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We provide a test for recent arguments that the West Antarctic Ice Sheet (WAIS) is underlain by 
an extensive outcrop of volcanic rock (mainly basalt) by examining the non-clay and clay mineral 
composition of sediments collected in front of and under the Ross Ice Shelf. If the proposed large volume 
were present, then we posit that glacial erosion and transport would deliver sediments to the Ross 
Sea enriched in minerals diagnostic of alkaline basalt, namely olivine, pyroxene, and plagioclase, and 
no quartz. Using quantitative X-ray diffraction analysis, we determine the weight percent of minerals in 
West Antarctic alkaline basalt, dolerite, gneiss, and granite bedrock, and compare these with a suite of 
49 surface and near-surface sediment samples from a 1400 km west to east transect across the Ross 
Sea. Fifty percent of the samples had quartz percentage values >25% and had very small wt percentages 
of diagnostic basalt minerals. A sediment unmixing algorithm, with basalt, dolerite, gneiss and granite 
bedrock, end members, showed that the sediment contained virtually no basalt, was dominated by 
granite compositions, but did show some samples with an admixture of material derived from the Ferrar 
dolerite, which crops out extensively in the Transantarctic Mountains. Indicators of possible late Cenozoic 
volcanic bedrock – pyroxene, forsterite, and smectite weight percentages – decrease from west to east 
across the Ross Sea opposite to the trend of the quartz weight percent. Our study provides no support 
for the presence of extensive basalt outcrop under the WAIS, hence indicates that any changes in ice 
stream stability will not be influenced by basal heat regime.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Within the past 2-3 decades several studies have raised the 
specter of a renewal of subglacial volcanic activity, that would fur-
ther destabilize the West Antarctic Ice Sheet (WAIS) beyond the 
instability inherent in the fact that the ice is grounded well be-
low sea level (Hughes, 1975; Mercer, 1978) and buttressed from 
collapse by ice, that are currently undergoing significant reduction 
(Depoorter et al., 2013; Wellner et al., 2019). Behrendt et al. (1993)
proposed the existence of “at least 106 km3 of probable late Ceno-
zoic volcanic rock” beneath the WAIS, and the Ross ice shelf, in the 
West Antarctic rift system (WARS). This was based on a >100,000 
km widely spaced aeromagnetic survey that revealed numerous 
semi-circular, high amplitude magnetic anomalies. In the Ross Sea 
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itself, eight seismically defined structures that penetrate the sed-
imentary section are associated with short-wavelength magnetic 
anomalies. These also have been interpreted as volcanic in origin 
(Behrendt, 1990; Behrendt et al., 1993). Blankenship et al. (1993)
proposed the existence of an active “Casertz” volcano near the 
southern boundary of the rift system (Fig. 1) based on an aero-
magnetic survey that revealed a large amplitude, long-wavelength 
magnetic anomaly located over a 6 km wide, 650 m high sub-
glacial peak which lies below a “distinct depression” in the ice 
sheet surface. Corr and Vaughan (2008) used radar data to iden-
tify a subglacial tephra layer with an area of roughly 23,000 km2

within the Pliocene – Quaternary Hudson Mountains volcanic field, 
which lies on the east side of Pine Island glacier (Fig. 1). The es-
timated volume of ash implies an explosivity index of 3-4 (Mt. St. 
Helens was a 5), and its depth in the ice implies an age of 207 BC 
± 240 yr. They infer that the episodic release of water during such 
an eruption “probably affected ice flow” in this already vulnerable 
part of the WAIS.
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Fig. 1. Index map of the West Antarctic rift system. The WAIS Divide separates the portion of the West Antarctic ice sheet (WAIS) that flows into the Ross Sea from that 
portion which flows into the Amundsen and Bellingshausen Seas. The MBL volcanic province includes, and is defined by, all the shield volcanoes shown. Isostatically adjusted 
ice-free bedrock topography is simplified from Drewry (1983). Abbreviations: C, Casertz subglacial volcano; ECR, Executive Committee Range; EM, Ellsworth Mountains; E/S, 
Mt. Early/Sheridan Bluff volcanoes; FI, Franklin Island; LW, Lake Whillans; M, Mt. Murphy; MBS, Marie Byrd Seamounts; Ml, Mt. Melbourne; NVL, Northern Victoria Land; PIG, 
Pine Island Glacier; RI, Ross Island; SD, SipleDome; T, Mt. Takahe; TG, Thwaites Glacier; Tn, Toney Mtn; VL, Victoria Land. Greenwich meridian is up, following the convention 
for small scale maps of Antarctica.
Recently, Van Wyk De Vries et al. (2017) used ice bed elevation 
data to locate conical edifices that protrude upward into the ice 
sheet across the West Antarctic rift. Based on these morphometric 
data, and the assumption that all cones are volcanic in origin, and 
the association of the cones with concentric magnetic anomalies, 
they identified 138 “volcanoes” concentrated along the ∼3000 km 
central axis of the rift system. They range from 6 km to 58 km in 
diameter and 100 m to 3850 m in height above the surrounded 
bedrock floor. On this basis they define a new subglacial volcanic 
province.

Our study provides a geologic test for the existence of large 
volumes of subglacial volcanic rock, possibly of late Cenozoic age, 
and by inference, the potential for a destabilizing volcanic erup-
tion. We believe that if the large volume of volcanic rock inferred 
from these studies truly exists beneath the WAIS, then evidence 
for its’ existence should be clearly present in the debris delivered 
to Ross Sea basins by the ice streams that head into the Ross Sea 
Ice Shelf, and we should be able to confirm or refute the claims 
put forward by these publications.

The primary result of glacial erosion is the production of silt 
and clay-sized sediments (Alley et al., 1997; Boulton, 1982, 1996; 
Dreimanis, 1976, 1984; Drewry, 1986; Dowdeswell and Scourse, 
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1990). The mineral and chemical products of glacial erosion are 
transported toward glacier termini and eventually released as sus-
pended sediment in meltwater plumes or hyperpycnal flows (tur-
bidity currents) (Kurtz and Anderson, 1979), or carried farther 
from the ice front as ice rafted debris (IRD) (Anderson et al., 1980, 
1991; Bartek and Anderson, 1991). In Antarctica the ice streams 
are fronted by extensive ice shelves, and the sedimentological evi-
dence (Anderson and Bartek, 1991; Anderson et al., 1991; Domack 
and Harris, 1998; Licht et al., 1999; McKay et al., 2016) shows 
that the sediment content of icebergs calved from the front of ice 
shelves is small, representing a limited rate of erosion. The trans-
port of sediment under and away from the pervasive ice shelf 
(Wellner et al., 2019) is primarily in the form of fine-grained 
suspended sediment (McKay et al., 2016). In Canada the chem-
ical and mineral signatures of glacial sediments have been used 
as a signature of specific bedrock for economic mineral purposes 
(Klassen, 1993; Shilts, 1976), and a broader array of provenance 
indicators have been utilized for paleo-glacial and –oceanographic 
reconstructions in the North Atlantic and around Antarctica in-
cluding X-ray diffraction and radiogenic isotopes (Andrews and 
Tedesco, 1992; Farmer et al., 2003; Farmer and Licht, 2016; Hem-
ming, 2004; Licht and Hemming, 2017; Licht et al., 2006). U-Pb 
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Fig. 2. Hyaloclastite tuff breccia, aka palagonite tuff breccia, from the base of Mt. Takahe, showing textures and structures commonly seen in these deposits. They are 
typically composed of a large proportion of volcanic ash, altered to the mineraloid palagonite, and include glass-rich lava clasts and globules all produced by rapid chilling 
and fragmentation during subglacial eruptions. Yellow material in this figure is palagonite, a hydrous alteration product of volcanic glass typically composed of clay minerals, 
zeolites, and Fe-oxides. The rounded globule and S-shaped bedding above the man’s shoulder were produced by downslope flowage of water-saturated tuff breccia. Photo by 
W.E. LeMasurier.
detrital zircon ages have been used to define ice flow patterns in 
the Ross Sea embayment (Licht et al., 2014).

