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ABSTRACT

Today’s scientific simulations require a significant reduction of data

volume because of extremely large amounts of data they produce

and the limited I/O bandwidth and storage space. Error-bounded

lossy compression has been considered one of the most effective

solutions to the above problem. However, little work has been done

to improve error-bounded lossy compression for Adaptive Mesh

Refinement (AMR) simulation data. Unlike the previous work that

only leverages 1D compression, in this work, we propose to lever-

age high-dimensional (e.g., 3D) compression for each refinement

level of AMR data. To remove the data redundancy across different

levels, we propose three pre-process strategies and adaptively use

them based on the data characteristics. Experiments on seven AMR

datasets from a real-world large-scale AMR simulation demonstrate

that our proposed approach can improve the compression ratio by

up to 3.3× under the same data distortion, compared to the state-

of-the-art method. In addition, we leverage the flexibility of our

approach to tune the error bound for each level, which achieves

much lower data distortion on two application-specific metrics.
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1 INTRODUCTION

Motivation. The increase in supercomputer performance over

the last few years has been insufficient to solve many challenging

modeling and simulation problems. For example, the complexity of

solving evolutionary partial differential equations (PDEs) scales as

Ω(𝑛4), where 𝑛 is the number of mesh points per dimension. Thus,

the performance improvement of about three orders of magnitudes

over the past 30 years has meant just a 5.6× gain in spatio-temporal

resolution [8]. To address this issue, many high-performance com-

puting (HPC) simulation packages [15] (such as AMReX [41] and

Athena++ [33]) use Adaptive Mesh Refinement (AMR)—which ap-

plies computation to selective regions of most interest—to increase

resolution. Compared to the method where a high resolution is

applied everywhere, the AMR method can greatly reduce the com-

putational complexity and storage overhead; thus, it is one of most

widely used frameworks for many HPC applications [2, 31, 34, 38]

in various science and engineering domains.

Although AMR can save storage space to some extent, AMR ap-

plications running on supercomputers still generate large amounts

of data, making the data transmission and storage challenging. For

example, one Nyx simulation [30] with a resolution of 4096
3
(i.e.,

0.5 × 20483 mesh points in the coarse level and 0.5 × 40963 in the

fine level ) can generate up to 1.8 TB of data for a single snap-

shot; a total of 1.8 PB of disk storage is needed assuming running

the simulation 5 times with 200 snapshots dumped per simulation.

Therefore, reducing data size is necessary to lower the storage over-

head and I/O cost and improve the overall application performance

for large-scale AMR applications running on supercomputers.

A straightforward way to address this issue is to use data com-

pression. However, traditional lossless compression techniques such

as GZIP [12] and Zstandard [44] can only provide a compression

ratio up to 2 for scientific data [32]. On the other hand, a new gener-

ation of lossy compressors which can provide a strict error control

(called “error-bounded” lossy compression) has been developed,

such as SZ [14, 24, 35], ZFP [27], MGARD [1], and TTHRESH [6].

Using those error-bounded lossy compressors, scientists can achieve

relatively high compression ratios while minimizing the quality

loss of reconstructed data and post analysis, as demonstrated in

many prior studies [4, 5, 9, 17, 18, 21, 28, 40].

Limitation of state-of-the-art approach. Only a few existing con-

tributions have investigated error-bounded lossy compression for

AMR applications and datasets. A common approach is to generate

uniform resolution data by up-sampling the coarse-level data and
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merging them with the finest-level data, and then to perform com-

pression on the merged data. However, this approach introduces

redundant information to the data, which will significantly degrade

the compression ratio, especially when the up-sampling rate is high

or there are multiple coarse levels to up-sample. Recently, Luo et al.
introduced zMesh [29], a technique that groups data points that

are mapped to the same or adjacent geometric coordinates such

that the dataset is smoother and more compressible. However, since

zMesh maps data points from different AMR levels to adjacent geo-

metric coordinates and generates a 1D array, it cannot adopt 3D

compression which most HPC simulations use. Moreover, zMesh is

designed only for patch-based AMR applications. The patch-based

AMR structure saves the data blocks that will be refined at the next

level in the current level redundantly. While the state-of-the-art

AMR framework AMReX provides quadtree/octree-based structure

besides patch-based structure [3], many newly developed AMR

applications such as Nyx adopt the tree-based structure to avoid

redundancy by only saving each data point in the level of its finest

refinement. For this scenario, the reorganization approach proposed

by zMesh may not improve the data smoothness appropriately (will

be demonstrated in Section 4).

Key contributions. To solve these issues, we propose an approach

(called TAC) to optimize error-bounded Three-dimensional AMR

lossy Compression. Specifically, we propose to adopt 3D compres-

sion for each AMR level. However, each level may contain many

empty regions (i.e., zero blocks), where data points are saved in

other levels; these empty regions (zero blocks) significantly decrease

the data smoothness/compressibility and increase the data size

(hence reduce the compression ratio). Thus, we propose to either

remove these empty regions or partially pad them with appropriate

values, based on the density of empty regions. Furthermore, we

propose an optimization to reduce the time cost of removing empty

regions. Finally, we evaluate TAC on seven datasets and compare

it with the state-of-the-art approach. Our main contributions are

summarized as follows.

• We propose to leverage 3D compression to compress each

level of an AMR dataset separately. We propose a hybrid

compression approach based on the following three pre-

process strategies and data characteristics (e.g., data density).

• For sparse AMR data, we propose an optimized sparse tensor

representation to efficiently remove empty regions.

• To reduce the time overhead of removing empty regions, we

propose an optimization based on the enhanced 𝑘-d tree.

• For dense AMR data, we propose a padding approach to

improve the smoothness and compressibility.

• We tune the error bound for each AMR level for Nyx cos-

mology simulation, which improves the compression quality

in terms of two application-specific post-analysis metrics.

• Experiments show that, compared to the state-of-the-art

approach zMesh, TAC can improve the compression ratio

by up to 3.3× under the same data distortion on the tested

real-world datasets.

Experimental methodology and artifact availability. We evaluate

TAC on seven datasets from two real-world AMR simulation runs.

The AMR simulations are well-known, open-source cosmology

simulations—Nyx [30]. We compare TAC with three baselines in-

cluding zMesh using generic metrics such as compression ratio and

peak signal-to-noise ratio (PSNR) and application-specific metrics

such as power spectrum and halo finder. Our code and datasets are

available at https://github.com/hipdac-lab/3dAMRcomp.

Limitations of the proposed approach. Compared with the ap-

proach that up-samples the coarse-level data and then compresses

the data with uniform resolution (denoted by “3D baseline”), TAC

providesmuch better compression performance (i.e., rate-distortion),

when the finest level of the AMR dataset has a relatively low density.

However, when the finest level has a relatively high density, TAC is

slightly worse than the 3D baseline. We will discuss this limitation

in detail in Section 4.3.

