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Online Change Point Detection for Weighted and
Directed Random Dot Product Graphs
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Abstract—Given a sequence of random (directed and weighted)
graphs, we address the problem of online monitoring and detection
of changes in the underlying data distribution. Our idea is to endow
sequential change-point detection (CPD) techniques with a graph
representation learning substrate based on the versatile Random
Dot Product Graph (RDPG) model. We consider efficient, online
updates of a judicious monitoring function, which quantifies the
discrepancy between the streaming graph observations and the
nominal RDPG. This reference distribution is inferred via spectral
embeddings of the first few graphs in the sequence. We characterize
the distribution of this running statistic to select thresholds that
guarantee error-rate control, and under simplifying approxima-
tions we offer insights on the algorithm’s detection resolution and
delay. The end result is a lightweight online CPD algorithm, that is
also explainable by virtue of the well-appreciated interpretability
of RDPG embeddings. This is in stark contrast with most existing
graph CPD approaches, which either rely on extensive compu-
tation, or they store and process the entire observed time series.
An apparent limitation of the RDPG model is its suitability for
undirected and unweighted graphs only, a gap we aim to close
here to broaden the scope of the CPD framework. Unlike previous
proposals, our non-parametric RDPG model for weighted graphs
does not require a priori specification of the weights’ distribu-
tion to perform inference and estimation. This network modeling
contribution is of independent interest beyond CPD. We offer an
open-source implementation of the novel online CPD algorithm for
weighted and direct graphs, whose effectiveness and efficiency are
demonstrated via (reproducible) synthetic and real network data
experiments.

Index  Terms—Online change-point detection, graph
representation learning, node embeddings, random dot product
graphs.
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I. INTRODUCTION

NLINE (or sequential) change-point detection (CPD) is
the problem of deciding whether (and if so when) the

, Federico Larroca,
, Senior Member, IEEE

generating process underlying an observed data stream has
changed; see e.g., [3] for seminal work in the context of quality
control. The goal is to flag a problem (in order to take corrective
actions) as soon as it happens, while controlling the probability
of false alarm. Unlike offline or batch processing (see e.g., [4]),
in the online CPD setting we do not have access to the full data
sequence which could well be infinitely long.

Given the ubiquity of datasets that are generated in a streaming
fashion, online CPD is a timely research area with applications
to sensor networks [5], financial markets [6], or, social net-
works [7], [8]. As these examples suggest, data are increasingly
high-dimensional and possibly non-Euclidean. Indeed, here we
will consider network data streams in the form of graph se-
quences. In a nutshell, given an incoming sequence of random
(possibly weighted and directed) graphs, we want to signal if
and when the data generating mechanism changes.

A. Relation to Prior Work on Online CPD for Network Data

Sequential CPD approaches are often parametric, and follow
the general premise of minimizing detection delay subject to a
constraint on the test’s type-I error. For network data existing
methods look for changes in the graphs’ distribution [S]-[7],
their topology [8] and community structure [9], or else the distri-
bution of signals supported on the nodes [10]. Some of these [6]—
[8] are only applicable to undirected graphs. A sequential non-
parametric, k-nearest neighbors-based approach was developed
in [11], solely requiring a pairwise distance between samples
(e.g., the Frobenius distance between graph adjacency matrices).
Unlike methods based on generative models, said distance is
prone to overlooking simple changes in network structure; see
the comparisons in Section V-A. A computationally-intensive
model-based CPD effort advocates the Generalized Hierarchical
Random Graph (GHRG) model in [7], which monitors posterior
Bayes factors for all partitions of the data over a sliding win-
dow. The approach in [12] is more general, as it considers the
workhorse Stochastic Block Model (SBM). The distribution of
two so-termed scan statistics is derived to signal changes in the
input graph sequence.

Going beyond SBMs, the recent work [13] considers an
inhomogeneous Bernoulli graph; whereby the existence of an
edge between a pair of nodes (i,j) is a Bernoulli random
variable with probability P;;, independent of all other pairs.
Each timestep, two statistics are computed for a logarithmic
grid of previous instants to check whether they exceed a certain
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threshold. Evaluating these statistics necessitates computing the
eigendecomposition of an N x N matrix (N is the number of
graph nodes). In addition to being computationally intensive, the
algorithm in [13] has to store all historical data in memory, which
may pose a major hurdle even for moderate-sized networks. The
procedure offers solid theoretical guarantees on the detection
delay and average run length.

Here instead we resort to the Random Dot Product Graph
(RDPG) model, a particular but very versatile case of the
inhomogeneous Bernoulli graph [14], [15]. In RDPGs each
node has an associated latent position in R9 with d < N, and
P;; is given by the inner product between the corresponding
vectors. As we discuss in Section II, RDPGs capture phenomena
commonly encountered with real-world graphs (e.g., statistical
dependencies among edges) and subsume the SBM as a special
case, while still being amenable to analysis [15]. Moreover,
RDPGs offer interpretability, an attractive feature that simplifies
the explanation of the detected change-points.

B. Paper Outline and Contributions

Building on [16], we assume a clean historical dataset with
no change-points is available, from which we estimate the latent
nodal vectors via the adjacency spectral embedding (ASE) in
an offline training phase. As new data arrive in a streaming
fashion during the operational phase, the novel online CPD
algorithm (Section III) recursively updates a monitoring function
statistic whose null distribution we characterize analytically
via asymptotic arguments. In addition to providing theoretical
guarantees on the false alarm rate of the resulting online CPD
scheme, an attractive feature is its limited memory footprint
— we store a single NV X NN matrix in memory (in addition to
the estimated latent vectors, naturally). Moreover, the resulting
lightweight statistic updates are an order-of-magnitude more
efficient than those based on repeated eigendecompositions.
Using simplifying approximations we derive conditions under
which changes may go undetected.

An additional contribution is to extend the vanilla RDPG
model [14], [17] to accommodate weighted and directed graphs
(digraphs), which we seamlessly adopt to perform online CPD
for these general network models (Section IV). Extensions to
digraphs are straightforward [18], but we carefully study those
ambiguities inherent to the model (not discussed in previous
work) which may challenge downstream CPD methods. Unlike
previous RDPG proposals for weigthed graphs [19], [20], our
new non-parametric model in Section IV-B does not require a
priori specification of the weights’ distribution to perform prov-
ably consistent inference and estimation. We believe this contri-
bution is significant in its own right, and beyond CPD it cane.g.,
impact node classification and visualization of network data.
Numerical tests in Section V corroborate the effectiveness of
the proposed online CPD method, using both simulated and real
network datasets that we share in our Github repository. Con-
cluding remarks and future directions are outlined in Section VI.

Relative to its conference precursors [1], [2], here we consider
online CPD for weighted and directed graphs through a unified
presentation along with full-blown technical details (including

extended discussions, examples and unpublished proofs for all
the theoretical results). Noteworthy novel pieces include: (i)
examination of delay and change-detectability conditions; (ii)
adoption of finite-memory (windowed) statistics; (iii) integrat-
ing the directed and weighted RDPG models for online CPD;
(iv) a consistency result for the weighted RDPG embeddings;
and (v) a comprehensive and reproducible performance eval-
uation protocol. The latter offers comparisons with batch and
online CPD baselines; an study of detection delay; the choice of
monitoring function and thresholds; as well as applications to
wireless and social networks.

II. PRELIMINARIES AND PROBLEM STATEMENT

Here we introduce the necessary background on RDPG mod-
eling and inference. The interested reader is referred to the
comprehensive survey [15] for additional details about batch
statistical network analysis. We then state the online CPD prob-
lem where the streaming graphs are modeled as RDPGs.

A. Random Dot Product Graphs

Consider an unweighted and undirected graph G = (V, €),
with nodes V = {1,..., N} and edges £ C V x V. If nodes 1
and j are connected in G, then the unordered pair (i,7) € £.
More general models involving directed and weighted graphs
will be dealt with in Section IV. To start, we restrict ourselves
to the simplest possible case for ease of exposition.

In the RDPG model of GG each node i € ) has an associated
latent position vector x; € X C R?, and edge (i, j) exists with
probability F;; = xjxj, independent of all other edges. We
do not allow for self loops, hence P;; = 0 for all 7 € V. The
geometric interpretation is that nodes with large ||x;||2 tend to
exhibit higher connectivity, whereas a small angle between x;
and x; indicates higher “affinity” among 7 and j. Note that the
set X' of possible x; is such that x "'y € [0, 1], forallx,y € X.
Just like with blockmodels and SBMs [21], in general vectors
xX; may be random, drawn from a (so-termed inner product)
distribution in &X'. The dimensionality d of the latent space is a
model parameter, often much smaller than N.

Thus, letting A € {0, 1}V*¥ be the random symmetric adja-
cency matrix of G and X = [x1,...,xx]" € RV*9 the matrix
of latent vertex positions, the RDPG model specifies

P(A]X) =[x (1 —x/x)" 4. (1)
i<j

That is, given X, edges are conditionally independent with
Aij ~ Bemoulli(xjxj).

