






a zigzag sum Σ converge to one another. In other, more
practical, terms, the equality is accurate within an error
proportional to r. See Fig 3 for a numerical illustration
of the convergence process and the relevant error bounds.
Identity (7) is also universal: it holds whether Σ is de-
velopable, flat-foldable, symmetric, rectangular, or not.
Therein, the mixed products (e.g., ⟨u, t ∧ s⟩) have their
signs determined by the mountain-valley assignment of the
concerned folds. This allows us to deduce the rather nice
corollary: if a zigzag sum Σ has an odd number of mountain
folds meeting at a vertex then: (i) it is necessarily auxetic;
and (ii) it necessarily bends into a saddle. In particular, all
developable zigzag sums are auxetic and bend into saddles.
Note that these results are only valid for nondegenerate
configurations, i.e., where all folds are partially folded. In-
deed, when a fold is flat, be it open or closed, mountain and
valley assignments coalesce and the Poisson’s ratio could
become null, infinite or multivalued [19]. Note also that
the proven identity features the elongations and curvatures
in two specific material directions ξ1- and ξ2-contours, be
them orthogonal or not; in particular, the identity bears no
immediate consequences on the Poisson’s coefficient defined
for two general orthogonal directions.

3. Self-equilibrium of origami pillars

The equality of the Poisson’s ratios greatly constrains
the 3D geometries accessible to a zigzag sum Σ [21, 24–26].
Consider, for tractability, the “Mars” tessellation of Fig. 4a.
The tessellation lacks mirror symmetry but is otherwise
developable, flat-foldable and equilateral. We find that
compatible metrics and curvatures satisfy [23, App. D]

g12 = 0, g11(4− g22) = 4(cosα+ cosβ)2,

κ2
κ1

= ν = −4
(cosα+ cosβ)2

g11g22
.

(8)

This is in fact a system of non-linear PDEs weighing on the
admissible configurations x. For instance, we explore the
configurations of a rectangular domain of flat dimensions
L1 × L2 that are folded and wrapped around an axis of
symmetry into an origami pillar [20]. These pillars are
surfaces of revolution with a Cartesian parametrization of
the form

x(ξ) = (ρ(ξ2) cos(ωξ1), ρ(ξ2) sin(ωξ1), z(ξ2)). (9)

Here, the axis of symmetry is the z-axis, ξ1-contours are
meridian lines and ξ2-contours are parallel lines. Equa-
tions (8) then simplify into a system of ODEs governing
z and ρ. Its solutions constitute a 2-DOF family of one-
sheeted hyperboloids (Fig. 4b,c) [23, App. E]. The range of
motion of each pillar is bounded by the maximally folded
and unfolded states of the pattern. Thus, for increasing
aspect ratio L2/L1, the pillar will have a smaller range of
motion, until it jams, or even becomes impossible to form
without tearing.

Among all accessible pillars, the ones that are in self-
equilibrium exhibit minimum levels of strain energy ψ.
Strain energy is composed of two contributions: crease
folding and panel bending. Crease folding energy takes the
form of a classical, however nonlinear, membrane energy.
In what follows, we neglect this contribution and focus
on the less-explored influence of panel bending [27]. For
“Mars”-folded origami pillars, centered about the equator,
strain energy is exemplified on Fig. 4d. It appears that
unfolding the pattern, by increasing the angle ∠(u,v), re-
duces bending energy. The unfolding flattens the pillar and
reduces both curvatures κ1 and κ2. That trend continues
up to a point where energy is minimum (near state (iv))
and beyond which any further unfolding, or flattening, of
the pattern actually causes a dramatic increase in bend-
ing energy. This suggests that bending energy ψ depends
on some other deformation measures besides curvatures.
As a matter of fact, the bending energy density b, where
ψ =

∫

Ω
bdξ, Ω being the reference domain of the pattern,

is a quadratic form of the planarity defects δ(ij) of the
panels. For their part, the defects are linear forms of the
full, both out-of-plane and in-plane, components of the
parametrization’s second derivatives xµν . The out-of-plane
components Γ3µν ≡ ⟨n,xµν⟩ are the coefficients of the sec-
ond fundamental form; they quantify the curvatures and
torsion of the embraced surface. The in-plane components
Γσµν ≡ ⟨xσ,xµν⟩ are the Christoffel symbols; they quan-
tify, not the strains, but their gradient, i.e., terms of the
form gµν,σ. Accordingly, b = b(Γ;g) is a metric-dependent
quadratic form of the curvatures, torsion, and strain gra-
dient. Detailed derivations of the expression of b leading
to Fig. 4d can be found in the Supplemental Material [23,
App. F, G].