In Section 2, we present background information about error-

bounded lossy compression, AMR method, 𝑘-d tree, and related

work on AMR data compression. In Section 3, we describe our pro-

posed pre-process strategies and hybrid compression. In Section 4,

we show the experimental results on different AMR datasets. In

Section 5, we conclude our work and discuss the future work.

2 BACKGROUND AND RELATED WORK

In this section, we introduce background information about lossy

compression for scientific data, AMR method and data, classic 𝑘-d

tree used in particle data compression, and discuss the state-of-the-

art method of AMR data compression and remaining challenges.

2.1 Lossy Compression for Scientific Data

There are two main categories for data compression: lossless and

lossy compression. Compared to lossless compression, lossy com-

pression can offer much higher compression ratio by trading a little

bit of accuracy. There are some well-developed lossy compressors

for images and videos such as JPEG [36] and MPEG [23], but they

do not have a good performance on the scientific data because they

are mainly designed for integers rather than floating points.

In recent years there is a new generation of lossy compressors

that are designed for scientific data, such as SZ [14, 24, 35], ZFP [27],

MGARD [1], and TTHRESH [6]. These lossy compressors provide

parameters that allow users to finely control the information loss

introduced by lossy compression. Unlike traditional lossy compres-

sors such as JPEG [36] for images (in integers), SZ, ZFP, MGARD,

and TTHRESH are designed to compress floating-point data and

can provide a strict error-controlling scheme based on the user’s

requirements. Generally, lossy compressors provide multiple com-

pression modes, such as error-bounding mode and fixed-rate mode.

Error-bounding mode requires users to set an error type, such as

the point-wise absolute error bound and point-wise relative error

bound, and an error bound level (e.g., 10
−3
). The compressor ensures

that the differences between the original data and the reconstructed

data do not exceed the user-set error bound level.

In this work, we focus on the SZ lossy compression (2021 R&D

100 Award Winner [39]) because SZ typically provides higher com-

pression ratio than ZFP [28, 42] and higher (de)compression speeds

than MGARD [26, 42] and TTHRESH [6]. SZ is a prediction-based

error-bounded lossy compressor for scientific data. It has threemain

steps: (1) predict each data point’s value based on its neighboring

points by using an adaptive, best-fit prediction method; (2) quantize
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Figure 1: Visualization (one zoom-in 2D slice) of three key timesteps

generated from anAMR-based cosmology simulation. The grid struc-

ture changes with the universe’s evolution. The red boxes indicate

different resolutions within one AMR level.

the difference between the real value and predicted value based

on the user-set error bound; and (3) apply a customized Huffman

coding and lossless compression to achieve a higher ratio.

2.2 AMR Method and AMR data

AMR is a method of adapting the accuracy of a solution (e.g., solving

hydrodynamics equations) by using a non-uniform grid to increase

computational and storage savings while still achieving the desired

accuracy. AMR applications change the mesh or spatial resolution

based on the level of refinement needed by the simulation and use

finer mesh in the regions with more importance/interest and coarser
mesh in the regions with less importance/interest. Figure 1 shows

that during an AMR run, the mesh will be refined when the value

meets the refinement criteria, e.g., refining a block when its norm

of the gradients or maximum value is larger than a threshold [20].

Figure 2: A typical example of AMR data storage and usage.

Clearly, the data generated by an AMR application are hierarchi-

cal data with different resolutions. The data of each AMR level are

usually stored separately (e.g., in a 1D array). For example, Figure 2

(left) shows a simple example of two-level AMR data; “0” means

high resolution (the fine level) and “1” for low resolution (the coarse

level). When the AMR data are needed for post analysis or visual-

ization, users will typically covert the data from different levels to

a uniform resolution. In the previous example, we will up-sample

the data in the coarse level and combine it with the data in the fine

level, as shown in Figure 2 (right).

2.3 Existing AMR Data Compression

2.3.1 1D AMR Compression. The main challenge for AMR data

compression is that the AMR data is comprehensive and hierar-

chical with different resolutions. A naive approach is to compress

the 1D data of each AMR level separately. However, this approach

loses most of the topological/spatial information, which is criti-

cal for data compression. zMesh [29] is a state-of-the-art AMR

data compression based on the 1D approach. Different from the

naive 1D approach, zMesh re-organizes the 1D data based on each

point’s coordinate in the 2D layout; in other words, zMesh puts

the points neighbored in the 2D layout closer in the 1D array. It

can increase the data smoothness/compressibility to benefit the

following 1D compression such as SZ on the traditional patch-

based [37] AMR data with redundancy. However, zMesh does not

leverage high-dimensional compression, while many previous stud-

ies [35, 43] proved that leveraging more dimensional information

(e.g., spatial/temporal information) can significantly improve the

compression performance (e.g., compression ratio). Moreover, it

only focuses on 2D patch-based AMR data. TAC aims to leverage

high-dimensional data compression and supports 3D AMR data.

2.3.2 High-dimensional AMR Compression. Similar to the idea de-

scribed in Section 2.2, a straightforward way to leverage 3D com-

pression on 3D AMR data is to compress different levels together by

up-sampling coarse levels. However, this approach must handle ex-

tra redundant data generated by the up-sampling process. As shown

in Figure 2, 1A, 1B, and 1C are redundant points in the compression.

Note that the storage overhead of these redundant points will be

higher when more data are in the coarse levels or up-sampling rate

is higher, especially for 3D AMR data. This is because we only need

to duplicate one point from the coarse level for 4 times for 2D AMR

data but 8 times for 3D AMR data, with an up-sampling rate of 2.

Another limitation of this approach is that it cannot apply different

compression configurations (e.g., error bound) to different AMR

levels, because after up-sampling all data points will have the same

importance. However, the purpose of using the AMR method is to

set different interests to different AMR levels, so the error bound

for each AMR level can be chosen adaptively based on the analysis.

2.4 𝑘-D Tree for Particle Data Compression

𝑘-d tree [7] is a binary tree in which every node represents a certain

space. Without loss of generality, for the 3D case, every non-leaf

node in a 𝑘-d tree splits the space into two parts by a 2D plane

associated with one of the three dimensions. The left subspace is

associated with the left child of the node, while the right subspace

is associated with the right child. 𝑘-d tree is commonly used in

particle data compression [10, 13, 19] to locate each particle and

remove empty regions. Specifically, a 𝑘-d tree keeps dividing the

space in between along one dimension until the space is empty or

contains only one particle. We will propose to optimize the classic

k-d tree and use it to remove empty regions and increase the data

compressibility for each AMR level (to be detailed in Section 3.2).

3 OUR PROPOSED DESIGN

In this section, we propose a pre-process approach for AMR data

to leverage high-dimensional data compression algorithms in each

AMR level. Specifically, we propose three pre-process strategies to

OpST

AKDTree

GSP

Processed 
AMR Data SZDensifty 

filter

Level_2
Level_1
Level_0

AMR data TAC

Figure 3: Workflow overview of our proposed TAC.