Our hypothesis: We argue that if there were extensive areas of 
Cenozoic volcanic rock under the WAIS, that glacial erosion and 
meltwater transport (Golledge et al., 2013; King et al., 2020) would 
result in characteristic volcanic minerals being a significant com-
ponent of the sediment archive. Studies of exposed volcanoes in 
Marie Byrd Land (MBL) provide evidence that roughly 90% of Ceno-
zoic volcanic rock is alkaline basalt (LeMasurier and Thomson, 
1990; LeMasurier, 2013), hence we expect mafic minerals to be an 
important component of the volcanic debris. Furthermore, hyalo-
clastite tuff breccias have been shown to be easily eroded, even 
by cold-based polar ice (LeMasurier and Rocchi, 2005; Rocchi et 
al., 2006), which makes their representation in Ross Sea sediment 
cores even more likely, if indeed the ice sheet is underlain by 
a significant volume of these rocks. We test this hypothesis by 
examining 78 grab and core samples from the area of Ross Sea 
(Fig. 1A) and comparing their mineral compositions with West 
Antarctic bedrock samples of alkaline basalt, Ferrar dolerite (from 
the Transantarctic Mountains only), gneiss, and granite. As a com-
parison we provide data on the mineral composition of glacial 
marine sediments seaward of the East Greenland 60,000 km2 early 
Tertiary basalt outcrop (Brooks and Nielsen, 1982; Larsen, 1983). 
These sediments should be similar in composition to Ross Sea sedi-
ments, if indeed there are ∼106 km3 of late Cenozoic alkali basalts 
concealed beneath the WAIS.

2. Bedrock geology

On a regional scale, the late Cenozoic volcanoes of West Antarc-
tica rest on a complex Paleozoic-Mesozoic magmatic arc terrain 
that is everywhere dominated by calc-alkaline granitoids of Devo-
nian, Permian, and Cretaceous ages. The most widespread of these 
are Early Cretaceous. These granitoids represent prolonged inter-
vals of subduction along the Gondwanaland coast. The basement 
intruded by these rocks consists mainly of lower Paleozoic green-
3

schist to amphibolite facies metaclastic and metavolcanic rocks and 
granitic orthogneisses.

The largest volume of exposed volcanic rock in West Antarc-
tica is in the MBL province (Fig. 1). It includes 18 basalt-trachyte 
shield volcanoes with exposed volumes roughly in the range 400 
km3–1800 km3, plus more than 30 small (<1 km3) isolated 
basaltic centers (LeMasurier and Thomson, 1990). The total vol-
ume of volcanic cannot be estimated with any confidence, because 
most of the shield volcanoes are partially buried beneath the ice 
sheet, with usually just the felsic/intermediate summit sections ex-
posed. However, the summit sections appear to be only ∼10% of 
the total volcano volume, as inferred from the best exposures of 
basal successions (LeMasurier, 2013). As an example, the one seis-
mic traverse across the province revealed that an exposed 600 m 
section of basalt is underlain by an additional 4400 m beneath the 
ice, for a total of ∼5000 m of basalt underlying Toney Mountain 
volcano Bentley et al., 1974; LeMasurier and Thomson, 1990).

Where the bases of these volcanic sections are exposed, they 
are composed of hyaloclastites and pillow lavas, interbedded with 
tillites, and resting on glacially striated basement rock, clearly rep-
resenting subglacial eruptions (Fig. 2). The lithologic character of 
these deposits determines the nature of the detritus we would ex-
pect to find in sea floor core samples. Pillow lavas typically are 
enclosed by a 5-6 cm rind of glass that sloughs off producing non-
vesicular vitric clasts during eruption. Hyaloclastites typically occur 
in as chaotic breccia deposits that include lava globules and glass-
rich clasts with a large range of sizes, in a matrix of yellow-brown 
palagonitized vitric ash (Fig. 2). The latter are rapidly altered in 
the hot, aqueous depositional environment to zeolites phillipsite, 
chabazite, and analcime, and smectite clay minerals (Ellerman, 
1992).

Volcanologists will note that eruptions at the −500 m to −1000 
m depths found in the interior of the rift system are more likely 
to produce pillow lavas than hyaloclastites, because hydrostatic 
pressure at those depths prevents both the explosive vesiculation 
and the explosive generation of steam that yield the classic Ice-
landic table mountain deposits (Jones, 1966, 1969). However, de-
tailed studies of MBL hyaloclastites (LeMasurier, 2002) show that 
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they are, in all but one locality, composed of the blocky, non-
vesicular clasts produced by non-explosive fragmentation, rather 
than the vesicular clasts bounded by concave bubble walls pro-
duced by shallow water explosive eruptions. In this regard, MBL 
hyaloclastites are much like those described by Honnorez and Kirst 
(1975), formed by vitrification and granulation during quenching 
in deep submarine environments, and by Clague et al. (2000) by 
lava fountaining at ∼4200 m depths in the sea around Hawaii. It 
seems that hyaloclastites and pillow lavas are equally likely prod-
ucts of eruptions in the rift interior, and both would produce sig-
nificant quantities of volcanic glass.

To the east and west of the MBL province, along the Pacific 
coast, Cenozoic volcanic exposures are almost entirely basaltic and 
relatively small, in some cases a single flow, and others up to 
∼500 m thicknesses of flows and hyaloclastite tuffs. It should also 
be noted that volcanic rocks similar to those in MBL are exposed 
along the western Ross Sea coast (the McMurdo Volcanic Group) in 
Victoria Land (LeMasurier and Thomson, 1990, Chapter A). Olivine 
and pyroxene in two cores from the western Ross Sea, adjacent to 
the coast, are undoubtedly derived from alkali basalt outcrops on 
this coast and are irrelevant to the question of whether large vol-
umes of volcanic rock lie beneath the WAIS.

If a large volume of late Cenozoic volcanic rock is indeed 
present below the WAIS, we would expect basal heat flow to be 
relatively high. This is important because high values would be 
expected to impact basal melt-rates; but direct measurements of 
heat flow are difficult to make in ice-covered regions. Shapiro and 
Ritzwoller (2004) used a global seismic model of the crust and 
upper mantel to infer heat flow of ∼80 mW/m2 for our area of 
interest, decreasing to ∼50 mW/m2 toward the pole. The first di-
rect measurements of heat flow were made by Fisher et al. (2015)
from sediments below subglacial Lake Whillans (Fig. 1, LW). They 
recorded a value of 285 ± 80 mW/m2, roughly equivalent to those 
at Yellowstone. More recently, Clow (unpublished data) has mea-
sured 104 mW/m2 at the WAIS divide, and 65 mW/m2 at Siple 
dome (Fig. 1). The continental average is 55 mW/m2. The high 
variability of these results is similar to findings in other rift sys-
tems, where high values are typically found along rift faults, and 
low values away from faults (Clow, pers. comm.).

