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ABSTRACT

Many spatial analysis methods suffer from the scaling issue identified as part of the Modifiable
Areal Unit Problem (MAUP). This article introduces the Pyramid Model (PM), a hierarchical data
framework integrating space and spatial scale in a 3D environment to support multi-scale analysis.
The utility of the PM is tested in examining quadrat density and kernel density, which are
commonly used measures of point patterns. The two metrics computed from a simulated point
set with varying scaling parameters (i.e. quadrats and bandwidths) are represented in the PM. The
PM permits examination of the variation of the density metrics computed at all different scales. 3D
visualization techniques (e.g. volume display, isosurfaces, and slicing) allow users to observe
nested relations between spatial patterns at different scales and understand the scaling issue
and MAUP in spatial analysis. A tool with interactive controls is developed to support visual
exploration of the internal patterns in the PM. In addition to the point pattern measures, the PM
has potential in analyzing other spatial indices, such as spatial autocorrelation indicators, coeffi-
cients of regression analysis and accuracy measures of spatial models. The implementation of the
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PM further advances the development of a multi-scale framework for spatio-temporal analysis.

1. Introduction

Multi-scale analysis of spatial pattern is a long-
standing challenge in GIScience. Analyses conducted
at different spatial scales often create different results.
The importance of scale in spatial analysis has been
epitomized in the well-known Modifiable Areal Unit
Problem (MAUP) (Openshaw 1983). Ideally, spatial
data should be analyzed at the level where spatial
processes become evident, are best understood and/or
where spatial relationships are maximized (Lam 1983;
Wagner and Fortin 2005). However, most spatial ana-
lyses and modeling are conducted at a pre-defined
scale or the scale where data is collected, which may
miss critical processes and relationships concealed at
other scales. Currently, the increasing diversity of
geospatial data collected at different resolutions (e.g.
satellite, UAV, and field-survey data) poses challenges
for data integration and model coupling in existing GIS
platforms and spatial analysis tools. Given the complex
and multi-scale nature of big geospatial data, there is
a pressing need for developing novel modeling frame-
works and analytical tools to understand the multi-
scale processes and relationships in various geographi-
cal phenomena.

The challenge of multi-scale analysis can be attrib-
uted to the traditional presentation of geospatial data.
In prevalent geographic information systems (GIS),
space is conventionally represented in “flat layers”
and spatial analysis tools usually operate at a single
scale. For instance, with a predefined bandwidth, ker-
nel density can detect clusters of spatial features at
a certain scale. To examine the clustering patterns at
other scales, the bandwidth needs to be adjusted, often
using a “trial-and-error” approach. Such snapshots of
spatial patterns at discrete scales are inefficient and
inconsistent in showing variation of spatial patterns
across scales. Additionally, the patterns of focal statis-
tics (e.g. mean and standard deviation) and local spa-
tial indicators (e.g. spatial autocorrelation) may vary
with the size of a moving window. Spatial modeling
tasks (e.g. image classification and land cover change
modeling) often incorporate neighborhood conditions
within such moving windows (Chica-Olmo & Abarca-
Hernéndez, 2000; Wu, 2002). However, the choice of
window size is often subjectively determined, leading
to modeling results that only capture spatial relation at
a single scale. A common solution to this issue is
repeating the analysis at a few selected scales or
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different sizes of moving windows. Discrete sampling
in the scale dimension cannot fully uncover the con-
tinuous variation of spatial pattern across different
scales.

Analytical tools and modeling frameworks have been
developed to detect spatial patterns at multiple scales
and measure the scales of processes underlying observed
geographic phenomena. Notable work includes
Multiscale Geographically Weighted Regression
(MGWR) developed by (Fotheringham et al., 2017),
which relaxes the GWR’s assumption of single band-
width by allowing it to vary among predictive variables.
Some cluster detection techniques, such as DBSCAN
(Ester et al., 1996) and Kulldorff’s scan statistic
(Kulldorft, 1997), can detect spatial clusters of various
shapes and sizes. The detected clusters may signal spa-
tial processes operating at different scales but fail to
reveal the hierarchy and nested relations between multi-
scale processes. Additionally, a variogram is a common
metric used to measure the scale of spatial dependence
(Behrens et al., 2019) and neighborhood effect (Lam
et al.,, 2018). The range in a variogram indicates the
scale range within which a variable is spatially autocor-
related. Another notable example occurs when aggre-
gating spatial data into areal units. The scale effect may
invoke the Modifiable Areal Unit Problem (MAUP),
which refers to the phenomena that analysis conducted
in different sizes (scale) and shapes (zoning) of spatial
units may lead to different results. MAUP in different
types of analysis has been extensively investigated in the
literature (e.g. Ye, 2021; Ye & Rogerson, 2021). To
mitigate MAUP in spatial analysis, Chen et al. (2019)
used a nugget-sill ratio in semi-variograms as an indi-
cator to determine the optimal scale for spatial aggrega-
tion. Duque et al. (2018) introduced a nonparametric
statistical test (S-maup) to measure the sensitivity of
spatial variables to the effect of MAUP.