(a) z10 fine level (b) z10 coarse level

Figure 4: Visualization of data distributions of an example AMR data

“z10”, where z = redshift. Non-empty regions are shown in red.

mitigate the issue of irregular data distribution. We also propose an

adaptive approach to select the best-fit pre-process strategy based

on the data characteristic (e.g., density) of each AMR level. Figure 3

show the overview of our proposed TAC. It has a density filter that

determines the best-fit pre-process strategy for each AMR level in

the AMR dataset before compression. We will now illustrate our

proposed three strategies in Section 3.1, 3.2, and 3.3, respectively.

3.1 Optimized Sparse Tensor Representation for

Low-density Data

To compress the AMR data in 3D, besides the aforementioned 3D

baseline, we can also compress each level separately in 3d. However,

in that way, the data will be split into multiple levels, and each level

will have many empty regions and an irregular data distribution, as

shown in Figure 4. A naive solution to handle the irregular 3D data

is to fill the empty regions with zeros and pass a large 3D block to

the compressor. However, when most of the regions in the data are

empty (e.g., about 77% of the data is empty in Figure 4a), we have

to fill up many zeros, which would greatly increase the size of data

for compression, resulting in a low compression ratio.

To solve this issue, we propose to use a naive sparse-tensor-based

approach (called NaST) to remove the empty regions, as shown

in Figure 5. NaST includes four main steps in the compression

process: (1) partition the 3D data into multiple unit blocks, (2)

remove the empty blocks, (3) linearize the remaining 3D blocks into

a 4D array, and (4) pass the 4D array to the compressor. Note that

in the decompression process, we will put the unit blocks from the

decompressed 4D array back to the original data.

Figure 5: Workflow of the naive sparse tensor (NaST) method (empty

regions marked in pink and non-empty regions marked in blue).

However, in order to completely remove the empty regions to

form a sparse representation, the unit block size needs to be rel-

atively small compared to the input data size (e.g., 16
3
vs. 512

3
),

Figure 6: A 2D example of our proposed OpST approach. The sub-

blocks are extracted according to our optimized sizes saved in 𝐵𝑆 .

E.g., a 2-by-2 sub-block 𝐵0 is extracted according to 𝐵𝑆1 [2] [1].

resulting in a high proportion of data on the boundary. While

boundary data have less information of neighboring data than non-

boundary data, thus, it is harder for prediction-based compressors

such as SZ to predict the boundary data values. As a result, the

NaST method without optimizing the boundary data would have

low compression performance.

To address the above problem, we propose an optimized sparse

tensor representation (calledOpST) to effectively remove the empty

regions as well as maintain a relatively large unit block size so as

to reduce the portion of boundary data. The detailed description of

our algorithm can be found in Algorithm 1. We use a 2D example

to demonstrate our approach, as illustrated in Figure 6. Specifically,

(1) we partition the data into many small unit blocks. (2) For each

unit block, we use the dynamic programming method to initiate an

array 𝐵𝑆 to save the dimension/size of the maximum square whose

bottom-right corner is that unit block (line 6, will be discussed

in the next paragraph). (3) We extract the sub-blocks (composing

of multiple unit blocks) from the original data according to the

sizes saved in 𝐵𝑆 (lines 6 and 7). (4) Since the original data will be

changed after the extraction, we need to partially update 𝐵𝑆 based

on maxSide (will be discussed later). We loop (3) and (4) from the

bottom-right corner to the top-left corner until the original data

is empty. (5) After extracting all the sub-blocks, we put them into

multiple 3D arrays (to be compressed) based on their sizes. Note

that the sub-blocks with the same size will be merged into the same

array for easy compression.

When initializing the 𝐵𝑆 in the step (2), we start with the𝑏 ′[𝑖] [ 𝑗]
with 𝑖 = 0 or 𝑗 = 0 (i.e., on the top-left edge), where 𝑏 ′[·] [·]
are the unit blocks: if 𝑏 ′[𝑖] [ 𝑗] is empty, we will set 𝐵𝑆 [𝑖] [ 𝑗] to 0

otherwise 1. For the remaining unit blocks, if it is empty, 𝐵𝑆 [𝑖] [ 𝑗]
will be 0; otherwise, 𝐵𝑆 [𝑖] [ 𝑗] will be set to 1 plus the minimum

value among its three neighboring blocks (i.e., upper block, left

block, and upper-left block). In other words, we have 𝐵𝑆 [𝑖] [ 𝑗] =
1+min(𝐵𝑆 [𝑖] [ 𝑗 − 1], 𝐵𝑆 [𝑖 − 1] [ 𝑗], 𝐵𝑆 [𝑖 − 1] [ 𝑗 − 1]) for the 2D case.

For example, 𝐵𝑆1 [2] [1] is 2 because all its upper-left neighbors are
1 (as shown in Figure 6). However, both 𝐵𝑆1 [1] [1] and 𝐵𝑆2 [1] [2]
can only reach 1 because one of their neighbors are set to 0, having

no chance to form a sub-block with the size of 2.

Moreover, as mentioned in the step (3), we need to update 𝐵𝑆

after each extraction. Specifically, for each sub-block we extract,

we have to set its corresponding values in 𝐵𝑆 to zeros. For instance,

as shown in Figure 6, after we extract a 2-by-2 sub-block 𝐵0 at

𝐵𝑆1 [2] [1], we need to set 𝐵𝑆2 [1] [0], 𝐵𝑆2 [1] [1], 𝐵𝑆2 [2] [0], and
𝐵𝑆2 [2] [1] to zeros. In addition, we also need to recalculate a part of



Algorithm 1: Proposed Optimized Sparse Tensor Method

Input: Sparse 3D data S

Output: multiple 4D array 𝐷𝑛

1 for each unit block 𝑏 (𝑥,𝑦, 𝑧) do
2 if 𝑏 (𝑥,𝑦, 𝑧) is non-empty then

3 if x is 0 or y is 0 or z is 0 then
4 𝐵𝑆 (𝑥,𝑦, 𝑧) = 1

5 else

6 𝐵𝑆 (𝑥,𝑦, 𝑧) = min(𝐵𝑆 (𝑥 − 1, 𝑦, 𝑧), 𝐵𝑆 (𝑥,𝑦 −
1, 𝑧), 𝐵𝑆 (𝑥,𝑦, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦−1, 𝑧), 𝐵𝑆 (𝑥,𝑦−
1, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦−1, 𝑧−1))+1
; /* BS(x,y,z) is the dimension size of the

maximum cube whose bottom right rear corner is

the unit block with index (x,y,z) in the

original data */

7 𝑚𝑎𝑥𝑆𝑖𝑑𝑒 = max(𝑚𝑎𝑥𝑆𝑖𝑑𝑒, 𝐵𝑆 (𝑥,𝑦, 𝑧))
8 end

9 end

10 end

11 for each unit block 𝑏 (𝑥,𝑦, 𝑧) do
12 if 𝐵𝑆 (𝑥,𝑦, 𝑧) ≥ 1 then

13 𝑠𝑖𝑧𝑒 = 𝐵𝑆 (𝑥,𝑦, 𝑧)
𝐷𝑠𝑖𝑧𝑒 ← 𝑆 ((𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒, (𝑦 − 𝑠𝑖𝑧𝑒 :
𝑦) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒, (𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒) ; /* put the

sub-block to the according 4D array */

14 𝑏 (𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥, 𝑦 − 𝑠𝑖𝑧𝑒 : 𝑦, 𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) ← 𝑒𝑚𝑝𝑡𝑦