Back to the pillars, unfolding the pattern reduces both
curvatures and strain-gradients. However, as the geometric
rigidities associated with the curvatures (i.e., ∂2b/∂Γ3µν)
remain bounded, the ones associated with the strain gra-
dient (i.e., ∂2b/∂Γσµν) diverge for states that are close to
being flat. Such states occur near the outer rims of suffi-
ciently unfolded pillars; their presence further signals that
the pillar has reached the boundary of the kinematically
admissible domain, hence the energy blow-up observed on
Fig. 4d. Strain-gradient energy further dominates the re-
sponse of any plane, non-uniform, state such as the “ring”
observed midway through Fig. 4b. Indeed, uniformly folded
plane states do not engage panel bending and therefore
have zero energy. By contrast, non-uniformly folded states,
with gradients of folding angles, cannot be achieved with-
out panel bending. When the state is plane, it has zero
curvatures and torsion, and energy becomes function of the
strain gradient alone [12]. More generally, it is noteworthy
that ψ does not penalize strains or fold angles, however
large, so long as they are uniform. In fact, ψ does not even
refer to a specific natural state or any specific natural fold
angles in reference to which strains should be measured
[16]. Instead, it refers to a higher-order strain measure,
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Appendix A. The in-plane Poisson’s ratio: Gen-

eral case

The metric g of a zigzag sum has the components g11 =
∥u− v∥2, g22 = ∥s− t∥2 and g12 = ⟨u− v, s− t⟩. Note
that the scalar products ⟨u, s⟩, ⟨u, t⟩, ⟨v, s⟩ and ⟨v, t⟩ are
combinations of lengths and angles that are isometrically
preserved; they are motion constants and so is g12. It is
somewhat more challenging to derive a relationship between
g11 and g22; this is done next. First, note that s and t can
be decomposed into

s = ⟨s,u⟩u∗ + ⟨s,v⟩v∗ + sww,

t = ⟨t,u⟩u∗ + ⟨t,v⟩v∗ + tww,
(A.1)

with

u∗ =
v ∧w

∥u ∧ v∥ , v∗ =
w ∧ u

∥u ∧ v∥ , w =
u ∧ v

∥u ∧ v∥ . (A.2)

Components sw and tw are easily determined by considering
the magnitudes of s and t. Indeed, we have

s2w = s2 − ⟨s,u⟩2 v2 + ⟨s,v⟩2 u2 − 2 ⟨s,u⟩ ⟨s,v⟩ ⟨u,v⟩
∥u ∧ v∥2

,

t2w = t2 − ⟨t,u⟩2 v2 + ⟨t,v⟩2 u2 − 2 ⟨t,u⟩ ⟨t,v⟩ ⟨u,v⟩
∥u ∧ v∥2

,

(A.3)

with u = ∥u∥, and so on. Therein, note that the only
variables are

⟨u,v⟩ = u2 + v2 − g11
2

, ∥u ∧ v∥2 = u2v2 − ⟨u,v⟩2 ,
(A.4)

and are both functions of g11. Last, we write

g22 =
⟨s− t,u⟩2 v2 + ⟨s− t,v⟩2 u2

∥u ∧ v∥2

− 2 ⟨s− t,u⟩ ⟨s− t,v⟩ ⟨u,v⟩
∥u ∧ v∥2

+ (sw − tw)
2, (A.5)

and accordingly deduce g22 as a function of g11, as well as
ν as a function of g11. It is worth mentioning that g11 and
g22 have upper and lower bounds corresponding to some
creases being maximally folded or unfolded. Beyond these
bounds the pattern would penetrate itself or break apart.
These situations can be avoided by enforcing s2w > 0 and
t2w > 0.