The research on MAUP increases our understanding
about the scale effect in spatial analysis and provides
actionable tools to identify optimal scales for spatial
analysis and modeling. Existing multi-scale analysis
approaches tend to treat space and scale as two separate
variables. They either analyze changes of a spatial metric
at different scales (e.g. comparing semi-variogram at
multiple scales) or compare scales of spatial processes
at different locations (e.g. MGWR). However, the exist-
ing approaches cannot fully reveal hierarchical struc-
tures and nested relations between spatial processes at
different scales. The solution to this challenge requires
a modeling framework that can seamlessly integrate
space and scale to represent spatial metrics varying in
both location and scale. Despite advances in data mod-
els that couple traditional views of space and time

(Hagerstraand, 1970; Kraak, 2003; Miller, 1991), tight
couplings of spatial data across progressions of scale are
at present limited to indirect or inferential methods.
Recently, Qiang et al. (2014) developed a multi-scale
temporal model and subsequently extended it into
a Pyramid Model (PM) that integrates spatial location
and spatial scale in a true 3D space (Qiang et al., 2018;
Qiang & Van de Weghe, 2019). The PM affords the
opportunity to directly link spatial patterns across
scale but has not yet been applied to analytic tasks.
This paper demonstrates that the PM seamlessly inte-
grates space and scale in a 3D tool that supports simul-
taneous monitoring and assessment of spatial patterns
across a range of scales. By extending conventional
spatial statistical methods to operate within the PM
framework, this paper undertakes that challenge, mod-
ifying conventional spatial analytic tools for multi-scale
point pattern analysis. The contribution of the work is
to demonstrate how the PM implementation offers
insights about density variation and cluster emergence
across spatial scales that are not directly available when
such analyses are conducted at individual or discrete
processing scales.

The remainder of the article is organized as follows.
First, common methods for density-based point pattern
analysis are reviewed, and the scale issues in these
methods are discussed. Next, the PM is introduced as
well as relevant model variants in the multi-scale analy-
sis framework. Then, kernel density and quadrat density
metrics are implemented in the PM. Application to
density estimation and point clustering is demonstrated
for a synthetic dataset to explore the types of interpreta-
tions and insights that can be gained. Finally, the find-
ings and contributions of this study will be discussed,
and future work will be proposed.

2. Density-based point pattern analysis
2.1. Quadrat density

Quadrat density is a density-based measure of point
pattern, which divides the space into sub-regions (i.e.
quadrats) and computes the point density in each quad-
rat (O’Sullivan & Unwin, 2010; Yuan et al., 2020). For
example, in Figure 1(b), the study area is divided into
uniformly shaped quadrats, and point density in each
quadrat is the ratio between total points and quadrat
area. In addition, quadrats can take different shapes,
such as hexagons, squares, triangles, and Voronoi poly-
gons. Despite the simplicity in computing and interpre-
tation, quadrat density analysis seriously suffers from
the Modifiable Areal Unit Problem (MAUP). The ana-
lysis result is highly sensitive to the size of the quadrat
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Figure 1. Pattern variations of quadrat density and kernel den-
sity at different scales. a) a simulated point set. b) point density
in small quadrats. c) point density in large quadrats. d) point
density in large quadrats with shifted position. e) — g) kernel
density maps with different bandwidths (BW: bandwidth).

and only reflects point patterns at a single scale. A small
quadrat size can detect subtle point clusters at a local
scale (Figure 1(b)), but mask out general patterns at
a coarser scale. A large quadrat size does the opposite:
detecting coarse-scale density patterns while missing
subtle clusters at local scales (Figure 1(c)). Even with
the same quadrat size, the analysis result may differ if
the alignment of the quadrat changes (Figure 1(d)). In
most studies, the choice of quadrat size, shape, and
arrangement is based on subjective decisions. Uniform
quadrats may not equally fit the entire data sets in which
clustering patterns are prominent at different scales.