𝐵𝑆 (𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥, 𝑦 − 𝑠𝑖𝑧𝑒 : 𝑦, 𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) = 0

𝐵𝑆 = 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑠 (𝐵𝑆, 𝑥, 𝑦, 𝑧, 𝑚𝑎𝑥𝑆𝑖𝑑𝑒)
15 end

16 end

17 return 𝐷𝑛

𝐵𝑆 (line 17 in Algorithm 1) because the extraction could influence

other 𝐵𝑆 values. For example, we need to recalculate 𝐵𝑆2 [1] [2]
(marked in bold orange) after extracting 𝐵0. Note that this update

is a partial update as the 𝐵𝑆 values to be updated will be bounded

by maxSide which is the dimension size of the largest cube in the

dataset (line 7).

Similar to the NaST method, during decompression we will put

the sub-blocks back to reconstruct the data based on the saved

coordinates. Note that after our optimization, each sub-block size

will be relatively large (e.g., 96
3
versus the original data size of

512
3
), the metadata overhead of saving the coordinates of all the

sub-blocks will be negligible (e.g., 0.1%).

Finally, we show a visual comparison of the compression quality

between NaST and OpST in Figure 7. Note that both use the same

compressor with the same error bound. Brighter means more error.

We can observe that compared to the NaST method, OpST can

significantly reduce the overall compression error, especially for

the data points on the boundary. It is worth noting that even with

lower error, our OpST can still provide a higher compression ratio

than NaST. This is because our proposed optimization will generate

larger sub-blocks, which provide more information for prediction-

based lossy compressors such as SZ to achieve better rate-distortion.

A detailed evaluation will be shown in Section 4.

(a) NaST (CR = 233.8, PSNR = 76.9 dB) (b) OpST (CR = 241.1, PSNR = 77.8 dB)

Figure 7: Visual comparison (one slice) of compression errors of two

approaches using SZ based on Nyx “baryon density” field (i.e., z10’s

fine level, 23% density). Brighter means higher compression error.

The error bound is the relative error bound of 4.8 × 10−4.

3.2 Adaptive 𝑘-D Tree for Medium-density Data

The OpST approach proposed for low-density data, however, has a

high computation overhead, especially when the data is relatively

dense. This is because, on one hand, OpST needs to update BS based
on maxSide for each extraction of a sub-block, while the larger the

maxSide, the more values in BS that need to be updated; on the

other hand, maxSide is the dimension size of the largest non-empty

cube in the dataset, which is highly related to the density of the

dataset. Thus, the time complexity of OpST can be expressed as

𝑂 (𝑁 2 · 𝑑), where 𝑁 is the unit block number and 𝑑 is the density.

Note that here density describes how dense the data is. For example,

the density of 77% means that 23% of the data is empty. Clearly,

when the density of an AMR level is relatively high, using OpST

for compression will be relatively time-consuming.

To address the above high overhead issue of OpST, we propose

an adaptive 𝑘-d tree, calledAKDTree, to remove empty regions and

extract sub-blocks (containing multiple unit blocks). AKDTree has

a lower time complexity of 𝑂 ( 1
3
𝑁 · log𝑁 ) (will be discussed later).

Figure 8 shows a simple 2D example. Specifically, (1) we partition

the data into small unit blocks. (2) We use a tree to hierarchically

represent the whole data. Each node in the tree is associated with

a sub-block of the data. Moreover, each node stores the number

of non-empty unit blocks in the sub-block associated with the

node. (3) For each node, we split its associated sub-block from the

middle along one dimension to form two sub-blocks for its two

children. Note that we select one dimension which can maximize

the difference of the numbers of non-empty unit blocks of the two

children (will be discussed in the next two paragraphs). (4) We keep

splitting a node until it has no empty unit block or itself is empty.

(5) Once finishing the construction of the tree, we collect all the leaf

nodes and send them to the compressor. Note that a non-empty leaf

node does not have any empty unit block; otherwise, it will keep



Figure 8: 2d Example of adaptive k-d tree, the sub-block will be

adaptively split to in order to effectively remove the empty region

as well as get bigger full sub-block.

splitting. Thus, a leaf node must be an empty or full node, as shown

in Figure 8. The detailed algorithm is described in Algorithm 2.

As mentioned in the step (3), we are distributing the non-empty

unit blocks unevenly to two children for each node because we

attempt to get as many leaf nodes with large sub-block sizes as

possible. If we keep splitting sub-blocks in a fixed way, for instance,

first split along the 𝑥-axis, second split along the 𝑦-axis, third split

along the 𝑥-axis, fourth split along the 𝑦-axis, and so on, we will

Algorithm 2: Dynamic 𝑘-D Tree

Input: data block 𝑑 , counts information

Output: 𝑘-d tree

1 node.count← counts information;

2 if 𝑑 is empty or 𝑑 is full then
3 continue ; /* stop splitting */

4 else

5 if 𝑑 is a cube then
6 split d equally into 8 oct-blocks: 𝑠1, · · · , 𝑠8;
7 get the counts 𝑐1, ...𝑐8 for 𝑠1, · · · , 𝑠8;
8 find the maxDiff partition 𝑑1,𝑑2;

9 node.left = AKDTree (𝑑1, four 𝑐𝑖 of 𝑑1);

10 node.right = AKDTree (𝑑2, four 𝑐𝑖 of 𝑑2);

11 else if 𝑑 is a flat cuboid then

12 get the counts 𝑐1, · · · , 𝑐4 from counts information;

13 find the maxDiff partition 𝑑1, 𝑑2;

14 node.left = AKDTree (𝑑1, two 𝑐𝑖 of 𝑑1);

15 node.right = AKDTree (𝑑2, two 𝑐𝑖 of 𝑑2);

16 else if 𝑑 is a slim cuboid then

17 get the counts 𝑐1, 𝑐2 from counts information;

18 split 𝑑 along the largest dimension to get 𝑑1,𝑑2;

19 node.left = AKDTree (𝑑1, 𝑐1);

20 node.right = AKDTree (𝑑2, 𝑐2);

21 end

22 return node;

Figure 9: Example of the adaptive splitting, different shapes will

have different number of choices for splitting. The process will be

looped until a node is empty or full.

get a 2-by-2 sub-block for the node 𝑛[2] [2] as shown in the dashed

box, while its largest possible sub-block could be 4 by 2.

