TAC: Optimizing Error-Bounded Lossy Compression for
Three-Dimensional Adaptive Mesh Refinement Simulations

Daoce Wang Jesus Pulido
Washington State University
Pullman, WA, USA

daoce.wang@wsu.edu

Los Alamos, NM, USA
pulido@lanl.gov

Jiannan Tian
Washington State University
Pullman, WA, USA
jiannan.tian@wsu.edu

ABSTRACT

Today’s scientific simulations require a significant reduction of data
volume because of extremely large amounts of data they produce
and the limited I/O bandwidth and storage space. Error-bounded
lossy compression has been considered one of the most effective
solutions to the above problem. However, little work has been done
to improve error-bounded lossy compression for Adaptive Mesh
Refinement (AMR) simulation data. Unlike the previous work that
only leverages 1D compression, in this work, we propose to lever-
age high-dimensional (e.g., 3D) compression for each refinement
level of AMR data. To remove the data redundancy across different
levels, we propose three pre-process strategies and adaptively use
them based on the data characteristics. Experiments on seven AMR
datasets from a real-world large-scale AMR simulation demonstrate
that our proposed approach can improve the compression ratio by
up to 3.3X under the same data distortion, compared to the state-
of-the-art method. In addition, we leverage the flexibility of our
approach to tune the error bound for each level, which achieves
much lower data distortion on two application-specific metrics.

CCS CONCEPTS

« Theory of computation — Data compression.

KEYWORDS
AMR; Lossy compression; scientific data; compression performance.

ACM Reference Format:

Daoce Wang, Jesus Pulido, Pascal Grosset, Sian Jin, Jiannan Tian, James
Ahrens, and Dingwen Tao. 2022. TAC: Optimizing Error-Bounded Lossy
Compression for Three-Dimensional Adaptive Mesh Refinement Simula-
tions. In Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing (HPDC °22), June 27-FJuly 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3502181.3531458

*Corresponding author: Dingwen Tao, School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA 99163, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPDC °22, June 27-July 1, 2022, Minneapolis, MN, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9199-3/22/06.

https://doi.org/10.1145/3502181.3531458

Los Alamos National Laboratory Los Alamos National Laboratory

James Ahrens
Los Alamos National Laboratory
Los Alamos, NM, USA
ahrens@lanl.gov

Pascal Grosset Sian Jin
Washington State University
Pullman, WA, USA

sian.jin@wsu.edu

Los Alamos, NM, USA
pascalgrosset@lanl.gov

Dingwen Tao"
Washington State University
Pullman, WA, USA
dingwen.tao@wsu.edu

1 INTRODUCTION

Motivation. The increase in supercomputer performance over
the last few years has been insufficient to solve many challenging
modeling and simulation problems. For example, the complexity of
solving evolutionary partial differential equations (PDEs) scales as
Q(n*), where n is the number of mesh points per dimension. Thus,
the performance improvement of about three orders of magnitudes
over the past 30 years has meant just a 5.6X gain in spatio-temporal
resolution [8]. To address this issue, many high-performance com-
puting (HPC) simulation packages [15] (such as AMReX [41] and
Athena++ [33]) use Adaptive Mesh Refinement (AMR)—which ap-
plies computation to selective regions of most interest—to increase
resolution. Compared to the method where a high resolution is
applied everywhere, the AMR method can greatly reduce the com-
putational complexity and storage overhead; thus, it is one of most
widely used frameworks for many HPC applications [2, 31, 34, 38]
in various science and engineering domains.

Although AMR can save storage space to some extent, AMR ap-
plications running on supercomputers still generate large amounts
of data, making the data transmission and storage challenging. For
example, one Nyx simulation [30] with a resolution of 4096 (i.e.,
0.5 x 2048% mesh points in the coarse level and 0.5 x 4096 in the
fine level) can generate up to 1.8 TB of data for a single snap-
shot; a total of 1.8 PB of disk storage is needed assuming running
the simulation 5 times with 200 snapshots dumped per simulation.
Therefore, reducing data size is necessary to lower the storage over-
head and I/O cost and improve the overall application performance
for large-scale AMR applications running on supercomputers.

A straightforward way to address this issue is to use data com-
pression. However, traditional lossless compression techniques such
as GZIP [12] and Zstandard [44] can only provide a compression
ratio up to 2 for scientific data [32]. On the other hand, a new gener-
ation of lossy compressors which can provide a strict error control
(called “error-bounded” lossy compression) has been developed,
such as SZ [14, 24, 35], ZFP [27], MGARD [1], and TTHRESH [6].
Using those error-bounded lossy compressors, scientists can achieve
relatively high compression ratios while minimizing the quality
loss of reconstructed data and post analysis, as demonstrated in
many prior studies [4, 5, 9, 17, 18, 21, 28, 40].

Limitation of state-of-the-art approach. Only a few existing con-
tributions have investigated error-bounded lossy compression for
AMR applications and datasets. A common approach is to generate
uniform resolution data by up-sampling the coarse-level data and

https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458

merging them with the finest-level data, and then to perform com-
pression on the merged data. However, this approach introduces
redundant information to the data, which will significantly degrade
the compression ratio, especially when the up-sampling rate is high
or there are multiple coarse levels to up-sample. Recently, Luo et al.
introduced zMesh [29], a technique that groups data points that
are mapped to the same or adjacent geometric coordinates such
that the dataset is smoother and more compressible. However, since
zMesh maps data points from different AMR levels to adjacent geo-
metric coordinates and generates a 1D array, it cannot adopt 3D
compression which most HPC simulations use. Moreover, zMesh is
designed only for patch-based AMR applications. The patch-based
AMR structure saves the data blocks that will be refined at the next
level in the current level redundantly. While the state-of-the-art
AMR framework AMReX provides quadtree/octree-based structure
besides patch-based structure [3], many newly developed AMR
applications such as Nyx adopt the tree-based structure to avoid
redundancy by only saving each data point in the level of its finest
refinement. For this scenario, the reorganization approach proposed
by zMesh may not improve the data smoothness appropriately (will
be demonstrated in Section 4).