Example 1: The RDPG model is a tractable yet expressive
family of random graphs that subsume Erds-Rényi (ER) and
SBM ensembles as particular cases. Indeed, if x; = VP for all 7,
we obtain an ER graph with edge probability p. An SBM with M
communities may be generated by restricting X to having only
(at most) M different columns (i.e. | X| = M); see also [15] for
additional examples. On the other hand, the RDPG is a particular
case of the latent space model [22], in which edge probabilities
P;; = k(x;,x;) are specified by means of a symmetric link
function .
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B. Inference on RDPG via the Adjacency Spectral Embedding

Given the matrix X of latent vertex positions, the joint
distribution in (1) specifies the generative process to sample
graphs from the RDPG model. We now discuss the associated
inference (a.k.a. node embedding) problem. That is, how to
estimate X having observed a graph stemming from an RDPG
with adjacency matrix A.

In lieu of a maximum-likelihood estimator that is intractable
beyond toy graphs [23], the key intuition is that A is a noisy
observation of

P=XX", (2)

the rank-d matrix of edge probabilities P;;, since E[A | X] = P.
It is thus natural to adopt the estimator

X = argmin ||[A — XX "%, s.torank(X) =d.  (3)
X

The solution to (3) is readily given by

X=VA'"? @)
where A = VAV is the eigendecomposition of A, A € R9*?
is a diagonal matrix with the d largest eigenvalues of A, and
V € RV*4 are the corresponding d dominant eigenvectors. We
are assuming that A has only non-negative values, an appar-
ent limitation that may be easily circumvented [24]. The bias
introduced by the implicit constraint diag(XX ") =~ 0 can be
alleviated as well [23]. In practice, d is likely unknown but
can be estimated by looking for “elbows” on the so-termed
eigenvalue scree plot [25]. We find it is safer to overestimate
d (which will add some noise) than underestimate it, that will
oversimplify the model and may e.g., hide change-points [1].
Estimator (4) is known as the Adjacency Spectral Embedding
(ASE), which is asymptotically normal and approaches X as
N — oo provided the true d is chosen [15]. It is also possible to
define an analogous normalized Laplacian spectral embedding
for undirected (g, which can be shown to enjoy similar desirable
asymptotic properties to those of the ASE [15].

Before moving on and stating the formal online CPD problem
addressed in this paper, a couple of remarks on model identifia-
bility and ASE variance reduction are in order.

Remark 1 (Identifiability of Latent Positions): The RDPG
model is identifable up to rotations of X. To see this, consider an
orthogonal matrix W € R4 and note that the rotated vectors
XW will produce the same probability matrix as in (2). Hence,
the estimator (4) is unbiased up to an unknown rotation matrix
‘W, and the ambiguity should be accounted for when detecting
changes on G’s distribution.

Remark 2 (ASE Variance Reduction): Dispersion of ASE esti-
mates can be reduced if one has access to multiple observations
from the underlying RDPG. Indeed, let A[1]..., A[m] be an
independent sequence of adjacency matrices, all adhering to an
RDPG with latent position matrix X € R *?, Define the mean
adjacency matrix

A=—> Al ©)
t=1

and henceforth let X_be the ASE decompo_sition of A:i.e., the
solution of (3) using A instead of A.. Since A is also an unbiased

estimator of P and var[4;;] = L P;;(1 — P;;), thenas N — oo
the estimated latent positions X will follow a normal distribution
with variance scaled by % relative to the variance of the ASE
obtained from a single graph as in (3) [26]. The alternative of
averaging individual ASEs is problematic due to the rotational
ambiguity discussed in Remark 1. Indeed, alignment of the
(rotated) ASEs of a graph collection would entail solving several
Procrustes distance minimization problems, or else computing
the so-termed omnibus embedding [27].

C. Problem Statement

Suppose we acquire a batch of m graphs as in Remark 2, in
which all matrices stem from the same RDPG model. We will
refer to that sequence as the training data set, which is used
in an offline initialization phase to estimate model parameters
from the null model. During the operational phase we observe
a (possibly infinite) sequence of streaming adjacency matrices
A[m + 1], Alm + 2],..., and would like to detect at what time
t > m (if any) the null model described in (1) is no longer valid
(i.e., drifts from the aforementioned RDPG model represent
the alternative hypothesis). We tackle this CPD problem in an
online fashion, meaning graph observations {A[m + k|}x>1
are sequentially and efficiently monitored as they are acquired,
without having to store the whole multivariate time series. This
way, the algorithm’s computational complexity and memory
footprint does not grow with k. Another attractive feature is the
possibility of detecting the change in (pseudo) real-time, ideally
soon after it occurs and with control on the probability of false
alarm (i.e., type-I error).

We will also consider generalizations of the aforementioned
baseline CPD problem in order to account for weighted and
directed graph sequences. This calls for fundamentally re-
examining the RDPG model to accommodate said observations
— especially in the weighted case —, as well as the associated
embedding algorithms and the overall online CPD framework.

III. ONLINE CHANGE-POINT DETECTION

Our idea to develop an online CPD framework for network
data is to endow sequential CPD techniques with a graph repre-
sentation learning substrate based on RDPGs.

A. General Algorithmic Framework

We build on the so-called estimating function approach for
sequential CPD [16], [28], which we markedly broaden to ac-
commodate network data. The central notion behind this online
CPD method is to consider a monitoring function H of each
streaming graph A[t], that should satisfy E[H] = 0 under the
null hypothesis. If one monitors a cumulative sum of H, that
quantity should intuitively remain small provided there are no
changes in the underlying model. If there is a change however,
then E[H] # 0 and we should observe a drift in the trend of the
sum.

As proposed in [16] for a network-agnostic setting, we first
estimate the parameters of the underlying null RDPG model
using the training data set, i.e., we estimate the latent positions

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on March 02,2022 at 01:06:03 UTC from IEEE Xplore. Restrictions apply.



MARENCO et al.: ONLINE CHANGE POINT DETECTION FOR WEIGHTED AND DIRECTED RANDOM DOT PRODUCT GRAPHS 147

matrix X. The estimation should be carried out with an estimat-
ing function G, where the estimated parameter X is the solution
to a system of equations of the form

> G(A[t],X) =0. (6)

To define such a function for our problem, given the training
data set we estimate X as the ASE corresponding to A [cf. (5)
and the discussion in Remark 2]. Taking the derivative w.r.t. X
of the objective function in (3) (with A + A) and setting it to
Zero, we arrive at

i (XXT

t=1

)X =0,

suggesting the use of G(A[t],X) = (XX — A[t])X as the
estimating function. Accordingly, G amounts to projecting the
residual XX T — A[t] onto X.

In order to detect a change on the underlying model during the
operational phase, we will track the cumulative sum (CUSUM)
of a monitoring function H as new adjacency matrices arrive for
t > m + 1, namely

m-+k
> H(A[f],X
t=m-+1
While it is possible (and often natural) to use the same function
for both estimation and monitoring (i.e. H = G), we show
in Section V-A that adopting the residual itself instead of a
projection yields in a more powerful detector. Thus, we choose

H(A[t],X) = XX — A[t].

We reiterate here that the matrix X is computed during training,
via the ASE of the average A of the adjacency matrices in the
training set. Once monitoring starts, X is fixed and we do not
recompute the ASE for new observations.

Since all involved matrices are hollow and symmetric, we
only need to consider entries, say, above the main diagonal. It
will also prove useful in the analysis that follows to vectorize
the resulting values. We thus define a vector function h as

h(A[t], X) = vec [mu (XXT - A[t})} , (7)

where vec(triu(B)) means arranging the entries above the
main diagonal of matrix B in a vector. If B € RY*N then
vec(triu(B)) € R”, with r := Y1,
If the norm of the partial sum
m+k R
> h(A[].X) )
t=m-+1

exceeds a certain threshold, we will conclude that the model is
no longer valid. Let us then denote our CUSUM statistic as

P[m7 k] = ||s[m, k]”%

In order to control the variance of I'[m, k] as k grows, a weight-
ing function w[k] is also introduced. We use w(k] = (rk*/?)!
and instead monitor w[k]I'[m, k]; the reason for this choice is
explained in the next section when we derive said variance for
the null distribution.

Algorithm 1: Online change-point detection for RDPGs.

Require: Training graphs Aftl,t=1.
1:  Compute the ASE X of A in (@) (see Remark 2)
2:  Compute threshold function ¢, (see Section III-D)
3: [Initialize partial sum s[m,0] = 0
4: fork=1,2,... do
5:  Acquire graph A[m + k|
6:  Compute monitoring function h(A[m + k], X)
7 Update CUSUM statistic I'[m, k] (see Remark 3)
8 if w[k]T[m, k] > c,[k] then

9: Change point detected at time £* = k
10: break
11: end if
12:  end for

13: return k*.