Appendix B. The admissible second-order deriva-

tives

Consider the vertices of a super cell placed at x(ij) =
X(ij) + r2δx(ij) where the X(ij) describe a pre-folded state
and the r2δx(ij) are bending-induced perturbations. Simi-
larly, the central vertex ξ is atX subsequent to the fold-only
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motion and is perturbed by r2δx subsequent to the infinites-
imal bending of the panels. Note that the second-order
derivatives xµν are invariant by composition with linear
motions including rigid body motions and periodic stretch-
ing and contraction. Accordingly, it is possible, without
loss of generality, to default the displacements of the central
four creases to zero. In other words, we set

δx = δx(10) = δx(01) = δx(1̄0) = δx(01̄) = 0. (B.1)

Furthermore, by linearity, the contributions of the remain-
ing displacements can be investigated independently then
superposed.

So let δx(1̄1), δx(1̄1̄), δx(11̄), δx(2̄0) and δx(02̄) all be null
for now and consider a nonzero displacement δx(11): the
latter must be orthogonal to u so as to preserve the length
of x(11) − x(01) as well as to s so as to preserve the length
of x(11) − x(10), to leading order. Hence,

δx(11) = δ(11)u ∧ s (B.2)

for some planarity defect δ(11). Similarly, we have

δx(02) = δ+v ∧ t, δx(20) = δ−v ∧ t. (B.3)

Expressions for δ± are easily obtained by observing that
the lengths of x(11) − x(02) and x(11) − x(20) are preserved.
Indeed, infinitesimal inextensibility implies

〈

t+ u, δ(11)u ∧ s− δ+v ∧ t
〉

= 0,
〈

v + s, δ(11)u ∧ s− δ−v ∧ t
〉

= 0,
(B.4)

namely,

δ+

δ−
=

⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩ . (B.5)

As for the xµν , they are given by

x11 = δx(20) = δ−v ∧ t,

x22 = δx(02) = δ+v ∧ t,

x12 = δx(11) = δ(11)u ∧ s.

(B.6)

In particular,

x22 =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩x11. (B.7)

The contributions of δx(1̄1), δx(1̄1̄) and δx(11̄) (i.e., δ(1̄1),
δ(1̄1̄) and δ(11̄), respectively) can be readily calculated in
the same fashion and shown to yield exactly the same
constraint on x22 and x11. This can be predicted by ap-
preciating the symmetric way in which the proportionality
coefficient depends upon the crease vectors. In conclu-
sion, the above constraint holds for any combination of
admissible infinitesimal displacements of the super cell.

Last, note that

⟨x12,x1⟩ =
〈

δ(11)u ∧ s,u− v
〉

= −δ(11) ⟨u ∧ s,v⟩
= −δ− ⟨v ∧ t, s⟩
= −δ− ⟨v ∧ t, s− t⟩
= −⟨x11,x2⟩ .

(B.8)

That is: ∂1⟨x1,x2⟩ = 0. In the same manner, one shows
that ∂2⟨x1,x2⟩ = 0 in order to recover dg12 = 0 as claimed
in the main text.

Appendix C. The in- and out-of-plane Poisson’s

coefficients are equal and opposite

Projecting the proportionality constraint of x11 and x22

along the normal n yields

κ2g22 =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩κ1g11 (C.1)

by the definition of the normal curvatures in directions 1
and 2. Projecting along x1 yields

⟨x22,x1⟩ =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩ ⟨x11,x1⟩ . (C.2)

But

⟨x22,x1⟩ = ∂2⟨x2,x1⟩ − ⟨x2,x12⟩

= ∂2⟨x2,x1⟩ −
1

2
∂1⟨x2,x2⟩

= −1

2
∂1g22,

(C.3)

since dg12 = 0. Also, ⟨x11,x1⟩ = ∂1g11/2. Projecting over
x2 yields similar relations so that overall

− dg22
2

=
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

dg11
2

. (C.4)

Hence, the in-plane Poisson’s coefficient is

ν = −dg22/g22
dg11/g11

=
g11
g22

⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩ =

κ2
κ1

(C.5)

and matches, up to a sign, the out-of-plane Poisson’s coef-
ficient −κ2/κ1.

