 10(b)). The higher the threshold being selected, 
the smaller the volume of voxels is displayed in the PM, 
representing locations where the point density is above 
the threshold. In such a way, users can choose appro
priate thresholds to detect point clusters and observe the 
distribution of detected clusters at different scales.

4.4. Comparing random and clustered pattern

In order to explore the inferential potential of the PM, 
we compared the PM visualization of kernel density 
between the simulated point set and a random point 
set with the same number of points. As shown in 
Figure 11(a1-4), the global density peak of the clustered 
point set stabilized quickly at a fine scale (small band
width), while the global peak of the random point set 
shows dramatic shifts until reaching a coarser scale 
(bandwidth ≈ 50). The 99th high-density voxels of the 
clustered point set are more concentrated, which results 
in a major column extending from finer scales to coarse 
scales (Figure 11(b1&2)). In contrast, the high-density 
voxels of the random set tend to appear at multiple 
locations Figure 11(b3&4), and these voxels converge 
to a single column at a higher level. The local density 
peaks of the random point set (Figure 11(c1&c2)) show 
longer linear streams than those of the clustered set 
(Figure 11(c3&c4)). Figure 12 shows that local density 
peaks and the standard deviation of the density of both 
point sets decline as the scale becomes coarser. 
However, the clustered point set has fewer local density 
peaks and larger standard deviation than the random set 
at all scales, and the differences are most prominent 

when the bandwidth is around 10. These comparisons 
provide preliminary evidence of the inferential power of 
the PM in differentiating processes behind the observed 
patterns. However, more research is needed to identify 
metrics that can be used for statistical testing and 
develop a formal framework to infer and measure spa
tial processes.

4.5. Computational aspects

The point sets used in the study were generated using 
PySal package in Python. Due to fast and stable 3D 
rendering capacities, Matlab® was chosen as a platform 
to implement the 3D visualization of the PM. Matlab 
can visualize a variety of vector and raster features in an 
integrated 3D view. Visualization tools (e.g. volume 
display, isosurfaces, and slices) built on Matlab are 
applied to display vector and raster features extracted 
from the PM. Visualization tools (e.g. volume display, 
isosurfaces, and slices) built on Matlab are applied to 
display vector and raster features extracted from 
the PM.

The computing environment was a desktop compu
ter with a 12-core CPU at 3.65 GHz, 128GB RAM and 
an AMD Radeon Pro WX 3200 graphics card. Most of 
the computational load is on the calculation of multi- 
scale density in the PM. Using a sequential program, the 
computer takes 40 seconds to generate a PM for kernel 
density and 50 minutes for a quadrat density PM. The 
slower computing time for the quadrat density can be 
attributed to the “for loops” used to calculate density in 
different moving windows and bandwidths. The data 
size of a PM model (500 × 500 × 250) in this study is 
~500 MB. Once the multi-scale density in PM is com
puted, the rendering time of the 3D visualization is 
trivial. In Matlab, all the demonstrated visualization 
can be rendered within 5 seconds.

Still, the algorithm and data structure of the PM 
still have room for optimization. First, since the 
density measures at different scales can be computed 
independently of each other, parallel programs can 
be applied to accelerate the processing of the PM on 
multi-core or Graphics Processing Unit (GPU) pro
cessors. Second, since the computation of a PM 
includes repetitive processing of overlapped data 
subsets, the algorithm can be further sped up via 
dynamic programming or by preprocessing of the 
input data and storing (partial) results for future 
reuse. Third, the data size can be reduced by storing 
the PM in kd-trees, quad-trees, or R-trees, which 
have been successfully used in other geospatial appli
cations. These optimization options will be explored 
in the future research. As a proof of concept in 

Figure 12. Number of local density peaks and standard devia
tion of kernel density at different scales.
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Matlab, we will develop the visualization tools in 
open-source platforms (such as Python and R) to 
facilitate research sharing and reproducibility.