All in all, the null hypothesis of no change will be rejected at
the first time instant & when

wlk|T[m, k] > cqlk],

where ¢, [k] is a certain threshold that depends on the distribution
of w[k]T'[m, k] under the null hypothesis and the prescribed
type-I-error level . In the next section we will discuss how this
threshold is chosen after characterizing the running statistic’s
null distribution. A pseudocode of the online CPD method
including the offline (training) and operational (monitoring)
phases is tabulated under Algorithm 1.

Remark 3 (Computational Complexity): Efficient recursive
calculation of the cumulative monitoring function s[m, k] =
s[m, k — 1] + h(A[m + k], X) incurs O(N?) memory storage
and computational complexity. The cost of forming the weighted
CUSUM statistic w[k]T'[m, k| is of the same order. A single
ASE is required in the offfine training phase to yield fixed
edge probabilities estimates XXT. No embeddings have to
be recomputed each time a new graph is observed. To gain
discriminative power in the statistical tests we perform, an
alternative would be to examine the CUSUM statistic at every
time point ¢t € [m +1,...,m + k]. This comes at the price
of increased computational complexity, since it would entail
computing k additional ASEs during the monitoring phase. This
computational challenge is compounded with the need to derive
the limiting distribution of the resulting stochastic process.

B. Statistical Analysis of the Null Distribution

In order to select the weighting and threshold functions, we
will study the distribution of our statistic under the null hypoth-
esis. We will first develop theory for the case when the ASE
estimate is error-free, i.e., XX ' = XX = P. This way the
estimated latent positions allow for a perfect reconstruction of
the connection probability matrix. In practice, this will be valid
when m and/or N are large enough. Since for some applications
this may not be necessarily true, we will then extend the analysis
for the imperfect estimation case.
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1) Perfect ASE Estimation: In this favorable case one has!
h = vec[triu(P — A[t])], with E[h] = 0. The covariance matrix
Sy = E(hh") € R™*" has null non-diagonal entries since the
random variables A;; are mutually independent. The diagonal
entries are var[A;;] = P;;(1 — P;;). In short, X is a diagonal
matrix whose nonzero entries are p;(1 — p;), I = 1,...,r, with
pr denoting the entries of vec[triu(P)] (i.e., a reindexing of P;;).

Given this characterization of the first two moments of h,
the following proposition gives the asymptotic distribution of
the CUSUM statistic I'[m, k] as k — oo. In practice, we rely on
this limiting distribution as an approximation (for finite k) based
on which we set the treshold ¢, [k].

Proposition 1: Suppose the perfect ASE estimation assump-
tion XX = XX = P holds. Then, as £ — oo the test statistic
sequence converges in distribution, namely

- D
kT, k] =Y pi(1 = p)yt,s ©)
=1
where {y;};_, are i.i.d. standard Gaussian random variables.
Proof: Invoking the Central Limit Theoreom (CLT), as
k — oo the distribution of k~'/2s[m,k] in (8) converges
to a multivariate Gaussian distribution AN(0,Xy), ie.,
E=1/2s[m, k] RS (2)Y/?y, where y is a standard Gaussian ran-
dom vector. Hence, k™ 'T'[m, k] = ||k~'/2s[m, k]||3 also con-
verges in distribution because

ET[m, k] = (k7Y/2s[m, k) Tk~ %s[m, k]

D 2 2
B (=T y

=y ' Zpy

.
=> (1l —p)yi,
=1

which is the desired result in (9).

Remark 4 (Convergence Rate and Network Size): By bringing
to bear Berry-Essen type results for the CLT, one can establish
that the distribution of k~'T'[m, k] converges to the limit stated
in Proposition 1 at a rate O(k~'/2), independent of  and hence
the graph size N; see e.g., [29, Theorem 1.1].

Since y; ~ N(0,1) then y? ~ x*(1) (chi-squared distribu-
tion with one degree of freedom). By virtue of Proposition 1
and for sufficiently large k, we can approximate the mean and
variance of I'[m, k] as

E [T[m, K] ~ k> pil - p),
=1

var [['[m, k]| ~ 2k? Zplz(l -m)?

=1
where we have used that the {y;}]_, are mutually independent.
To control the growing variance of I'[m, k|, the weighting
function for the perfect ASE case can be chosen as w[k] =
(rk)~!. The threshold c,[k] is thus selected as the (1 — a)-
quantile of the limiting distribution in (9), which provides a

(10)

'We have omitted the dependence of h on ¢ and X for clarity.

type-1 error of approximately «. Next, we show that in the
presence of estimation errors the weighting function will have
to be readjusted accordingly.

2) Imperfect ASE Estimation: In this case, we will write

XX —Alf] = XX - A[t] + XX — XX,

where X is the true latent positions matrix (cf. P = XXT).
Defining the estimation error E = XX T — XX, then

h(A[t],X) = vec [riu (XX — A[t])] +e, (1D
where e = vec|triu(E)] = [e1, ..., e.]". Sothe firsttermin (11)
corresponds to a perfect ASE, while the second one captures the
estimation error stemming from an imperfect reconstruction of
P. Note that after training, e is fixed and it does not depend on ¢.
Using (11) and by virtue of the CLT, it follows that for
sufficiently large & the distribution of s[m, k] can be well approx-
imated by the multivariate Gaussian N (ke, k3 ). Standard
calculations for the norm of a non-centered Gaussian vector
suffice to assert that the distribution of I'[m, k] can be in turn
approximated by the distribution of the random variable
T=k> p(l—p) (i +b)°, (12)

=1
where {y;}]_, is an independent sequence of standard Gaus-
sian random variables and {b;}]_, are the entries of vector

b= \/EZ);/ 2e. Note that if the ASE estimation is perfect, then
e = 0 and we recover the distribution in Proposition 1.

For large £, using (12) we can approximate the expected value
and variance of I'[m, k] as in the error-free case. The difference
here is that each summand (y; + b;)% ~ x?(1,b?), i.e., a non-
central chi-squared distribution with one degree of freedom and

parameter b7 = e?. Hence, one finds

(L —pr)

E [Llm, k)] = k°[lell3 + kY pi(1 —p)
=1

=k|le|3 + ko)1, (13)

var [['[m, k]| ~ 4 k> sz(l —p)e; + 2k Zp?(l —m)?
=1 =1
=4kPc"e® +2k%|o||3, (14)
where for notational convenience we defined the auxiliary vector
o with entries {p;(1 — p;)}/_,, and e* denotes the entry-wise
square of e. The preceding arguments suffice to establish the
following result on the convergence of I'[m, k].
Proposition 2: In the general case, as k — oo the test statistic
sequence converges in distribution, namely
Llm, k] — K*[le]3 — kllof p
Va4k3oTe? +2k2| o]
where y is a standard Gaussian random variable.
Apparently, we need to choose w[k] = (rk3/2)~! to control
the variance of the weighted statistic. This is because for large &,
the term that dominates the variance expression (14) grows like
k3 [cf. k2 in (10)]. The detection threshold c,[k] is thus set as
the (1 — «)-quantile of the generalized chi-squared distribution
defined in (12), after weighting. We note that the resulting

)
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cumulative distribution function has a complex form which
requires numerical integration to compute the desired quantiles;
see also [30], [31] for classic formulae to approximate said
distribution function. As the next example shows, for particular
cases the resulting distribution simplifies.

Example 2: For an ER model with connection probability p
we have p; = pforalll = 1,...,r and (12) simplifies to

_ k
I'gr = kp(1 — p)u, withu~x2(r,e2). (15)
e = kp(1 =) el

Alternatively, for threshold selection we will often resort to
the mean plus three standard deviations

th{k] := w{k]Epe[k] + 3v/w2[k]vary k], (16)

where E,. is the expectation of the statistic before the change
and vary, is its variance; given by (13) and (14), respectively,
using a suitable estimate of e described in Section III-D. Nu-
merical tests in Section V-A corroborate that this rule of thumb
works well for all practical CPD purposes and it comes close to
the true 0.99-quantile. Moreover, having an analytic threshold
expression facilitates studying the detection resolution of the
online CPD procedure, the subject of the next section.

C. Change Detectability Analysis

Let us examine what changes are detectable by the proposed
online CPD algorithm, when using the simple thresholding
rule th[k] based on the derived mean and variance of the
statistics’s null distribution. To this end, we will assume that
from a certain change-point k = k. onward, the sequence of
graphs is generated by an RDPG with latent vectors Y so that
A :=XX" -YY' (ie., the change is manifested through
a perturbation on the resulting probability matrix). Given the
expressive power of RDPGs [15], the modeling assumption for
k > k. comes with limited loss of generality. Henceforth, let
4 := vec[triu(A)].

If we are at a certain time k > k., the partial sum of the
monitoring function is then (recall E = XXT — XX

m+k

sim. k=Y h (Al X)
t=m+1
m+tk.—1 m+k
= Y h(A[#,X)+ > h(A}].,Y)
t=m+1 t=m-+k.

+ ke + (k — k.)d.