2.2 Kernel Density

Whereas quadrat density simply counts points within
quadrat cells, kernel density develops a continuous sur-
face that can aid the detection of clusters and “hot spots”
where spatial point patterns are concentrated. A kernel
function is applied to each point, measuring the point
density within the kernel “envelope.” In addition to the
number of points in a kernel, the distance from other
points is taken into account, allowing the kernel to take
on various shapes and sizes (Yin, 2020). The surface is
generated by aggregating individual kernel functions. In
GIS, the most commonly used are the quartic function
(biweight) and Gaussian function, both of which can
create a relatively smooth density surface. The shape of
the kernel is determined by the bandwidth h, which is
the scaling or smoothing factor for kernel density maps.
Larger h creates more widespread kernels. Thus, kernel
density functions with a larger s are smoother and can
highlight general patterns at a coarser scale, while
a smaller h can detect clusters at a finer (local) scale.
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Despite the importance of h, there is no general con-
sensus on the choice of h for a particular dataset,
although specific disciplines tend to adopt specific
fixed estimation methods (see, for example, Diggle
et al. (2005) or Gatrell et al. (1996) for spatial epidemiol-
ogy). In most cases, users either arbitrarily set a fixed
value for h based on their experience, or use the
Silverman’s “rule-of-thumb” bandwidth (Silverman,
1986) in spite of cautionary assumptions about applying
this method for non-Gaussian distributions. However,
a fixed bandwidth may not perform equally well in local
areas, as it may undersmooth areas with sparse features
and oversmooth high-density areas. To address this
issue, adaptive kernel estimators are developed to
apply varying h over space according to the local density
(Mills, 2011; Van Kerm, 2003). Tiwari and Rushton
(2005, 2010) demonstrated that spatially adaptive kernel
can equalize the variance in estimated density while
maximizing the amount of geographic details portrayed
on the map. In addition to the interpretation difficulties
for maps created by adaptive estimators, there are also
debates on whether the adaptive kernel estimators really
bring advantages with the extra computational com-
plexity (Terrell & Scott, 1992).

Regardless of how the bandwidth is determined, ker-
nel density surfaces are often mapped to visualize the
clusters as a “heat map” (Figure 1(e-g)). Using existing
(fixed or adaptive) methods, a kernel density map only
represents density estimation at a single scale at each
location. In a single map, it is impossible to observe the
evolving spatial pattern across multiple scales, or how
the local clusters at local scales converge or cancel each
other at coarser scales. The PM is proposed as a method
to overcome the single-scale limitation for either quad-
rat or kernel density by organizing a framework linking
density estimates across scales.

3. The pyramid model framework

In the PM, each point represents a specific spatial
unit (a pixel) in geographic space. The horizontal
position (x, y) of the point represents the spatial
location of the unit, which is usually defined as the
centroid of the unit. The vertical position (z) indi-
cates the size of the unit (Figure 2). Using raster data
as an example, the spatial units at the finest resolu-
tion are pixels, which are represented as points at the
lowest level of the pyramid. Points at the second
level represent the aggregation of spatial units in
a window (2 x 2 pixels). Points at the nth level
represent windows of n x n pixels. In such a way,
windows of progressive sizes are projected onto
a lattice of points in the 3D space, where the (x,y)
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Figure 2. Conceptual framework of PM.

coordinates of a point represent the horizontal posi-
tion of the centroid of each window, and z represents
the size of the window. Points at the same z level
may represent overlapping windows of the same size
(e.g. fi12 and f> 1, in Figure 2), which overcomes the
limitation of non-overlapping aggregation in quadrat
density. Not limited to square shape, the windows
can be other circles or hexagons but have to remain
consistent within a PM.

Each point in the 3D point lattice is associated
with a spatial index (f;,.) computed in the window
the point represents. The index f,,. can represent
a summary statistic (e.g. mean, standard deviation
or density), or a spatial autocorrelation metric (e.g.
Moran’s I), or fragmentation index (e.g. fractal
dimension). The index f,,. in different windows
thus reflects spatial patterns in a particular place
and at a particular scale. In other words, the PM
stacks 2D spatial indices along the z-axis into a 3D
matrix, where the horizontal dimensions (the x and
y axes) represent the space and the vertical dimen-
sion (the z axis) represents the scale at which the
indices are computed. If the windows are con-
strained to fit completely within a study area, the
size of the layer shrinks as the window size
increases, until reaching the top of the pyramid
that covers the entire study area. For intuitiveness,
a square study area is used in the experiment in
this study. However, the PM has various configura-
tions to represent spatial data in other tessellations
(hexagons, Voronoi polygons and irregular poly-
gons), where the coordinates of points in the 3D
space (x, y, z) are defined differently to meet spe-
cific analytical purposes. Additionally, the PM can
be developed in other shapes if the study area is
not a square.
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4. Density-based point pattern analysis in PM