5. Discussion

This article implements a Pyramid Model data frame
work (PM) in a 3D environment and applies a suite of 
3D visualization techniques to analyze point patterns at 
multiple scales. Unlike traditional spatial analysis 
usually conducted at a single scale or a few discrete 
scales, the PM integrates space and scale in a 3D view 
to represent the continuous variation of spatial pattern 
across multiple scales. This study uses two density-based 
measures (quadrat density and kernel density) to eval
uate the utility of the PM in multi-scale spatial analysis. 
The visualization of the global and local density peaks in 
the 3D space explicitly displays the varying locations of 
point clusters at different scales. Additionally, point 
clusters detected with various scaling parameters (quad
rat size and bandwidth) are visualized as 3D voxels in 
the PM. The distribution of the voxels indicates loca
tions and scales where point clusters can be detected and 
demonstrates the process of how local clusters evolve to 
general clusters at a courser scale.

Existing multi-scale analytical approaches tend to 
treat space and spatial scale as separate variables, 
controlling one variable and analyzing the change 
in the other variable. The PM improves upon the 
conventional representation by integrating space and 
spatial scale in a 3D environment, which is analo
gous to the idea of a space-time cube that combines 
space and time in a 3D space. Advances in comput
ing techniques enable efficient visualization of 3D 
vectors and volumes, which lays a foundation for 
modifying conventional statistical tools for imple
mentation in the PM. As demonstrated in the point 
pattern analysis reported in this study. The PM pro
vides a new perspective to analyze multi-scale spatial 
patterns. The global and local density peaks visua
lized in the 3D space explicitly show the varying 
locations of point clusters when computed at differ
ent scales, demonstrating the potential of the PM as 
a platform to understand and measure scale sensitiv
ity of spatial metrics. The high-density voxels vividly 
show a continuous progression of point pattern den
sities across multiple scales. These visualizations 
combine “snapshots” of spatial patterns at discrete 
scales in a unified view that can explicitly display 
nested relations and hierarchical structures of multi- 
scale patterns. The PM provides a novel framework 
to facilitate the comprehension and analysis of multi- 

scale spatial patterns and relations. Overall, this arti
cle demonstrates how a linked and hierarchical data 
framework (the PM) can offer increased analytical 
power to detect, identify, and explore fine- and 
coarse-scale insights about point pattern densities 
and clustering.

One aspect of multi-scale point pattern analysis is to 
develop general and specific conclusions about the spatial 
processes that generate the point data. While it is widely 
acknowledged in the geospatial disciplines that such gen
erating processes operate within specific scale ranges, there 
is at present no catalog or inventory of what processes 
emerge at particular scales, beyond rough estimates. In 
physical processes, for example, it is known that isostatic 
rebound is evident at continental but not local scales, while 
erosion and deposition tend to emerge at local or regional 
but not continental scales. In social processes, similar 
analogies can be drawn about land cover as opposed to 
land use, while some processes such as migration can be 
detected at local, regional, and global scales. These scale 
categories (local, regional, etc.) are discursive, however, 
and not precisely quantifiable. Because the PM provides 
metrics as well as visualization across a range of scales, the 
data framework affords the opportunity to search for 
a more precise quantification of the scale at which specific 
spatial patterns emerge or disappear. While the research 
reported here does not make that demonstration, the 
potential is evident and this forms an interesting direction 
for future work. Furthermore, machine learning techni
ques can be applied to associate patterns in the PM with 
different spatial processes. The current outcomes point to 
several additional directions for further development as 
discussed below.