3. Quantitative X-ray diffraction of sediment mineralogy and 
sediment unmixing

We used the whole pattern approach of Eberl (2003) which 
was used to detect major differences in the contribution of the 
glacial erosion of basalt outcrops on the East versus West Pre-
cambrian granitoid margins of Greenland (Andrews et al., 2015). 
This approach to obtaining reliable estimates of mineral compo-
sitions of sediments placed second in the International Reynolds 
Cup competition (McCarty, 2002; Raven and Self, 2017), which re-
quires laboratories to determine the percentages of non-clay and 
clay minerals in prepared sediment mixtures. In the Amundsen 
Sea embayment (Fig. 1). The accuracy and precision of different 
whole pattern Rockjock methods, using several prepared non-clay 
and clay mixtures, are documented in a Supplement to this paper. 
Ehrmann et al. (2011) have provided qualitative data on the clay 
mineral distributions (that is the sediment fraction <2 μm).

The method consists of weighing 1 g of the <2 mm sediment 
fraction (sand, silt, and clay), adding 10% by weight of zincite, 
grinding in a McCrone mill and drying. The intensity measure-
ments are then processed in a macro-Excel program Rockjock v6, 
which contains standard patterns for 124 minerals. Rockjock v6 
uses samples from the White River tephra (Alaska) as a standard 
for amorphous silica (glass). However, the whole XRD pattern sig-
nature of diatoms is very close to that of volcanic glass (Andrews 
et al., 2013) rendering a detailed interpretation of “amorphous sil-
4

ica” difficult. The qXRD results are reported as either mg/g or as a 
wt% and are normalized to sum to either 1 g or 100%. Variations 
in percentage values have to be evaluated judicially because of the 
closed array constraints (Aitchison, 1986; Chayes, 1971). Initially 
we estimate the weight %s of 20 non-clay and 10 clay minerals, 
including four alkali feldspars (ordered microcline to anorthoclase) 
and five plagioclase feldspars (albite to anorthite), but we then 
consolidate the minerals into 16 species, and use the combined 
wt% of K- and Na-feldspars, and Ca-feldspars, as well as combining 
the carbonate minerals, and various XRD patterns of illite (Table 1).

We use the program “SedUnMix” (Andrews and Eberl, 2012) 
to estimate the percent of bedrock contribution to the Ross Sea 
glacial marine sediment. Four West Antarctic bedrock sources were 
used, namely: alkali basalt, Ferrar dolerite (Transantarctic Moun-
tains only), gneiss, and granites. Ideally the sum of the sources 
should sum to 100% but differences from this ideal give an indica-
tion of the extent of additional source(s) or processes. Amorphous 
is not present in any quantity in the bedrock source except the 
hyaloclastites, and neither is smectite. For the SedUnMix analy-
ses we excluded volcanic glass; the program estimates a standard 
deviation of the estimates bedrock components by iteratively ran-
domly sampling each of the bedrock types 100 times. The measure 
of the degree-of-fit (DOF) between the observed and calculated is: 
(sum of the absolute differences/100) (Andrews and Eberl, 2012), 
although a more intuitive measure is the average bias (AveB) (in 
this case: AveB = DOF∗100/15).

3.1. West Antarctic bedrock mineral signatures

The most diagnostic minerals for our purposes, are quartz and 
forsterite. Virtually all of the pre-volcanic basement igneous and 
metasedimentary rocks are quartz-rich (Table 2, Fig. 3, Suppl. Ta-
ble 1) whereas the Cenozoic volcanic rocks are largely quartz-free 
(e.g. in the entire MBL province, one rhyolite flow has been found 
with quartz phenocrysts (6.4%). To quantify the degree of associa-
tion between bedrock and sample compositions (Table 2) we use 
the Similarity Coefficient (SC) (Sarna-Wojcicki et al., 1984), which 
has a range between 0 and 100%. It is a very sensitive measure as 
all mineral ratios have equal weight regardless of their wt% (thus 
0.1 and 0.3 wt% have the same product as 10 and 30 wt%), We 
thus calculate SG (Table 2; Suppl. Table 1) for the non-clay and 
clay minerals and also weighted for the 6 most common non-clay 
minerals—quartz, k-feldspars, plagioclase, pyroxene, iron oxides, 
and glass (Table 2). The SC between average bedrock and seafloor 
samples in part reflects transport differences due to mineral den-
sity, mass, and shape (Syvitski and MacDonald, 1982). Thus, in 
analyzing Ross Sea sediment samples although it is a simple mat-
ter to distinguish volcanic rock from pre-volcanic basement, it is 
more difficult to distinguish Cenozoic alkaline volcanic rocks from 
Jurassic Ferrar dolerites, which doubtless have been transported by 
glacial erosion from the Transantarctic Mountains (TAM) into the 
Ross Sea (Fig. 3B). For this purpose, the presence of forsterite, as a 
surrogate for all olivines, has proven to be diagnostic.

Petrographic modal analyses of 19 MBL Cenozoic basaltic rocks 
(LeMasurier and Thomson, 1990) gave an average of 11.6% total 
olivine, with an average of 2.7% as phenocrysts. One sample was 
olivine-free, the others range from 5.0 to 21.6% total olivine. Phe-
nocryst proportions for these samples range from 0–5.8%. Micro-
probe data on the compositions of these olivines indicate they are 
mainly in the range Fo85-90, with some zoned to rims of Fo50-
70. By contrast, qXRD analysis of 14 Ferrar samples, provided by 
the U.S. Polar Rock Repository, yielded 0.0% (7 samples) to 0.7% 
forsterite (Suppl. Table S1), and 3.5%-10.9% quartz for the same 
samples. We have therefore assumed that all forsterite in Ross Sea 
cores was derived from the alkaline volcanic rocks of the West 
Antarctic rift.
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Kaolinite Smectite Illite Biotite Fe-
Chlorite

0.1 1.0 5.2 1.0 1.6
0.0 1.8 5.7 1.1 0.6
0.2 4.0 8.9 1.6 1.2

.9 3.3 14.6 20.2 2.7 2.0

.1 0.0 3.6 13.8 2.3 1.6
0.0 0.7 4.2 0.8 0.0
0.1 0.0 2.2 0.2 0.0
0.7 6.5 37.4 3.8 6.4
0.4 3.7 40.3 4.5 7.5
0.2 5.0 35.1 4.0 9.0

.6 3.4 9.9 14.0 3.9 1.2
0.0 3.0 33.0 3.1 8.0
0.0 4.2 34.3 2.5 9.1
0.0 3.1 33.9 3.3 8.2
1.4 11.1 4.9 0.3 7.0

.7 0.3 7.5 7.5 3.2 0.0

.0 0.8 9.8 11.7 4.0 1.5

.1 1.9 7.8 10.5 3.9 2.7
.9 1.4 7.1 9.3 2.5 0.4
.2 1.4 7.6 10.9 3.3 0.6
.5 1.9 9.2 11.9 3.2 2.1
.7 2.7 6.3 16.3 2.9 3.8
.8 1.2 5.2 11.3 4.2 0.1
.4 1.2 5.2 11.7 4.4 1.2

1.4 11.1 4.9 0.3 7.0
.7 0.3 7.5 7.5 3.2 0.0
.5 1.5 6.0 10.4 4.2 1.2
.7 0.3 7.5 7.5 3.2 0.0
.9 1.4 7.1 9.3 2.5 0.4
.2 1.4 7.6 10.9 3.3 0.6
.0 1.5 5.3 12.1 4.6 0.0
.5 1.0 11.9 10.8 3.0 1.2
.5 1.0 11.9 10.8 3.0 1.2
.8 1.1 4.4 11.6 4.0 1.0
.8 2.5 6.2 12.5 3.8 1.7
.7 0.3 7.5 7.5 3.2 0.0
.1 1.2 7.5 13.0 3.4 1.3
.8 0.0 5.5 7.1 3.2 0.0
.8 0.0 9.6 5.9 3.3 0.3
.9 1.6 7.8 5.5 2.8 0.3
.0 0.8 8.5 6.1 2.1 0.6
.0 0.8 8.5 6.1 2.1 0.6
.2 0.0 3.2 8.1 2.8 1.6
.4 0.4 9.6 10.3 2.3 1.4
.3 1.0 0.9 9.5 3.8 2.8
.7 2.5 8.8 13.9 3.3 3.1
.4 0.4 9.6 10.3 2.3 1.4
.3 1.0 0.9 9.5 3.8 2.8

5

Table 1
Location of the Ross Sea samples. List of the location of sites (Fig. 3A) and the qXRD weight % of the mineral compositions.

