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ABSTRACT

We study the problem of sampling and reconstructing spectrally sparse graph signals where the objec-
tive is to select a subset of nodes of prespecified cardinality that ensures interpolation of the original
signal with the lowest possible reconstruction error. This task is of critical importance in Graph signal
processing (GSP) and while existing methods generally provide satisfactory performance, they typically
entail a prohibitive computational cost when it comes to the study of large-scale problems. Thus, there
is a need for accelerated and efficient methods tailored for high-dimensional and large-scale sampling
and reconstruction tasks. To this end, we first consider a non-Bayesian scenario and propose an efficient
iterative node sampling procedure that in the noiseless case enables exact recovery of the original signal
from the set of selected nodes. In the case of noisy measurements, a bound on the reconstruction error
of the proposed algorithm is established. Then, we consider the Bayesian scenario where we formulate
the sampling task as the problem of maximizing a monotone weak submodular function, and propose
a randomized-greedy algorithm to find a sub-optimal subset of informative nodes. We derive worst-case
performance guarantees on the mean-square error achieved by the randomized-greedy algorithm for gen-

eral non-stationary graph signals.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Network data that are naturally supported on vertices of a
graph are becoming increasingly ubiquitous, with examples rang-
ing from the measurements of neural activities in different regions
of the brain [3] to vehicle trajectories over road networks [4]. Pred-
icated on the assumption that the properties of a network process
relate to the underlying graph, the goal of graph signal processing
(GSP) is to broaden the scope of traditional signal processing tasks
and develop algorithms that fruitfully exploit this relational struc-
ture [5,6].

Consider a network represented by a graph G consisting of a
node set A of cardinality N and a weighted adjacency matrix A e

RN<N whose (i, j) entry, A;;, denotes weight of the edge connecting
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node i to node j. A graph signal x € RN is a vertex-valued network
process that can be represented by a vector of size N supported on
N, where its ith component denotes the signal value at node i.

A cornerstone problem in GSP that has drawn considerable at-
tention in recent years pertains to sampling and reconstruction of
graph signals [7-15]. The task of selecting a subset of nodes whose
signals enable reconstruction of the information in the entire graph
with minimal loss is known to be NP-hard. Conditions for exact
reconstruction of graph signals from noiseless samples were put
forth in [7-10]. Existing approaches for sampling and reconstruc-
tion of graph signals can be categorized in two main groups - se-
lection sampling [10] and aggregation sampling [12]. The focus of
the current paper is on the former.

1.1. Related work

Sampling of noise-corrupted signals using randomized schemes
including uniform and leverage score sampling is studied in [16];
there, optimal sampling distributions and performance bounds are
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Table 1
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Properties of sampling schemes for spectrally sparse signals in scenarios where the basis matrix U is known.

Assumption Optimality criteria

Algorithms

noise-free samples, non-Bayesian
noisy samples, non-Bayesian
noisy samples, Bayesian

full rank Us

min Tr(E[(X — X)((x —X)T])
minTr(E[(x — %) (X —%)T])

Gaussian elimination, greedy [7], random [16,17]
Gaussian elimination, greedy [10], random [16,17]
greedy [15], convex optimization [31]

derived. Building on the ideas of variable density sampling from
compressed sensing, [17] derives random sampling schemes and
proves that O(klogk) samples are sufficient to recover all k-
spectrally sparse signals with high probability. Moreover, [17] pro-
vides a fast technique for accurate estimation of the optimal sam-
pling distribution. Recent work [18] relies on loop-erased random
walks on graphs to speed up sampling of bandlimited signals. In
[11,15], reconstruction of graph signals and their power spectrum
density was studied and schemes based on the greedy sensor se-
lection algorithm [19,20] were developed. However, the perfor-
mance guarantees in [15,16] are restricted to the case of stationary
graph signals, i.e., the covariance matrix in the nodal or spectral
domains is required to have a certain structure (e.g., diagonal; see
also [21-23]).

An influential work [24] presents a method that enables re-
covery of some bandlimited functions on a simple undirected
unweighted graph using signal values observed on the so-called
uniqueness sets of vertices; see also [25] and [26]. An iterative
local set-based algorithm that relies on graph partitioning to im-
prove convergence rate of bandlimited graph signals reconstruction
is proposed in [27].

The sampling approach in [12] relies on collecting observations
at a single node instead of a subset of nodes via successive appli-
cations of the so-called graph shift operator and aggregating the
results. Specifically, shifted versions of the signal are sampled at
a single node which, under certain conditions, enables recovery of
the signal at all nodes. While the aggregation sampling in [12] re-
duces to the classical sampling of time signals, the required inspec-
tion of the invertibility of the submatrix of eigenvectors is compu-
tationally expensive. Moreover, the recovery of graph signals from
their partial samples collected via the aggregation scheme requires
the first k components (signal bandwidth) to be distinct, which
may not be the case in certain applications. Table 1 summarizes
properties of a few

A main challenge in sampling and reconstruction of spectrally
sparse graph signals is the problem of identifying their support
[9,12,25,28,29]. In [9,26], support identification of smooth graph
signals is studied. However, the techniques in [9,25] rely solely on
a user-defined sampling strategy and the graph Laplacian, and dis-
regard the availability of observations of the graph signal. A similar
scheme is developed in [12] for aggregation sampling where un-
der established assumptions on the topology of a graph, conditions
for the exact support identification from noiseless measurements
are established. In particular, the aggregation sampling method of
[12] requires twice as many samples as the bandwidth of the graph
signal (i.e., k) to guarantee perfect recovery in the noiseless set-
ting. An alternating minimization approach that jointly recovers
unknown support of the signal and designs a sampling strategy in
an iterative fashion is proposed in [28]. However, convergence of
the alternating scheme in [28] is not guaranteed and the condi-
tions for exact support identification are unknown [28].

1.2. Contribution

Although tremendous efforts have been made to address fun-
damental theoretical and algorithmic questions in sampling and
reconstruction of bandlimited graph signals, the high computa-

tional costs of existing methods that deliver competitive recon-
struction performance typically render their applicability challeng-
ing, especially in applications dealing with large-scale and high-
dimensional graphs. Therefore, developing scalable, efficient, and
accelerated sampling and reconstruction algorithms with provable
performance is highly desired.

In this paper, we consider the task of sampling and reconstruc-
tion of spectrally sparse graph signals in various settings. We first
study the non-Bayesian scenario where no prior information about
signal covariance is available. Based on ideas from compressed
sensing, we develop a novel and efficient iterative sampling ap-
proach that exploits the low-cost selection criterion of the orthog-
onal matching pursuit algorithm [30] to recursively select a sub-
set of nodes of the graph. We theoretically demonstrate that in
the noiseless case the original k-spectrally sparse signal can be re-
covered exactly from the set of selected nodes with cardinality k.
In the case of ¢;-norm bounded noise, we establish a bound on
the worst-case reconstruction error of the proposed algorithm that
turns out to be proportional to the bound on the ¢,-norm of the
noise term. The proposed scheme requires only that the graph ad-
jacency matrix is normal, a typical assumption in prior works on
the sampling of graph signals. Therefore, the proposed iterative al-
gorithm guarantees recovery for a wide class of graph structures.

Next, we study a Bayesian scenario where the graph signal is
a non-stationary network process with a known non-diagonal co-
variance matrix. Following [15,19,20], we formulate the sampling
task as the problem of maximizing a monotone weak submod-
ular function that is directly related to the mean square error
(MSE) of the linear estimator of the original graph signal. To find a
sub-optimal solution to this combinatorial optimization problem,
we propose a randomized-greedy algorithm that is significantly
faster than the greedy sampling method in [15,19,20]. We theo-
retically analyze performance of the proposed randomized-greedy
algorithm and demonstrate that the resulting MSE is a constant
factor away from the MSE of the optimal sampling set. Unlike the
prior work in [15], our results do not require stationarity of the
graph signal. Furthermore, in contrast to the existing theoretical
works, we do not restrict our study to the case of additive white
noise. Instead, we assume that the noise coefficients are indepen-
dent and allow the power of noise to vary across individual nodes
of the graph.