4.1. Dataset

A simulated point set in a 500 x 500 units artificial study
area is used to test the utility of the PM for point pattern
analysis. These points imitate individual events such as
crime incidents or disease victims distributed over geo-
graphic space. As an aside, the point values could be raw
counts or ratios (for example, number of disease mortal-
ities per 100,000 population). To create complex and
multi-scale patterns, the point set is combined from four
clustered point sets simulated using the Python Spatial
Analysis Library (PySal; Rey & Anselin, 2007). The four
clustering point sets were simulated in a Poisson cluster
process. For each point set, n parent points are randomly
distributed in the study area, and then m child points are
simulated within a radius r centered around each parent.
This simulation creates a known clustering pattern of the
child points. By varying m, n, r, four sets of child points
with different clustering patterns are generated and then

% &
e): combination of point sets in (a-d)

@ Child point

® Parent point

% 3 E o —'} % p £

Figure 3. The simulated point set. a) — d) four clustered point
sets simulated using different parameters. e) the composite
point set combining a) — d).



combined by overlay into a single-point set (Figure 3). In
the following analyses, the combined point set is used to
test the ability of the PM for detecting multi-scale point
patterns.

4.2. Representing quadrat density in PM

Quadrat density suffers effects of MAUP when choosing
quadrat size, as discussed above. In this session, we
demonstrate the PM representations of quadrats of the
simulated point set. The configuration of the PM for
quadrat density is the same as demonstrated in Figure 4.
Point density is computed in square quadrats of differ-
ent sizes, which are projected to points in a 3D space.
Unlike the traditional quadrat analysis in a fixed tessel-
lation, point density in the PM is computed in a moving
window rolling through the point set (Figure 4(a,b)).
This process is repeated for different window sizes.
Next, the computed density D of each window is pro-
jected to a point (x, y, z) in the 3D PM, where x and y are
the centroid of the window and z corresponds to the
window size. For computation and visualization, the
point lattice in the PM is implemented as a 3D matrix
where each voxel represents a specific window. In other
words, the construction of a PM stacks density rasters
computed for different window sizes into a 3D pyramid
(Figure 4(c—e)). Here, we define z as equal to half of the
length of one side of the window. Thus, a voxel at (x, y,
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Z (window size)
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z) represents a window whose centroid is at (x, y) and
the side length is 2z. As such, the point density com-
puted for all window sizes is represented by voxels in
a 500*500*250 pyramid.

The result of spatial analysis often varies at different
scales. Even the answer to a simple question “where are
the points densest” can differ when computed at differ-
ent scales. To demonstrate this phenomenon, the global
density peak at each height (z) in the PM is selected and
linked into a sequence. A global density peak is the
position where the point density is highest when mea-
sured at a specific scale (window size). The density peak
is represented by the point at (x, y, z) where (x, )
denotes the centroid of the window and z indicates the
window size. Figure 5 illustrates the sequence of global
density peaks measured in different window sizes, and
in four different views. Altitude is the angle of the view
point to the horizon. Altitude ranges from 0 degree (a
horizontal, profile view) to 90 degrees (a vertical, over-
head view). Azimuth is the direction of the view point
along the horizon (0 degree points to the north). From
the sequence in Figure 5, we can observe that the density
peak constantly changes its position in the horizontal
dimension (x, y), indicating that the area with the den-
sest points is located at different positions when mea-
sured at different scales. The density peak at lower levels
(small z) moves dramatically in the horizontal dimen-
sions, implying that multiple density peaks compete for

Z (window size)

Figure 4. Representing point density in different sizes of moving windows in a 3D PM. a) moving window rolling through a point set.
b) color-coded point density in moving windows. ¢) a point set in a 2D space. d) point density in different sizes of moving windows. e)

a 3D pyramid representing all moving windows.
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Figure 5. Sequence of the global density peak in the PM in four different view angles.

the global peak at the local scales. The horizontal posi-
tion of density peak begins to stabilize as z increases,
except for another large shift occurring when z is about
100, as well as some moderate shifts in the middle range.
The movement of the global density peak in the PM
visualizes the process of how spatial analysis result
changes at different scales. It is important to note that
positional shifts and extreme magnitude variations are
readily apparent within the PM framework, but would
be more difficult to identify exhaustively in a single-
scale or selective-scale analysis. The ability to visualize,
extract, and analyze progressive changes in summary
statistics at different scales and locations is one of the
several advantages contributed by the use of the PM
framework.