Cruise Site Long 
0-360

Latitude ENd 
(Farmer et 
al., 2006)

Quartz K-feldspar Plagioclase Calcite Dolomite Siderite Amphibole Pyroxene FeO Forsterite Am
sil

NBP98-01 060-SMG grab 181.78 −73.87 50.2 11.4 18.2 2.8 0.4 0.0 0.4 1.1 0.0 0.0 6.3
NBP98-01 061-SMG grab 182.18 −73.81 48.8 10.9 19.6 1.9 0.3 0.0 0.6 0.7 0.0 0.0 8.1
NBP98-01 062-SMG grab 182.44 −73.75 40.5 10.7 18.0 3.3 0.2 0.3 0.6 0.5 0.1 0.2 9.7
DF83 014-GB grab 195.86 −78.48 16.6 6.6 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22
DF83 019-GB grab 201.30 −77.32 33.8 13.3 18.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 13
DF83 020-GB grab 201.40 −76.89 53.5 15.3 18.4 0.0 0.1 0.0 0.4 0.6 0.0 0.0 6.1
DF83 021-GB grab 201.96 −76.89 56.3 16.6 22.1 0.0 0.1 0.0 0.1 0.5 0.1 0.0 2.0
DF83 022-GB grab 202.89 −76.88 23.0 7.2 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
DF83 023-GB grab 203.39 −76.98 22.3 6.5 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DF83 026-GB grab 204.40 −76.95 23.1 7.9 14.5 0.0 0.1 0.0 0.1 0.0 0.0 0.0 1.1
DF83 025-GB grab 204.49 −76.95 25.1 7.6 15.9 0.0 0.0 0.0 0.0 0.0 0.0 0.1 29
DF83 030-GB grab 206.81 −76.60 32.6 5.0 14.0 0.8 0.0 0.0 0.1 0.0 0.0 0.0 0.5
DF83 029-GB grab 207.35 −76.72 29.4 5.5 14.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
DF83 028-GB grab 207.49 −76.83 28.9 6.1 15.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.0
ELT32 14 191.53 −75.00 21.4 9.4 14.4 0.0 0.7 0.5 0.4 2.0 0.2 0.8 7.0
ELT32 20 174.92 −77.58 17.4 7.7 13.3 0.0 0.4 0.3 0.0 0.3 0.1 0.3 30
ELT32 21 178.01 −77.93 14.7 5.4 11.2 0.0 0.2 0.4 0.1 0.0 0.2 0.4 40
ELT32 23 186.88 −78.38 22.7 10.6 14.6 0.0 0.2 0.7 0.4 0.0 0.2 0.0 24
ELT32 24 190.87 −78.40 16.6 8.0 11.9 0.0 0.1 0.6 0.0 0.2 0.5 0.2 37
ELT32 26 197.61 −78.07 16.6 8.0 11.9 0.0 0.1 0.6 0.0 0.2 0.5 0.2 38
ELT32 35 193.31 −77.05 30.7 10.6 12.8 0.0 0.2 0.4 0.1 0.9 0.3 0.0 15
ELT32 38 198.07 −76.98 28.5 10.2 13.5 0.0 0.1 0.4 0.4 0.2 0.2 0.0 14

SAL298 196.62 −77.00 28.7 9.5 16.7 0.0 0.1 0.5 0.5 0.1 0.2 0.0 21
SAL219 191.61 −82.22 29.5 10.2 17.2 0.0 0.1 0.4 0.5 0.0 0.1 0.0 18

ELT 32 12 183.10 −75.00 32.7 10.6 18.1 0.3 0.6 0.6 0.0 2.9 1.8 0.8 7.0
NBP94-01 22 171.68 −74.04 22.9 9.1 15.7 0.2 0.5 0.3 0.3 1.4 0.5 0.3 30

39 187.74 −76.58 −5.77 25.2 8.7 18.4 0.0 0.1 0.3 0.3 0.8 0.3 0.0 22
22 171.68 −74.04 22.9 9.1 15.7 0.2 0.5 0.3 0.3 1.4 0.5 0.3 30
33 180.38 −75.46 20.3 6.6 13.6 0.0 0.2 0.5 0.0 0.0 0.2 0.2 37
32 179.39 −75.46 16.8 7.0 12.8 0.0 0.3 0.4 0.0 0.4 0.1 0.2 38

NBP95-01 12 177.82 −76.78 −9.62 25.2 8.4 15.3 0.4 0.3 0.5 0.3 0.9 0.2 0.0 25
9 182.06 −76.04 21.2 8.7 14.4 0.4 0.5 1.1 0.3 0.0 1.7 0.4 23

11 180.91 −76.45 −10.10 21.2 8.7 14.4 0.4 0.5 1.1 0.3 0.0 1.7 0.4 23
21 185.62 −76.19 24.9 9.4 15.1 0.1 0.4 0.7 0.3 0.6 0.2 0.4 25
18 179.54 −77.33 21.1 10.1 13.5 0.0 0.0 0.5 0.0 0.0 0.1 0.3 27

6 180.64 −75.50 22.9 9.1 15.7 0.2 0.5 0.3 0.3 1.4 0.5 0.3 30
24 184.58 −76.61 −8.08 25.0 9.2 17.2 0.0 0.0 0.4 0.3 1.1 0.2 0.0 20
17 179.05 −77.45 −12.50 24.8 6.2 12.5 0.6 0.4 0.5 0.4 1.0 0.7 0.3 36

DF80 193 165.02 −76.55 21.3 10.4 18.7 0.0 0.0 0.4 0.2 3.3 0.4 0.4 25
109 166.72 −75.07 18.5 7.8 12.9 0.0 0.3 0.2 0.0 1.1 0.3 0.0 40
112 166.82 −74.92 −3.76 19.6 7.5 12.3 0.0 0.2 0.4 0.0 0.0 0.2 0.8 45

57 166.82 −77.28 3.4 8.2 14.8 0.2 0.2 0.8 0.8 4.8 2.3 0.8 45
99 165.27 −75.52 19.6 8.3 16.1 0.0 0.0 0.2 0.3 3.2 0.5 0.1 36

DR87 30 170.85 −73.20 26.4 12.9 17.4 0.0 0.1 0.9 0.3 2.3 0.4 0.1 15
32 170.39 −73.48 3.5 10.1 14.0 0.3 0.5 0.9 0.8 2.6 0.5 1.6 47

ELT32 13TW 16.0 10.1 13.2 0.0 0.4 1.1 0.7 0.0 0.3 0.9 25
DR87 30 170.85 −73.20 26.4 12.9 17.4 0.0 0.1 0.9 0.3 2.3 0.4 0.1 15

32 170.39 −73.48 3.5 10.1 14.0 0.3 0.5 0.9 0.8 2.6 0.5 1.6 47
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Table 2
Mineral averages and standard deviations. Average qXRD weight % estimates for samples of basalt (B), dolerite (D), hyaloclastite (H), gneiss (Gn), and granite (Gr) from West 
Antarctic and for the Ross Sea (RS) and East Greenland (EG) marine sediment samples, and Similarity Coefficients for 15 non-clay and clay minerals (above the diagonal) and 
weighted 6 major non-clay minerals below the diagonal.