Key contributions. To solve these issues, we propose an approach
(called TAC) to optimize error-bounded Three-dimensional AMR
lossy Compression. Specifically, we propose to adopt 3D compres-
sion for each AMR level. However, each level may contain many
empty regions (i.e., zero blocks), where data points are saved in
other levels; these empty regions (zero blocks) significantly decrease
the data smoothness/compressibility and increase the data size
(hence reduce the compression ratio). Thus, we propose to either
remove these empty regions or partially pad them with appropriate
values, based on the density of empty regions. Furthermore, we
propose an optimization to reduce the time cost of removing empty
regions. Finally, we evaluate TAC on seven datasets and compare
it with the state-of-the-art approach. Our main contributions are
summarized as follows.

e We propose to leverage 3D compression to compress each
level of an AMR dataset separately. We propose a hybrid
compression approach based on the following three pre-
process strategies and data characteristics (e.g., data density).

e For sparse AMR data, we propose an optimized sparse tensor
representation to efficiently remove empty regions.

e To reduce the time overhead of removing empty regions, we
propose an optimization based on the enhanced k-d tree.

e For dense AMR data, we propose a padding approach to
improve the smoothness and compressibility.

e We tune the error bound for each AMR level for Nyx cos-
mology simulation, which improves the compression quality
in terms of two application-specific post-analysis metrics.

e Experiments show that, compared to the state-of-the-art
approach zMesh, TAC can improve the compression ratio
by up to 3.3X under the same data distortion on the tested
real-world datasets.

Experimental methodology and artifact availability. We evaluate
TAC on seven datasets from two real-world AMR simulation runs.
The AMR simulations are well-known, open-source cosmology

simulations—Nyx [30]. We compare TAC with three baselines in-
cluding zMesh using generic metrics such as compression ratio and
peak signal-to-noise ratio (PSNR) and application-specific metrics
such as power spectrum and halo finder. Our code and datasets are
available at https://github.com/hipdac-lab/3d AMRcomp.

Limitations of the proposed approach. Compared with the ap-
proach that up-samples the coarse-level data and then compresses
the data with uniform resolution (denoted by “3D baseline”), TAC
provides much better compression performance (i.e., rate-distortion),
when the finest level of the AMR dataset has a relatively low density.
However, when the finest level has a relatively high density, TAC is
slightly worse than the 3D baseline. We will discuss this limitation
in detail in Section 4.3.

In Section 2, we present background information about error-
bounded lossy compression, AMR method, k-d tree, and related
work on AMR data compression. In Section 3, we describe our pro-
posed pre-process strategies and hybrid compression. In Section 4,
we show the experimental results on different AMR datasets. In
Section 5, we conclude our work and discuss the future work.

2 BACKGROUND AND RELATED WORK

In this section, we introduce background information about lossy
compression for scientific data, AMR method and data, classic k-d
tree used in particle data compression, and discuss the state-of-the-
art method of AMR data compression and remaining challenges.

2.1 Lossy Compression for Scientific Data

There are two main categories for data compression: lossless and
lossy compression. Compared to lossless compression, lossy com-
pression can offer much higher compression ratio by trading a little
bit of accuracy. There are some well-developed lossy compressors
for images and videos such as JPEG [36] and MPEG [23], but they
do not have a good performance on the scientific data because they
are mainly designed for integers rather than floating points.

In recent years there is a new generation of lossy compressors
that are designed for scientific data, such as SZ [14, 24, 35], ZFP [27],
MGARD [1], and TTHRESH [6]. These lossy compressors provide
parameters that allow users to finely control the information loss
introduced by lossy compression. Unlike traditional lossy compres-
sors such as JPEG [36] for images (in integers), SZ, ZFP, MGARD,
and TTHRESH are designed to compress floating-point data and
can provide a strict error-controlling scheme based on the user’s
requirements. Generally, lossy compressors provide multiple com-
pression modes, such as error-bounding mode and fixed-rate mode.
Error-bounding mode requires users to set an error type, such as
the point-wise absolute error bound and point-wise relative error
bound, and an error bound level (e.g., 10~3). The compressor ensures
that the differences between the original data and the reconstructed
data do not exceed the user-set error bound level.

In this work, we focus on the SZ lossy compression (2021 R&D
100 Award Winner [39]) because SZ typically provides higher com-
pression ratio than ZFP [28, 42] and higher (de)compression speeds
than MGARD [26, 42] and TTHRESH [6]. SZ is a prediction-based
error-bounded lossy compressor for scientific data. It has three main
steps: (1) predict each data point’s value based on its neighboring
points by using an adaptive, best-fit prediction method; (2) quantize

https://github.com/hipdac-lab/3dAMRcomp

Figure 1: Visualization (one zoom-in 2D slice) of three key timesteps
generated from an AMR-based cosmology simulation. The grid struc-
ture changes with the universe’s evolution. The red boxes indicate
different resolutions within one AMR level.

the difference between the real value and predicted value based
on the user-set error bound; and (3) apply a customized Huffman
coding and lossless compression to achieve a higher ratio.

2.2 AMR Method and AMR data

AMR is a method of adapting the accuracy of a solution (e.g., solving
hydrodynamics equations) by using a non-uniform grid to increase
computational and storage savings while still achieving the desired
accuracy. AMR applications change the mesh or spatial resolution
based on the level of refinement needed by the simulation and use
finer mesh in the regions with more importance/interest and coarser
mesh in the regions with less importance/interest. Figure 1 shows
that during an AMR run, the mesh will be refined when the value
meets the refinement criteria, e.g., refining a block when its norm
of the gradients or maximum value is larger than a threshold [20].

Ivl_0.bin (0A, 0B, 0C, OD)
| 1.bin (1A, 1 C
1d b

OA | 0B |~ 0A | 0B

oC | 0D oc | 0D

2/3d baseline

Figure 2: A typical example of AMR data storage and usage.

Clearly, the data generated by an AMR application are hierarchi-
cal data with different resolutions. The data of each AMR level are
usually stored separately (e.g., in a 1D array). For example, Figure 2
(left) shows a simple example of two-level AMR data; “0” means
high resolution (the fine level) and “1” for low resolution (the coarse
level). When the AMR data are needed for post analysis or visual-
ization, users will typically covert the data from different levels to
a uniform resolution. In the previous example, we will up-sample
the data in the coarse level and combine it with the data in the fine
level, as shown in Figure 2 (right).