To select one of the dimensions to unevenly distribute its non-

empty unit blocks to the two children. We now present our dynamic

splitting approach. We categorize nodes into three different types:

“cube” nodes, “flat” nodes, and “slim” nodes, whose dimension ratios

are 1:1:1, 2:2:1, 2:1:1, respectively. First of all, for the cube node 𝑑 ,

we first divide it into eight oct-blocks, i.e., 𝑠1, 𝑠2, · · · , 𝑠8 (as shown
in Figure 9), each sized

𝑛
2

3
. Here 𝑛 is the dimension size of the

original data. Then, we can get the counts of non-empty unit blocks

of the eight oct-blocks, i.e., 𝑐1, 𝑐2, · · · , 𝑐8. After that, We will decide

along which dimension to split the cube node 𝑑 based on the counts.

Specifically, we can calculate the following three difference values:

diff𝑥 = |𝑐1 + 𝑐3 + 𝑐5 + 𝑐7 − 𝑐2 − 𝑐4 − 𝑐6 − 𝑐8 |,
diff𝑦 = |𝑐1 + 𝑐2 + 𝑐5 + 𝑐6 − 𝑐3 − 𝑐4 − 𝑐7 − 𝑐8 |,
diff𝑧 = |𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 − 𝑐5 − 𝑐6 − 𝑐7 − 𝑐8 |.

Finally, we compare these three values and choose the dimension

with the maximum difference to split. For example, if the maximum

difference is diff𝑧 , we will split 𝑑 along z-axis (i.e., the pink 2D plane

shown in Figure 9) and get two flat nodes 𝑑1 and 𝑑2.

Then, for the flat nodes such as 𝑑1, we can reuse 𝑐1, · · · , 𝑐4 to
decide whether to split 𝑑1 along x-axis or y-axis by choosing the

larger one among the following two difference values.

diff𝑥 = |𝑐1 + 𝑐3 − 𝑐2 − 𝑐4 |, diff𝑦 = |𝑐1 + 𝑐2 − 𝑐3 − 𝑐4 |.

Finally, for the slim nodes such as𝑑11, we simply split it along x-axis

to get two cube nodes 𝑠1 and 𝑠2. This process (i.e., cube nodes→flat

nodes→slim nodes) in the step (3) will be looped until the node

becomes to a leaf node (i.e., empty or full).

Note that based on the above description, the counting process is

required every three nodes in each three path (i.e., only for the “cube”

nodes). Thanks to this dynamic splitting approach, we can lower

the time complexity of the AKDTree algorithm to 𝑂
(
1

3
· 𝑁 · log𝑁

)
,

where 𝑁 is the number of unit blocks, while extracting as many

relatively large sub-blocks without empty unit block as possible.

In addition, after the dynamic splitting, we will have a series of

sub-blocks with the same size but different directions (e.g., 2:2:1,

2:1:2, 1:2:2). We will align the sub-blocks with the same size based

on their splitting dimensions (instead of transposing them in the

memory), merge them into an array, and feed multiple merged

arrays to the following compression.



Figure 10: A 2D example of GSP approach. Non-empty blocks are in

navy blue; padded blocks are in light blue/red; padded blocks based

on more than one non-empty neighbors are in red.

3.3 Ghost-Shell Padding for High-density Data

For high-density data such as z10’s coarse level shown in Figure 4b

(i.e., about 77% density), the benefit of using our proposed OpST or

AKDTree is minimal because there is not much room for removing

empty regions. Meanwhile, due to the data partition/reorganization,

OpST and AKDTree will hurt the data locality/smoothness.

To this end, we propose to pad zeros into the few empty regions,

instead of removing them, followed by compression. However, these

padded zeros can greatly reduce the performance of compression,

especially for prediction-based lossy compression such as SZ, be-

cause these zeros can significantly affect the prediction accuracy

of SZ, resulting in high compression errors on the boundaries, as

shown in Figure 12a. More specifically, as mentioned in Section 3.1,

SZ uses each point’s neighboring points’ values to predict its value.

Thus, for those boundary points which are adjacent to padded zeros,

SZ will involve zero(s) into the prediction, while the actual values

of these empty regions are typically non-zeros (saved in other AMR

levels), which will seriously mislead the prediction.

To eliminate the above issue of padding zeroes, we propose to

use a ghost-shell padding strategy (GSP) to diffuse neighboring

values to a padding layer. Figure 10 illustrates the high-level idea,

and the detailed algorithm is described in Algorithm 3. Specifically,

we still partition the data into unit blocks. Then, we will pad each

empty unit block by using the average of its non-empty neighbors’

boundary data values. Note that some empty unit blocks can have

more than one non-empty neighbors such as the red box shown

in Figure 10. For these blocks, we will use the average value of

all its neighbors for padding. Correspondingly, we will remove

these padded values during the decompression based on the saved

padding information. Note that since the padding process is only

for non-empty blocks, this metadata overhead is almost negligible

for high-density data (e.g., 0.1%).

After padding, each boundary point will be predicted using the

average of all the boundary data in the unit block(s) to which it

belongs or is neighbored. As shown in Figure 12, compared to the

zero filling (ZF) approach, GSP can significantly reduce the overall

compression error, especially for the boundary data. Moreover,

the GSP approach can provide a similar compression ratio to the

ZF approach on this high-density data and hence a better rate-

distortion. A detailed evaluation will be presented in Section 4.

3.4 Hybrid Compression Strategy

In this section, we propose a solution to adaptively choose a best-fit

compression strategy from on our proposed OpST, AKDTree, and
GSP based on the data characteristics (i.e., data density). According

to Section 3.1, 3.2, and 3.3, the OpST approach is more suitable

Algorithm 3: Proposed Ghost Shell Padding Method

Input: Data, 𝑥 , 𝑦

Output: Data after padding

1 for each unit block 𝑏𝑖 do
2 if 𝑏𝑖 is empty and 𝑏𝑖 has non-empty neighbor then
3 for each non-empty neighbor 𝑛 𝑗 do
4 pad slice = avg (first 𝑦 slices of 𝑛 𝑗 next to 𝑏𝑖 );

5 if overlap edge then
6 𝑝𝑎𝑑 = 𝑝𝑎𝑑/2;
7 else if overlap corner then
8 𝑝𝑎𝑑 = 𝑝𝑎𝑑/3;
9 else

10 continue;

11 end

12 add an 𝑥-layers pad slice to 𝑏𝑖 next to 𝑛 𝑗 ;

13 end

14 end

15 end

16 return padded Data

for sparse (i.e., low-density) data, while the AKDTree approach

is designed to address the high time overhead of OpST when the

density of data increases. When the data density is very high, the

GSP approach will be used to maintain the data smoothness/locality

compared to the AKDTree and OpST approaches. Therefore, we

propose to use two data-density thresholds to determine when to

use OpST, AKDTree, or GSP.