Appendix D. The Poisson’s ratios of the “Mars”

pattern

The “Mars” pattern is a developable flat-foldable zigzag
sum. Let us suppose that the pattern is equilateral so that
u = v = s = t. Now we have

⟨u, s⟩ = −⟨v, t⟩ = cosα, ⟨u, t⟩ = −⟨v, s⟩ = cosβ.
(D.1)
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We are at liberty to adopt a mountain-valley assignment
convention: we let creases s, t and v be mountains and let
crease u be a valley. Then, inspection of (A.3) reveals that
sw = −tw. This allows to greatly simplify (A.5) ultimately
into

g22 = 4− 4
(cosα+ cosβ)2

g11
. (D.2)

The Poisson’s coefficient is deduced by differentiation. It
reads

ν = −4
(cosα+ cosβ)2

g11g22
(D.3)

and is automatically equal to κ2/κ1.
Recall that g11 and g22 are bounded. In the maximally

unfolded state, cos(u,v) = − cos(α − β) so that, in any
case, g11 remains smaller than 2 + 2 cos(α− β). The other
bounds are similarly deduced and, overall, we have

4 cos2
(

α+ β

2

)

≤ g11 ≤ 4 cos2
(

α− β

2

)

,

4 sin2
(

α− β

2

)

≤ g22 ≤ 4 sin2
(

α+ β

2

)

.

(D.4)

Appendix E. “Mars”-folded hyperboloids

Consider an axisymmetric origami pillar folded out of an
equilateral “Mars” pattern with a parametrization x ∈ R

3

of the form

x = (ρ(ξ2) cos(qξ1), ρ(ξ2) sin(qξ1), z(ξ2)). (E.1)

We denote L1 and L2 the dimensions of the origami pattern
in its flat, maximally unfolded, reference state. We then
let ξ1 ∈ [−S1/2, S1/2] and ξ2 ∈ [−S2/2, S2/2] with

S1 =
L1

2 cos((α− β)/2)
, S2 =

L2

2 sin((α+ β)/2)
. (E.2)

The pillar is obtained by folding the pattern then glueing
together the ends ξ1 = 0 and ξ1 = S1. In other words, we
let q = 2π/S1.

With these notations, it straightforward to see that

x1 = (−qρ(ξ2) sin(qξ1), qρ(ξ2) cos(qξ1), 0),
x2 = (ρ′(ξ2) cos(qξ1), ρ

′(ξ2) sin(qξ1), z
′(ξ2)),

x11 = (−q2ρ(ξ2) cos(qξ1),−q2ρ(ξ2) sin(qξ1), 0),
x22 = (ρ′′(ξ2) cos(qξ1), ρ

′′(ξ2) sin(qξ1), z
′′(ξ2)),

(E.3)

with ρ′ ≡ dρ/dξ2, ρ
′′ ≡ dρ′/dξ2 and so on.

Then,

g11 = q2ρ2 and g22 = ρ′2 + z′2 (E.4)

depend on one another through the in-plane kinematical
constraint

ρ′2 + z′2 = 4− 4
(cosα+ cosβ)2

q2ρ2
. (E.5)

The out-of-plane constraint, i.e., x11 ∥ x22, immediately
yields

z′′ = 0. (E.6)

Together, these two ODEs can be integrated into

z′ = cst, ρ =

√

4c2(ξ2 − ξo)2 +
(cosα+ cosβ)2

q2c2
, (E.7)

with c2 = 1 − z′2/4. Hence, the origami pillar embraces
a hyperboloid. The pattern does not cover the whole
hyperboloid however and is limited to the band spanned
by ξ2 ∈ [−S2/2, S2/2]. Overall then, and up to rigid body
motions, the folded pillar has two degrees of freedom. The
first is c: it describes the shape of the hyperboloid; as it
goes from 1 to 0, the hyperboloid changes from a “yoyo”
into a cylinder. The second is ξo: it specifies how the band
of length L2 that the pattern covers is centered on or offset
away from the equator.
Not all values (c, ξo) are admissible however since can-

didate solutions must further satisfy the upper and lower
bounds weighing on the metric, namely (D.4). In the
present case, these read

4 cos2((α+ β)/2) ≤ q2ρ2 ≤ 4 cos2((α− β)/2). (E.8)

For a centered band (ξo = 0) in particular, these bounds
reduce to

4 cos2
(

α+ β

2

)

≤ (cosα+ cosβ)2

c2
,

c2q2S2
2 +

(cosα+ cosβ)2

c2
≤ 4 cos2

(

α− β

2

)