2.3 Existing AMR Data Compression

2.3.1 1D AMR Compression. The main challenge for AMR data
compression is that the AMR data is comprehensive and hierar-
chical with different resolutions. A naive approach is to compress
the 1D data of each AMR level separately. However, this approach
loses most of the topological/spatial information, which is criti-
cal for data compression. zMesh [29] is a state-of-the-art AMR

data compression based on the 1D approach. Different from the
naive 1D approach, zMesh re-organizes the 1D data based on each
point’s coordinate in the 2D layout; in other words, zMesh puts
the points neighbored in the 2D layout closer in the 1D array. It
can increase the data smoothness/compressibility to benefit the
following 1D compression such as SZ on the traditional patch-
based [37] AMR data with redundancy. However, zMesh does not
leverage high-dimensional compression, while many previous stud-
ies [35, 43] proved that leveraging more dimensional information
(e.g., spatial/temporal information) can significantly improve the
compression performance (e.g., compression ratio). Moreover, it
only focuses on 2D patch-based AMR data. TAC aims to leverage
high-dimensional data compression and supports 3D AMR data.

2.3.2 High-dimensional AMR Compression. Similar to the idea de-
scribed in Section 2.2, a straightforward way to leverage 3D com-
pression on 3D AMR data is to compress different levels together by
up-sampling coarse levels. However, this approach must handle ex-
tra redundant data generated by the up-sampling process. As shown
in Figure 2, 1A, 1B, and IC are redundant points in the compression.
Note that the storage overhead of these redundant points will be
higher when more data are in the coarse levels or up-sampling rate
is higher, especially for 3D AMR data. This is because we only need
to duplicate one point from the coarse level for 4 times for 2D AMR
data but 8 times for 3D AMR data, with an up-sampling rate of 2.
Another limitation of this approach is that it cannot apply different
compression configurations (e.g., error bound) to different AMR
levels, because after up-sampling all data points will have the same
importance. However, the purpose of using the AMR method is to
set different interests to different AMR levels, so the error bound
for each AMR level can be chosen adaptively based on the analysis.

2.4 k-D Tree for Particle Data Compression

k-d tree [7] is a binary tree in which every node represents a certain
space. Without loss of generality, for the 3D case, every non-leaf
node in a k-d tree splits the space into two parts by a 2D plane
associated with one of the three dimensions. The left subspace is
associated with the left child of the node, while the right subspace
is associated with the right child. k-d tree is commonly used in
particle data compression [10, 13, 19] to locate each particle and
remove empty regions. Specifically, a k-d tree keeps dividing the
space in between along one dimension until the space is empty or
contains only one particle. We will propose to optimize the classic
k-d tree and use it to remove empty regions and increase the data
compressibility for each AMR level (to be detailed in Section 3.2).

3 OUR PROPOSED DESIGN

In this section, we propose a pre-process approach for AMR data
to leverage high-dimensional data compression algorithms in each
AMR level. Specifically, we propose three pre-process strategies to

() | AT

: i i |pensifty| .~ “y[[Processed

: — M{" AKDTree | -~ %]l AVR Data Sz
| AMRdata | TAC!

Figure 3: Workflow overview of our proposed TAC.

(a) 210 fine level

(b) 210 coarse level

Figure 4: Visualization of data distributions of an example AMR data
“210”, where z = redshift. Non-empty regions are shown in red.

mitigate the issue of irregular data distribution. We also propose an
adaptive approach to select the best-fit pre-process strategy based
on the data characteristic (e.g., density) of each AMR level. Figure 3
show the overview of our proposed TAC. It has a density filter that
determines the best-fit pre-process strategy for each AMR level in
the AMR dataset before compression. We will now illustrate our
proposed three strategies in Section 3.1, 3.2, and 3.3, respectively.

3.1 Optimized Sparse Tensor Representation for
Low-density Data

To compress the AMR data in 3D, besides the aforementioned 3D
baseline, we can also compress each level separately in 3d. However,
in that way, the data will be split into multiple levels, and each level
will have many empty regions and an irregular data distribution, as
shown in Figure 4. A naive solution to handle the irregular 3D data
is to fill the empty regions with zeros and pass a large 3D block to
the compressor. However, when most of the regions in the data are
empty (e.g., about 77% of the data is empty in Figure 4a), we have
to fill up many zeros, which would greatly increase the size of data
for compression, resulting in a low compression ratio.

To solve this issue, we propose to use a naive sparse-tensor-based
approach (called NaST) to remove the empty regions, as shown
in Figure 5. NaST includes four main steps in the compression
process: (1) partition the 3D data into multiple unit blocks, (2)
remove the empty blocks, (3) linearize the remaining 3D blocks into
a 4D array, and (4) pass the 4D array to the compressor. Note that
in the decompression process, we will put the unit blocks from the
decompressed 4D array back to the original data.

A
AN -....
'A '
“ Ve
AT '

¥
' Compress
." .' Decompress . . .

Figure 5: Workflow of the naive sparse tensor (NaST) method (empty
regions marked in pink and non-empty regions marked in blue).

However, in order to completely remove the empty regions to
form a sparse representation, the unit block size needs to be rel-
atively small compared to the input data size (e.g., 16> vs. 5123),

Figure 6: A 2D example of our proposed OpST approach. The sub-
blocks are extracted according to our optimized sizes saved in BS.
E.g., a 2-by-2 sub-block B is extracted according to BS; [2][1].

resulting in a high proportion of data on the boundary. While
boundary data have less information of neighboring data than non-
boundary data, thus, it is harder for prediction-based compressors
such as SZ to predict the boundary data values. As a result, the
NaST method without optimizing the boundary data would have
low compression performance.