Similar to the previous section, for large k. and k we obtain a
Gaussian vector with independent entries; mean ke + (k — k.)d
and covariance matrix k.diag[o x] + (k — k.)diag[oy |, where
o x and oy are the auxiliary vectors defined in (14) correspond-
ing to X and Y, respectively. This results in a CUSUM statistic
with mean approximately equal to

E [[[m, k]| = |ke + (k — k.)d||5
+kellox|li + (B —ko)|loy]h- a7

In the long run as k — oo, the dominant term will be the
first one, which when weighted by w[k] = (rk3/2)~! amounts
to wlk|E[L[m, k]] = k'/2||e + &|3/r. Given that w[k]T'[m, k]

has finite variance and that on this asymptotic regime th[k] ~
k'/2||e||3/r plus a constant, we have established that changes
are detectable as long as

le + 8113 > llel3 = 2le|lzcos0 +[|d]|l2 >0, (18)

where 6 is the angle between e and §. It thus follows that a
large value of ||d]]2 aids detectability, as expected. The same
happens for small values of the estimation error magnitude
le|l2, and in the idealized perfect estimation scenario we find
all changes will be detected in the long run. Naturally, condition
(18) is sufficient for changes to be detected, but not necessary.
On the imperfect scenario, the resulting model estimation error
will result in small changes likely going undetected provided
6 € (%,25). On top of this angular requirement, a change
may be missed when the “perturbation-to-imperfection” ratio
is small, i.e., ngj < 2| cos@|. The following simple example
offers additional insights on the feasibility of the condition (18).

Example 3: Consider a sequence of ER graphs with connec-
tion probability p, which at a certain time-step k. changes to

q = p — A.In Appendix A we show that the following bound
P ([le+ ]3> [le]3)

8(1—p) 1—p

Z = ATve N = Dy | N T2 e
on the probability of satisifying the detectability condition (18)
holds asymptotically in N. This means that if A% N2 m goes to
infinity as NV grows, then the change will be detected with high
probability. In other words, the method detects changes A up
to an order of N~'m~1/2. This example further illustrates that
Algorithm 1’s performance improves with growing m (the size
of the training set) as well as IV (the number of nodes).

D. Further Implementation Details

We close this section with some necessary implementation
details for Algorithm 1. These pertain to the calculation of the
threshold and the possibility of utilizing windowed statistics as
alternatives to the the cumulative sum (8).

1) Threshold Calculation: The procedure outlined in Sec-
tion III-B requires prior knowledge on the values of P and e in
order to set the threshold ¢, [k]. This will be the case if one uses
the exact (1 — «)-quantile of the null distribution, approximate
formulae, or, simply th[£] in (16). In most applications the values
of P and e are unknown, so it is necessary to estimate them from
the observations in the training set.

For P we simply use the plugin estimator P=XXT, e,
we estimate P using the ASE of A in (5), computed over the
training set. Characterization of the statistical properties of E
(and subsequently e) is challenging in general. Even for the
simple ER model, the study of E is non-trivial as shown in
Appendix A. Therefore, we opted for a data-driven approach to
form point estimates of E by performing “leave-one-out” passes
over the training set: we randomly select anindex jin1,...,m
and compute the ASE of A[j] and of

_ 1 m
A_yv=—S At
(—9) m—lél[L
t£
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the mean adjacency matrix over the left-out samples. We
denote these ASEs as X; and X(_;, respectively. Be-

cause var[i(,j)f(ij) —P] = var[X;X] —P]/(m—1) as
discussed in Remark 2 and [26], we compute

A~ A T — 77’
_ XX XXy

E.
/ m—1

)

a fixed number of times, obtain a set of values E;, and estimate
a “worst-case” E via the 0.99-quantile of this set.

Note that the change detectability of the algorithm depends on
the value of € and how close it is to e. In particular, the relevant
condition (18) in practice becomes ||&]|? < ||e + J]|3.

2) Finite Memory Statistics: The CUSUM statistic I'[m, k] =
ls[m, k]||3 we have dealt with so far is based on the partial
sum s[m, k] = 370" h(At],X). As discussed in Remark
3, it can be computed in a recursive and memory-efficient
fashion that is ideal for online operation. Moreover, such an
infinite-memory statistic accrues information from the entire
data stream { A [m + k] }x>1, which is beneficial when it comes
to invoking asymptotic approximations to the null distribution
as in Section III-B. However, if the change point k. occurs
rather late during the monitoring horizon, then the inertia effect
induced by a lengthy history of nominal graph observations will
translate to longer detection delays.

To attain faster reaction times one can resort to alternative
finite memory statistics, which tend to rely on a judicious
subset of the most recent observations. One natural variant
is to adopt a fixed-length sliding window statistic, where the
partial sum is s[k — L, k] for given window length L. At time
k, this moving sum (MOSUM) statistic discards past data in
the interval (m,k — L), and its computation requires storing
the last L graphs in the sequence; see also (26) and [28] for a
modified version where the window length grows proportionally
with k. Another useful procedure stems from the exponentially-
weighted sum (EWSUM) statistic, namely

m-+k

sglm, k] = > pmEn (A[t],X) :

t=m+1

19)

where 3 € (0, 1] is a so-termed forgetting factor. EWSUM coin-
cides with CUSUM for S = 1, whereas for < 1 past samples
are exponentially down-weighted and thus it offers a faster
response to changes. Similar to CUSUM, (19) can be recursively
updated as sg[m, k] = Bsz[m, k — 1] + h(A[k],X) and does
not require storing any of the past measurements. Notice that
as long as the window length is long enough we may still use
the results derived in Section III-B, and the only algorithmic
difference is that the weight w[k| and the threshold ¢, [k] should
be changed accordingly (e.g., w[k] = (rmin{k, L}3/2)~1 in
the MOSUM case). The effect of choosing different windowed
statistics is studied in the numerical tests of Section V.

IV. DIRECTED AND WEIGHTED GRAPHS

A. Directed RDPG

As introduced in Section II, the RDPG model is only suitable
for undirected graphs. Indeed, XX = P is always symmetric.

For digraphs, edges (or arcs) are defined as ordered pairs (i, j),
with 4, j € V. Since edges (i, j) and (7, ¢) are different objects,
so could be the probabilities FP;; and Pj;. By convention, we say
(i, 7) starts from 4 and points to j.

1) Model Specification: Digraphs require an adaptation to the
RDPG model, where each node 7 € ) has an associated column
vector x; —now in R24 [18]. Let us denote by Xé and x] the first
and last d entries of x;, respectively. Likewise, let Xl7 X" e
RN be the matrices stacking the transposed nodal vectors as
their rows. In direct analogy to the undirected case, we define
the directed RDPG (D-RDPG) model as

P(A[X) = TTIGeh) T4 [t = () "xp)t A
%]
[cf. the product over all ¢ # j here versus ¢ < j in (1)], and the
asymmetric matrix of connection probabilities now becomes

P =X (X")T". 1)

Intuitively, we say x}: models node i’s outgoing connectivity and
x7 its incoming one. The probability of existence of the arc (4, j)
is given by (xé)Txg.

Note that the rotational ambiguity is still present. Actually,
the ambiguity is exacerbated in this case because any invertible
matrix W € R%? will result in the same P. Indeed, con-
sider X'W and X"W ™" and note that X'W(X"W~T)T =
XIWW-HX™)T = X{(X")" = P. Thus, as introduced the
D-RDPG model (21) will be challenging to interpret, partic-
ularly when it comes to comparing two digraphs via their cor-
responding embeddings. This last task is critical when it comes
to CPD. In order to have roughly the same level of ambiguity
as in the undirected RDPG case, we will henceforth require that
the d columns of both X! and X" are orthogonal vectors (i.e.,
(XH X and (X™) " X" are d x d diagonal matrices). This extra
constraint does not fundamentally limit the expressiveness of the
model because P is still of rank d.

All in all, we are left with the same rotational ambiguity as in
the vanilla RDPG model, in addition to a scaling one. Indeed,
consider a diagonal matrix diag(c) with non-zero entries and let
W be an orthogonal matrix. Then it follows that X! W diag(cx)
and X"Wdiag(a)~! (which still have orthogonal columns)
will produce the same P as (21). Consequently, comparing the
magnitude of x! with that of x” is meaningless. This scaling
ambiguity, which to the best of our knowledge was overlooked
before, will challenge CPD if one is interested in the behavior
in a single direction (either incoming or outgoing). This is an
interesting extension we will leave for future work.

2) D-RDPG Inference: Let us now discuss how to estimate the
matrices X' and X" from a graph observation. Since P = E[A]
still holds, we seek a pair {Xl, XT} with orthogonal columns
such that X!(X")T is the best rank-d approximant of A.. Letting
A = UDV ' be the singular-value decomposition (SVD) of A,
we set

(20)

X! = UDY? and X" = VD2, (22)
Note that (22) satisfies the required orthogonality constraint.
The choice in terms of scaling and counterscaling of columns
is arbitrary. Choosing D'/2 assumes an even contribution of
the incoming and outgoing connectivity of incident nodes to
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edge generation, which seems reasonable in lieu of any ad-
ditional prior information. The scaling ambiguity is inconse-
quential to digraph CPD if we adopt the monitoring function
H(A[], {X,X"}) = X!(X")" — A[lf].