,

(E.9)

and place a maximum bound on the aspect ratio S2/S1 =
qS2/(2π) of origami pillars that can be formed. In the
main text, the angle ∠(u,v) at the equator is used rather
than c. These two are in a one-to-one correspondence

2− 2 cos(u,v) = g11 =
(cosα+ cosβ)2

c2
. (E.10)

Appendix F. Bending energy – General case

We have found that the admissible xµν satisfy five linear
constraints: three describe the proportionality of x11 and
x22, and two reduce to dg12 = 0. Thus, the admissible xµν

belong to a four-dimensional linear subspace of (R3)3 space.
Each dimension is spanned by a DOF that we attribute to
one planarity defect δ(ij), (i, j) ∈ {1, 1̄}2 such that

δx(11) = δ(11)u ∧ s,

δx(1̄1) = δ(1̄1)s ∧ v,

δx(1̄1̄) = δ(1̄1̄)v ∧ t,

δx(11̄) = δ(11̄)t ∧ u.

(F.1)

Here too, we began by defaulting the same displacements
as in (B.1) to zero. Next, we derive expressions for the δ(ij)

in function of the xµν .
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Generalizing equation (B.6), it is possible to derive full
expressions for the xµν in terms of the δ(ij). We find,

x11 =
⟨u, s ∧ v⟩
⟨t, s ∧ v⟩ δ

(11)v ∧ t+
⟨v,u ∧ s⟩
⟨t,u ∧ s⟩ δ

(1̄1)t ∧ u

+
⟨v, t ∧ u⟩
⟨s, t ∧ u⟩ δ

(1̄1̄)u ∧ s+
⟨u,v ∧ t⟩
⟨s,v ∧ t⟩ δ

(11̄)s ∧ v.

(F.2)

As for x12, it is readily available and reads

x12 = δ(11)u∧s−δ(1̄1)s∧v+δ(1̄1̄)v∧t−δ(11̄)t∧u. (F.3)

These two vector equations provide a system (with two
redundant equations), which can be solved for the δ(ij).
For instance, projecting x11 over u and x12 over v leads
to a 2× 2 system

⟨x11,u⟩ =
⟨u, s ∧ v⟩ ⟨u,v ∧ t⟩

⟨t, s ∧ v⟩ (δ(11) + δ(11̄)),

⟨x12,v⟩ = ⟨u, s ∧ v⟩ δ(11) − ⟨u,v ∧ t⟩ δ(11̄),
(F.4)

which can be solved for δ(11) and δ(11̄) to give

δ(11) =
⟨x11,u⟩ ⟨t, s ∧ v⟩+ ⟨x12,v⟩ ⟨u, s ∧ v⟩

⟨u, s ∧ v⟩ ⟨t− s,u ∧ v⟩ ,

δ(11̄) =
⟨x11,u⟩ ⟨t, s ∧ v⟩ − ⟨x12,v⟩ ⟨u,v ∧ t⟩

⟨u,v ∧ t⟩ ⟨t− s,u ∧ v⟩ .

(F.5)

Similar considerations lead to

⟨x11,v⟩ =
⟨v,u ∧ s⟩ ⟨v, t ∧ u⟩

⟨t,u ∧ s⟩ (δ(1̄1) + δ(1̄1̄)),

⟨x12,u⟩ = −⟨u, s ∧ v⟩ δ(1̄1) + ⟨u,v ∧ t⟩ δ(1̄1̄),
(F.6)

and to

δ(1̄1) =
⟨x11,v⟩ ⟨t,u ∧ s⟩ − ⟨x12,u⟩ ⟨v,u ∧ s⟩

⟨v,u ∧ s⟩ ⟨t− s,u ∧ v⟩ ,

δ(1̄1̄) =
⟨x11,v⟩ ⟨t,u ∧ s⟩+ ⟨x12,u⟩ ⟨v, t ∧ u⟩

⟨v, t ∧ u⟩ ⟨t− s,u ∧ v⟩ .