E Grn’lnd Ross Sea Basalt Hyaloclastites Dolerite Gniess Granite

Average stdev Average stdev Average stdev Average stdev Average stdev Average stdev Average stdev

Quartz 3.7 0.64 23.7 10.18 0.3 0.26 0.34 0.50 5.8 3.52 19.9 21.25 28.8 5.80
KSPAR 4.1 4.14 8.5 2.57 4.8 2.34 0.98 0.72 6.2 2.50 3.2 1.59 21.0 15.06
Plag 31.9 1.61 14.7 4.04 34.3 7.24 29.87 7.29 33.2 10.57 37.6 17.26 38.5 12.18
Calcite 0.1 0.10 1.0 4.82 1.7 2.40 2.06 0.58 0.7 0.35 0.2 0.36 0.1 0.26
Dolomite 0.0 0.04 0.7 2.71 0.0 0.11 0.26 0.42 1.1 0.76 0.3 0.52 0.2 0.22
Siderite 0.0 0.03 0.4 0.34 1.9 0.56 1.81 0.70 0.6 0.31 0.2 0.36 0.0 0.00
Amphibole 0.4 0.38 0.3 0.31 2.0 0.91 2.15 0.50 0.7 0.49 13.5 14.87 1.4 1.11
pyroxene 17.2 1.51 1.4 2.81 18.9 4.99 11.02 5.80 13.7 6.09 4.2 8.30 0.5 0.67
FeO 4.4 0.63 0.6 1.07 4.5 1.85 3.93 2.25 5.1 2.15 0.7 0.93 0.1 0.15
Forsterite 0.3 0.23 0.3 0.50 9.1 3.38 7.39 1.69 1.0 0.69 1.2 2.20 0.0 0.11
Volcanic glass 8.9 2.12 23.7 12.91 9.5 1.05 18.82 4.22 13.4 10.58 1.9 2.35 2.0 1.07
Kaolinite 0.3 0.56 1.4 1.87 0.1 0.25 0.0 0.0 1.5 4.36 0.1 0.17 0.2 0.44
Smectite 15.8 1.63 6.5 3.05 5.4 2.09 14.16 4.64 10.9 5.66 4.1 4.53 0.3 0.51
Illite 6.0 0.96 11.8 8.70 6.2 2.56 0.01 0.02 4.0 2.60 2.4 3.23 2.4 1.24
Biotite (2M1) 1.5 0.47 3.0 1.11 0.1 0.28 2.24 0.81 0.8 1.15 8.8 5.05 4.3 4.28
Fe-Chlorite (Tusc) 5.4 1.10 1.9 2.37 1.2 1.37 1.52 1.39 1.2 2.13 1.7 2.87 0.2 0.25

Similarity Coefficient
n = 15
n = 5 EG RS B H D GN GR
EG 100.0 33.80 44.2 33.90 49.7 27.90 24.90
RS 33.8 100.0 29.9 31.20 48.3 39 26.06
B 78.2 26.64 100.0 54.10 40.0 30.29 21.86
H 54.6 28.14 63.2 100.00 33.8 22.23 16.17
D 76.2 36.59 68.1 56.67 100.0 25.92 19.77
GN 40.6 46.59 36.4 26.69 38.0 100.00 36.11
GR 38.0 39.04 23.4 17.12 26.3 51.60 100.00

Fig. 3. A) Map of Antarctica showing the Ross Sea (RS); B) Location of surface and core samples (Table 1; Fig. 1). TAM = TransAntarctic Mountains; MBL = Marie Byrd Land. 
C) Bubble plots of the weight % of quartz and pyroxene in the surface/near surface samples. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)
6
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Fig. 4. Pie diagrams of the average mineral composition of four bedrock types (A, B, C, and D) from West Antarctic and glacial marine sediments from the Ross Sea (E) and 
East Greenland Shelf.
The presence of phenocryst olivine in these rocks is important. 
Subglacial eruptions yield pillow lavas and hyaloclastites with a 
high proportion of glass (Fig. 2). Olivine that occurs as ground-
mass olivine in subaerial lavas would be less likely to be found in 
their subglacial equivalents, whereas phenocrysts of olivine would 
invariably be found in these deposits because they were present in 
the magma prior to eruption.

As part of our study we also processed 7 basalt, 5 gneiss, 6 
samples of granite, and 5 hyaloclastites from rock or powdered 
samples of West Antarctic bedrock that we (WEL) had on hand or 
were obtained courtesy of the Core Repository at Ohio State Uni-
versity. In order to provide comparative data to the Ross Sea sed-
iments these samples were processed for their mineral wt% using 
the Rockjock v6 whole pattern approach (Table 2; Suppl. Table 1). 
We compare the mineral composition of the Ross Sea sediments 
with those we have previously reported from off the East Green-
land 60,000 km2 heavily glacierized outcrop of early Tertiary flood 
basalts (Andrews et al., 2015; Brooks and Nielsen, 1982; Larsen, 
1983) (Fig. 4), and which overlies Archaean and Paleoproterozoic 
granites and gneiss. As an example, MD99-2317 lies ∼50 km off 
the East Greenland coast and contains a detailed record of late 
glacial and Holocene change (Jennings et al., 2011).

3.2. Previous provenance studies

Golledge et al. (2013, their Fig. 13) show projected ice flow 
trajectories and transport paths “. . . .inferred from sediment out-
crops and core data (Licht et al., 2005).” Indeed considerable work 
on sediment provenance has been previously reported (reviewed 
7

by Licht and Hemming (Licht and Hemming, 2017)). The methods 
range from sand petrology, radiogenic isotopes, and geochemical 
fingerprinting (Pereira et al., 2018). The main focus in these stud-
ies has been on the identification of the sediment signatures of 
various ice streams with the goal of reconstructing past changes in 
glaciological regimes (Farmer and Licht, 2016; Farmer et al., 2006; 
Palmer et al., 2012; Pereira et al., 2018). Farmer et al. (2006) pre-
sented a comprehensive geochemical study on basal till samples 
from 10 cores from the Western, Central, and Eastern Ross Sea 
from samples collected previously (Licht, 1999). We also processed 
samples from these cores (Table 1). Thus, there has been consid-
erable effort to determine the ages of bedrock beneath the WAIS 
but non-clay and clay mineral qXRD compositions have not been 
extensively applied to provenance studies, although as noted ear-
lier, studies of clay-size mineralogy have been reported from the 
Amundsen embayment (Ehrmann et al., 2011).

4. Results and a test of the hypothesis

We processed 76 sediment samples (including repeated analy-
ses) from 48 sites (Table 1, Suppl. Table 1, Fig. 3A) collected during 
a number of research cruises. Recent evidence indicates that many 
of these sites would have been exposed during a late Holocene col-
lapse of the Ross Ice Shelf (Yokoyama et al., 2016). The prevailing 
ocean surface transport is from east to west (Dotto et al., 2018), 
which could result in some sediment transport and mixing. We fo-
cused on surface and near-surface samples. The transect extends 
for approximately 1400 km between 160◦ and 210◦ longitude 
(Fig. 3A). INSTAAR sediment reserves (GRL#) were used from pre-
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Fig. 5. Biplots of the distribution of mineral weight %s versus west (TAM = TransAntarctic Mountains) to east (MBL = Marie Byrd Land (see Fig. 1)) longitude of Ross Sea 
samples and the significance (r2) of the trend. A) pyroxene, B) smectite, C) amorphous silica, D) quartz, E) K-spar, F) Fe-chlorite.
vious studies (Licht, 1999) and additional samples were obtained 
from the sediment archives curated at Oregon State University. 
A few of the samples contained clasts >2 mm and although no 
grain-size measurements were taken the majority of the samples 
are mud, i.e. <63 μm in grain-size. The total includes 51 samples 
from individual sampled sites, including two samples from beneath 
the Ross Ice Shelf that were also studied in the Farmer et al. (2006)
study (Fig. 3A, Table 1), plus samples from various depths in some 
cores and replicate samples, (Suppl. Table 1).