In addition to the global density peak, moving
windows in which the density exceeding a certain
threshold can be selected and displayed as voxels in
the PM. As the distribution of point density varies
in different window sizes, we use percentiles as the
threshold to select high-density windows. In
Figure 6, voxels in the 99th percentile of point
density at each z level are displayed in the PM.
These voxels represent the top 1% high-density
areas measured in each window size. In an inter-
active 3D view, one can navigate to observe the
structure of the displayed voxels from different
view angles. Many subtle high-density voxels are

2 (window size)

Z (window size)

scattered at lower z levels, indicating that many
small point clusters exist at a fine scale. As the
scale becomes coarser (z increases), the scattered
voxels converge to larger clusters of voxels. These
clusters represent spatial locations and scales where
the point density is high. For example, Cluster 1
(denoted as C1) develops at fine scales, spans a wide
range of scales, and disappears when z (window
size) increases to 140. Analogously, C2 emerges
where z = 70 and ends where z reaches 170. The
long shapes of C1 and C2 indicate two point clus-
ters that are detectable across a wide range of scales.
In contrast, C3 is smaller in size and floats at
medium height in the PM. This floating voxel clus-
ter represents a point cluster that only appears
within a specific range of scales and is not detect-
able at other scales. The isolation of C3 from other
voxels means that it is formed by several point
clusters at fine scales. Unlike C1 and C2 that are
detectable on a wide range of scales, CI is a kind of
spatial pattern that can be easily missed in spatial
analysis with randomly chosen window sizes.

4.3. Representing kernel density in PM

The configuration of PM for kernel density maps is slightly
different from that for quadrat density. In a PM, kernel
density maps created with different bandwidths are placed

100 200 300 400 500

x
b) Azimuth: 0°  Altitude: 90°

a) Azimuth: 45°  Altitude: 15°

100 200

c) Azimuth: 90°  Altitude: 0°

d) Azimuth: 0°  Altitude: 0°

Figure 6. Voxels in the ggth percentile of point density measured in different window sizes. The colored line indicates the sequence of

the global density peak as shown in Figure 5.
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Figure 7. The color line is the sequence of global peaks in kernel density maps of different bandwidths. For comparison, the gray
dotted line is the sequence of the global peaks of quadrat density shown in Figure 5.

at different heights in the 3D space. As the default function
in most GIS, kernels are created using the quartic
(biweight) function. In the PM, each voxel at (x, y, 2)
represents the kernel density computed using a specific
bandwidth z at the horizontal position (x, y). As shown in
Figure 7, the global density peak in a kernel density map
changes with the bandwidth. The horizontal location of the
density peak shifts dramatically at low z levels (small
bandwidths). As z (bandwidth) increases, the density
peak stabilizes and gradually moves toward the center of
the study area. The global peaks of kernel density (color
line in Figure 7) and quadrat density (dotted line) generally
follow the same trend, both of which shift from east to west
at the fine scales, and gradually move toward the center at
medium and coarse scales. However, the two global peaks
do not completely align due to different calculations of the
two density measures. The moving window for quadrat
density rolls through each location in the study area, while
kernel density map aggregates kernels centered at each
point. Compared with quadrat density, the global peak of
kernel density is more stable with relatively fewer move-
ments in location. In particular, at medium and coarse
scales (i.e. bandwidth >50), the peak of kernel density has
a very smooth transition from the eastern side to the center
of the study area. This implies that spatial pattern displayed
in kernel density maps is less sensitive to scale changes
compared to quadrat density maps. This seems logical
given that kernel density creates a continuous surface,
while quadrats are discretized according to quadrat cell
size. Herein lies a second benefit of the PM, namely, the
capability to compare multi-scale patterns across multiple
methods of computation (here, a discrete and a continuous
example). Computing both metrics across single or selec-
tive scales would provide only a single snapshot or
a sampling of densities, leaving the analyst to infer inter-
mediary outcomes.

In addition to the global peak, local peaks (also
known as local maxima) can reveal additional point
clusters. A local peak reflects a point (x,y) where the
value (i.e. density) is higher than values at the

surrounding points. As the bandwidth increases,
subtle clusters at local scales are gradually smoothed
out and general clusters at coarser scales start to
emerge. In this study, the algorithm developed by
Natan (2021) was used to detect local peaks in kernel
density maps. The algorithm repeats for each band-
width to create multi-scale kernel density maps in
the PM. Local density peaks detected with different
bandwidths are projected as 3D points in the PM,
where (x, y) represent horizontal locations of the
peaks, and z represents the bandwidths. As shown
in Figure 8, most local peaks are detected at lower
z levels (bandwidth <20). A few linear sequences of
local peaks extend to higher z levels with changing
positions in the horizontal dimension. These linear
streams represent point clusters that are prominent
across a wider range of scales. These streams visua-
lize the progression of local point clusters into gen-
eral clusters at a coarser scale and create linkages
between local-scale and large-scale clusters. The
length of the streams in the z-dimension indicates
the range of scales (bandwidths) within which the
point clusters are detectable, effectively highlighting
the most dominant clusters in the pyramid.