B. Weighted RDPG

We now shift our focus to weighted, undirected graphs. Let
us then define a positive weight for each edge through a map
w: & — Ry such that A;; = Aj; = w;; for (i,7) € €. The
absence of an edge is encoded as A;; = A;; = 0. Naturally, an
unweighted graph is a particular case of a weighted graph where
the edge weights are O or 1 (i.e., w = 1).

A couple of works have proposed similar adaptations of the
vanilla RDPG model to the weighted case; see [19], [20]. The
basic ideas therein are outlined next. Suppose that the (possibly
weighted) adjacency entries are generated from a given para-
metric distribution Fp(A;;) with @ € R, for instance 6 = A
for a Poisson(A) distribution. Each node 7 € V now has L latent
vectors x;[l] € R% (I=1,...,L), such that the weight A;;
between nodes ¢ and j is random with parametric distribution
Flxr (155 (1,-e.x] (L1 [Z]) (A;;), independently of all other edges.
The distribution may have mass at A;; = 0 to capture sparse
graphs where some pairs of nodes will be not be joined by
edges. One recovers the vanilla RDPG by letting Fg(A;;) be
a Bernoulli(6) distribution.

This approach has several drawbacks. For starters, all edges
are required to have the same weight distribution, albeit with
different parameters. This limitation may be partially overcome
by considering a mixture distribution. However, and limiting
even more its applicability, Fip(A;;) has to be chosen a priori.
So if edges have different weight distributions, we would have
to know which of them adhere to each distribution (and what
these distributions are) prior to inference.

1) Model Specification: We propose instead that the sequence
of vectors associated with each node is related to the moment
generating function (MGF) of the weight distribution. In partic-
ular, each node has a sequence of latent positions x;[I] € R%
that determine the /-th moments of the weighted adjacency
matrix as E[A};] = x[I]x;[], for | € N .Given the sequence
X = {X[l]};, with X[I] = [x1[I],...,xn[l]]T € RV*%  our
weighted RDPG (W-RDPG) model specifies the MGF of the
adjacency matrix as
= {/E [AL

] =t [1)x 1]
E [t i =1+;% (23)

X] =

1=0
and the entries A;; are independent, i.e., edge independent.
One can recover the vanilla RDPG by setting x;[I] = x; for all [,
where x; is the vector associated to node 7 in (1).

2) W-RDPG Inference: Vectors x; [l] are estimable via an ASE
of matrix A, where A() denotes the entry-wise I-th power
of adjacency matrix A. The following theorem establishes the
consistency (up to an unknown rotation) of this estimator, under
some minor eigengap assumptions for the inner product matrices
X[XT[1].

Theorem 1: Let B € RV*YN be a random, symmetric, and
hollow matrix. Suppose that 0 < B;; < M for some M > 0

1 I ey, 10.0 s "
s B T S
o PR u;.‘-.' 2 ::" fi,s . 5.0 " @“L‘.
. JIRE T i
G . . R ‘r.'=. }
a2 S < "‘.“F&.‘.} 5 R *l‘s.-_r
14 15 16 17 7} 0 325 3.50 3.75 4.00 4.25 -2 7 8

Fig. 1. ASE embedding of A() for Gaussian (1 = 5 and o = 0.1; in blue)
and Poisson (A = 5; inred) distributed weights ford; = 2and = 1 (left),l = 2
(center), and [ = 3 (right). Nodes with different weight distributions are clearly
revealed for [ = 3, but they overlap for [ = 1.

and that {B;; };<; are independent with E[B;;] = P;;, where
P = XX for some fixed X € R¥*?, Suppose that rank(P) =
d and that P has d distinct positive eigenvalues Ay > Ay > -+ >
Aq > 0 that satisfy

H;&mMZ _)‘j| > 0N and Ay > 6N
Eav)

for some § > 0.

Let X € RV*4 denote the ASE of B, where it is assumed
that the latent space dimension d is known. Then almost surely
there exists an orthogonal matrix W &€ R*d guch that, for each
ie{l,...,N}andally <1,

P [||(XW);. — (X).|2 > N*W} =o0(N"log N)

where (C);. denotes the i-th row of matrix C.

The relevance to W-DRPG inference is that Theorem 1 can
be applied, for each fixed [, to B = A() to ensure that the latent
position matrix X[!] can be consistently recovered (modulo an
orthogonal transformation) via the ASE of A ().

Theorem 1 is an extension of [32, Theorem 4.1], so in Ap-
pendix B we sketch how the proof therein can be adapted to our
setting. The main differences with the result in [32] are that in
our setting, @) latent positions are not random, and b) entries
B;; of matrix B are not necessarily Bernoulli random variables;
we only assume that they are bounded and their expectation is
given by the dot product of the corresponding latent positions.
We remark that b) is a more general setup than that of [32].
Extending the W-RDPG model to accommodate random latent
positions remains an open direction we will pursue as part of
our future work.

Example 4: To illustrate the discriminative power of this
novel embedding, we consider a two-block weighted SBM graph
with N = 2000 nodes. Edges are formed with fixed probability
p = 0.5, but weights are Gaussian with mean . = 5 and standard
deviation ¢ = 0.1 for all edges except between a group of
1000 nodes indexed as ¢ = 1001, . .., 2000, where the weights’
distribution is Poisson with parameter 1 = 5. As discussed in
Example 1, in this case matrix X[I] will have at most 2 different
columns for all [. The vectors X;[l] corresponding to the ASE
for  =1,2,3 and d; = 2 are shown in Fig. 1, where each
community is colored differently.

Note how the nodes are indistinguishable for [ = 1. Indeed,
the x;[1] vectors are, as expected, centered around (,/zp, 0) =
(v/Ap,0) ~ (1.58,0) corresponding to the mean weight. For
l =2, Fig. 1 (center) shows the vectors start to separate into
the corresponding communities. Expressions for higher-order
embeddings are easily obtained for this toy example. For in-
stance, arbitrarily assuming that the x;[{] lie on the abscissa for
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i=1,...,1000 (recall that any rotation of X[{] will result in
the same expected weights), it thus follows

2] = (v/p(p? + 02),0) i <1000,
(vp(u? +02?) fx2+x—(u +0?)) i > 1000.

Indeed, the estimates are around (3.55,0) and (3.55,1.58) re-
spectively, although the noise corrupting the estimates hinders
the ability to distinguish both distributions. For [ = 3, where the
skewness of the distribution comes into play, vectors are clearly
separated into the two groups; see Fig. 1 (right).

C. Online Change-Point Detection

Let us briefly discuss how to perform online CPD for the
general weighted and/or directed case. Extending the results
presented in Section III to digraphs is straightforward. The only
noteworthy difference is that, since the adjacency matrices are
no longer symmetric, we need to consider entries from the
entire residual matrix H (except the diagonal) during online
monitoring, instead of the upper triangular half in (7).

The path forward in the weighted case is also clear. The
important difference is that the variance of each A;; is no
longer of the form p;;(1 — p;;), because we are naturally al-
lowing for non-Bernoulli edge weight distributions. Following
the W-RDPG model we introduced in the previous section, we
have var[A;;] = x] [2]x;[2] — (x] [1]x;[1])?. We rely on plugin
variance estimates using the corresponding ASEs to compute the
thresholds for the numerical test cases that follow [cf. vector
o in (13) and (14)]. One can seamlessly blend the ideas in
Sections IV-A and IV-B to perform online CPD for weighted
digraphs. The provided code offers this functionality.

In closing, note that the aforementioned discussion is per-
tinent only when the goal is to detect changes in the mean
adjacency matrix (i.e., [ = 1). This is the scope of the ensuing
numerical experiments. Considering larger values of [ could be
prundent when interested in more fine-grained changes on the
weights’ distribution, as illustrated in Example 4.

V. NUMERICAL EXPERIMENTS

Here we carry out numerical experiments to evaluate the
performance of the proposed online CPD algorithm for weighted
and (un)directed graph sequences. We start with a controlled
synthetic data setting, where the goal is to identify emergent
network community structure (Section V-A). We carefully ex-
amine: (i) the choice of the detection threshold and monitoring
function; (ii) the choice of the running statistic and its effect
on the detection delay; (iii) robustness to the prescribed false
alarmrate o;; and (iv) comparisons with relevant batch and online
CPD methods. Test cases with real wireless and social network
data are presented in Section V-B. For the implementations
we used the Python libraries NumPy [33], NetworkX [34],
pandas [35], graspologic [36], as well as our own code
which we share in https://github.com/git-artes/cpd_rdpg. For
the comparison with the online CPD method in [11], we used
the official R implementation in the gStream package with the
default parameters settings. Furthermore, as a baseline we have

— w[k][[m, k]
Mean

***** Estimated mean

——=0.99 quantile

Est. mean + 3std

Weighted statistic

0 25 50 I 100 125 150 175 200

Fig. 2. Evolution of w[k|I'[m, k], its mean and the estimated mean, for
simulated data. Two thresholds are shown: the 0.99-quantile of the distribution
in (15) and three standard deviations away from the mean; those thresholds
are very close and the latter is preferred due to its reduced complexity. The
solid vertical line indicates the actual change-point, while the dashed one is
the detection. A change in background color indicates a change-point detected
by the offline algorithm [17]. Our approach is able to detect the change with a
relatively small delay, while operating in an online fashion.

implemented the offline CPD algorithm described in [17]. This
implementation is also available in our GitHub repository.