Simulation studies on both synthetic and real world graphs ver-
ify our theoretical findings and illustrate that the proposed sam-
pling framework compares favorably to competing alternatives in
terms of both accuracy and runtime.

Preliminary results of this work is published in [1,2]. In addi-
tion to providing the details of proofs which were missing from
Hashemi et al. [1], 2] and discussing the computational complex-
ity of the proposed algorithms, for the Bayesian setting, we extend
the scope of our study to provide high probability error bounds
for the achievable mean-square error performance of the proposed
randomized greedy sampling schemes. Finally, in our extensive ex-
perimental study, we discuss two new applications of graph sam-
pling, namely, localization of UAVs under power constraints and
semi-supervised face clustering via subspace learning. We further
demonstrate the efficacy of our randomized greedy algorithm on a
large-scale preferential attachment graph with 10,000 nodes.
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1.3. Organization

The rest of the paper is organized as follows. Section 2 reviews
the relevant background and concepts. In Section 3, we formally
state the sampling problem and develop the proposed iterative se-
lection sampling method. In Section 4, we study the Bayesian set-
ting, introduce the randomized-greedy algorithm for the sampling
task and theoretically analyze its performance. Section 5 presents
simulation results while the concluding remarks are stated in
Section 6.

2. Preliminaries

In this section, we overview notation, concepts, and definitions
that are used in the development of the proposed algorithmic and
theoretical frameworks.

2.1. Notations

Bold capital letters denote matrices while bold lowercase letters
represent vectors. Sets are denoted by calligraphic letters and |S|
denotes the cardinality of set S. A;; denotes the (i, j) entry of A,
a; (a’) is the jth row (column) of A, Asr (As.c) is the submatrix of
A that contains rows (columns) indexed by the set S, and Amax(A)
and A, (A) are the largest and smallest eigenvalues of A, respec-
tively. P4 =1, — Al (AL ,)T is the projection operator onto the or-
thogonal complement of the subspace spanned by the rows of As ,
where AT = (ATA)AAT denotes the Moore-Penrose pseudo-inverse
of A and I, e R™" is the identity matrix. Finally, supp(x) returns
the support of x and [n] :={1,2,...,n}.

2.2. Spectrally sparse graph signals

Let X be a graph signal which is k-spectrally sparse in a
given basis V e RN*N, This means that the signal’s so-called graph
Fourier transform (GFT) X = V-!x is k-sparse. There are several
choices for V in literature with most aiming to decompose a graph
signal into different modes of variation with respect to the graph
topology. For instance, V = [vq, ---,Vy] can be defined via the Jor-
dan decomposition of the adjacency matrix [32,33], through the
eigenvectors of the Laplacian when g is undirected [5], or it can be
obtained as the result of an optimization procedure [34,35]. In this
paper, we assume that the adjacency matrix A = VAV~! is normal
which in turn implies V is unitary and V-1 = VT,

Recall that since X is spectrally sparse, X is sparse with at most
k nonzero entries. Let K be the support set of X, where |K| = k.
Then one can write X = UX, where U = Vi .. In the sequel, with-
out loss of generality we assume U does not contain all-zero rows;
otherwise, one could omit the all-zero rows of U and their cor-
responding nodes from the graph as they provide no meaningful
information about the graph signals. Moreover, we proceed by as-
suming that the support set K is known.

Remark 1. As in the prior work on sampling graph signals
[10,12,13,15-17], our proposed schemes require the graph Fourier
transform (GFT) bases (i.e., V) as input; this involves eigenvalue
decomposition of A which may be computationally intensive for
large graphs. The focus of this paper, however, is not on the pre-
processing step of finding V but rather on developing efficient
sampling algorithms with theoretical performance guarantees on
the achievable reconstruction error in a variety of settings.

2.3. Submodularity and weak submodular functions

An important concept in contemporary combinatorial optimiza-
tion is the notion of submodular functions that has recently found
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applications in many signal processing tasks. Relevant concepts are
formally defined below.

Definition 1 (Submodularity and monotonicity). Let X be a ground
set. Set function f : 2% — R is submodular if

fEEU{ih - FS) = fF(Tu{jh - F(T)

for all subsets S €7 c & and j e X\T. The term f;(S) := f(SU
{j}) — f(S) is the marginal value of adding element j to set S. Fur-
thermore, f is monotone if f(S) < f(7) forall SC T C &.

In many applications, the objective function of a combinatorial
optimization problem of interest is not submodular. The notion of
set functions with bounded curvature captures these scenarios by
generalizing the concept of submodularity.

Definition 2 (Curvature). The maximum element-wise curvature of
a monotone non-decreasing function f is defined as

Cr= max max f; i(S),
f le[N—l](S.T,i)eXlﬁ(T)/ﬁ( )

where X} = {(S, T, )|ScT cX,ie X\T,|T\S| =1, |x| =N}

The maximum element-wise curvature essentially quantifies
how close the set function is to being submodular. It is worth not-
ing that a set function f(S) is submodular if and only if its max-
imum element-wise curvature satisfies Cy < 1. When ¢y > 1, f(S)
is called a weak submodular function.

3. Sampling of spectrally sparse graph signals

In this section, we study the problem of sampling spectrally
sparse signals with known support. In particular, we assume that a
graph signal x is sparse given a basis V and that A = VAV, where
A is the adjacency matrix of the undirected graph G; alternatively,
we may use the Laplacian matrix L to characterize the undirected
graph. We can also consider any orthogonal basis for general di-
rected graphs; see e.g., [34]. We first consider the noise-free sce-
nario (Section 3.1) and then extend our results to the case of sam-
pling and reconstruction from noisy measurements (Section 3.3).

3.1. Sampling strategy

In selection sampling (see, e.g. [10]), sampling a graph signal
amounts to finding a matrix C € {0, 1}¥*N such that % = Cx, where
X denotes the sampled graph signal. Since x is spectrally sparse
with support K and x = UX, it holds that X = CUX,. The original
signal can then be reconstructed as

X = Uxe = U(CU) % (1

According to (1), a necessary and sufficient condition for per-
fect reconstruction (i.e., X = X) from noiseless observations is guar-
anteed by the invertibility of matrix CU. However, as argued in
[7,12] (see, e.g. Section III-A in [12]), current random selection sam-
pling approaches cannot construct a sampling matrix to ensure CU
is invertible for an arbitrary graph; moreover, invertibility of CU
is checked by inspection which for large graphs requires intensive
computational effort. To overcome these issues, motivated by the
well-known OMP algorithm in compressed sensing [30], we pro-
pose a simple iterative scheme with complexity O (Nk?) that guar-
antees perfect recovery of X from the sampled signal X. OMP is an
iterative scheme that aims to build a full-rank matrix from a set of
feature vectors by identifying vectors that add a higher expressive-
ness power to the current selection; the expressiveness is captured
by the notion of the residual vector r. Therefore, since our aim re-
lies on invertibility of CU, we can apply OMP to select a subset of
U’s column, which by construction, will be full-rank.

The proposed approach (see Algorithm 1) works as follows.
First, the algorithm chooses a node of the graph with index ¢ as a
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Algorithm 1 Iterative Selection Sampling.
1: Input: U, k, number of samples m > k.
: Output: Subset S € A/ with |S| =m.
: Initialize § = ¢, rg = u, for £ = argmin;¢[y|lu;||, and i = 0.
: while |S| < m do

AW N

5. i< i+1

. Iy ujl?
6:  §j=arg maxjeN\{(}\SW

7. Set S < SU{s;i}
8: I = Pfg‘ll(

9: end while
0: return S.