Figure 9 displays voxels with a density in the 99™
percentile measured in each bandwidth (z). These voxels
represent high-density areas detected at different scales.
Unlike Figure 6 for quadrat density, the high-density
voxels of kernel density are in smoother shapes and
linearly extend along the z-dimension. At fine scales
(z < 10), the high-density voxels are scattered at differ-
ent positions in the horizontal dimensions, which repre-
sent many clusters detected at finer scales. As the
z (bandwidth) increases, the scattered voxels disappear,
leaving only a cylinder of voxels around the density
peak. The PM provides a complete view of the evolution
of the point pattern across different scales. For example,
when zooming in to lower z levels (0 < z < 30; Figure 9
(b-e)), one can observe the locations of point clusters as
well as the range of bandwidths where these clusters are
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detectable. Additionally, one can observe how the local In addition to navigating in the 3D environment,
clusters disappear or converge to general clusters in  interactive controls have been developed to adjust the
a continuous view. As an example, the box in  visualization parameters. For example, a kernel density
Figure 9(d) highlights a convergence of several small  map with a specific bandwidth can be added to the PM
clusters to a general cluster at a coarser scale. (Figure 10(a)). Using a slider, the kernel density map
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can move to different z-values, showing density patterns
computed with different bandwidths. Combining the
kernel density map with the PM provides an intuitive
transition from a kernel density map to its multi-scale
representation in the PM. It also allows users to observe
the continuous progression of clustering patterns across
scales and the hierarchy between the «clusters.
Additionally, the threshold can be adjusted to select
voxels with a density of different percentiles
(Figure 10(b)). The higher the threshold being selected,
the smaller the volume of voxels is displayed in the PM,
representing locations where the point density is above
the threshold. In such a way, users can choose appro-
priate thresholds to detect point clusters and observe the
distribution of detected clusters at different scales.

4.4. Comparing random and clustered pattern

In order to explore the inferential potential of the PM,
we compared the PM visualization of kernel density
between the simulated point set and a random point
set with the same number of points. As shown in
Figure 11(al-4), the global density peak of the clustered
point set stabilized quickly at a fine scale (small band-
width), while the global peak of the random point set
shows dramatic shifts until reaching a coarser scale
(bandwidth = 50). The 99th high-density voxels of the
clustered point set are more concentrated, which results
in a major column extending from finer scales to coarse
scales (Figure 11(b1&2)). In contrast, the high-density
voxels of the random set tend to appear at multiple
locations Figure 11(b3&4), and these voxels converge
to a single column at a higher level. The local density
peaks of the random point set (Figure 11(c1&c2)) show
longer linear streams than those of the clustered set
(Figure 11(c3&c4)). Figure 12 shows that local density
peaks and the standard deviation of the density of both
point sets decline as the scale becomes coarser.
However, the clustered point set has fewer local density
peaks and larger standard deviation than the random set
at all scales, and the differences are most prominent

Number of local peaks at different scales

s
1500 - 4 x10°_Standard deviation of density at different scales

| —— Clustered
Random

1000

500

0 10 20 30 40 50 o 10 20 30 40 50
Scale (bandwidth) Scale (bandwidth)
a)

Figure 12. Number of local density peaks and standard devia-
tion of kernel density at different scales.

when the bandwidth is around 10. These comparisons
provide preliminary evidence of the inferential power of
the PM in differentiating processes behind the observed
patterns. However, more research is needed to identify
metrics that can be used for statistical testing and
develop a formal framework to infer and measure spa-
tial processes.

4.5. Computational aspects

The point sets used in the study were generated using
PySal package in Python. Due to fast and stable 3D
rendering capacities, Matlab® was chosen as a platform
to implement the 3D visualization of the PM. Matlab
can visualize a variety of vector and raster features in an
integrated 3D view. Visualization tools (e.g. volume
display, isosurfaces, and slices) built on Matlab are
applied to display vector and raster features extracted
from the PM. Visualization tools (e.g. volume display,
isosurfaces, and slices) built on Matlab are applied to
display vector and raster features extracted from
the PM.