To decide the first threshold 𝑇1 for switching between OpST

and AKDTree, we perform a series of experiments, as shown in

Figure 11. The figure shows that OpST and AKDTree have almost

identical compression performance in terms of bit-rate and PSNR

on all six datasets/levels (from different timesteps) with different

densities. Moreover, Figure 13 shows the time costs of OpST and

AKDTree (excluding compression). The figure demonstrates that

the time of AKDTree is relatively stable, while the time of OpST

increases linearly with the increase of data density. Overall, the only

criterion for selecting OpST or AKDTree is the time cost rather than

the compression performance. This is consistent with our previous

design aim, that is, AKDTree is mainly designed to address the

high time overhead issue of OpST. Since OpST and AKDTree have

a similar speed when the density is around 50%, we propose to

choose 𝑇1 = 50 for choosing OpST or AKDTree.

Next, to determine the threshold𝑇2 for switching betweenAKDTree

and GSP, we also evaluate them on different datasets with different

densities. As shown in Figure 11, when the density is relatively

low, AKDTree outperforms GSP with respect to both bit-rate and

PSNR; when the density gets higher and higher, GSP gradually

outperforms AKDTree. We can also observe that AKDTree and GSP

have similar compression performance when the density is around

60%. Thus, we use 𝑇2 = 60% for choosing AKDTree or GSP.

In summary, our proposed hybrid compression approach is de-

scribed as follows.

(1) When the density is smaller than𝑇1 = 50%, we will use OpST

to remove empty regions and then perform the compression;



(a) Z10 (d = 23) (b) z5 (d = 58) (c) z2 (d = 63)

(d) Z3 (d = 64) (e) d = 99.8 (f) d = 99.9

Figure 11: Compression performance comparison of GSP, OpST and AKDTree on six datasets with different densities.

(a) ZF (CR = 156.7, PSNR = 32.8 dB) (b) GSP (CR = 161.3, PSNR = 33.5 dB)

Figure 12: Visual comparison (one slice) of compression errors of

two approaches using SZ based on Nyx “baryon density” field (i.e.,

z10’s coarse level, 77% density). Brighter means higher compression

error. The error bound is the relative error bound of 6.7 × 10−3.

(2) When the density is between𝑇1 = 50% and𝑇1 = 60%, we will

use AKDTree to remove empty regions and then compress;

(3) When the density is larger 𝑇1 = 60%, we will use GSP to pad

appropriate values and then compress the padded data.

4 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup and evalua-

tion metrics. We then demonstrate and discuss the effectiveness of

TAC in terms of both compression ratio and data quality. After that,

we show the benefit of using adaptive error bound in TAC regarding

Figure 13: Time overhead comparison of OpST and AKDTree on

different datasets with different densities.

post-analysis quality. Finally, we show that TAC has comparable

throughput compared to comparison baselines.

4.1 Experimental Setup

Test data. Our evaluation mainly focuses on the AMReX frame-

work [41], particularly the Nyx cosmology simulation [30]. Nyx

is a state-of-the-art extreme-scale cosmology code using AMReX,

which generates six fields including baryon density, dark matter

density, temperature, and velocities (𝑥 , 𝑦, and 𝑧). We use seven

datasets generated by two real-world simulation runs with differ-

ent numbers of AMR levels, simulating a region of 64 megaparsecs

(Mpc). For this data, Z is equal to the redshift, i.e. the displacement

distant galaxies and celestial objects, as seen in Tab 1.

Specifically, the first run has two levels of refinement, with the

coarse level of 256
3
grids and the fine level of 512

3
grids. We’ve

collected five timesteps with the finest level density from 23% to 64%.

The second run has a maximum of four levels of refinement. It was

initially configured at the resolution of 128
3
and gradually refined

to 1024
3
. This run collected three timesteps with the coarsest-level



resolution of 256
3
(two levels), 512

3
(three levels), and finest 1024

3

(four levels), respectively. The density of the finest level varies from

0.2% to 0.003%. Note that the density of the finest level describes

how much of the data in the dataset is at the highest resolution; a

higher density of the finest level means that more data is refined

to the highest resolution. Usually, the data density is gradually

increasing at the finest level, within a single run.

Evaluation platform. The test platform is equipped two 28-core

Intel Xeon Gold 6238R processors and 384 GB DDR4 memory.

Table 1: Our tested datasets.

Dataset # Levels

Grid Size of Each Level

(Fine to Coarse)

Density of Each Level

(Fine to Coarse)

Run1_Z10 2 512, 256 23%, 77%

Run1_Z5 2 512, 256 58%, 42%

Run1_Z3 2 512, 256 64%, 36%

Run1_Z2 2 512, 256 63%, 37%

Run2_T2 2 256, 128 0.2%, 99.8%

Run2_T3 3 512, 256, 128 0.02%, 0.56%, 99.42%

Run2_T4 4 1024, 512, 256, 128 3E-5, 0.02%, 2.2%, 97.7%

Comparison baselines. As discussed in Section 2, we have three

1D or 3D comparison baselines. Specifically, (1) the 1D baseline
(naive): each AMR level is compressed separately as a 1D array; (2)

the 1D baseline (zMesh) [29]: we refer readers to Section 2 for more

details about how the zMesh approach reorganize the AMR data

for 1D compression; and (3) the 3D baseline: Different AMR levels

are unified to the same resolution for 3D compression.

4.2 Evaluation Metrics

We will evaluate the compression performance based on the follow-

ing metrics including generic and application-specific metrics.

(1) Compression ratio or bit-rate (generic, Section 4.3)

(2) Distortion quality (generic, Section 4.3)

(3) Compression throughput (generic, Section 4.6)

(4) Rate-distortion (generic, Section 4.3)

(5) Power spectrum (cosmology specific, Section 4.5)

(6) Halo finder (cosmology specific, Section 4.5)

Metric 1: To evaluate the size reduction as a result of the com-

pression, we use the compression ratio, defined as the ratio of the

original data size compared to the compressed data size, or bit-rate

(bits/value), representing the amortized storage cost of each value.

For a single-/double-precision floating-point data, the bit-rate is

32/64 bits per value before compression. The compression ratio and

bit-rate has a mathematical relationship as their product is 32/64

so that a lower bit-rate means a higher compression ratio.

Metric 2:Distortion is another important metric used to evaluate

lossy compression quality in general. We use the peak signal-to-

noise ratio (PSNR) to measure the distortion quality.

PSNR = 20 · log
10
(𝑅𝑋 ) − 10 · log10

(∑𝑁
𝑖=1 𝑒

2

𝑖
/𝑁

)
,

where 𝑒𝑖 is the difference between the original and decompressed

values for the point 𝑖 , 𝑁 is the number of points, and 𝑅𝑋 is the

value range of the dataset 𝑋 . Note that higher PSNR less error.

Metric 3: Similar to prior work [21, 22, 24–26, 35, 43], we plot

the rate-distortion curve to compare the distortion quality with the

same bit-rate, for a fair comparison between different compression

approaches, taking into account diverse compression algorithms.

Metric 4: (De)compression throughputs are critical to improving

the I/O performance. We will calculate the throughput based on

the original data size and (de)compression time.

Metric 5:Matter distribution in the Universe has evolved to form

astrophysical structures on different physical scales, from planets

to larger structures such as superclusters and galaxy filaments.