—_

residual node such that ¢ = argminjy|lu;|. Intuitively, this node
has weaker expressiveness power compared to other point and
since in Algorithm 1 the residual node is excluded from the selec-
tion procedure, this choice empirically leads to smaller reconstruc-
tion error in noisy scenario. Next, in the ith iteration the algorithm
identifies a node - excluding the residual node - with index s; to
be included in the sampling set S according to

2
Ir
[lu;ll3

where r; = PSu, is a residual vector initialized as ro = u,, and P§ =
In —U;r(Ug,r)T. Note that (2) is exactly the selection criterion of
the OMP algorithm. This procedure is then repeated for k iterations
to construct the sampling set S. Once S is found, CU would then be
an invertible matrix, ensuring a necessary and sufficient condition
for perfect recovery.

Remark 2. Optimization (2) is related to the greedy column
subset selection approach in [36]. Specifically, both methods at-
tempt to identify a subset of the rows/columns that best represent
the entire matrix. However, they focus on different applications
which in turn results in different definitions of the residuals. In
[36], the residual is defined as the original matrix itself. Hence the
computational complexity of the greedy approach in [36] is signifi-
cantly higher than that of Algorithm 1 where the residual is merely
a vector.

Theorem 1 demonstrates that Algorithm 1 returns a sampling
set which ensures perfect recovery of the graph signal x in the
noise-free scenario.

(2)

Sj = arg manEN\Z\S

Theorem 1. Let S denote the sampling set constructed by Algorithm
1 and let C be the corresponding sampling matrix such that |S| = k.
Then, matrix CU is always invertible.

Proof. See Appendix A. O

Theorem 1 states that as long as the adjacency matrix A is nor-
mal, the proposed selection scheme guarantees perfect reconstruc-
tion of the original signal from its noiseless samples. Therefore,
in contrast to existing random selection sampling and aggregation
sampling schemes [10,12,17] that require strong conditions on A
(e.g., eigenvalues of A to be distinct), Algorithm 1 guarantees re-
covery for a wider class of graphs.

3.2. Complexity analysis

The worst-case computational complexity of Algorithm 1 is an-
alyzed next. In the ith iteration, step 6 costs O(k(N —i)) as one
needs to search over N —i rows of U and compute inner-products
of k-dimensional vectors in order to evaluate the selection crite-
rion. Step 8 is a matrix-vector product whose complexity is O (k?).
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Table 2
Computational complexity comparison between the pro-
posed algorithms and the existing methods.

Algorithm Setting Complexity
Proposed Algorithm 1 non-Bayesian O(k2N)
Greedy [10] non-Bayesian  O(k*N)
Greedy [15] Bayesian O(Nk3)
Proposed Algorithm 2 Bayesian O(Nk?)

Note that in our implementation we use the modified Gram-
Schmidt (MGS) algorithm to update the residual vector with a sig-
nificantly lower complexity of O(ki). Thus, the total cost of the
ith iteration is O(k(N — i) + ki) = O(k(N —i)). Since i < k and there
are k iterations, the overall complexity of Algorithm 1 is O(Nk?).
Please refer to Table 2 for a comparison between computational
costs of proposed schemes in this paper to the existing methods.

3.3. Sampling in the presence of noise

Here we provide an extension of the proposed selection sam-
pling scheme to the scenarios where only noisy observations of
the graph nodes are available. Note that due to noise, perfect re-
construction is no longer possible. Nevertheless, we provide an up-
per bound on the reconstruction error of the proposed sampling
scheme as a function of the noise covariance and the sampling
matrix C. Another distinguishing aspect of sampling and recon-
struction in the presence of noise is that, to achieve better recon-
struction accuracy, it may be desirable to select m > k nodes as the
sampling set. This stands in contrast to the noiseless case where,
as we proved, m = k sampling nodes are sufficient for perfect re-
construction if the sampling set is constructed by Algorithm 1.

Let y =X +n be the noise-corrupted signal, where n € RN de-
notes the zero-mean noise vector with covariance matrix E[nn"] =
Q. We also assume that the support K is known. Therefore, since
X = UXy, the samples X and the non-zero frequency components of
x are related via the linear model

X =ys = UsX¢c +ng, (3)

where Usr = CU, ys = Cy, and ns = Cn. The reconstructed signal
in the Fourier domain is found by seeking the least square solution
and satisfies the normal equation [37],

U,Q5'Us, x = US Q5 '%, (4)

where Qs = CQCT is the covariance of ns.
If U;rQ;US,, is invertible, we can recover the original graph
signal up to an error term as stated in the following proposition.

Proposition 1. Let S be the sampling set constructed by Algorithm
1 and let C be the corresponding sampling matrix. Moreover, let us
denote Ug » = CU. Then, with probability one the matrix Ug_nglusvr
is invertible. Furthermore, if ||n||, < €n, the reconstruction error of the
signal reconstructed from S satisfies

% —X|l2 < Omax((U§,Q5'Us.») " 'Ug Q5" én. (5)

where omax(.) outputs the maximum singular value of its matrix ar-
gument.

Proof. See Appendix B. O

Compared to the noiseless scenario where the main challenge is
to ensure that CU is invertible, in the presence of noise we are in-
terested in finding a sampling scheme with the lowest reconstruc-
tion error. Although Proposition 1 provides a performance bound
for any sampling matrix C constructed by Algorithm 1, our specific
choice of the residual node, ¢ = argmin;¢[yju;, is not exploited in
the proof of Proposition 1 and further analysis along those lines is
left as part of the future work. We empirically observed that with
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the proposed choice of the residual, the matrix product on the
right-hand side of (5) has smaller maximum singular value than
if the residual node is selected uniformly at random. We also note
that the statistics of noise is not exploited when constructing C.
This is similar to state-of-the-art random selection sampling and
aggregation sampling schemes [10,12,17] where one needs to rely
on exhaustive search over the space of all sampling matrices to
find the one that results in the lowest MSE. In the Bayesian set-
ting studied in Section 4 where one assumes a prior distribution
on X, the original signal can be reconstructed up to an error term
for any C € R™*N with m > k. Therefore, invertibility of CU is not a
concern in the Bayesian case where we focus on the construction
of a sampling set S with the lowest reconstruction error.

Note that the Gaussian elimination scheme also finds a full-
rank submatrix Us. According to Anis et al. [9], the sampling
set found by Gaussian elimination with partial row pivoting cor-
responds to indices of the pivot rows. Therefore, in contrast to
Algorithm 1 that takes into accounts representative power of each
node in all frequency components (by considering the ¢, norm of
u;’s and their correlation with the residual), Gaussian elimination
with partial row pivoting only considers individual frequency com-
ponents when forming the sampling set. Hence, the signal recon-
structed by such a scheme may not be robust to noise statistics.
On the other hand, by choosing the residual node according to
¢ =argmin;¢yu;, Algorithm 1 finds an invertible submatrix and
further finds a subset of rows of U with strong representation ca-
pability.

4. Bayesian sampling of graph signals

So far we have considered the problem of sampling in scenarios
where the graph signal is not stochastic. In this section, we con-
sider the problem of sampling and interpolation in a Bayesian set-
ting where the graph signal is a non-stationary network process.
To this end, we adopt the following definition of stationarity, re-
cently proposed in [22].

Definition 3. A stochastic graph signal x is graph wide-sense sta-
tionary (GWSS) if and only if the matrix

E[XX"] = VTE[xx" |V (6)
is diagonal.