The computing environment was a desktop compu-
ter with a 12-core CPU at 3.65 GHz, 128GB RAM and
an AMD Radeon Pro WX 3200 graphics card. Most of
the computational load is on the calculation of multi-
scale density in the PM. Using a sequential program, the
computer takes 40 seconds to generate a PM for kernel
density and 50 minutes for a quadrat density PM. The
slower computing time for the quadrat density can be
attributed to the “for loops” used to calculate density in
different moving windows and bandwidths. The data
size of a PM model (500 x 500 x 250) in this study is
~500 MB. Once the multi-scale density in PM is com-
puted, the rendering time of the 3D visualization is
trivial. In Matlab, all the demonstrated visualization
can be rendered within 5 seconds.

Still, the algorithm and data structure of the PM
still have room for optimization. First, since the
density measures at different scales can be computed
independently of each other, parallel programs can
be applied to accelerate the processing of the PM on
multi-core or Graphics Processing Unit (GPU) pro-
cessors. Second, since the computation of a PM
includes repetitive processing of overlapped data
subsets, the algorithm can be further sped up via
dynamic programming or by preprocessing of the
input data and storing (partial) results for future
reuse. Third, the data size can be reduced by storing
the PM in kd-trees, quad-trees, or R-trees, which
have been successfully used in other geospatial appli-
cations. These optimization options will be explored
in the future research. As a proof of concept in



Matlab, we will develop the visualization tools in
open-source platforms (such as Python and R) to
facilitate research sharing and reproducibility.

5. Discussion

This article implements a Pyramid Model data frame-
work (PM) in a 3D environment and applies a suite of
3D visualization techniques to analyze point patterns at
multiple scales. Unlike traditional spatial analysis
usually conducted at a single scale or a few discrete
scales, the PM integrates space and scale in a 3D view
to represent the continuous variation of spatial pattern
across multiple scales. This study uses two density-based
measures (quadrat density and kernel density) to eval-
uate the utility of the PM in multi-scale spatial analysis.
The visualization of the global and local density peaks in
the 3D space explicitly displays the varying locations of
point clusters at different scales. Additionally, point
clusters detected with various scaling parameters (quad-
rat size and bandwidth) are visualized as 3D voxels in
the PM. The distribution of the voxels indicates loca-
tions and scales where point clusters can be detected and
demonstrates the process of how local clusters evolve to
general clusters at a courser scale.

Existing multi-scale analytical approaches tend to
treat space and spatial scale as separate variables,
controlling one variable and analyzing the change
in the other variable. The PM improves upon the
conventional representation by integrating space and
spatial scale in a 3D environment, which is analo-
gous to the idea of a space-time cube that combines
space and time in a 3D space. Advances in comput-
ing techniques enable efficient visualization of 3D
vectors and volumes, which lays a foundation for
modifying conventional statistical tools for imple-
mentation in the PM. As demonstrated in the point
pattern analysis reported in this study. The PM pro-
vides a new perspective to analyze multi-scale spatial
patterns. The global and local density peaks visua-
lized in the 3D space explicitly show the varying
locations of point clusters when computed at differ-
ent scales, demonstrating the potential of the PM as
a platform to understand and measure scale sensitiv-
ity of spatial metrics. The high-density voxels vividly
show a continuous progression of point pattern den-
sities across multiple scales. These visualizations
combine “snapshots” of spatial patterns at discrete
scales in a unified view that can explicitly display
nested relations and hierarchical structures of multi-
scale patterns. The PM provides a novel framework
to facilitate the comprehension and analysis of multi-
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scale spatial patterns and relations. Overall, this arti-
cle demonstrates how a linked and hierarchical data
framework (the PM) can offer increased analytical
power to detect, identify, and explore fine- and
coarse-scale insights about point pattern densities
and clustering.

One aspect of multi-scale point pattern analysis is to
develop general and specific conclusions about the spatial
processes that generate the point data. While it is widely
acknowledged in the geospatial disciplines that such gen-
erating processes operate within specific scale ranges, there
is at present no catalog or inventory of what processes
emerge at particular scales, beyond rough estimates. In
physical processes, for example, it is known that isostatic
rebound is evident at continental but not local scales, while
erosion and deposition tend to emerge at local or regional
but not continental scales. In social processes, similar
analogies can be drawn about land cover as opposed to
land use, while some processes such as migration can be
detected at local, regional, and global scales. These scale
categories (local, regional, etc.) are discursive, however,
and not precisely quantifiable. Because the PM provides
metrics as well as visualization across a range of scales, the
data framework affords the opportunity to search for
a more precise quantification of the scale at which specific
spatial patterns emerge or disappear. While the research
reported here does not make that demonstration, the
potential is evident and this forms an interesting direction
for future work. Furthermore, machine learning techni-
ques can be applied to associate patterns in the PM with
different spatial processes. The current outcomes point to
several additional directions for further development as
discussed below.