The two-point correlation function 𝜉 (𝑟 ), which gives the excess

probability of finding a galaxy at a certain distance 𝑟 from another

galaxy, statistically describes the amount of the Universe at each

physical scale. The Fourier transform of 𝜉 (𝑟 ) is called the matter

power spectrum 𝑃 (𝑘), where 𝑘 is the comoving wavenumber. The

matter power spectrum describes howmuch structure exists at each

physical scales. We run power spectrum on the baryon density field

by using a cosmology analysis tool called Gimlet. We compare the

power spectrum 𝑝 ′(𝑘) of decompressed data with the original 𝑝 (𝑘)
and accept a maximum relative error within 1% for all k < 10.

Metric 6: Halo finder aims to find the halos (over-densities) in

the dark matter distribution and output the positions, the number

of cells, and mass for each halo it finds, respectively. Specifically,

the halo-finder algorithm [11] searches for the halos from all the

simulated data, with the following two criteria: (1) themass of a data

point must be greater than a threshold (e.g., 81.66 times the average

mass of the whole dataset) to become a halo cell candidate [16, 21,

22], and (2) there must be enough halo cell candidates in a certain

area to form a halo. For decompressed data, some of the information

(mass and cells of halos) can be distorted from the original.

4.3 Evaluation on Rate-distortion

We first evaluate the rate-distortion of TAC and compare it with

the baselines on different datasets.

For the 1D baseline, as shown in Figure 14 and 15, TAC (top-left

curve) outperforms the 1D baseline across all the 7 datasets. Further-

more, the performance of TAC is more stable (i.e., smoother curve)

than the 1D baseline. We can also find that zMesh is slightly worse

than the 1D baseline on our tested data, which will be explained in

the next section.

For the 3D baseline, we can observe that TAC has much better

performance when the finest level has a relatively low density or

the decompressed data has a high PSNR, as shown in Figure 15.

However, when the finest level has a relatively high density, TAC

cannot dominate the 3D baseline as shown in Figure 14c and 14d.

Specifically, in Figure 14a (the finest level density is 23%), TAC

outperforms the 1D baseline when the bit-rate is larger than 1.6; in

Figure 14b (the finest level density is 58%), the intersection is the

bit-rate of 1.9; as the finest level density continues to grow up to

63 and 64 in Figure 14c and 14d, TAC is slightly worse than the 3D

baseline until the bit-rate is larger than 2.5. In the next section, we

will discuss why the 3D baseline is slightly better in the datasets of

which finest level has a very high density in detail later and will

also propose a solution to adaptively use the 3D baseline and TAC.

4.4 Discussion on Comparison with Baselines

On compression, zMesh is meant to improve the smoothness of

the block-structured AMR datasets by taking advantage of the



(a) Run1_Z10 (finest-level density = 23%) (b) Run1_Z5 (finest-level density = 58%)

(c) Run1_Z3 (finest-level density = 64%) (d) Run1_Z2 (finest-level density = 63%)

Figure 14: Rate-distortion comparison of TAC and baselines on the early time-step (Z10) to the late time-step (Z2) from run1.

data redundancy between each AMR level (as described in the

introduction).

Thus, zMesh cannot improve the smoothness if there is no data

redundancy in the tree-structured AMR datasets (i.e., our tested

datasets). A simple example is used to illustrate this in Figure 16b,

where the finer-level data has higher values because a grid will

be refined only if its value is larger than a certain threshold. For

block-based AMR, when a grid needs to be refined because of its

high value, the value will still remain in the level, resulting in a

redundant value saved (i.e., the red 8). If one uses the original z-

ordering to traverse the data level-by-level (shown in Figure 16b),

the reordered data will have three significant value changes (i.e.,

from 2 to 8, from 8 to 1, and from 1 to 9).

To solve this issue, zMesh traverses the two AMR levels together

based on the layout of the 2D array. The reordered data are “1-

2-8-9-8-7-8-1”, which only has two significant value changes (i.e.,

from 2 to 8 and from 8 to 1). Thus, zMesh can improve the smooth-

ness/compressibility for block-structured AMR data. However, as

shown in Figure 16a, for tree-structured AMR data (without saving

a redundant “8”), compared to the 1D baseline that compresses each

level separately, zMesh introduces two significant data changes (i.e.,

from 2 to 9 and from 8 to 1) as it traverses between two AMR levels.

This explains why zMesh is slightly worse than the 1D baseline on

our tested AMR datasets.

When considering a 3D baseline, we found that it works slightly

better than an adaptive compression approach. First, from the high

level, if the finest level of an AMR dataset has a very high density,

it means that this dataset is not much different from a non-AMR

dataset with uniform resolution. Thus, there is no need to use

TAC. Instead, we can directly use the 3D baseline that up-samples

coarse-level data and compresses the merged uniform data. This is

because the main disadvantage of the 3D baseline is the redundant

data generated by the up-sampling process; however, when the

finest level is very dense, the coarse levels do not have much data

to up-sample, thus the overhead of redundant upsampled data is

almost negligible. On the other hand, compression on the uniform-

resolution data (the 3D baseline) can better leverage the spatial

information than the level-wise compression (TAC).

For an example of a two-level 2D AMR dataset as shown in

Figure 17. Its finest and coarse levels have the grids of 512
2
and

256
2
, respectively. If the density of the finest level is larger than

60% (e.g., 75% in the 2D example), TAC applies the GSP strategy

to the finest level. In that way, the data points to compress in the

finest level and the coarse level are 512
2
and 0.25 · 2562, respec-

tively. However, by simply using the 3D baseline, after up-sampling

and merge, there are totally 512
2
data points to compress. There-

fore, instead of padding values to the finest level (i.e. GSP), we

can simply fill in the up-sampled coarse levels to save the extra

space of compressing the coarse levels separately and increase the

smoothness/compressibility of the dataset.

Overall, we propose to adaptively use the 3D baseline and TAC

based on the density of the finest level of an AMR dataset as fol-

lows: (1) check the finest level’s density; (2) use the 3D baseline

to compress the data if the density meets the threshold 𝑇2 we set,

and (3) use TAC (OpST, AKDTree, and GSP) if the density does not

meet the threshold.

4.5 Evaluation on Post-analysis Quality with

Adaptive Error Bound

Wenow evaluateTACwith the two cosmology-specific post-analysis

metrics (i.e., metrics 5 and 6: power spectrum and halo finder) to

demonstrate the benefit of the adaptive error bound method. When

factoring level-wise compression, TAC can apply different error

bounds to different AMR levels based on (1) the post-analysis met-

rics, (2) the up-sampling rates of coarse levels, and (3) the rate-

distortion trade-off between different AMR levels.We choose the



(a) Run2_T2 (finest-level density = 0.2%)

(b) Run2_T3 (finest-level density = 0.02%)

(c) Run2_T4 (finest-level density = 3E-5)

Figure 15: Rate-distortion comparison of TAC (top-left) and baselines

on different time-steps from run2.