In addition to our novel algorithmic contributions, the setting
we consider in this section is more general than those consid-
ered in [15,38-40]. Specifically, unlike the prior work [15], we as-
sume that the signal in not necessarily stationary with respect to
G and that X is a zero-mean random vector with generally non-
diagonal covariance matrix E[XX'] = W. Furthermore, we do not
restrict our study to the case of additive white noise. Rather, we
consider a more practical setting where the noise terms are in-
dependent but the noise power varies across individual nodes of
the graph. That is, if y=x+n denotes the noise-corrupted sig-
nal, n e RN is a zero-mean noise vector with covariance matrix
Enn"]=Q= diag(af,...,a,\z,). Note that this particular scenario
is not explored in [15] or the related sensor selection and experi-
mental design schemes [38-40].

Let S denote a sampling set of m > k graph nodes. Since x =
UX, the samples ys and the non-zero frequency components of x
are related via the Bayesian linear model

Vs = Us X + ns. (7)

As before, in order to find X it suffices to estimate Xi based
on ys. The least mean-square estimator of X,, denoted by X, is
the Bayesian counterparts of the normal equations in the Gauss-
Markov theorem (see, e.g. [37, Ch. 10]). In other words, it is given
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by
f(}g = ESU:SFJleyS, (8)
where
£s = (W' +UL,Q5'Us,)
1
1
1 T
={w'+ Z —Zuuj 9)
jesS ]

is the error covariance matrix of Xc. Therefore, X = Uxc and its er-
ror covariance matrix is X5 = UXsUT.

The problem of sampling for near-optimal reconstruction can
now be formulated as the task of choosing S so as to minimize
the MSE of the estimator X. Since the MSE is defined as the trace
of the error covariance matrix, we arrive at the following optimiza-
tion problem,

mSin Tr(Zs) st. SCWN, |S|<m. (10)

Using trace properties and the fact that UTU = I, (10) simplifies
to

min Tr(Zs) st. SCN, [S]<m. (11)

The optimization problem (11) is NP-hard and evaluating all (})
possibilities to find the exact solution is intractable even for rela-
tively small graphs. To this end, we propose an alternative to find
a near-optimal solution in polynomial time. In [15], similar to the
greedy sensor selection approach of [19,20], a greedy algorithm is
proposed for the described Bayesian setting and its performance is
analyzed under the assumption that the graph signal is station-
ary and the noise is white. The greedy algorithm aims to form
a sampling set S iteratively, by greedily choosing the nodes one
at a time, according to a specific selection criterion. Motivated by
greedy maximization of submodular approach, the selection crite-
rion is the marginal of gain of adding a new node when the objec-
tive function of (11) is treated as a submodular function of S.

In applications dealing with extremely large graphs, the greedy
algorithm in [15] might be computationally infeasible. Moreover,
the graph signal is not necessary stationary and, perhaps more im-
portantly, different nodes of a graph may experience different lev-
els of noise. To address these challenges, motivated by the algo-
rithm recently developed in [41] for maximization of strictly sub-
modular functions, we develop a randomized-greedy algorithm for
Bayesian sampling of graph signals that is significantly faster than
the greedy algorithm. In addition, by leveraging the notion of weak
submodularity, we establish performance bounds for the general
setting of non-stationary graph signals.

4.1. Randomized-greedy selection sampling

Following [15,19,20], we start by formulating (11) as a set func-
tion maximization task. Let f(S) =Tr(W — Xs). Then (11) can
equivalently be written as

max f(S) st ScN, [S|<m. (12)

In Proposition 2 below, by applying the matrix inversion lemma
[42] we establish that f(S) is monotone and weakly submodular.
Moreover, we derive an efficient recursion to find the marginal
gain of adding a new node to the sampling set S. Given that
we use the marginal gain as the selection criterion, the following
proposition will greatly reduce the computational cost of evaluat-
ing the selection criterion.

Proposition 2. f(S) = Tr(W — Xg) is a weak submodular, monoton-
ically increasing set function, f(#) =0, and for all j e N\S
ul X2u;

fFEU{ih -8 ==~

——— _~  and 13
O'jz +u;-rESUj ( )
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_ _ 25“ 'uTig
oo = Zs — Eha (14)

g2 uTSeu.
Uj + llj Zsu]
Proof. See Appendix C. O

Proposition 2 enables efficient construction of the sampling set
in an iterative fashion. To further reduce the computational cost,
we propose a randomized-greedy algorithm for selection sampling
with minimal MSE that selects a sampling set iteratively.

Our aim will be to perform greedy selection in an iterative
fashion by identifying nodes that maximize the selection criterion,
i.e., the marginal gain given by (13). However, to reduce the cost
of greedy search, we incorporate random sampling. In particular
starting with S = ¢, at iteration (i + 1) of the algorithm, a subset R
of size s is sampled uniformly at random and without replacement
from AM\S, the set of all un-sampled nodes. The marginal gain of
each node in R is then found using (13), and the one correspond-
ing to the highest marginal gain is added to S. Then, the algorithm
employs (14) to update s for the subsequent iteration (i.e., to be
used in calculating the marginal gain/selection criterion in the next
iteration). This procedure is repeated until some stopping criteria,
e.g., a condition on the cardinality of S is met. Regarding s, the
size of the randomly sampled subset R, we follow the suggestion
in [41] and set s = Nlogl where e™ <€ <1 is a predetermined
parameter that controls the trade-off between the computational
cost and MSE of the reconstructed signal; randomized-greedy algo-
rithm with smaller € produces sampling solutions with lower MSE
while the one with larger € requires lower computational cost.
Note that if € = e~™, the randomized-greedy algorithm in each it-
eration considers all the available nodes and hence matches the
greedy scheme in [15]. However, as we illustrate in our simulation
studies, the proposed randomized-greedy algorithm is significantly
faster than the greedy method in [15] for large € while returning
essentially the same sampling solution. The randomized-greedy al-
gorithm is formalized as Algorithm 2.

Algorithm 2 Randomized-greedy Graph Sampling.
1: Input: 4, U, m, €.

: Output: Subset S € A with |S| =m > k.

. Initialize S=9, L5 =9.

: while |S| <m do

AW N

5:  Choose R by sampling s = % log (1/€) indices uniformly at
random from M\S

. . u}iguj
: ¢ = dIg max; —_——
J g JeR ajz+uj725uj
_ - Tsuul T
70 Tguri =X — ek —
Suljs} s oZ+u] Ssu;

8  Set S « SU{js}

9: end while
0: return S.

—_

4.2. Complexity analysis

To take a closer look at computational complexity of
Algorithm 2, note that step 6 costs O(Xk?log(1)) since one needs
to compute %log(%) marginal gains, each requiring O(k?) oper-
ations. Furthermore, step 7 requires ©(k?) arithmetic operations.
Since there are m such iterations, running time of Algorithm 2 is
O(Nk? log(%)). Please refer to Table 2 for a comparison between
computational costs of proposed schemes in this paper to the ex-
isting methods.
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4.3. Theoretical analysis

In this section, we analyze performance of the proposed
randomized-greedy algorithm in a range of scenarios.

Theorem 2 below states that if f(S) is characterized by a
bounded maximum element-wise curvature, Algorithm 2 returns a
sampling subset yielding an MSE that is on average within a mul-
tiplicative factor of the MSE associated with the optimal sampling
set.