To address the above problem, we propose an optimized sparse
tensor representation (called OpST) to effectively remove the empty
regions as well as maintain a relatively large unit block size so as
to reduce the portion of boundary data. The detailed description of
our algorithm can be found in Algorithm 1. We use a 2D example
to demonstrate our approach, as illustrated in Figure 6. Specifically,
(1) we partition the data into many small unit blocks. (2) For each
unit block, we use the dynamic programming method to initiate an
array BS to save the dimension/size of the maximum square whose
bottom-right corner is that unit block (line 6, will be discussed
in the next paragraph). (3) We extract the sub-blocks (composing
of multiple unit blocks) from the original data according to the
sizes saved in BS (lines 6 and 7). (4) Since the original data will be
changed after the extraction, we need to partially update BS based
on maxSide (will be discussed later). We loop (3) and (4) from the
bottom-right corner to the top-left corner until the original data
is empty. (5) After extracting all the sub-blocks, we put them into
multiple 3D arrays (to be compressed) based on their sizes. Note
that the sub-blocks with the same size will be merged into the same
array for easy compression.

When initializing the BS in the step (2), we start with the b’ [i] []
with i = 0 or j = 0 (i.e., on the top-left edge), where b’[-]["]
are the unit blocks: if b’[i][j] is empty, we will set BS[i][;] to 0
otherwise 1. For the remaining unit blocks, if it is empty, BS[i][j]
will be 0; otherwise, BS[i][j] will be set to 1 plus the minimum
value among its three neighboring blocks (i.e., upper block, left
block, and upper-left block). In other words, we have BS[i][j] =
1+min(BS[i][j—1], BS[i—1][j], BS[i — 1][j — 1]) for the 2D case.
For example, BS1[2][1] is 2 because all its upper-left neighbors are
1 (as shown in Figure 6). However, both BS;[1][1] and BS2[1][2]
can only reach 1 because one of their neighbors are set to 0, having
no chance to form a sub-block with the size of 2.

Moreover, as mentioned in the step (3), we need to update BS
after each extraction. Specifically, for each sub-block we extract,
we have to set its corresponding values in BS to zeros. For instance,
as shown in Figure 6, after we extract a 2-by-2 sub-block By at
BS1[2][1], we need to set BS2[1][0], BS2[1][1], BS2[2][0], and
BS>[2][1] to zeros. In addition, we also need to recalculate a part of

Algorithm 1: Proposed Optimized Sparse Tensor Method

Input: Sparse 3D data S
Output: multiple 4D array Dy,
1 for each unit block b(x,y, z) do

2 if b(x,y, z) is non-empty then

3 if xis 0 or yis 0 orzis 0 then

4 ‘ BS(x,y,2) =1

5 else

6 BS(x,y,2z) = min(BS(x — 1,y,z), BS(x,y —

1,2), BS(x,y,z—1), BS(x—1,y—1,z), BS(x,y—
1,z-1), BS(x-1,y,z—1), BS(x—1,y—1,z—1))+1
; /* BS(x,y,z) is the dimension size of the
maximum cube whose bottom right rear corner is
the unit block with index (x,y,z) in the

original data */

7 maxSide = max(maxSide, BS(x,y, z))
8 end

9 end
10 end

11 for each unit block b(x,y,z) do

12 if BS(x,y,z) > 1 then

13 size = BS(x,y, z)

Dgize < S((x —size : x) = blkSize, (y — size :

y) * blkSize, (z — size : z) = blkSize) ; /* put the
sub-block to the according 4D array */

14 b(x —size: x, y —size:y, z — size : z) «— empty
BS(x —size : x, y — size : y, z — size : 2) =0

BS = updateBs(BS, x, y, z, maxSide)

15 end
16 end
17 return Dy,

BS (line 17 in Algorithm 1) because the extraction could influence
other BS values. For example, we need to recalculate BSz[1][2]
(marked in bold orange) after extracting By. Note that this update
is a partial update as the BS values to be updated will be bounded
by maxSide which is the dimension size of the largest cube in the
dataset (line 7).

Similar to the NaST method, during decompression we will put
the sub-blocks back to reconstruct the data based on the saved
coordinates. Note that after our optimization, each sub-block size
will be relatively large (e.g., 96> versus the original data size of
5123), the metadata overhead of saving the coordinates of all the
sub-blocks will be negligible (e.g., 0.1%).

Finally, we show a visual comparison of the compression quality
between NaST and OpST in Figure 7. Note that both use the same
compressor with the same error bound. Brighter means more error.
We can observe that compared to the NaST method, OpST can
significantly reduce the overall compression error, especially for
the data points on the boundary. It is worth noting that even with
lower error, our OpST can still provide a higher compression ratio
than NaST. This is because our proposed optimization will generate
larger sub-blocks, which provide more information for prediction-
based lossy compressors such as SZ to achieve better rate-distortion.
A detailed evaluation will be shown in Section 4.

(a) NaST (CR = 233.8, PSNR = 76.9 dB) (b) OpST (CR = 241.1, PSNR = 77.8 dB)

Figure 7: Visual comparison (one slice) of compression errors of two
approaches using SZ based on Nyx “baryon density” field (i.e., z10’s
fine level, 23% density). Brighter means higher compression error.
The error bound is the relative error bound of 4.8 X 107%.

3.2 Adaptive k-D Tree for Medium-density Data

The OpST approach proposed for low-density data, however, has a
high computation overhead, especially when the data is relatively
dense. This is because, on one hand, OpST needs to update BS based
on maxSide for each extraction of a sub-block, while the larger the
maxSide, the more values in BS that need to be updated; on the
other hand, maxSide is the dimension size of the largest non-empty
cube in the dataset, which is highly related to the density of the
dataset. Thus, the time complexity of OpST can be expressed as
O(N? - d), where N is the unit block number and d is the density.
Note that here density describes how dense the data is. For example,
the density of 77% means that 23% of the data is empty. Clearly,
when the density of an AMR level is relatively high, using OpST
for compression will be relatively time-consuming.