A. Simulated Data

A timely problem is to detect when communities arise in
networks. So, we first test the proposed online CPD method
by generating a sequence of 150 ER graphs with N = 100
nodes and connection probability p = 0.5. After ¢, = 150, the
model shifts to a two-block SBM with N/2 = 50 nodes in each
community and connection probability ¢; = 0.6 for nodes in the
same community and g2 = 0.4 for nodes in different blocks. We
use the first m = 50 graphs as the training set, and the value of d
is automatically chosen (via scree plot) by the graspologic
library used to obtain the ASE. Because the index & in I'[m, k]
measures how much time has elapsed since monitoring started,
the change-point is at k. = 100.

Fig. 2 depicts the results for this test case. We show two
thresholds: the 0.99 quantile of the estimated distribution [i.e.,
the distribution given by (15) but with € instead of e] and th[k],
the estimated mean plus three standard deviations. Apparently,
the difference between those two thresholds is small, so th[k] is
preferred due to its reduced complexity. Using that threshold
a change-point is declared at k* = 121, so our algorithm is
successfully identifying the change in the model. The detection
delay can be explained if we look at the estimated mean of
the weighted CUSUM statistic. Since we are estimating the
error E as the 0.99-quantile over the training set, we always
overestimate the true value. Also, since we are monitoring the
cumulative sum (8), if a change occurs after a long period of
time then the drift in I'[m, k] will not be noticed immediately;
see also the discussion in Section III-D. As a way to compare
the performance of Algorithm 1 with other approaches, Fig. 2
also shows the detection result for the offline baseline proposed
in [17]. That algorithm detects the change with no delay, but it
has a markedly greater computational complexity than ours and
examines the entire data sequence as a batch.

1) On the choice of the monitoring function: In this running
example, had we used the monitoring function H' = (XXT —
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When H = XX — Af¢]

5.0 /‘“"“’—""”*"—”
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k

Fig. 3.  Evolution of w[k]I'[m, k] for residual (top) and projection (bottom)
monitoring functions, using the MOSUM sliding window statistic. After the
change-point there is a discernible change in trend for the residual; the projection
does not exhibit such desirable behavior.

A[t])X (i.e., use the projection instead of the residual) we
would have missed the change altogether. Indeed, for perfect
ASE estimation, if our training data adheres to an ER model
with parameter p then X = /PINxa and XXT = pd N, with
Jnxq denoting the N x d all-ones matrix. Now suppose there
is a change in the nominal model and we shift to a two-block
SBM, where each community has N/2 nodes and the connection
probabilities are ¢; for nodes in the same block and ¢» for nodes
in different communities. The connection probability matrix for

said SBM is
([ Q1]Qq
PSBM - (Q2 Ql) ’

where Q1 = ¢1(Jn/2 — Inj2) and Qo = q2J /2, with I, de-
noting the identity matrix of size m. After the change we
thus have E[H'] = (pJx — Psgm)+/PJ v xa- Since each row of
Psgm has N/2 — 1 entries with value ¢; and N/2 entries with
value g2, each entry of E[H'] is given by

(24)

©HD, = (5 1) Vi —a)+ 5 Vol - )

¢+ q

for large N. Accordingly, choosing p, ¢; and ¢o such that
q1 + q2 = 2p (as was the case for our simulation), we find that
E[H'] = 0, i.e. we do not expect to see a drift in the monitoring
function after the change.

Fig. 3 shows the evolution of the weighted statistic
w[k]T'[m, k] for both choices of the monitoring function. The
setup is the same as in the previous test case, with a change-point
located at k. = 100. The MOSUM statistic is adopted here,
using a sliding window of length L. = 10. When the residual H
is chosen as the monitoring function, a sudden shift in trend is
observed after the change-point. However, when the projection
H’ is used the statistic does not exhibit such desirable behaviour
and misses the model change.

2) On the sensitivity to o: Here we examine the robustness
of Algorithm 1 to the choice of the false alarm rate . We
simulate the same scenario as before, except that N = 20 in
order to increase the variance of w([k|['[m, k] and the error E.
As thresholds we test ¢, [k] for 1 — a € {0.99,0.95,0.9}, along

Q

L8 — wlk|Tm, k]

0.99 quantile
0.95 quantile
0.90 quantile

Est. mean + 3std
Est. mean + 2std

Weighted statistic

25 50 75 100 125 150 175 200

Fig.4.  Evolution of w[k]I"[m, k] and five possible thresholds: ¢, [k] (for 1 —
a € {0.9,0.95,0.99}) and th[k] equal to the mean plus two and three standard
deviations. The setting is the same as in Fig. 2 except that N = 20 to increase the
variance of w[k]T'[m, k]. Using 1 — ac = 0.99 is preferred as it provides more
robustness to false positives. Both choices of th[k] are reasonable, although using
three standard deviations is consistently above cq.o1 [k] (see the first time-steps).

with two versions of th[k]: the mean plus two and three times
the standard deviations as in (16).

The results are depicted in Fig. 4. The example illustrates how
using 1 —a =0.950r1 — a = 0.9 may prove too conservative.
In this particular instance, 1 — o = 0.9 would result in a (false)
change-point detected at k ~ 10. Furthermore, both versions
of th[k] provide reasonable results, although the one that uses
three standard deviations is consistently above cg o1 [k] and is
thus preferred. We will re-examine this choice in Section V-B,
when we present real-world examples.

3) Comparison with [11]: An online CPD algorithm based on
a k-nearest neighbor approach was proposed in [11]. Observa-
tions are viewed as points in a normed space and the distance
induced by such norm is used to define a neighborhood for each
observation. Changes are detected by performing two-sample
testing on the neighborhood graph. The proposed approach is
computationally intensive because it requires that, if the current
observation index is n, a two-sample hypothesis test is per-
formed foreachtime ¢ € {1,...,n — 1} (or for a subset of these
time instants). Also, it is memory-inefficient since one has to
store the pairwise distances between all past observations. Even
if these aspects are not a concern, this approach is ill-suited to
detect changes in some sequences of networks, as we will argue
shortly.

An example in [11] illustrates the performance of the CPD
algorithm on network sequences. Observations are the adjacency
matrices of the graphs and neighborhoods are defined using the
distance induced by the Frobenius norm over such matrices. We
will see that this distance does not allow for capturing some
changes in the network connectivity, such as the formation of
two communities discussed so far. Indeed, if A, B € RY*V are
adjacency matrices of two ER graphs with connection probabil-
ity p, then

E A -B|%] = N(N - 1)2p(1 - p),
since all entries A;;, B;; ~ Bernoulli(p). Thus ||A — BJ%. ~
2p(1 — p)N*? for sufficiently large V. Suppose now that C and
D are two adjacency matrices from a two-block SBM, where
each community has V/2 nodes and the connection probabilities
are ¢; for nodes in the same cluster and ¢- for nodes in different
communities. Then the connection probability matrix for C and
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Fig. 5. Detection result for a network transitioning from an ER model with

p = 0.3 to a two-block SBM with g1 = 0.275 and g2 = 0.325. Algorithm 1 is
able to detect the change in this setup, while the approach proposed in [11] fails
to do so.

D is given by (24), so those matrices have N2 /2 entries whose
expected value is go and (N/2 —1)N ~ N? entries whose
expected value is ¢;. All in all, similarly to the ER case we
have

IC—D|7 ~N* (g1 —qf + 32— a3) .

q1+¢q
1A= Clp~ 3 (b= plar + ) + 252,

Again, if we choose ¢; and ¢o such that ¢; + g2 = 2p, then we
obtain ||A — B||% ~ ||A — C||%. In other words, the distance
between an observation before the change (A) and an observa-
tion after the change (C) will be very similar to the distance
between two observed matrices before the change (A and B).
For matrices after the change, we have that when ¢; + ¢2 = 2p
then

|C-D|3~2N?(p—p*—(p—aq1)?),

so choosing p and ¢; to be very similar (but not equal, so there
is effectively a change), for large N these two models will be
indistinguishable under the Frobenius distance criterion.

We simulated such a setup, with a network of N = 100 nodes
switching from an ER model with p = 0.3 to a two-block SBM
with ¢; = 0.275 and g2 = 0.325. The change-point was located
at k. = 200. We ran the algorithm proposed in [11] using the
implementation in the R package gStream. Selecting between
3 and 10 nearest neighbors and an average run length of 1000,
it found no change-points in the data. Results for our CUSUM
detector are depicted in Fig. 5. Apparently, there is a noticable
change in trend in the weighted statistic after £ = 300, with a
change-point being detected at k* = 365. This arguably large
detection delay can be shortened using a finite memory statistic
such as MOSUM.