First, further research is needed to develop inferential 
functions of the PM. Section 4.4 presents a preliminary 
analysis to compare the PM visualizations between 
a random point set and the synthetic clustering point 
set, which exhibit distinct patterns in the PM. In future 
research, such differences could be systematically ana
lyzed in a Monte Carlo simulation. By comparing mean
ingful metrics in the PM, a formal framework can be 
developed to implement inferential testing. In addition 
to detecting prominent patterns at different scales, spatial 
models can be built in the PM framework to quantify 
multi-scale relations between predictive and dependent 
variables. Unlike simple visualizations that may some
times be influenced by analysts’ subjective opinions, the 
quantitative methods will provide reliable metrics to 
detect, classify, and rank multi-scale spatial patterns in 
the PM. Further exploration is needed to fully realize the 
potential of the PM in analyzing other spatial metrics. 
One area of work is mentioned earlier in the paper that 
(in addition to raw or absolute data values) the PM can 
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represent the ratio between a variable and associated 
background variables such as point event density and 
population density to account for non-homogenous 
population background, which is a common issue in 
many geographic domains, for example, in disease ana
lysis and monitoring (Shi, 2010). Additionally, the PM 
framework is applicable to other scale-sensitive spatial 
indices, such as spatial autocorrelation (e.g. Moran’s I), 
GWR coefficients, accuracy of image classification and 
land cover change prediction (Carlson et al., 2020). Work 
on modifying conventional calculations for these meth
ods and to prepare them for implementation in the PM 
framework is underway.

A possible limitation of this work is that the novel 
visualization of the PM may inevitably introduce extra 
cognitive load to viewers. The issue also exists in other 
geovisualization platforms where the controversies about 
2D vs. 3D and static vs. animated are far from settled. For 
example, most critiques of the space-time cubes and 
aquariums popularized in Time Geography 
(Hägerstraand, 1970; Kwan, 2004; Miller, 1991) centered 
on cognitive challenges and usability in specific analytical 
tasks. However, these critics did not prevent the visuali
zation methods from becoming a profound concept in 
geography and a widely used visualization platform in 
GIS. To resolve such issues in the PM, empirical assess
ments need to be conducted to collect user feedback and 
evaluate the usability of the PM in different analytical 
tasks. Usability might be assessed in the context of how 
much training time is needed before scholars can effec
tively use the PM-based tools to analyze data. New visua
lization techniques, such as linked views, controlled 
animation, and augmented reality, can be applied to the 
PM to minimize the cognitive load and facilitate human 
users to utilize the PM for analytical tasks.

Another limitation of this work is the processing time 
required to reformat spatial data for input to a PM, as 
well as to prepare modeling and visualization outcomes 
for summary and display. The present experiments are 
displayed using Matlab, a proprietary platform. 
Acknowledging that open-source languages create 
a better option for research sharing and reproduction, 
the authors originally tried to develop visualizations 
using Python packages including Plotly and Mayavi. 
However, these packages have several technical chal
lenges. For example, both packages are slow in render
ing 3D isosurfaces and often crash when changing the 
view, creating impediments for real-time data explora
tion. Additionally, it was difficult to use the Python 
packages to plot different types of 3D objects (points, 
lines, slices, and volumes) within the same view. To this 

end, the authors chose Matlab at this experimental 
stage. In the future, after optimization of data structure 
and algorithms, tools will be implemented in Python.

6. Conclusion

The major contributions of this work can be sum
marized as follows. First, this study demonstrates the 
potential of the PM in advancing multi-scale spatial 
analysis and modeling. The integrated view of space 
and scale allows users to observe and to quantify 
nested relations between spatial patterns at different 
scales and understand the scaling issue and MAUP 
in spatial analysis. Second, this study demonstrates 
the use of 3D visualization techniques, including 
interactive animation, to analyze the PM. Unlike 
traditional spatial data usually represented in a 2D 
space, the PM requires a new suite of analytical tools, 
essentially modifying and expanding the conven
tional computations, that can explore the internal 
patterns in 3D volumes. This study shows how the 
existing 3D visualization tools (e.g. volume display, 
isosurfaces, and slicing) can be applied to analyze 
multi-scale spatial patterns in the PM. Third, as the 
issue of scale exists in spatial and temporal data as 
well as spatio-temporal data, the research on models 
lays a foundation for developing new visualization 
and analytical tools that support multi-scale spatio- 
temporal analysis.
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