To address the above high overhead issue of OpST, we propose
an adaptive k-d tree, called AKDTree, to remove empty regions and
extract sub-blocks (containing multiple unit blocks). AKDTree has
a lower time complexity of O(%N -log N) (will be discussed later).
Figure 8 shows a simple 2D example. Specifically, (1) we partition
the data into small unit blocks. (2) We use a tree to hierarchically
represent the whole data. Each node in the tree is associated with
a sub-block of the data. Moreover, each node stores the number
of non-empty unit blocks in the sub-block associated with the
node. (3) For each node, we split its associated sub-block from the
middle along one dimension to form two sub-blocks for its two
children. Note that we select one dimension which can maximize
the difference of the numbers of non-empty unit blocks of the two
children (will be discussed in the next two paragraphs). (4) We keep
splitting a node until it has no empty unit block or itself is empty.
(5) Once finishing the construction of the tree, we collect all the leaf
nodes and send them to the compressor. Note that a non-empty leaf
node does not have any empty unit block; otherwise, it will keep

S

. éé.‘nmm W
]

Figure 8: 2d Example of adaptive k-d tree, the sub-block will be
adaptively split to in order to effectively remove the empty region
as well as get bigger full sub-block.

splitting. Thus, a leaf node must be an empty or full node, as shown
in Figure 8. The detailed algorithm is described in Algorithm 2.
As mentioned in the step (3), we are distributing the non-empty
unit blocks unevenly to two children for each node because we
attempt to get as many leaf nodes with large sub-block sizes as
possible. If we keep splitting sub-blocks in a fixed way, for instance,
first split along the x-axis, second split along the y-axis, third split
along the x-axis, fourth split along the y-axis, and so on, we will

Algorithm 2: Dynamic k-D Tree

Input: data block d, counts information
Output: k-d tree

1 node.count < counts information;

2 if d is empty ord is full then

3 ‘ continue ; /* stop splitting */
4 else
5 if d is a cube then
6 split d equally into 8 oct-blocks: s1, - - - , s3;
7 get the counts cq, ...cg for s, - - -, s3;
8 find the maxDiff partition dy,da;
9 node.left = AKDTree (dy, four ¢; of dy);
10 node.right = AKDTree (dz, four ¢; of da);
1 else if d is a flat cuboid then
12 get the counts ¢y, - - - , ¢4 from counts information;
13 find the maxDiff partition dq, da;
14 node.left = AKDTree (dy, two ¢; of dy);
15 node.right = AKDTree (d2, two ¢; of dy);
16 else if d is a slim cuboid then
17 get the counts cq, ¢ from counts information;
18 split d along the largest dimension to get dq,dy;
19 node.left = AKDTree (d1, ¢1);
20 node.right = AKDTree (d2, c2);
21 end

22 return node;

F7-

dy (s1-84) dy (Sl—%)_ “““““““ Sy)
A6

IS

V==

)= - —»> —»>

@
Figure 9: Example of the adaptive splitting, different shapes will
have different number of choices for splitting. The process will be

looped until a node is empty or full.

get a 2-by-2 sub-block for the node n[2][2] as shown in the dashed
box, while its largest possible sub-block could be 4 by 2.

To select one of the dimensions to unevenly distribute its non-
empty unit blocks to the two children. We now present our dynamic
splitting approach. We categorize nodes into three different types:
“cube” nodes, “flat” nodes, and “slim” nodes, whose dimension ratios
are 1:1:1, 2:2:1, 2:1:1, respectively. First of all, for the cube node d,
we first divide it into eight oct-blocks, i.e., s1, s, - - -, s3 (as shown
in Figure 9), each sized %3. Here n is the dimension size of the
original data. Then, we can get the counts of non-empty unit blocks
of the eight oct-blocks, i.e., c1, ¢z, - - -, cg. After that, We will decide
along which dimension to split the cube node d based on the counts.
Specifically, we can calculate the following three difference values:

diffy = |c1+c3+c5+¢7 —ca —cq — ¢ — cgl,
diﬂy=|C1+62+C5+06—03—C4—C7—Cg|,

diffzz|C1+02+C3+C4—C5—06—07—Cg|.

Finally, we compare these three values and choose the dimension
with the maximum difference to split. For example, if the maximum
difference is diff;, we will split d along z-axis (i.e., the pink 2D plane
shown in Figure 9) and get two flat nodes d; and d».

Then, for the flat nodes such as di, we can reuse cq, - - -, ¢4 to
decide whether to split d; along x-axis or y-axis by choosing the
larger one among the following two difference values.

diff, = |C] +c3—Cy — C4|, diﬁy = |C] +cp—cC3 — C4|.

Finally, for the slim nodes such as d1, we simply split it along x-axis
to get two cube nodes s; and sy. This process (i.e., cube nodes—flat
nodes—slim nodes) in the step (3) will be looped until the node
becomes to a leaf node (i.e., empty or full).

Note that based on the above description, the counting process is
required every three nodes in each three path (i.e., only for the “cube”
nodes). Thanks to this dynamic splitting approach, we can lower
the time complexity of the AKDTree algorithm to O(% N -logN),
where N is the number of unit blocks, while extracting as many
relatively large sub-blocks without empty unit block as possible.

In addition, after the dynamic splitting, we will have a series of
sub-blocks with the same size but different directions (e.g., 2:2:1,
2:1:2, 1:2:2). We will align the sub-blocks with the same size based
on their splitting dimensions (instead of transposing them in the
memory), merge them into an array, and feed multiple merged
arrays to the following compression.

Figure 10: A 2D example of GSP approach. Non-empty blocks are in
navy blue; padded blocks are in light blue/red; padded blocks based
on more than one non-empty neighbors are in red.

3.3 Ghost-Shell Padding for High-density Data

For high-density data such as z10’s coarse level shown in Figure 4b
(i.e., about 77% density), the benefit of using our proposed OpST or
AKDTree is minimal because there is not much room for removing
empty regions. Meanwhile, due to the data partition/reorganization,
OpST and AKDTree will hurt the data locality/smoothness.

To this end, we propose to pad zeros into the few empty regions,
instead of removing them, followed by compression. However, these
padded zeros can greatly reduce the performance of compression,
especially for prediction-based lossy compression such as SZ, be-
cause these zeros can significantly affect the prediction accuracy
of SZ, resulting in high compression errors on the boundaries, as
shown in Figure 12a. More specifically, as mentioned in Section 3.1,
SZ uses each point’s neighboring points’ values to predict its value.
Thus, for those boundary points which are adjacent to padded zeros,
SZ will involve zero(s) into the prediction, while the actual values
of these empty regions are typically non-zeros (saved in other AMR
levels), which will seriously mislead the prediction.