4) Detection delay: Characterizing the distribution of the
detection delay 7 (i.e., the time interval between the occur-
rence of a change and it actually being detected) is in general
challenging. Instead, we will settle with a point estimate ob-
tained via identification of the first instant the weighted statistic
w[k]T[m, k] crosses the threshold function ¢, [k]. Recall that this
is the condition that defines the rejection region of our test. Since
that statistic has finite variance, it is possible to predict at which
time point £* the change will be detected by studying when the
expectation of the weighted test statistic after the change [cf.

Empirical (CUSUM) ~ —— Estimated \

Detection delay

0 200 400 600 800 1000

Fig. 6. Estimated detection delay and empirical delays for different change-
point locations k.. Empirical delay is well predicted by the estimated curve. For
the adopted CUSUM statistic, as expected the delay grows with k..

(17)] first exceeds the threshold. Once more, for simplicity and
analytical tractability we will henceforth assume the threshold is
set as th[k] in (16). This choice (approximately) corresponds to
o = 0.01; see Figs. 2 and 4 for further discussion on this point.
To estimate the delay, we find the first instant £* > k. for which
wW[k*|Eqe[k*] > th[k*], where E,. denotes the expectation of
['[m, k] after the change that is approximately given by (17).
This amounts to solving the equation

* * * 2
(k" =ke)* (loy |l —llox 1 +2k (e78) + (k" —k.)||5]13)

=9 (2(k")?|ox |3 +4(k*)* (o xe?)) , (25)
which entails finding the roots of a fourth-order polynomial.
The solution £* can be obtained numerically, and the estimated
delay becomes 7 = k™ — k.. To test said method, we simulated
asequence of ER networks with NV = 100 nodes and connection
probability p = 0.5. We use the first m = 100 graphs for train-
ing. The first k. graphs after training follow that same model,
but then observations shift to an ER with p = 0.6. The solution
to (25) allows us to estimate the detection delay for different
values of k.. This can be done after training, since once that
phase ends the error e is fixed, and vectors o x, oy and § are
defined by the change in the underlying model. Fig. 6 shows the
estimated delay for k. € {0, 200, 400, 600, 800, 1000}. For each
k. a box plot of Algorithm 1’s empirical delays is also shown,
computed for 100 simulated runs using the CUSUM statistic.
Our estimation is consistent with the experimental delays in
Algorithm 1, which tend to show a linear growth with k..

Fig. 7 depicts the empirical delays in this setup for three
different statistics: CUSUM, MOSUM and mMOSUM. This
last running statistic is defined in [28] as

m+k

>

t=m+|kh|4+1

s[m, k] = h (A[t], X) : (26)
where i € (0,1) and |z] is the floor function, i.e., the largest
integer that is smaller or equal to . The mMOSUM is defined in
a way such that early observations are discarded and the window
length grows proportionally with k. Hence, the algorithm’s
response time should be faster than when using the CUSUM
statistic. That is consistent with Fig. 7, which shows that the
detection delay for the mMOSUM statistic grows with k., but
at a slower rate than that of CUSUM. For this simulation we
set h = 0.4. The MOSUM statistic, with a window length of
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Fig. 7. Empirical delays for different change-point locations k., using the
CUSUM, MOSUM (with L = 10), and mMOSUM (with h = 0.4) statistics.
Delays behave as expected given the different effective observation intervals:
roughly constant delay for MOSUM, growing delays with k. for both CUSUM
and mMOSUM, but at a slower rate for the latter.
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Fig. 8.  Estimated detection delay and empirical delays for different training

set sizes m, for the CUSUM statistic. The delay is lower as m increases, but
there is no significant improvement after m = 25.

L = 10 observations, attains the shortest delay among the three
and it is roughly constant with k.. This is expected given that the
window size remains constant for MOSUM, so there is no inertia
associated with the change-point occurring long after monitoring
started.

Finally, Fig. 8 shows the empirical and estimated delays for
the CUSUM statistic for various training set sizes m. The setup
is similar to that of the previous test case, with an ER model
switching from p = 0.5 to p = 0.6 at k. = 100. As expected,
the delay decreases with m, since more training samples lead
to more accurate ASE estimates. Also, it is important to note
that Algorithm 1 performs well with a relatively small training
set size. In this setting, we observe there is no significant
improvement beyond m = 25 (with the expected delay going
from 7 = 13 to 7 = 11 for m = 300).

B. Real Data Experiments

1) Wireless Network Data: Received Signal Strength Indicator
(RSSI) measurements between Wi-Fi access points (APs) in
a Uruguayan school are obtained from the dataset described
in [37]. In this particular example we considered a network con-
sisting of N = 6 APs, with measurements collected hourly dur-
ing almost four weeks, spanning from 10/17/2018 to 11/13/2018
(corresponding to T' = 655 graphs). The AP corresponding to
node 4 was moved on 10/30/2018. As RSSI is measured in
dBm (and are negative), we have first added an offset of 91
to all weights so that they become positive (as —90 dBm is the
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Fig.9. Online CPD for the RSSI dataset. Top: MOSUM statistic. A change in

background color indicates a change-point detected by the offline algorithm [17].
The dashed vertical line shows the detected change-point for the online algo-

rithm. Algorithm 1 successfully detects that an AP was moved. Bottom, left: )A(ll

(blue) and Xé (orange) latent vectors for d = 2 corresponding to A and Ay
respectively. Vectors corresponding to the same node are joined by an arrow.

Bottom, right: Id. but with X{ (blue) and Xg (orange). Node 4 corresponds
to the AP that was moved, which together with node 3 are the ones whose
embeddings change more prominently.

smallest RSST measurement in this case) and that larger values
still mean ““stronger” edges. We thus have a directed (as power
measurements between APs are not necessarily symmetric) and
weighted graph sequence.

We used two days worth of measurements for training (m =
48) beginning on 10/12/2018. The resulting MOSUM statistic,
the estimated mean and the resulting threshold th[k] are shown in
Fig. 9 (top). Note how Algorithm I rapidly detects the AP move-
ment. The offline CPD baseline in [17] is also able to detect the
change, at around the same date. Furthermore, we complement
the threshold studies carried out in Section V-A and compare
the same two versions of th[k], namely the estimated mean plus
two or three standard deviations. Note how the change-point
is detected around the same instant regardless of the specific
choice.

In addition to CPD, a valuable feature of RDPGs and its
variants is their interpretability. To illustrate this attribute, let us
consider two averaged adjacency matrices: those corresponding
to the historic dataset and the last two days of the observation
period. Let us denote the resulting matrices as A; and A,,
respectively, and analyze the resulting latent positions. In order
to avoid the rotation ambiguities, we have used the so-called om-
nibus embedding [27], which in this case amounts to performing

ASEtoM = (

_ AL (A, + Aj)/2
(A1 + Ay)/2 A,
only practical when jointly embedding a few adjacency matrices

) . This approachis
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Fig. 10.  Online CPD for the South American football matches. Top: evolution
of MOSUM statistic. The dashed vertical line shows the detected change-point,
that can be traced to a change in the Copa América organization format. A
change in background color indicates a change-point detected by the offline
algorithm [17]. Bottom: embeddings corresponding to the averaged historic set
(blue) and the last 10 graphs of the observation period (orange). There are two
distinct communities (northern and southern countries), and an increase of the
number of matches played by the northern countries (with relatively less football
tradition at the time) is clear by the changes in its embeddings.

(two here), as the size of M increases rapidly with the number
of matrices considered.

Nodal vectors (d = 2) are depicted in Fig. 9 (bottom), where
an arrow shows the changes between the embeddings of A,
and A,. Notice how the largest changes correspond to nodes
3 and 4. The scaling ambiguity we discussed in Section IV-B
obscures which of the two APs was actually moved. Still, this
monitoring tool would be valuable to network administrations as
it identifies changes in a timely fashion and it provides a curated
list of potentially problematic APs.

2) South American Football Matches: Consider a dynamic
football network, whose N = 10 nodes are the national teams
affiliated to CONMEBOL (which associates all South American
countries except Guyana and Suriname). This is the oldest
continental confederation under FIFA, and its teams have a long
history going back to 1901. We consider yearly matches since
1940, when all national associations were founded and most
have joined CONMEBOL (Venezuela joined in 1952).

The resulting undirected graphs have edge weights indicat-
ing the number of matches played between the two incident
national teams during a particular year (data obtained from
https://www.eloratings.net/). We used the first m = 20 years for
training and the evolution of the resulting weighted CUSUM
statistic is shown in Fig. 10 (top).