Theorem 2. Let C; denote the maximum element-wise curvature
of f(S)=Tr(W - Xs), the objective function in (12). Let o =
1 et %), where ¢=max{1,Cf}, eM<e<1, and =1+
max{0, 5 — m}. Let Srg be the sampling set returned by the ran-

domized greedy algorithm and let O denote the optimal solution of
(11). Then

E[Tr(2s,)] < aTr(Zo) + (1 — o) Tr(W). (15)

Proof. The proof of Theorem 2 relies on the argument that if
s = Nlogl, then with high probability the random set R in each
iteration of Algorithm 2 contains at least one node from O. See
Appendix D for the complete proof. O

Compared to the results of [41] where the maximization
of strictly submodular and monotone functions is considered,
Theorem 2 relaxes this assumption and states that submodular-
ity is not required for near-optimal performance of the random-
ized greedy algorithm. In particular, if the set function is weak sub-
modular, Algorithm 2 still selects a sampling set with an MSE near
that achieved by the optimal sampling set. In addition, even if the
function is submodular (e.g., when the objective is logdet(.) func-
tion instead of the MSE), the approximation factor in Theorem 2 is
tighter than that of [41] as the result of the analysis presented in
the proof of Theorem 2. Moreover, a major assumption in [41] is
that R is constructed by sampling with replacement. In contrast,
we assume R is constructed by sampling without replacement and
carry out the analysis in this setting.

Next, we study the performance of the randomized greedy al-
gorithm using the tools of probably approximately correct (PAC)
learning theory [43,44]. That is, not only the sampling set se-
lected by Algorithm 2 is on expectation near optimal, but the
MSE associated with the selected sampling set is with high prob-
ability close to the smallest achievable MSE. The randomiza-
tion of Algorithm 2 can be interpreted as an approximation of
the marginal gains of the nodes selected by the greedy scheme
[15,19,20]. More specifically, following this interpretation for the
ith iteration we have fjrg (Srg) =1y fjg (Sg), where subscripts rg and
g indicate the sampling sets and nodes selected by the random-
ized greedy (Algorithm 2) and the greedy algorithm in [15], respec-
tively, and 0 < n; < 1 for all i € [m] are random variables. Following
this argument and by employing the Bernstein inequality [45], we
arrive Theorem 3 which states that the randomized greedy algo-
rithm selects a near-optimal sampling set with high probability.

Theorem 3. Instate the notation and hypotheses of Theorem 2. As-
sume {n;}1"; is a collection of random variables such that E[n;] > fie,
for all i € [m]. Then, it holds that

Tr(Es,) < (1 _eTh %)Tr(io) + e T B Tr(W). (16)

Moreover, if {n;}, are independent, for all 0 < q < 1 with probability
at least 1 — e~C™ it holds that

)Tr(f:o) +e

A-q)pe

T (W) (17)

A-qpe

Tr(Zs,) < (1 —e ¢

for some C > 0.

Proof. See Appendix E. O
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In our simulation studies (see Section 5), we empirically
verify the results of Theorems 2 and 3 and illustrate that
Algorithm 2 performs favorably compared to the competing greedy
scheme both on average and for each individual sampling task.

Finally, in Theorem 4 we extend the results of [15] derived for
stationary graph signals and show that the maximum element-
wise curvature of f(S)=Tr(W— Xs) is bounded even for non-
stationary graph signals and in the scenario where the statistics
of the noise varies across nodes of the graph.

Theorem 4. Let C; be the maximum element-wise curvature of
f(8) =Tr(W — ). Then it holds that

3
Adhax (W) ( Amax (W)>
Cmax <max o (14— 2 ) (18)
e A2 (W) o?

Proof. See Appendix F. O

It was shown in [15] that if X is stationary and W = oIy for
some oy > 0 and 07 = o for all j e N, then the curvature of the
MSE objective is bounded. However, Theorem 4 holds even in the
scenarios where the signal is non-stationary and the noise is not
white.

5. Numerical examples

To assess the proposed support recovery and sampling algo-
rithms, we study their performance in recovery of signals sup-
ported on synthetic and real-world graphs. In the first two sub-
sections, we benchmark the performance of Algorithm 1, while in
the rest of the subsections, we focus on evaluating the efficacy of
the proposed randomized greedy algorithm.

5.1. Synthetic Erd6s-Rényi random graphs |

We first consider the task of sampling and reconstruction of
noise-corrupted bandlimited graph signals with known support.
Specifically, we consider undirected Erdés-Rényi random graphs G
of size N=100 and edge probability 0.2. We generate x = UXy
by forming U using the first k eigenvectors of the graph adja-
cency matrix, where k is varied linearly from 2 to 99. The non-
zero frequency components Xy are drawn independently from a
zero-mean Gaussian distribution with standard deviation 100. The
signal is corrupted by a Gaussian noise term with Q = 0.022Iy.
We compare the recovery performance of the proposed scheme in
Algorithm 1 with state-of-the-art uniform, leverage score, and op-
timal random sampling schemes [10,16,17]. We define the recov-
ery error as the ratio of the error energy to the true signal’s en-
ergy. Furthermore, the success rate [10] is defined as the fraction
of instances where CU is invertible [cf. (1)]. The results, averaged
over 100 independent instances, are shown in Fig 1(a). As we can
see from Fig 1(a) (top), the proposed scheme consistently achieves
lower recovery error than competing schemes. Moreover, as shown
in Fig 1(a) (bottom), when the bandwidth increases the success
rate of random sampling schemes decreases while the success rate
of the proposed scheme is always one, as formally established
in Theorem 1. Additionally, note that the reconstruction error of
Algorithm 1 is given in Proposition 1. There, we establish an upper-
bound on the Reconstruction error. Note that Proposition 1 estab-
lishes perfect success rate and bounds the reconstruction error in
the noisy scenario; it does not necessary establish a monotonically
decreasing error. Indeed, a signal has a higher bandwidth, then a
larger sampling set is required to ensure perfect success rate. This
discussion then justifies then non-monotonic recovery error of the
proposed algorithm as well as the benchmarking schemes.

Next, we compare the proposed sampling algorithm with
Algorithm 1 of [10] (see Fig 2) for undirected Erdés-Rényi random
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graphs where we consider smaller bandwidth here to accommo-
date the computational cost of Algorithm 1 of [10]. A that disad-
vantage of Algorithm 1 of [10] compared to our method is that the
iterative method of [10] needs to perform singular value decompo-
sition in each iteration to identify the sampling operator (see step
2 of Algorithm 1 in [10]). Additionally, similar to our scheme which
requires a residual node for initialization, [10] also needs an ini-
tial node. However, the selection of such an initial node is unclear
in Algorithm 1 of [10]. One major benefit of our method is that,
as we show in Theorem 1, the proposed scheme achieves perfect
recovery while Algorithm 1 of [10] does not have this important
property. In terms of the empirical comparison, as Fig 2 shows, the
proposed iterative algorithm achieves a lower reconstruction error
while consistently achieving success rate of one.

5.2. Real graph: interpolation of industrial sectors’ production

Next, we analyze data from the Bureau of Economic Analysis
of the U.S. Department of Commerce which publicizes an annual
table of input and outputs organized by economic sectors.’> Specif-
ically, we represent by nodes 62 industrial sectors as defined by
the North American Industry Classification System, and construct
weighted edges and the graph signal similar to Marques et al. [12].
The (undirected) edge weight between two nodes represents the
average total production of the sectors, the first sector being used
as the input to the other sector, expressed in trillions of dollars per
year. This edge weight is averaged over the years 2008, 2009, and
2010. Also, two artificial nodes are connected to all 62 nodes as the
added value generated and the level of production destined to the
market of final users. Thus, the final graph has N = 64 nodes. The
weights lower than 0.01 are thresholded to zero and the eigenvalue
decomposition of the corresponding adjacency matrix A = VAV is
performed. A graph signal x € R% can be regarded as a unidimen-
sional total production - in trillion of dollars - of each sector dur-
ing the year 2011. Signal x is shown to be approximately (low-pass)
bandlimited in [12, Fig. 4(a)(top)] with a bandwidth of 4.