To eliminate the above issue of padding zeroes, we propose to
use a ghost-shell padding strategy (GSP) to diffuse neighboring
values to a padding layer. Figure 10 illustrates the high-level idea,
and the detailed algorithm is described in Algorithm 3. Specifically,
we still partition the data into unit blocks. Then, we will pad each
empty unit block by using the average of its non-empty neighbors’
boundary data values. Note that some empty unit blocks can have
more than one non-empty neighbors such as the red box shown
in Figure 10. For these blocks, we will use the average value of
all its neighbors for padding. Correspondingly, we will remove
these padded values during the decompression based on the saved
padding information. Note that since the padding process is only
for non-empty blocks, this metadata overhead is almost negligible
for high-density data (e.g., 0.1%).

After padding, each boundary point will be predicted using the
average of all the boundary data in the unit block(s) to which it
belongs or is neighbored. As shown in Figure 12, compared to the
zero filling (ZF) approach, GSP can significantly reduce the overall
compression error, especially for the boundary data. Moreover,
the GSP approach can provide a similar compression ratio to the
ZF approach on this high-density data and hence a better rate-
distortion. A detailed evaluation will be presented in Section 4.

3.4 Hybrid Compression Strategy

In this section, we propose a solution to adaptively choose a best-fit
compression strategy from on our proposed OpST, AKDTree, and
GSP based on the data characteristics (i.e., data density). According
to Section 3.1, 3.2, and 3.3, the OpST approach is more suitable

Algorithm 3: Proposed Ghost Shell Padding Method
Input: Data, x, y
Output: Data after padding

1 for each unit block b; do

2 if b; is empty and b; has non-empty neighbor then
3 for each non-empty neighbor n; do
4 pad slice = avg (first y slices of nj next to b;);
5 if overlap edge then
6 ‘ pad = pad/2;
7 else if overlap corner then
8 ‘ pad = pad/3;
9 else
10 ‘ continue;
1 end
12 add an x-layers pad slice to b; next to n;;
13 end
14 end
15 end

16 return padded Data

for sparse (i.e., low-density) data, while the AKDTree approach
is designed to address the high time overhead of OpST when the
density of data increases. When the data density is very high, the
GSP approach will be used to maintain the data smoothness/locality
compared to the AKDTree and OpST approaches. Therefore, we
propose to use two data-density thresholds to determine when to
use OpST, AKDTree, or GSP.

To decide the first threshold Ty for switching between OpST
and AKDTree, we perform a series of experiments, as shown in
Figure 11. The figure shows that OpST and AKDTree have almost
identical compression performance in terms of bit-rate and PSNR
on all six datasets/levels (from different timesteps) with different
densities. Moreover, Figure 13 shows the time costs of OpST and
AKDTree (excluding compression). The figure demonstrates that
the time of AKDTree is relatively stable, while the time of OpST
increases linearly with the increase of data density. Overall, the only
criterion for selecting OpST or AKDTree is the time cost rather than
the compression performance. This is consistent with our previous
design aim, that is, AKDTree is mainly designed to address the
high time overhead issue of OpST. Since OpST and AKDTree have
a similar speed when the density is around 50%, we propose to
choose T; = 50 for choosing OpST or AKDTree.

Next, to determine the threshold T; for switching between AKDTree
and GSP, we also evaluate them on different datasets with different
densities. As shown in Figure 11, when the density is relatively
low, AKDTree outperforms GSP with respect to both bit-rate and
PSNR; when the density gets higher and higher, GSP gradually
outperforms AKDTree. We can also observe that AKDTree and GSP
have similar compression performance when the density is around
60%. Thus, we use T = 60% for choosing AKDTree or GSP.

In summary, our proposed hybrid compression approach is de-
scribed as follows.

(1) When the density is smaller than T; = 50%, we will use OpST

to remove empty regions and then perform the compression;

145

95

90

80

75

tree

| —o—gsp —A—opst

145

Psnr

0.5 1 2.5

15
Bitrate

(a) Z10 (d = 23)

130

110

/'

& "/ £1s /
'r") ~ o
Lt 130 /‘,1‘
4 | —e—gsp —a—opst tree I —e—gsp —a—opst tree|
125
05 Bittate L5 2 0 02 0.4 0651¢rat08 1 12 14

(b) z5 (d = 58)

(c)z2 (d = 63)

80

//.
e

l —o—gsp ——opst tree

| —8—gsp —a—opst

tree | —e—gsp —a—opst tree

60

0.5 1.5

Bitll'ﬂte

(d) Z3 (d = 64)

0.5

15 2 2.5 0 0.5 1.5 2 2.5

! Bitrate

() d=99.8

! Bitrate

(f)d =99.9

Figure 11: Compression performance comparison of GSP, OpST and AKDTree on six datasets with different densities.

(a) ZF (CR = 156.7, PSNR = 32.8 dB)

(b) GSP (CR = 161.3, PSNR = 33.5 dB)

Figure 12: Visual comparison (one slice) of compression errors of
two approaches using SZ based on Nyx “baryon density” field (i.e.,
z10’s coarse level, 77% density). Brighter means higher compression
error. The error bound is the relative error bound of 6.7 x 1073.

(2) When the density is between T; = 50% and T; = 60%, we will
use AKDTree to remove empty regions and then compress;

(3) When the density is larger T; = 60%, we will use GSP to pad
appropriate values and then compress the padded data.