A change-point is detected around 1990 both by the online
and offline CPD algorithms. Indeed, CONMEBOL’s flagship
tournament (Copa América) went through a period of intermit-
tency that would last until 1987, when it started being organized
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Fig. 11.  Online CPD for the MIT proximity dataset (using the MOSUM

window). A change in background color indicates a change-point detected by
the offline algorithm of [17]. The dashed vertical line shows the detected change-
point for the online algorithm. Dotted vertical lines indicate the beginning of
the semester and the “sponsor week”. The offline algorithm misses the first
change-point.

regularly every two years with a nation hosting the event. This
is apparent from the resulting embeddings in Fig. 10 (bottom),
where northern countries increase their corresponding magni-
tudes (indicating more frequent matches) and form a relatively
tight community. On the other hand, southern countries form an-
other (more loose) community, which approached the northern’s
one in recent years. Furthermore, this community’s structure
changed, where e.g., the historic Argentina-Uruguay match is
now not as significant. We also examine the robustness of the re-
sults with respect to the choice of the threshold. Notice that both
versions of th[h] we implemented again detect a change-point
roughly around the same time (one year difference in Fig. 10).
But as mentioned in Section V-A, using the mean plus three
standard deviations clearly provides more robustness to false
positives, particularly in high noise settings as in this test case.

3) MIT Proximity Network: Lastly, let us consider the stream
of social graphs introduced in [38]. The dataset includes the cell
tower to which the mobile phone of a group of MIT faculty and
graduate students connected between July 2004 and June 2005.
We have processed the dataset and constructed a daily graph
where nodes are people and the weight of each edge is how
many minutes two people share the same tower on that given
day.2 A collection of labeled events are described in [7, Fig. 8],
such as the beginning of the semester in early September and
the “sponsor week” during mid-October.

We have considered a full month worth of undirected graphs
starting on mid-July as training set and all the N = 84 people
that were registered during the study. The evolution of the
MOSUM statistic until early November is shown in Fig. 11.
Dotted vertical red lines indicate the two events we mentioned
before, which fall within the observation period. First of all,
it is important to note that the online CPD algorithm detects a
change during early September, very near to the beginning of the
semester. This change-point is missed by the offline algorithm
in [17] (see the changes on the background color), which indi-
cates a change-point almost two weeks later. Furthermore, the
example illustrates an interesting advantage of a finite-memory
statistic such as MOSUM: the second change-point (this time

2We used Jeremy Kun’s scripts in https://github.com/j2kun/reality-mining.
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correctly flagged by the offline algorithm) is also clearly dis-
cernible. Notice how the statistic is starting to stabilize around
mid-October and then presents a large change of slope. Indeed,
changes on the statistic after plateauing are indicative of further
change-points.

VI. CONCLUSION AND FUTURE WORK

We developed a computationally-efficient online CPD algo-
rithm for monitoring applications involving streaming network
data. The goal is to declare in (pseudo) real time when a se-
quence of observed graphs changes its underlying distribution.
Leveraging the RDPG modeling framework and assuming his-
torical “clean” data are available, the novel algorithm computes
(offline) the ASE of the historical graphs (i.e., a training set)
and then efficiently updates the cumulative sum of a monitoring
function as data arrive sequentially-in-time. Statistical analysis
of the monitored random sequence facilitates deriving meaning-
ful detection thresholds to control type-I error rates, as well as
to study the algorithm’s detectability limits and to numerically
predict delay behavior. Generalizations of the RDPG model to
directed and weighted graphs markedly broaden the applicabil-
ity of the novel online CPD framework, as illustrated through
various real-data case studies.

This work opens up several exciting and challenging avenues
for future work. For instance, while still relying on RDPG
modeling it would be of interest to explore sequential CPD
formulations that minimize (or provide an explicit handle on)
detection delay. Even in the present setting, carrying out a rigor-
ous delay analysis would constitute a valuable contribution. In all
fairness, accomplishing this goal would be central towards fully
solving the online change-point detection problem. With regards
to ASE-induced model estimation error, although in this work
we presented a simple yet effective “leave-one-out” approach
to approximate its value, a worthwhile future direction in our
agenda is the study of theoretical bounds and guarantees for this
plug-in statistic. Our methodology detects changes in the model
with respect to a training set of nominal graphs, and assumes that
the number of nodes in the network does not change. Depending
on the particular application, it may be interesting to consider the
case where certain nodes are not always present on the network,
and we are interested in only a subset of them. Along these
lines, we believe it would be worthwhile to develop embedding
and CPD algorithms for partially observed graph streams, say
due to sampling. Lastly, one could also envision online CPD
schemes using just graph signal observations, because ASE-type
embeddings are likely still computable from empirical signal
covariance matrices under diffusion model assumptions.

APPENDIX

A. Proof of the Bound in Example 3

A sequence of ER graphs with connection probability p
changes to ¢ = p — A at a certain time-step. Equation |le +
d/|3 > ||e||3 in this case may be written as

N N
QZ Z Eij>—AM,

2
— = 2 @7
1=1j=1+1

where we have assumed that A > 0 (the analysis that follows
is readily extended to A < 0). Recalling that in this case E =
%% — plyyn (with x € RV, we rewrite (27) as
A

%" (1yuny —Dx > ( — 2) N(N —1).
Since asymptotically (in /V) X is a normal vector with mean p =
\/P1nx1 and covariance matrix 3 = —(]1\,7:; )1 [26], [39], [40],
we consider this asymptotic regime and use results about the
statistics of quadratic forms of Gaussian vectors [41, Ch. 5]. For
instance, the resulting mean is

Efx' (Inxy — D] = t[(Inxn —DE] +p (Ivey —Dp
=pN(N —1).

Comparing the equation above to (28), it follows we have to

bound the probability that X" (1« x — I)x exceeds its mean

minus AN (N — 1)/2. To this end we compute the variance of
the quadratic form, which is (let 0% := (1 — p)/(Nm))

var[x (Lyxn — D%] =2t [(Anxn — DE)?]
+4p" (Ineny —DE(Anuny —Dp
= 202N (N —1)(c% + 2(N — 1)p).
Applying Chebyshev’s inequality, the result follows. |

(28)

B. Proof Sketch for Theorem 1

We now give an overview of the necessary steps to prove The-
orem 1. We adapt the arguments used in [32] to accommodate
our setting; therefore, we will outline how their proof can be
adapted to our case.

The following notation will be used throughout this section.
We will denote the eigendecomposition of matrix B € RV*V
as VpAp V], with the elements in the diagonal of Ap in
decreasing order. Az € R%*4 will denote the diagonal matrix
with the d largest eigenvalues of B, and Vi € RV*4 will be
the corresponding d dominant eigenvectors. Recall we assume
that 0 < B;; < M, for some M > 0, and that {B;;},<; are
independent with E[B;;] = P;;, where P = XX for some
fixed X € RV*4. The eigendecomposition of P is VpApV .
Matrices A p and A% p are similarly defined for P.

The first step of the proof is to show that, for large /V, it almost
surely holds that:

|B? — P%||p < /3 M*N3log N,

where B2 = B x B denotes the usual matrix product. The
argument (in a more general setting) can be found in [42, Lemma
2]. In our setting, the basic idea is to write

B, — P}, = > (ByBy; — PiPyj) — PiiPi; — PPy,

k#ij
Since B;,By; are independent for k # 7,5 and P;;’s are
bounded by M, we use Hoeffding’s inequality to show that

2 2
p ((ijfPfj) >2 M4(N—2)log N+M4(4Nf4)> <~

Then, using the subadditivity property of probability and the
Borel-Cantelli Lemma, we can show that almost always
2 212 _ 9 a3
Y. (B —P})" < M N°logN.

1,J:17]
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Since (B% — P%)? < M*, we finally conclude that
|IB? — P?||% < gM‘* N3log N + NM* <3 M* N3log N

for sufficiently large N.

Once this is established, we apply a variant of the Davis-
Kahan theorem to B2 and P2. Since the eigenvectors of B and
B? coincide (the same is true for P and P?) and we assume the
eigengap for P is greater than 6V (and thus the eigengap for
P2 is greater than 4% N2), [43, Corollary 3] ensures that it is
possible to choose the columns of V 5 such that

923 /2

log N
1(VB).i = (Vp).ill2 < 57 3M* T

forevery i < d, where (V g).; denotes the i-th column of matrix
V . Since the first d columns of Vg are the columns of A% B
(the same is true for V p and A% p) this in turn implies that, for
such a choice,

log N
N )

Vs —Vpl|r <CVd

where C is a constant.
The rest of the proof follows, mutatis mutandis, that of [32].
First, by writing

~1/2

N 1/2
IVpAyg /

VAl 1/2

N ~1/2
lr<[[VB(Ag —Ap )lF

N A A 1)2
(Vs = V)AL

using the previous bounds we can show that

~a1/2 A 1)2
HVBAB — VPAP ||F < Cd\/ log N.
Because rank(P) = d, by defining Y := Vp/i}p/z we have
thatYYT = P = XX 7,50 X = YW for some orthogonal W.
Thus, the bound in (29) also holds for |[VzA Y W — X||p.

Since the ASE estimation of the latent positionsis X = VgAp,
this implies that almost surely

[XW — X[z < Cdy/log N.
The proof then concludes as in [32]. [ |

(29)
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