Pie diagram plots of the spatial and average distribution of the 
mineral wt percentages of 49 sites (Fig. 4E) show the dominance 
of quartz and feldspars in the assemblages, but with a significant 
fraction of amorphous silica, which includes volcanic glass from 
hyaloclastites, pillow lavas, diatoms, and the products of overgrind-
ing the sediments (from glacial abrasion and the qXRD milling 
procedure (Andrews et al., 2013). Characteristic minerals for the 
presence of eroded basalt bedrock, such as forsterite and pyroxene 
occur in low wt percent (Figs. 4E and 5A; Table 2) and smectite is 
relatively abundant with a maximum estimated wt percent of 15% 
(Table 2, Fig. 5B). It can be an indication of weathering of basalt. 
However, given the long glacial coverage of Antarctica it is unlikely 
that any postulated subglacial volcanic rocks have a cover of chem-
ically altered bedrock. Smectite can, however, indicate chemical 
weathering on a variety of bedrock as is evident by its presence in 
glacial marine sediments from around the Labrador Sea and Baffin 
8

Bay (Andrews et al., 2020; Boyd and Piper, 1976; Piper and Slatt, 
1977) derived from erosion of Tertiary shelf and basin accumula-
tions. It is difficult to compare the 20–30% estimates of smectite in 
the Amundsen embayment (Ehrmann et al., 2011) with our data 
(Fig. 5B) because of the differences in methodology (see earlier), 
although the weight percent of smectite tends to decline east-
ward toward Marie Byrd Land (Fig. 5B) as does amorphous silica 
(Fig. 5C). The plots of the weight percent of quartz and k-feldspar 
have either a weak trend to increase to the east or no trend.

The mineral composition of the sediment samples is radically 
different from either the alkali basalts and hyaloclastites, or the 
Ferrar dolerite and the Ross Sea sediments are much closer in com-
position to the gneiss and granite bedrock compositions. This is 
also evident in the tri-plots of minerals from both the bedrock and 
sediment samples (Fig. 6). There is also a significant contrast be-
tween the composition of the samples from the Ross Sea compared 
to those from off East Greenland (Fig. 4E versus F, Table 2). The 
East Greenland samples clearly record a dominant basalt source 
(Andrews et al., 2015) with large percentages of plagioclase and 
pyroxene, and small amounts of quartz and K-feldspar (Table 2).

Erosion of subglacially erupted volcanic rocks (Fig. 2) from be-
neath the WAIS should result in measurable quantities of vol-
canic glass, analcime and chabazite. Estimates of their zeolite wt%s 
were obtained by processing the Rjv6 intensity data in the zincite 
version of the USGS Rjv11. Only 7 sites had wt percentages of 
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Fig. 6. Relative weight % (the three minerals are forced to sum to 100%) of the bedrock mineral composition and compared with the composition of glacial marine sediments 
from the Ross Sea and off the East Greenland basalt outcrop (MD99-2317).
chabazite >3% and only one site had analcime wt% >2%. The sam-
ples from these sites contained little or no pyroxene but they were 
located along the western boundary of the Ross Sea, and thus close 
to the TAMs and extension of the East Antarctic Ice Sheet into the 
Ross Sea.

5. Discussion

The results of the qXRD results need to be evaluated in the 
light of the glacial and marine sediment pathways. The glacial 
sediment pathway is strongly influenced by the basal tempera-
ture (Licht and Hemming, 2017; Hooke et al., 2013), which con-
trols whether the sediments produced by plucking and abrasion at 
the glacial/bedrock interface (Boulton, 1996; Stokes, 2018) remains 
in the traction zone or becomes englacial (Hooke et al., 2013). 
9

Clark (1987) showed that in sediment transported subglacially the 
composition was diluted by 50% over distances of 30 to 60 km, 
whereas englacial transport can be much greater (Prest, 1990). The 
release of coarse-grained sediment at the grounding line of the 
ice area/ice shelf system indicates that the under-shelf sediments 
would be fine-grained and generally lack IRD (McKay et al., 2016; 
Alley et al., 1989; Anderson and Bartek, 1991; Bartek and Ander-
son, 1991).

Fig. 8A summarizes our conceptual model. The bedrock at the 
base of the WAIS could potentially consist of granitoid or basaltic 
facies and the ? mark in this figure highlights the question we 
address. At the two sites under the Ross Ice Shelf the mineral as-
semblages are clearly felsic in origins (Fig. 8A and B), although the 
wt% of smectite and glass differ from the granitoid bedrock. The 
similarity coefficient indicates a close association between the sed-
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Fig. 7. Showing the results of the SedUnMix program with four bedrock sources (basalt, dolerite, gneiss, and granite). Observed (red) versus calculated (blue) percentages for 
A) basalt bedrock sample, C) a granite bedrock sample, B) and D) for samples from the Ross Ice Shelf and Ross Sea (Table 1; Suppl. Tables 1 and 2) (GRL-7333 is from core 
ELT32 13TWC, Table S1). The degree-of-fit (DOF) for these specific samples are also listed.
iments under the Ross Ice Shelf and those recovered from the Ross 
Sea (SC > 0.6). The ocean circulation under the ice shelf (Smethie 
and Jacobs, 2005) would entrain meltwater plumes and transport 
the suspended sediment toward the shelf front and the Ross Sea 
(Fig. 8A), but the similarity between the Ross Sea and Ross Ice 
Shelf compositions could imply bottom current transport under the 
ice shelf. The large percentages of glass in Ross Ice Shelf samples 
might reflect deposition from tephras deposited on the ice sheet 
(Iverson et al., 2017).

The results of the SedUnMix analyses indicate that the sam-
ples from the Ross Sea have a close link to the West Antarctic 
granite bedrock samples and have only limited association with 
mafic bedrock (Suppl. Table 2). These results indicated that the 
five bedrocks, alkali basalt (and hyaloclastites), dolerite, gneiss, and 
granite are reasonably well predicted (Fig. 7) with average correct 
classifications respectively of 80%, 63%, 63%, and 74% and little 
overlap between the two volcanic versus the igneous/metamor-
phic bedrocks. The Degree of Fit (DOF) for the bedrock samples 
varied from 0.16 to 0.59 and for the sediment samples on aver-
age significantly higher 0.41 to 0.78. The plots of observed versus 
calculated mineral wt% (Fig. 6) indicated that the largest differ-
ences in the Ross Sea sediments were in the over-estimation of 
quartz (Fig. 6B and 6C) and under-estimation of the wt% clay min-
erals and this is the primary explanation for the “unaccountable 
fraction” being relatively large (∼40 ± %) (Suppl. Table 2). These 
results, plus the SC values between bedrock and seafloor samples 
(Table 2), indicate that during glacial erosion and subsequent melt-
water transport the bedrock compositional signatures are modified 
(Andrews, 1987; Syvitski and MacDonald, 1982).