(F.7)

Most importantly, the planarity defects δ(ij) are linear
forms of the full, in- and out-of-plane, components of the
parametrization’s second derivatives.
Now each panel in the unit cell, contributes a term

g(ij)(r2δ(ij)), (i, j) ∈ {1, 1̄}2, to the bending energy den-
sity of the tessellation equal to the bending energy of the
relevant panel for a given planarity defect r2δ(ij). The
potential g(ij) can be nonlinear in principle, but given that
the planarity defects are of order O(r2), it is reasonable to
linearize it in the vicinity of r → 0, that is while assuming,
at the same time, that the plane is the natural state of the
panels. In conclusion, the bending energy density of the
tessellation takes the form

b =
∑

(i,j)∈{1,1̄}2

1

2
D(ij)(δ(ij))2 (F.8)

where the D(ij) are the panels flexural rigidities normal-
ized with respect to the area of a reference unit cell

and where the δ(ij) have been shown to be configuration-
dependent (i.e., (u,v, s, t)-dependent) linear forms of the
second derivatives xµν . Equivalently, bending energy den-
sity b = b(Γiµν ; gαβ) can be written as a metric-dependent
quadratic form of the Christoffel symbols and of the curva-
tures. This is done next in the particular case of the “Mars”
pattern.

Note that while we linearized b into a quadratic form in
the limit r → 0 (i.e., for infinitesimal panel bending), we
make no a priori assumptions regarding the macroscopic
curvatures (i.e., the xµν). These are free to take finite
values. Last, the flexural rigidities D(ij) are material con-
stants. Here, we suppose for simplicity that they are all
equal to D.

Appendix G. Bending energy – The “Mars” pat-

tern

Similar considerations to the ones that led to equa-
tion (A.3) show that the current configuration of the folds
(u,v, s, t) can be determined from the tangent vectors
(x1,x2). Indeed, we have, in the case of an equilateral
“Mars” pattern,

u =
1

2
x1 +

cosα− cosβ

g22
x2 − unn,

v = −1

2
x1 +

cosα− cosβ

g22
x2 − unn,

s =
cosα+ cosβ

g11
x1 +

1

2
x2,

t =
cosα+ cosβ

g11
x1 −

1

2
x2,

(G.1)

with

un =

√

1− g11
4

− (cosα− cosβ)2

g22
(G.2)

being a known function of the metric tensor. Thus, the
coefficients appearing in the expression of b can be written
in terms of the metric tensor as well

⟨s,u ∧ v⟩ = −⟨t,u ∧ v⟩ = un
√
g/2,

⟨u, s ∧ t⟩ = ⟨v, s ∧ t⟩ = −cosα+ cosβ

g11

√
gun,

(G.3)

with g = detg = g11g22. As for the remaining terms
involving the xµν , they can be expanded into combinations
of the Christoffel symbols Γσµν ≡ ⟨xµν ,xσ⟩ and of the
coefficients of the second fundamental form Γ3µν ≡ ⟨xµν ,n⟩.
Namely, we have

⟨x11,u⟩ =
1

2
Γ111 +

cosα− cosβ

g22
Γ211 − unΓ311,

⟨x11,v⟩ = −1

2
Γ111 +

cosα− cosβ

g22
Γ211 − unΓ311,

⟨x12,u⟩ =
1

2
Γ112 +

cosα− cosβ

g22
Γ212 − unΓ312,

⟨x12,v⟩ = −1

2
Γ112 +

cosα− cosβ

g22
Γ212 − unΓ312.

(G.4)
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Recall that, in the present case where the curvilinear
coordinates are rectangular, the Christoffel symbols read

Γ111 =
1

2
g11,1, Γ211 = −1

2
g11,2,

Γ112 =
1

2
g11,2, Γ212 =

1

2
g22,1,

Γ122 = −1

2
g22,1, Γ222 =

1

2
g22,2.

(G.5)

In conclusion, the total strain energy of a “Mars” pattern
is

ψ(x) =

∫

Ω

b(Γ;g)dξ1dξ2 (G.6)

where the bending strain energy density is

b(Γ;g) =
D

2

(

(δ(11))2 + (δ(1̄1))2 + (δ(11̄))2 + (δ(1̄1̄))2
)

(G.7)
with the planarity defects δ(ij) being the metric-dependent
linear forms given in (F.5) and (F.7). Therein, note how the
rigidity coefficients in front of the in-plane strain-gradient
are proportional to the term 1/un which diverges when g11
and g22 approach their maximum and minimum values, i.e.,
at the boundary of the domain of kinematical admissibility.
Meanwhile, the rigidity coefficients weighing the curvatures
remain bounded.
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