4 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup and evalua-
tion metrics. We then demonstrate and discuss the effectiveness of
TAC in terms of both compression ratio and data quality. After that,
we show the benefit of using adaptive error bound in TAC regarding

N
wn

CPU time (ms)
T

—_

o
n

—A—tree

—&—opst
0 n I I 1

~~~~~~~ opst (theoretical)

20 30 60 70

Density 30

Figure 13: Time overhead comparison of OpST and AKDTree on
different datasets with different densities.

post-analysis quality. Finally, we show that TAC has comparable
throughput compared to comparison baselines.

4.1 Experimental Setup

Test data. Our evaluation mainly focuses on the AMReX frame-
work [41], particularly the Nyx cosmology simulation [30]. Nyx
is a state-of-the-art extreme-scale cosmology code using AMReX,
which generates six fields including baryon density, dark matter
density, temperature, and velocities (x, y, and z). We use seven
datasets generated by two real-world simulation runs with differ-
ent numbers of AMR levels, simulating a region of 64 megaparsecs
(Mpc). For this data, Z is equal to the redshift, i.e. the displacement
distant galaxies and celestial objects, as seen in Tab 1.
Specifically, the first run has two levels of refinement, with the
coarse level of 256> grids and the fine level of 5123 grids. We've
collected five timesteps with the finest level density from 23% to 64%.
The second run has a maximum of four levels of refinement. It was
initially configured at the resolution of 1283 and gradually refined
to 10243, This run collected three timesteps with the coarsest-level



resolution of 2563 (two levels), 5123 (three levels), and finest 10243
(four levels), respectively. The density of the finest level varies from
0.2% to 0.003%. Note that the density of the finest level describes
how much of the data in the dataset is at the highest resolution; a
higher density of the finest level means that more data is refined
to the highest resolution. Usually, the data density is gradually
increasing at the finest level, within a single run.

Evaluation platform. The test platform is equipped two 28-core
Intel Xeon Gold 6238R processors and 384 GB DDR4 memory.

Table 1: Our tested datasets.

Grid Size of Each Level | Density of Each Level

Dataset # Levels (Fine to Coarse) (Fine to Coarse)
Runl1_Z10 2 512, 256 23%, 77%
Run1_Z5 2 512, 256 58%, 42%
Run1_Z3 2 512, 256 64%, 36%
Run1_Z2 2 512, 256 63%, 37%
Run2_T2 2 256, 128 0.2%, 99.8%
Run2_T3 3 512, 256, 128 0.02%, 0.56%, 99.42%
Run2_T4 4 1024, 512, 256, 128 3E-5, 0.02%, 2.2%, 97.7%

Comparison baselines. As discussed in Section 2, we have three
1D or 3D comparison baselines. Specifically, (1) the 1D baseline
(naive): each AMR level is compressed separately as a 1D array; (2)
the 1D baseline (zMesh) [29]: we refer readers to Section 2 for more
details about how the zMesh approach reorganize the AMR data
for 1D compression; and (3) the 3D baseline: Different AMR levels
are unified to the same resolution for 3D compression.

4.2 Evaluation Metrics

We will evaluate the compression performance based on the follow-
ing metrics including generic and application-specific metrics.

(1) Compression ratio or bit-rate (generic, Section 4.3)
(2) Distortion quality (generic, Section 4.3)

(3) Compression throughput (generic, Section 4.6)

(4) Rate-distortion (generic, Section 4.3)

(5) Power spectrum (cosmology specific, Section 4.5)
(6) Halo finder (cosmology specific, Section 4.5)

Metric 1: To evaluate the size reduction as a result of the com-
pression, we use the compression ratio, defined as the ratio of the
original data size compared to the compressed data size, or bit-rate
(bits/value), representing the amortized storage cost of each value.
For a single-/double-precision floating-point data, the bit-rate is
32/64 bits per value before compression. The compression ratio and
bit-rate has a mathematical relationship as their product is 32/64
so that a lower bit-rate means a higher compression ratio.

Metric 2: Distortion is another important metric used to evaluate
lossy compression quality in general. We use the peak signal-to-
noise ratio (PSNR) to measure the distortion quality.

PSNR = 20 - log;, (Rx) — 10 - log,, (Z{.‘il eiz/N),
where e; is the difference between the original and decompressed
values for the point i, N is the number of points, and Ry is the
value range of the dataset X. Note that higher PSNR less error.

Metric 3: Similar to prior work [21, 22, 24-26, 35, 43], we plot
the rate-distortion curve to compare the distortion quality with the

same bit-rate, for a fair comparison between different compression
approaches, taking into account diverse compression algorithms.

Metric 4: (De)compression throughputs are critical to improving
the I/O performance. We will calculate the throughput based on
the original data size and (de)compression time.

Metric 5: Matter distribution in the Universe has evolved to form
astrophysical structures on different physical scales, from planets
to larger structures such as superclusters and galaxy filaments.
The two-point correlation function £(r), which gives the excess
probability of finding a galaxy at a certain distance r from another
galaxy, statistically describes the amount of the Universe at each
physical scale. The Fourier transform of £(r) is called the matter
power spectrum P(k), where k is the comoving wavenumber. The
matter power spectrum describes how much structure exists at each
physical scales. We run power spectrum on the baryon density field
by using a cosmology analysis tool called Gimlet. We compare the
power spectrum p’ (k) of decompressed data with the original p(k)
and accept a maximum relative error within 1% for all k < 10.

Metric 6: Halo finder aims to find the halos (over-densities) in
the dark matter distribution and output the positions, the number
of cells, and mass for each halo it finds, respectively. Specifically,
the halo-finder algorithm [11] searches for the halos from all the
simulated data, with the following two criteria: (1) the mass of a data
point must be greater than a threshold (e.g., 81.66 times the average
mass of the whole dataset) to become a halo cell candidate [16, 21,
22], and (2) there must be enough halo cell candidates in a certain
area to form a halo. For decompressed data, some of the information
(mass and cells of halos) can be distorted from the original.

4.3 Evaluation on Rate-distortion

We first evaluate the rate-distortion of TAC and compare it with
the baselines on different datasets.

For the 1D baseline, as shown in Figure 14 and 15, TAC (top-left
curve) outperforms the 1D baseline across all the 7 datasets. Further-