The sediment unmixing model indicates that there is no ap-
preciable change in the estimated percentage of granite between 
the western, central, and eastern Ross Sea (Fig. 8B), and the two 
10
samples from beneath the RIS (Fig. 8A and B) are estimated to be 
composed of between 56 and 61% granite with the compositions 
being significantly enriched in quartz and illite. The compositions 
of the Ross Sea sediments (Figs. 3B and 5) show a strong affinity 
with the granite bedrock but with an inclusion of dolerite in some 
sites, particularly in the Western Ross Sea (Suppl. Table 2). Only 
two samples have any marked alkali basalt affinity. On the Geolog-
ical Map of Antarctica (Craddock, 1972) it can be seen that there 
are only two major exposures of Cenozoic volcanic rock in the area 
of the western Ross Sea shown in Fig. 3B, one at Franklin Island 
and the other on Ross Island (Fig. 1). These localities account for 
the two occurrences of high pyroxene in western Ross Sea cores 
shown in Fig. 3C. The onshore bedrock exposures between these 
two localities consist of (1) Cambrian – Ordovician granitic rocks 
of the Granite Harbor Intrusives, (2) Devonian – Jurassic Beacon 
Group sandstones which include tabular mafic Ferrar Intrusives, 
and (3) the Jurassic Ferrar basaltic volcanic rocks located inland of 
Ross Island. Ferrar basaltic rocks, intrusive and extrusive, are rep-
resented by the “dolerite” of this study. This bedrock suite easily 
accounts for the quartz and pyroxene wt%s in western Ross Sea 
cores (Fig. 3C). The two samples collected from under the Ross Ice 
Shelf (Sal219 and Sal 298, Table 1) both have high quartz wt%s and 
limited contributions from the other bedrock types.

However, the results also indicate that a significant fraction was 
not assigned to any of the bedrock end members, averaging 41 
± 10%, Inspection of the individual mineral residuals (Suppl. Ta-
ble 3) indicates that the size of the residuals was dominated by 
large excursions in quartz and illite indicating that, relative to the 
source bedrock, the Ross Sea sediments are enriched in these min-
erals. However, it is obvious that the assemblages from the Ross 
Sea and under the Ross Ice Shelf are primarily associated with a 
granite-like mineral composition with only a limited number of 
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Fig. 8. A) Schematic cross-section through the Ross Ice Shelf ca 160◦(see Fig. 3) to the Ross Sea. Possible mineral compositions are shown in pie diagrams for three bedrock 
types and for sediments retrieved from under the ice shelf and the average composition of Ross Sea sediments. Circulation under the shelf is shown (Smethie and Jacobs, 
2005). Similarity coefficients (e.g. 69.7) are shown for adjacent samples. B) Results of the SedUnMix analysis for the Ross Sea sediments are shown for percent estimates of 
felsic and mafic end members.
Table 3
Correlations (Pearson’s r) between longitude of the samples (Figs. 3A and 5; Table 1) 
and mineral weight %.

Mineral Pearson’s Mineral Pearson’s

Quartz 0.42 K-feldpar −0.06
Plagioclase 0.07 Dolomite −0.62
Kaolinite 0.08 Calcite −0.42
Illite 0.60 Amphibole −0.49
Biotite 0.01 Pyroxene −0.67
Chlorite 0.53 FeO −0.42
Fosterite −0.49
Amorphous silica −0.67
Smectite −0.23

sites offshore from the TAM showing any influence of alkali basalt 
in their compositions (Fig. 3).

Some volcanic debris might have been expected to be delivered 
to the rift interior from exposed volcanoes of the MBL province 
that are not on the seaward side of the WAIS divide (Fig. 1), 
e.g. the Executive Committee Range (ECR). However, these are the 
11
highest elevation volcanoes in the province, and are unlikely to 
have experienced significant erosion from the cold-based ice sheet 
since 15 Ma at the latest. Furthermore, no significant amounts of 
hyaloclastite are exposed in these volcanoes. Finally, it is not clear 
whether the ice sheet drains northward or southward from its high 
point in the ECR. It seems clear that several factors can easily ex-
plain the lack of detritus from MBL volcanoes in the WAIS.

An argument might be made that a more volcanic signature 
might be apparent in sediments dating from LGM deglaciation. We 
only processed four samples from cores where we had sediments 
from both the surface and farther downcore (Suppl. Table 1) and 
we note that obtaining any accurate age estimate in this region 
is extremely difficult (Andrews et al., 1999, 1997). However, more 
recent coring efforts in the Whale Deep Basin have obtained ra-
diocarbon dates on foraminifera. The average bias between the 
estimated wt% of the surface and downcore sediments is small 
with values between 0.7 and 4.1% with little or no forsterite or 
pyroxene (Table 4). This is admittedly a very small sample, but the 
geographic coverage of the sites (Table 1) gives us some confidence 
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to conclude that there is probably no significant evidence for ero-
sion of volcanic bedrock over the last deglacial period.

The possibility that a large volume of young volcanic rock lies 
beneath the WAIS has severe implications for global sea level 
change, because of the possibility of renewal of this activity. It has 
been said that the greatest uncertainty in future sea level rise is 
the rate of melting of the West Antarctic and Greenland ice sheets 
(Church et al., 2013; Bamber et al., 2019; Kopp et al., 2019), which 
would certainly be exacerbated by large-scale subglacial volcanic 
eruptions in West Antarctica and have global repercussions. The 
results of our study suggest this is not a likely scenario. Never-
theless, the uncertainties inherent in this study require a careful 
evaluation of all sides of this debate.

Our study of the mineral composition of sediments from the 
Ross Sea and ice shelf does not provide any estimate of the ages 
of the source bedrock, although that was provided for some of our 
core sites by the study of Farmer and colleagues (Farmer and Licht, 
2016; Farmer et al., 2006) (Table 1). Farmer and Licht (2016) re-
port the results of a Nd, Sr, and Pb isotopic study of 14 onshore 
and 21 offshore tills in the Ross Sea area, covering much of the 
area of our study. Their data cluster in the isotopic space occupied 
by data for the Admiralty Intrusive Suite, Ferrar mafic rocks, and 
other pre-Cretaceous rocks of the TAM on the western Ross Sea 
coast, with one exception. The single sample with Nd, Sr, Pb iso-
topic values like those of the late Cenozoic alkali basalts lies ∼65 
km south of Ross Island, within one of the largest occurrences of 
late Cenozoic volcanic rocks in the western Ross Sea (Craddock, 
1972). Farmer and Licht note the “unexpected — lack of major in-
volvement of Late Cenozoic volcanic rocks as source of glacial till 
in West Antarctica.” They conclude that these rock types were not 
eroded from beneath the major ice streams that drain the WARS. 
These results are much like those that we report here, but from a 
completely different data set, which strongly supports our conclu-
sions. Our data (Figs. 3C and 5) confirm the importance of glacial 
transport of Ferrar mafic volcanic-derived sediment across the TAM 
and the weight % of pyroxene declines steadily eastward across the 
Ross Sea (Fig. 5A). There is no sign of a seaward “bulge” in the 
weight % of pyroxene, which would be expected if late Cenozoic 
alkaline basalts floored a large fraction of the subglacial bedrock of 
the WARS. It is also noteworthy that the percentages of these min-
erals decrease eastwards toward MBL (Fig. 5). These conclusions 
are also supported by the modeling of the Antarctica Ice Sheet 
during the LGM (Golledge et al., 2013). However, the validation of 
glacial erosional models require sediment volumes, sediment den-
sity, and a chronology from adjacent lake or ocean depositional 
basins (e.g. Bell and Laine, 1985; Hallet et al., 1996) and as yet 
this has not been attempted for the Ross Sea.