We interpolate sectors’ production by observing a few nodes
using Algorithm 1 and assuming that the signal is low-pass (i.e.,
with smooth variations over the built network). Then, we vary the
sample size and compare the recovery performance of the pro-
posed scheme with state-of-the-art uniform, leverage score, and
optimal random sampling schemes [10,16,17] averaged over 1000
Monte-Carlo simulations as shown in Fig. 1(b) (top). As the fig-
ure indicates, the proposed algorithm outperforms uniform, lever-
age score, and optimal random sampling schemes [10,16,17]. How-
ever, Algorithm 1 does not achieve perfect recovery in this noise-
less scenario because the signal is not truly bandlimited. More-
over, Fig. 1(b) (bottom) shows a realization of the graph sig-
nal x superimposed with the reconstructed signal obtained using
Algorithm 1 with k = 2 for all nodes excluding two artificial ones.
The recovery error of the reconstructed signal is approximately
1.32%; as Fig. 1(b) (bottom) illustrates, X closely approximates X.

5.3. Synthetic graph: localization of UAVs

We now tackle a UAV localization problem in which the goal is
to estimate absolute positions of robots from on-board sensor mea-
surements. Specifically, consider a network of N UAVs moving in a
2D plane and assume that each UAV is equipped with two systems:
a laser scanner that measures the relative position of other UAVs
within a sensing radius, and a GPS system that finds the absolute
position of the UAV.* While the laser system can find relative po-

3 Dataset from https://www.bea.gov.
4 Notice that the graph structure in this application is essentially the time-
varying communication network between the UAVs. In our simulation studies, we
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Fig. 2. (a) Recovery error and (b) success rate (bottom) of Algorithm 1 and the Greedy method of [10] versus bandwidth (k) for undirected Erdds-Rényi random graphs.

sitions of the nearby UAVs with minimal power consumption, the
GPS system requires intensive power to receive the location of the
UAV from the control unit located potentially far from the network
of UAVs. We consider the scenario where such inherent energy
constraints prevent some UAVs to collect GPS data, i.e., only a sub-
set of the UAVs can use the GPS. The objective is to compute the
most representative subset of the UAVs so to minimize the MSE
of the estimated global positions of all UAVs. To this end, we em-
ploy the proposed randomized-greedy scheme in Algorithm 2 with
various values of € to find a sampling set (a subset of UAVs) and
compare its recovery error to that of the greedy sampling scheme
[15]. Note that two graph signals, namely the x and y coordinates
of UAVs, are supported on the network. Further, since UAVs that
are close to each other have similar locations, both of these graph
signals are smooth and hence bandlimited. It is worth to note that
the collection of UAVs, typically referred to as UAV swarm, has a
swarm leader that is task with handling costlier computations and
is capable of communicating with the control unit that guides the
swarm in moving in the environment.

consider the localization task for only a single time-step. Nonetheless, the proposed
sampling scheme can be employed in every time step where identification UAVs
with GPS turned-on is required.

We run Monte Carlo simulations with 1000 instances where we
consider 1000 UAVs distributed uniformly on a 10 x 10 grid; the
range of the laser system is set to 0.3 and the power of noise af-
fecting laser measurements is set to 10~2. The recovery error and
running time results as a function of signals’ bandwidth - which
is also the size of the sampling set - are shown in Fig. 4(a) and
(b), respectively. As we see in Fig. 4(a), performance of the pro-
posed scheme and the greedy algorithm are fairly similar; as band-
width increases, the recovery error decreases. Furthermore, as ¢
gets smaller, the gap between the performance of the proposed
scheme and the greedy algorithm reduces until becoming negli-
gible. The running time comparison illustrated in Fig. 4(b) reveals
that for the largest sampling set considered (i.e. k = 50), the pro-
posed scheme is more than 2x faster than the greedy method. Ad-
ditionally, the complexity of the proposed scheme is linear in k,
while that of the greedy method is quadratic, as predicted by our
theoretical results; see also [1] for additional MSE performance and
runtime comparisons with the greedy sampling algorithm in [15].

5.4. Real graph: semi-supervised face clustering
Clustering faces of individuals is an important task in computer

vision [46-49]. In real-world settings, labeling all images is prac-
tically infeasible. However, acquiring labels even for a small sub-
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Fig. 3. Face clustering: given images of multiple subjects, the goal is to find images that belong to the same subject (examples from the EYaleB dataset [46]).
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Fig. 4. (a) Recovery error comparison of the greedy scheme [15] and Algorithm 2 as a function of bandwidth for the UAV localization problem. (b) Running time comparison
of the greedy scheme [15] and Algorithm 2 as a function of bandwidth for the UAV localization problem. (c) Clustering accuracy of greedy [15], Algorithm 2, random
sampling, and unsupervised methods as a function of the sampling ratio for the face clustering application.

set of data that can represent all images may drastically improve
the clustering accuracy. The proposed randomized-greedy selection
sampling framework can be employed in this setting to acquire la-
bels for a small number of images to achieve improved cluster-
ing accuracy. To this end, we test the randomized-greedy algo-
rithm on EYaleB dataset [46] (see Fig. 3) which contains frontal
face images of 38 individuals under 64 different illumination con-
ditions. Similar to the prior works (see, e.g., [47-49]), in our stud-
ies the images are down-sampled to 48 x 42 from the original size
of 192 x 168. In each of 100 independent instances of the Monte
Carlo simulation we randomly pick 8 subjects and all of their im-
ages as the data points to be clustered; this results in a cluster-
ing problem with N = 512 data points. To construct the underlying
graph signal and capture similarity of the data points, we employ
the sparse subspace clustering (SSC) scheme recently proposed in
[47] to find the adjacency matrix A and the Laplacian matrix L. The
graph signal support on the constructed similarity graph is dis-
crete valued, i.e., the value of each node is an integer in {1, ..., 8}.
Note that the graph signal supported on the constructed similar-
ity graph is smooth and bandlimited as similar images are unlikely
to correspond to different individuals. The performance compar-
ison of Algorithm 2 with various values for €, greedy sampling
method, random sampling schemes, and the unsupervised cluster-
ing method are illustrated in Fig. 4(c) as a function of the sam-
pling ratio (k/N). For the sake of clarity of presentation, we only
show the result of the best method among uniform, leverage score,
and optimal random sampling approaches [10,17]. As we see in
Fig. 4(c), the greedy and randomized-greedy schemes deliver the
best clustering performance; as we increase size of the sampling
set, the accuracy of semi-supervised schemes improves and the
gap between the performance of random sampling methods and
the proposed scheme decreases. Furthermore, our simulation stud-
ies reveal that acquiring labels of only 8 data points using the pro-
posed scheme results in more than 12% improvements in clustering
accuracy as compared to the unsupervised method.

5.5. Synthetic Erdés-Rényi random graphs Il

Since Algorithm 2 is a randomized scheme, in this section we
study the performance of Algorithm 2 for each individual sam-
pling tasks (i.e. each Monte-Carlo realizations). To this end, we
again consider the Erd6s-Rényi random graphs, similar to those in
Section 5.1. Here, we study the setting where N =10 and k = 4.
Bandlimited graph signals are generated as before except that this

time we take U as the first 4 eigenvectors of the adjacency matrix.
Fig. 5(a) depicts superimposed MSE histograms of Algorithm 2 and
the greedy sampling scheme [15] for 100 realizations per method
and fixed |S| = 4. As the figure illustrates, the proposed random-
ized greedy schemes performs well and is comparable with the
greedy approach, not just on average but also for majority of in-
dividual sampling tasks.