(a) Tree-structured AMR data (b) Block-structured AMR data

Figure 16: An example of how the 1D baseline, zMesh, and original

z-order reorder a simple 2D AMR data without and with redundancy.

Orange: coarse level , blue: fine level, red: redundant data.

dataset run1-Z2 for evaluation because TAC is slightly worse than

the 3D baseline on this dataset.

Figure 18 shows the motivation of performing rate-distortion

trade-off between different AMR levels. As the error bounds for

Figure 17: Comparison between the 3D baseline and TAC on an

example AMR dataset with the dense finest level.

the fine and coarse levels increase, their bit rates will converge to a

similar value. This means that when the error bound is relatively

large, the reduction in data size will be insignificant compared to

the compression error increment (i.e., the slopes of both curves are

very small). Therefore, we can say that when the error is large, it is

not worth trading data quality for size reduction.

Figure 18: Bit-rates with different error bounds using SZ lossy com-

pression for fine and coarse levels on Run1_Z2 dataset.

Figure 19: Power spectrum error (in relative) of the 3D baseline and

TAC (the same error bound for all AMR levels) and TAC (different

error bounds for different AMR levels) on baryon density field on

run1-Z2. The red dashed line is the 1% limit of acceptable power

spectrum error.

Power Spectrum. Figure 19 shows that, under the (almost) same

compression ratio, TAC (with the uniform error bound) has a similar

power-spectrum error compared to the 3D baseline.

Now, let us follow the three steps mentioned at the beginning

of this section to adjust the error bound for each AMR level. First,

the post-analysis metric–power spectrum—needs to be run on the

uniform-resolution data and focuses on the global quality of data.

Thus, the ideal error-bound configuration/ratio for the fine and

coarse levels on the uniform-resolution data would be 1:1.



Table 2: Overall compression/decompression throughput (MB/s) of different approaches with different absolute error bounds.

𝐸𝐵𝑎𝑏𝑠
Run1_Z2 Run1_Z3 Run1_Z5 Run1_Z10 Run2_T2 Run2_T3 Run2_T4

1D 3D TAC 1D 3D TAC 1D 3D TAC 1D 3D TAC 1D 3D TAC 1D 3D TAC 1D 3D TAC

1E+08 169 94 97 166 90 94 161 76 99 160 40 95 152 17 76 143 2.4 60 125 0.4 30

1E+09 219 115 121 213 120 127 208 109 123 208 63 117 193 27 91 184 3.9 66 159 0.5 32

1E+10 259 125 135 256 125 136 253 117 137 250 65 135 242 30 102 229 4.0 72 197 0.5 34

As aforementioned, the coarse level of the AMR dataset needs to

be up-sampled to uniform the resolution. As a result, the compres-

sion error of the coarse level will be up-sampled as well, resulting

in more error to the post analysis. Thus, we then need to give the

coarse level a smaller error bound based on the up-sample rate.

Here the up-sample rate for Z2’s coarse level is 2
3
, leading to an

ideal error-bound ratio of the fine and coarse levels changed to 8:1.

Finally, this 8:1 ratio needs to be adjusted based on the rate-

distortion trade-off as aforementioned. As shown in Figure 19, when

using the error-bound ratio of 8:1 (e.g., 4E+9 for the fine level and

5E+8 for the coarse level), the error bound of the fine level is too

large, resulting in an ineffective rate-distortion trade-off. Thus, we

can balance two levels by increasing the error bound for the coarse

level (to gain compression ratio) and decreasing the error bound

for the fine level (to add compression error), which can achieve

an overall rate-distortion benefit. Based on our experiments, we

adjust the error-bound ratio from 8:1 to 3:1 and can observe that

TAC has a significant improvement in the power spectrum error

and outperforms the 3D baseline.

Halo finer. We evaluate the mass change, and the number of cells

change for the biggest halo identified using the 3D baseline, TAC

(with uniform error bound), and TAC (with adaptive error bound),

as shown in Table 3. We can see that TACwith adaptive error bound

produces better halo-finer analysis quality than the 3D baseline.

Table 3: Halo finder analysis with different methods.

CR Rel Mass Diff Cell Nums Diff

3D baseline 198.5 6.66E-04 39.00

TAC (1:1) 198.5 4.97E-04 28.00

TAC (2:1) 198.6 4.49E-04 25.00

Similar to the error-bound configuration analysis done for power

spectrum, let us now adjust the error-bound ratio between the

fine and coarse levels for halo finder. The halo-finer analysis also

requires a uniform-resolution data as input. However, different from

the power-spectrum analysis, the halo-finder analysis focuses more

on high-value points in the fine level, since only high-value data

points qualify as halo candidates, as described in Section 4.2. Note

that this does not mean we can directly discard the coarse-level

data with small values as they still contribute to the average value

of the dataset, which is also an important parameter for the halo

finder [11]. Therefore, we set the ideal error-bound ratio to 1:2 (i.e.,

fine level v.s. coarse level) for the uniform-resolution data based on

our massive experiments.After that, considering the up-sampling

rate of 2
3
, the error-bounded ratio is changed to 4:1. Finally, we

adjust the ratio to 2:1 based on the rate-distortion trade-off. Overall,

as we can see in Table 3, TAC with adaptive error bound obtains

the minimal differences of the mass and cell numbers.

4.6 Evaluation on Time Overhead

We evaluate the overall throughput (including pre-processing, com-

pression, and decompression) on all the datasets with different

error bounds. As shown in Table 2 compared to the 3D baseline, the

throughput of TAC is up to 75× higher than on the Run2 datasets

and 2.4× higher on the Run1 datasets. This is because the Run2

datasets have lower density than the Run1 datasets in the finest

level, resulting in a higher overhead of redundant data for the 3D

baseline, which is consistent with our discussion in Section 4.4.

Moreover, TAC is slightly worse than the 1D baseline on the Run1

datasets due to the pre-possessing overhead. While we note that

on the T3 and T4 datasets, our throughput drops due to a relatively

heavy launching time (for compressing multiple 4D arrays gen-

erated by OpST) compared to the overall time on the small-sized

datasets. Note that we exclude zMesh during the evaluation as it is

theoretically slower than the 1D baseline due to the extra z-ordering

and provides worse rate-distortion according to our evaluation.

5 CONCLUSION AND FUTUREWORK

In conclusion, this paper proposes an error-bounded lossy compres-

sion for 3D AMR data, called TAC. It leverages 3D compression for

AMR data on a systemic level. We propose three pre-processing

strategies that can adapt based on the density of each AMR level.

Our approach improves the compression ratio compared to the

state-of-the-art approach by up to 3.3× under the same data quality

loss. With our level-wised compression approach, we are able to

tune the error-bound ratio of fine and coarse levels to be 3:1 and 2:1

for better power-spectrum and halo-finder analyses, respectively,

under the same compression ratio.

In future work, we will apply our hybrid compression approach

to more AMR simulations. We will also address the issue of rela-

tively low throughput on small AMR datasets.
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