In our approach, sediment mixing and changes in provenance 
are seen in the persistent decrease of percentages of glass toward 
MBL and the eastern Ross Sea (Fig. 7C; Table 3), as well as in the 
estimated isolated presence of pyroxene in samples from the west-
ern Ross Sea compared to samples from the central or eastern Ross 
Sea (Fig. 3C). Other minerals which indicate a statistically signifi-
cant increase or decrease across the Ross Sea (p < 0.05, r = 0.275; 
Table 3) can be grouped into felsic non-clay and clay minerals 
which show an increase (e.g. quartz, illite, chlorite) versus those 
linked to alkali basalt and dolerite (pyroxene, forsterite, and smec-
tite) which decrease from west to the east (Fig. 5A and C).

In six instances we have paired qXRD data and isotopic data 
(Farmer et al., 2006). These samples show no evidence for an 
alkali basalt derived mineralogy and their compositions are pre-
dicted to have been derived from granite bedrock. However, our 
samples (Table 1) are primarily from grab and core tops, and the 
limited comparison that we can make with down-core sediments 
did not reveal any obvious change in mineral composition. We note 
that our results are consistent with those of Vogel et al. (2006). 
12
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They acquired subglacial sediment samples from 5 localities across 
the rift interior, from which they collected >500 pebbles. Among 
these, only two basalt pebbles were found. They were from only 
one of the five localities (Byrd Station) and they were determined 
to be Mesozoic to Cambrian in age. The rest of the >500 pebbles 
were granites and gneisses. Vogel et al. (2006), offer two options to 
explain the disparity between their results and those of Behrendt 
et al. (1993): (1) The proposed large igneous province does not ex-
ist, and previously reported subglacial activity was limited to indi-
vidual centers such as those described by Blankenship et al. (1993). 
(2) Other highly magnetic, non-Cenozoic rocks are responsible for 
the observed magnetic anomalies. They provided several exam-
ples of the latter explanation, including ones where they measured 
magnetic susceptibilities of several appropriate rocks from the Po-
lar Rock Repository at Ohio State University.

Van Wyk De Vries et al. (2017) identified 138 subglacial “con-
ical edifices” distributed mainly along the axial trough of the 
WARS, based on morphometric analysis and the coincidence of the 
cones with circular magnetic anomalies. Most lie in the Ross Sea 
drainage, but many lie on the east side of the WAIS divide where 
they could not have contributed detritus to our area of study. They 
assigned a “confidence factor” to each cone based on the degree 
to which it was associated with concentric magnetic and/or grav-
ity anomalies. They infer that many of these may be Pleistocene 
or younger in age, based on the undissected nature of the cones. 
Though they cite Vogel et al. (2006), they do not acknowledge their 
findings nor address the problem those findings present.

Neither Behrendt et al. (1993) nor Van Wyk De Vries et al. 
(2017) have considered the fact that the large volumes of sub-
glacial volcanic rock they have proposed should be represented by 
correspondingly large volumes of glass-rich hyaloclastites and pil-
low lavas, like those found at the base of many exposed volcanic 
sections across the MBL dome. These deposits are easily eroded 
and disaggregated, even in the typically non-erosive polar glacial 
environment (LeMasurier and Rocchi, 2005; Rocchi et al., 2006). 
Erosion of pillow lavas would yield more glass-rich clasts than sub-
aerial lavas.

It follows that, if there is indeed a large volume of subglacial 
volcanic rock in the WARS, we should expect to see significant 
amounts of glass, of zeolites (phillipsite, chabazite, analcime) and 
of smectite, as well as olivine carried to the surface as intratelluric 
crystals, which would appear as phenocrysts in subaerial lavas and 
pillow lavas. As noted earlier the results of our analyses (Figs. 3
and 8C) show an increase of volcanic glass westward, and even ev-
idence for alkali basalt at two sites on the extreme western limit 
of the Ross Sea, both of which are the reverse of what would be 
expected if large volumes of volcanic rock were concealed beneath 
the WAIS.

Several other geological and geophysical observations provide 
information relevant to the possibility that a large volume of late 
Cenozoic volcanic rock exists beneath the WAIS in the interior 
of the WARS. Winberry and Anandakrishnan (2004) used data 
from the Antarctic Network of Unattended Broadband Seismome-
ters (ANUBIS) and from the Global Seismic Network station at the 
South Pole to interpret characteristics of the lithosphere along a 
transect that extends across the MBL dome and rift interior to the 
Transantarctic Mountains. Their results suggest that the rift interior 
is underlain by “normal mantle” and is not volcanically active at 
present. They note that this is consistent with the finding of faster 
mantle velocities in the rift interior compared with those beneath 
the MBL dome (Ritzwoller et al., 2001). Lloyd et al. (2015) came to 
similar conclusions based on results obtained from a denser tran-
sect across West Antarctica. Winberry and Anandakrishnan (2004)
acknowledge that this interpretation conflicts with Behrendt et al. 
(1993) and suggest that the magnetic anomalies they cite may be 
relict features from an earlier period of extension.
13
LeMasurier (2008) compared the bedrock elevation of the WARS 
with rifts of similar scale and crustal thickness, by calculating the 
mass equivalent of glacial ice as in unconsolidated sediment at 
7 localities, and then recalculating bedrock elevations. The results 
show that the rift floor of the WARS lies 1000-2000 m lower than 
the Basin and Range province, the Rio Grande rift, and the East 
African rift, suggesting the interior of the WARS is relatively cool 
and volcanically inactive, consistent with the results cited above.

The heat flow data described above are too scant and too vari-
able to attempt a generalization. However, the high Lake Whillans 
value (285 mW/m2) lies in an unusual tectonic setting (Fig. 1). It 
lies on the south flank of the WARS adjacent to the TAM, most 
likely on or near a flanking fault, but more importantly, it lies 
over the recently discovered slow seismic velocity zone in the up-
permost mantle, which overlies a high wave speed root (Shen et 
al., 2018). This is interpreted to represent foundered lithosphere 
replaced by warm, low-density asthenosphere that is responsible 
for uplift of the TAM, and for Miocene volcanism at Mt. Early 
and Sheridan Bluff, which are far removed from all other centers 
of Cenozoic volcanism in Antarctica. Licht et al. (2014) describe 
a third volcanic center 60 km up-glacier from Mt. Early, which 
adds to the unusual nature of this isolated cluster of volcanic cen-
ters. Shen et al. (2018) do not cite Fisher et al. (2015), but high 
heat flow at this locality is clearly consistent with their findings. 
Given the unusual (unique?) tectonic setting of the Lake Whillans 
heat flow value, it seems questionable that this is representative 
of heat flow values in the WARS as a whole. The remaining three 
heat flow values noted above fall within the generalized 63-104 
mW/m2 range given for the Basin and Range province by Chapman 
and Rybach (1985); but whereas the Basin and Range has at least 
three geothermal systems with >1000 mW/m2, according to these 
authors, no such hot springs have been found within the WARS.

Taken together with the seismic and elevation characteristics 
described above, the interior of the rift (i.e. excluding the MBL 
dome) appears to lack evidence for a large volume of late Ceno-
zoic volcanic rock beneath the WAIS. This is consistent with the 
results of the sediment analysis described above.

6. Conclusions

We find no evidence to support the suggestions that Ross Sea 
glacial drainage system is underlain by an extensive outcrop of 
late Cenozoic volcanic facies. If that were the case then surface 
sediments from the Ross Sea should contain significant weight % 
of minerals such as pyroxene, and olivine, as well as zeolites. The 
amorphous silica found in many cores could be diatoms, volcanic 
glass, or the result of overgrinding. We cannot confidently inter-
pret this material as volcanic glass when it is not accompanied 
by olivine or pyroxene. The results of quantitative X-ray diffrac-
tion analyses rather indicated that the samples have large wt%s of 
quartz, and a sediment unmixing program confirmed that the sam-
ples had a close affinity to samples of granite bedrock with only a 
few samples out of 51 showing any admixture with alkali basalt-
derived bedrock.
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