5.6. Real graph: minnesota road network

Next, we consider the Minnesota road network® with N = 2642
nodes in order to showcase scalability of the proposed graph sam-
pling method. To that end, Bandlimited graph signals are generated
by taking the first k = 600 eigenvectors of the graph Laplacian ma-
trix, where the non-zero frequency components are drawn from a
zero-mean, multivariate Gaussian distribution with randomly cho-
sen PSD covariance matrix W. The signals are corrupted with addi-
tive white Gaussian noise with o2 = 10~2ly. As expected, Fig. 5(b)
and (c) depict trends of decreasing MSE and increasing running
time versus |S|, respectively. The results are averaged over 1000
Monte-Carlo simulations run. Remarkably, the proposed random-
ized greedy procedure achieves an order-of-magnitude speedup
over the state-of-the-art algorithm in [15] while showing only a
marginal degradation in the MSE performance. Note that the time
of performing eigenvalue decomposition to find the graph shift op-
erator U in MATLAB was less than 2 s on a typical laptop. Fig. 5(d)
depicts the runtime comparison of the proposed scheme versus the
benchmark by accounting for the time of computing the eigenvalue
decomposition.

5.7. Synthetic graph: large-scale preferential attachment random
graph

Finally, we consider a large-scale preferential attachment ran-
dom graph [50] with N = 10, 000 nodes to show the superiority of
the proposed Algorithm 2 over existing methods. In particular, sim-
ilar to the previous random graph simulations, we generate ran-
dom band-limited Gaussian graph signals using the first 500 eigen-
vectors of the preferential attachment graph adjacency matrix (see
Fig. 6(c) for the structure of the sparse adjacency matrix). The re-
sults are illustrated in Fig. 6 where as we see, Algorithm 2 achieves

5 https://sparse.tamu.edu/Gleich/minnesota
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the same performance as that of the greedy scheme [15] while in-
curring orders of magnitude lower running time.

6. Conclusion

We considered the task of sampling and reconstruction of spec-
trally sparse graph signals. where the goal is to interpolate a (non-
stationary) graph signal from a small subset of the nodes with the
lowest reconstruction error. First, we studied the non-Bayesian sce-
nario and proposed an efficient iterative sampling approach that
exploits the low-cost selection criterion of the orthogonal match-
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Performance comparison of greedy scheme [15] and Algorithm 2 on a large-scale preferential attachment random graph with N = 10, 000 nodes.

ing pursuit algorithm to recursively select a subset of nodes of the
graph. We then theoretically showed that in the noiseless case the
original k-spectrally sparse signal is perfectly recovered from the
set of selected nodes with cardinality k. In the case of noisy mea-
surements, we established a worst-case performance bound on the
reconstruction error of the proposed algorithm. In the Bayesian
scenario where the graph signal is a non-stationary random pro-
cess, we formulated the sampling task as the problem of maxi-
mizing a monotone weak submodular function that is directly re-
lated to the mean square error (MSE) of the linear estimator of
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the original signal. We proposed a randomized-greedy algorithm
to find a sub-optimal subset of sampling nodes. By analyzing the
performance of the randomized-greedy algorithm, we showed that
the resulting MSE is a constant factor away from the MSE of the
optimal sampling set. Unlike prior work, our guarantees do not
require stationarity of the graph signal and the study is not re-
stricted to the case of additive white noise. Instead, the noise co-
efficients are assumed to be independent but the power of noise
varies across individual nodes of the graph. Extensive simulations
on synthetic and real-world graphs with applications in economics,
localization, and clustering showed that the proposed iterative and
randomized-greedy selection sampling algorithms outperform the
competing alternatives in terms of accuracy and runtime.
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Appendix A. Proof of Theorem 1

To prove the theorem, it suffices to show that Algorithm 1 se-
lects a subset of rows of U which are linearly independent. Con-
sider the ith iteration where ug, is identified and assume that until
this iteration S contains indices of a collection of linearly indepen-
dent vectors {us,, ..., us«f])}. If |riT_1u5,.| # 0, since r;_; is orthogo-
nal to the span of {us,,.. ‘,uS(H)}, ug, is not in the span of these
vectors. Hence, {us,....,us} is also a collection of linearly inde-
pendent vectors and by an inductive argument we conclude that
rows of Us are linearly independent. Now assume |r] ,us;| = 0 for
some i < k. Since U does not have all-zero rows, this condition im-
plies r;_; = 0.5 Therefore, all the remaining rows of U which are
not selected lie in the span of {usl,...,us(l;”}. Since by assump-
tion i < k, this condition implies that the rank of U is at most k — 1
which contradicts the fact that V is a basis and U has full column-
rank. Therefore, r;_; = 0 holds only for i > k and thus rows of Ug ;
are linearly independent. This completes the proof.

Appendix B. Proof of Proposition 1

According to Theorem 1, if m = k, Us , = CU is invertible. There-
fore, since Qs is positive definite and invertible it is easy to see
that U}, Q5'Us, is also invertible. Now consider the case m > k

6 We note that if \l'iTq“s,\ =0fori<k ri_;#0,and r;_; and u, are orthogonal,
then since s; is the optimizer of the selection criterion in step 6, r; ; is orthogonal
to all u; with j e M\{¢}\S. Now, since by definition r;_; is orthogonal to the sub-
space spanned by nodes indexed by S, we conclude that r;_; € R¥ is orthogonal to
the subspace spanned by all uj, i.e. Rk, However, this can only hold for r;_; = 0.

1
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where Ug,, € R™*k is a tall full rank matrix. Let Q‘gl =LL" be the
Cholesky decomposition of Qg1. Since le is a positive definite
matrix, L e R™™ is full rank and invertible. Therefore, L, = L"Us ,
is also a full rank matrix. Thus, U] Qg'Us, = LjL, € Rk is full
rank and invertible. Hence, for any m > k given a C constructed by
Algorithm 1, (4) simplifies to

X = (U§,Q5'Us ) 7'UE, Q5% (19)
Since x = UX(, the reconstructed signal X can be obtained accord-
ing to
% = U(U,Q;5'Us )7 'US Q5%
= U(Ug,Q5'Usr)'U§, Q5 (Us Xk + Ms)
= Uxc +U(U§,Q;5'Us ) 'US Q5" Cn
= x+U(U;,Q5'Us)'US, Q5 'ns.
Therefore,

%~ x|l2 < [|U(UF,Q5'Us.r)~'UE, Q5" ns 12

(a) _ _ _

< |U(UE,Q5'Us,) 10§ Q52

(b)

< Umax(U(U;nglUs.r)_lU;ngl)En

©

< Omax (U)0max (U3, Q5 'Us,r) "'US, Q5 )én

(d)

< Omax (U§,Q5"Us.r)7'U5 Q5 én (21)
where (a) and (b) follow by the assumption ||ng||; < ||n||; < €n,
(c) stems from submultiplicative property of ¢,-norm, and (d) is
by the fact that opmax(U) =1 as it is a submatrix of an orthogonal
matrix.

(20)

Appendix C. Proof of Proposition 2

We first verify that
f@) =Tr(W - %) = Tr(W — W) = 0.

Next, to show monotonicity, we establish a recursive relation for
the marginal gain of selecting a new node on graph. More specifi-
cally, for j e [n]\S it holds that

fi(8) = Tr(W = Zg () — Tr(W - Xs)

5 5 52
@ Tr UM XS ) @) Uy sl (22)
o} +uj Xsu; o} +uj Xsu;

where (a) easily follows by applying Sherman-Morrison formula
[42] on matrix (X3! + aj‘zujujT)”, and (b) is due to properties of
the trace of a matrix. Finally, since £ is the error covariance ma-
trix, it is symmetric and positive definite. Hence, f;(S) > 0, which
in turn implies monotonicity.

Appendix D. Proof of Theorem 2

To prove the stated results, we first we state Lemma 1 [51] that
upper-bounds the difference between the values of the objective
corresponding to two sets having different cardinalities.

Lemma 1. [51] Let f denote a monotone set function with the maxi-
mum element-wise curvatures Cmax. Let S and T be any two sampling
sets such that S ¢ T € N with |T\S| =r. Then, it holds that

FD = £ =c) Y (),

jeT\S

(23)
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where C(r) = %(1 + (r = 1)Cy). Moreover, C(r) is decreasing (increas-
ing) with respect to R if Cy <1 (Cy > 1).