First, further research is needed to develop inferential
functions of the PM. Section 4.4 presents a preliminary
analysis to compare the PM visualizations between
a random point set and the synthetic clustering point
set, which exhibit distinct patterns in the PM. In future
research, such differences could be systematically ana-
lyzed in a Monte Carlo simulation. By comparing mean-
ingful metrics in the PM, a formal framework can be
developed to implement inferential testing. In addition
to detecting prominent patterns at different scales, spatial
models can be built in the PM framework to quantify
multi-scale relations between predictive and dependent
variables. Unlike simple visualizations that may some-
times be influenced by analysts’ subjective opinions, the
quantitative methods will provide reliable metrics to
detect, classify, and rank multi-scale spatial patterns in
the PM. Further exploration is needed to fully realize the
potential of the PM in analyzing other spatial metrics.
One area of work is mentioned earlier in the paper that
(in addition to raw or absolute data values) the PM can
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represent the ratio between a variable and associated
background variables such as point event density and
population density to account for non-homogenous
population background, which is a common issue in
many geographic domains, for example, in disease ana-
lysis and monitoring (Shi, 2010). Additionally, the PM
framework is applicable to other scale-sensitive spatial
indices, such as spatial autocorrelation (e.g. Moran’s I),
GWR coeflicients, accuracy of image classification and
land cover change prediction (Carlson et al., 2020). Work
on modifying conventional calculations for these meth-
ods and to prepare them for implementation in the PM
framework is underway.

A possible limitation of this work is that the novel
visualization of the PM may inevitably introduce extra
cognitive load to viewers. The issue also exists in other
geovisualization platforms where the controversies about
2D vs. 3D and static vs. animated are far from settled. For
example, most critiques of the space-time cubes and
aquariums  popularized in Time Geography
(Héagerstraand, 1970; Kwan, 2004; Miller, 1991) centered
on cognitive challenges and usability in specific analytical
tasks. However, these critics did not prevent the visuali-
zation methods from becoming a profound concept in
geography and a widely used visualization platform in
GIS. To resolve such issues in the PM, empirical assess-
ments need to be conducted to collect user feedback and
evaluate the usability of the PM in different analytical
tasks. Usability might be assessed in the context of how
much training time is needed before scholars can effec-
tively use the PM-based tools to analyze data. New visua-
lization techniques, such as linked views, controlled
animation, and augmented reality, can be applied to the
PM to minimize the cognitive load and facilitate human
users to utilize the PM for analytical tasks.

Another limitation of this work is the processing time
required to reformat spatial data for input to a PM, as
well as to prepare modeling and visualization outcomes
for summary and display. The present experiments are
displayed using Matlab, a proprietary platform.
Acknowledging that open-source languages create
a better option for research sharing and reproduction,
the authors originally tried to develop visualizations
using Python packages including Plotly and Mayavi.
However, these packages have several technical chal-
lenges. For example, both packages are slow in render-
ing 3D isosurfaces and often crash when changing the
view, creating impediments for real-time data explora-
tion. Additionally, it was difficult to use the Python
packages to plot different types of 3D objects (points,
lines, slices, and volumes) within the same view. To this

end, the authors chose Matlab at this experimental
stage. In the future, after optimization of data structure
and algorithms, tools will be implemented in Python.

6. Conclusion

The major contributions of this work can be sum-
marized as follows. First, this study demonstrates the
potential of the PM in advancing multi-scale spatial
analysis and modeling. The integrated view of space
and scale allows users to observe and to quantify
nested relations between spatial patterns at different
scales and understand the scaling issue and MAUP
in spatial analysis. Second, this study demonstrates
the use of 3D visualization techniques, including
interactive animation, to analyze the PM. Unlike
traditional spatial data usually represented in a 2D
space, the PM requires a new suite of analytical tools,
essentially modifying and expanding the conven-
tional computations, that can explore the internal
patterns in 3D volumes. This study shows how the
existing 3D visualization tools (e.g. volume display,
isosurfaces, and slicing) can be applied to analyze
multi-scale spatial patterns in the PM. Third, as the
issue of scale exists in spatial and temporal data as
well as spatio-temporal data, the research on models
lays a foundation for developing new visualization
and analytical tools that support multi-scale spatio-
temporal analysis.
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