To prove the theorem, we first establish a bound on the ex-
pected value of the marginal gains of adding new nodes to the
sampling set. Then, using the results of Lemma 1, we reduce the
proof of approximation factor to that of the classical greedy algo-
rithm introduced in [52]. More specifically, consider the ith itera-
tion of Algorithm 2 and let S and (i + 1)s denote the current sam-
pling set and the index of node selected at the (i+ 1)st iteration
of Algorithm 2. A necessary condition to achieve the optimal MSE
is that set R at each iteration must contain at least one node from
the optimal sampling set O. Let ® =R N (O\S). Since R is gener-
ated via sampling without replacement, it holds that

s—1
0\s]
Pr{®d = p) = (1 - )
{1~ T
@ |(’)\S -
)
©a- 'O\S'<HN— Hy_s))’ (24)

where (a) is by the inequality between arithmetic and geometric
means and the fact that |[M\S| < N, and

21
HP=ZE

=1

=logp+y +¢p (25)

in (b) is the pth harmonic number. The object y in (25) is the
Euler-Mascheroni constant, and ¢ = 5 —0( 7) is a monotoni-

cally decreasing sequence related to Hurw1tz zeta function that
satisfies ¢p — ¢p—q = Zp 2(p DT ( ) 4) for all integers p > q
[53]. Therefore, using the identity (25) and the fact that (1 +x)Y <
e for any real number y > 0, we obtain

s O\S

Pr{® =g} = ((1 — §)emivs)' ",

Let B1 =1+ (55—
Bqs

—X—% for 0 <x <1 yields Pr{® =} <e~ ~ 9\, Following a

similar argument one can obtain Pr{® = ¢} < e~ §I1O\5],
Let B = max{1, B;}. Then

(26)

m). Employing the inequality log(1 —x) <

B

Pr{® £ ¢} = 1— e RIS > = (jo\s)) (27)
from the definition of s = % log(1/€) and the fact that 1 — e*%" is
a concave function. According to Lemma 2 in [41],

Pr{® #£¢
Elfn, ©)1s] = 22 5 f(s). (28)

jeO\S

Hence,

1
E[ fir1), (8)IS] = i(S). (29)

jeO\S

On the other hand, employing Lemma 1 with 7=0US and
invoking monotonicity of f yields

[(0) = f(S) _ [OUS) ~[(S) _ <
C(r) = C(r) - ].E%ES 5i)
< B [fon. (SIS]. (30)

where |O\S| =r. Let ¢ = max{Cy, 1}. Applying the law of total ex-
pectation and the fact that C(r) < c yields

ELFS UG+ 1)s)) - F(S)] = 2

—E[f(HD.  31)

12

Signal Processing 195 (2022) 108505

With the established result, the proof simplifies to that of the clas-
sical greedy algorithm [52]. Therefore, by using a simple inductive

argument,
ﬁ m
o

1-¢€
E[f(srg)] = (1 - ( me

1 Gﬁ
> (1 et C>f(0) = af(©).

where the last inequality is due to the facts that (1 +x)¥ < e¥ for
y >0 and e™ <1 + axe® for 0 < x < 1. Finally, the stated result fol-
lows by using the definition of f(S). This completes the proof.

(32)

Appendix E. Proof of Theorem 3

Consider the ith iteration of Algorithm 2. Let S denote the cur-
rent sampling set and let (i+1)g and (i+ 1);¢ denote indices of
the nodes selected at the (i + 1)st iteration of the greedy sampling
algorithm [15,19,20] and Algorithm 2, respectively. Similar to the
proof of Theorem (2), we start by reducing the proof to that of the
classical greedy algorithm. To this end, we employ Lemma 1 with
7 = OUS and use monotonicity of f to obtain

fO) - f(8) = f(OUS) —f(&) =c ) fi(S).

jeO\S

(33)

Note that given the current sampling set S, from the selection cri-
teria of greedy and randomized-greedy algorithms for all j it fol-
lows that

f(O) = f(8) = emfi11),(S), (34)
where we used the fact that |O\S| < m. On the other hand,
FEEU{+Drgh) = f(S) = fiis),(S)

= Nit1f(i+1),(S)- (35)
Combining (34) and (35) yields
FS UL+ Degh) - 8) = ZEL(£(0) - f(S). (36)

Using a similar inductive argument as we did in the proof of
Theorem 2 and due to the fact that (1 +x)Y <e¥ for y > 0, it fol-

lows that
f(Sio) = (1 - (1 -y ,Z"C))f(m
> (1 —e*zﬁl%)f(o).

i=1
Note that if we assume {1;} are independent, the term Y [", n; is
a sum of independent bounded random variables. Since {n;} are
bounded random variables, by Popoviciu’s inequality [54] for all
i e[m] it holds that Var[n;] < %. Therefore, using Bernstein’s in-
equality[54] it holds that for all 0 < q < 1

(37)

_ma-q?u2

Pr{d ni < (1 - q)mue} <

e Hluc+l _ g=Cle.pm (38)
i=1
Employing this results in (37) yields
fsw) = (1-e ¥ f(0). (39)

with probability at least 1 — eC(€:D™m Recalling the definition of

f(S) leads to the stated bound which in turn completes the proof.
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Appendix F. Proof of Theorem 4

To prove the stated result, we begin by exploiting the recursive
formulation of the marginal gain derived in Proposition 2 to estab-
lish a sufficient condition for weak submodularity of f(S). More
specifically, from the definition of the maximum element-wise cur-
vature and (13), for all (S, T, j) € &; we have

£ (u] Z2u))(0? + u] Zsu,)
fi(®) (u]T)_Jguj)(o]?—ku]T)_:Tuj)'

(40)

Next, we employ Courant-Fischer min-max theorem [42] to ob-
tain

fi(T)
fi(®)

)\max(i:%*) (sz + )\max(z_:s)”uj”%)
)"min(i‘zs)(o'j2 +)"min(27')”uj”%)
(@) )Lmax(ig—) (O'jz + )\-max(is))

= 52 2 3 ’ (41)
)‘min(zs)(aj +}\min(27'))
where (a) holds since
02 4+ Amax(Ts)x
g(x) _ i ma: ( S) (42)

0]2 + )\min(iT)X

is a monotonically increasing function for x > 0 and ||u||% <1.
Given the fact that Amax(Zs) = Amin(Z51) 71, (41) simplifies to

f](T) < )‘min(f:;*])_2 (012 + )"min(igl)_l)

fJ(S) _)\max(ig1 )2 ((7]-2 + )\-max(i}l)*l) )
By Weyl's inequality [42], for all (S.7,j)ed it holds
that )‘min(EX/‘l) > )"min(z';J) > )‘«min(zgl) = )‘min (w_l) and

)Mmax(i;/_\;) > Amax(i}l) = Amax(i:g]) > )\max(wil)- Hence, by
definition of maximum element-wise curvature we have

A'1'1'13)( (W)2 (012 + )\max (W))

(43)

C < max = =
TN e (B 2(07 + Amax(E31) )
2 . -1 -2)2
@ o (%7 e (WD) i (W)~ + 07 2) 44

ax ,
JeN Amax (W) 2(07 + (Amin (W) -1 +0772)~1)

where (a) follows since Amax(Z3!) < Amax(W-! +aj‘21N) and be-
cause the maximum eigenvalue of a positive definite matrix satis-
fies the triangle inequality. Note that the denominator of the last
inequality is always strictly larger than 01.2, and that Amax(W) >
Amin (W). Following some straight-forward algebra, we obtain

22, (W) ( Amax <W>>3
Cmax < max (1 t (45)
JeN A2 (W) o?

which is the stated result. This completes the proof.
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