more, the performance of TAC is more stable (i.e., smoother curve)
than the 1D baseline. We can also find that zMesh is slightly worse
than the 1D baseline on our tested data, which will be explained in
the next section.

For the 3D baseline, we can observe that TAC has much better
performance when the finest level has a relatively low density or
the decompressed data has a high PSNR, as shown in Figure 15.
However, when the finest level has a relatively high density, TAC
cannot dominate the 3D baseline as shown in Figure 14c and 14d.
Specifically, in Figure 14a (the finest level density is 23%), TAC
outperforms the 1D baseline when the bit-rate is larger than 1.6; in
Figure 14b (the finest level density is 58%), the intersection is the
bit-rate of 1.9; as the finest level density continues to grow up to
63 and 64 in Figure 14c and 14d, TAC is slightly worse than the 3D
baseline until the bit-rate is larger than 2.5. In the next section, we
will discuss why the 3D baseline is slightly better in the datasets of
which finest level has a very high density in detail later and will
also propose a solution to adaptively use the 3D baseline and TAC.

4.4 Discussion on Comparison with Baselines

On compression, zMesh is meant to improve the smoothness of
the block-structured AMR datasets by taking advantage of the



| 1D (naive) 1D (zMesh) —#—3D —e—TAC
100
90
&
V4
17
|-
80 F
70 . . . . I
0 1 2 3 4 5
Bitrate
(a) Run1_Z10 (finest-level density = 23%)
| 1D (naive) 1D (zMesh) —=—3D —e—TAC|
155
145
g
Z 135 |
-9
125
1 1 5 1 1 1 1
0 1 2 3 4

Bitrate
(c) Run1_Z3 (finest-level density = 64%)

PSNR

PSNR

| 1D (naive) 1D (zZMesh) —a—3D —e—TAC
140 -
130 +
120 |
110 |
100 | | . |
0 1 2 3 4 5
Bitrate
(b) Run1_Z5 (finest-level density = 58%)
| 1D (naive) 1D (zMesh) —8—3D —e—TAC]
155 |
145
135
125 F
115 : ' '
0 1 2 3 4

Bitrate
(d) Run1_Z2 (finest-level density = 63%)

Figure 14: Rate-distortion comparison of TAC and baselines on the early time-step (Z10) to the late time-step (Z2) from runl.

data redundancy between each AMR level (as described in the
introduction).

Thus, zMesh cannot improve the smoothness if there is no data
redundancy in the tree-structured AMR datasets (i.e., our tested
datasets). A simple example is used to illustrate this in Figure 16b,
where the finer-level data has higher values because a grid will
be refined only if its value is larger than a certain threshold. For
block-based AMR, when a grid needs to be refined because of its
high value, the value will still remain in the level, resulting in a
redundant value saved (i.e., the red 8). If one uses the original z-
ordering to traverse the data level-by-level (shown in Figure 16b),
the reordered data will have three significant value changes (i.e.,
from 2 to 8, from 8 to 1, and from 1 to 9).

To solve this issue, zMesh traverses the two AMR levels together
based on the layout of the 2D array. The reordered data are “1-
2-8-9-8-7-8-17, which only has two significant value changes (i.e.,
from 2 to 8 and from 8 to 1). Thus, zMesh can improve the smooth-
ness/compressibility for block-structured AMR data. However, as
shown in Figure 16a, for tree-structured AMR data (without saving
a redundant “8”), compared to the 1D baseline that compresses each
level separately, zMesh introduces two significant data changes (i.e.,
from 2 to 9 and from 8 to 1) as it traverses between two AMR levels.
This explains why zMesh is slightly worse than the 1D baseline on
our tested AMR datasets.

When considering a 3D baseline, we found that it works slightly
better than an adaptive compression approach. First, from the high
level, if the finest level of an AMR dataset has a very high density,
it means that this dataset is not much different from a non-AMR
dataset with uniform resolution. Thus, there is no need to use
TAC. Instead, we can directly use the 3D baseline that up-samples
coarse-level data and compresses the merged uniform data. This is
because the main disadvantage of the 3D baseline is the redundant
data generated by the up-sampling process; however, when the

finest level is very dense, the coarse levels do not have much data
to up-sample, thus the overhead of redundant upsampled data is
almost negligible. On the other hand, compression on the uniform-
resolution data (the 3D baseline) can better leverage the spatial
information than the level-wise compression (TAC).

For an example of a two-level 2D AMR dataset as shown in
Figure 17. Its finest and coarse levels have the grids of 5122 and
2562, respectively. If the density of the finest level is larger than
60% (e.g., 75% in the 2D example), TAC applies the GSP strategy
to the finest level. In that way, the data points to compress in the
finest level and the coarse level are 5122 and 0.25 - 2562, respec-
tively. However, by simply using the 3D baseline, after up-sampling
and merge, there are totally 5122 data points to compress. There-
fore, instead of padding values to the finest level (i.e. GSP), we
can simply fill in the up-sampled coarse levels to save the extra
space of compressing the coarse levels separately and increase the
smoothness/compressibility of the dataset.

Overall, we propose to adaptively use the 3D baseline and TAC
based on the density of the finest level of an AMR dataset as fol-
lows: (1) check the finest level’s density; (2) use the 3D baseline
to compress the data if the density meets the threshold T> we set,
and (3) use TAC (OpST, AKDTree, and GSP) if the density does not
meet the threshold.

4.5 Evaluation on Post-analysis Quality with
Adaptive Error Bound

We now evaluate TAC with the two cosmology-specific post-analysis
metrics (i.e., metrics 5 and 6: power spectrum and halo finder) to
demonstrate the benefit of the adaptive error bound method. When
factoring level-wise compression, TAC can apply different error
bounds to different AMR levels based on (1) the post-analysis met-
rics, (2) the up-sampling rates of coarse levels, and (3) the rate-
distortion trade-off between different AMR levels.We choose the



1D (naive) —=—3D —e—TAC

95
85
£5 L
7]
a
65
55 1 1 1
0 10 15
Bitrate
(a) Run2_T2 (finest-level density = 0.2%)
o | 1D (naive) —#—3D —e—TAC |
1
100
£ 99
7]
a
80
70 : 1 1 1 1 1
0 20 40 60 80 100
Bitrate
(b) Run2_T3 (finest-level density = 0.02%)
| 1D (naive) —#—3D —e—TAC |
115
105
Z
Z 95
A
85 §
75 | 1 1 1 1
0 50 100 150 200 250
Bitrate

(c) Run2_T4 (finest-level density = 3E-5)

Figure 15: Rate-distortion comparison of TAC (top-left) and baselines
on different time-steps from run2.

N

|
948 918
|_— (]
77187 718
zMesh: 1,2,8,9,8,7, 8,
zOrder: 1,2,8,1,9,8,7,8

zMesh: 1,2,9, 8,7, 8,
1D:1,2,1+9,8,7,8
(a) Tree-structured AMR data (b) Block-structured AMR data

Figure 16: An example of how the 1D baseline, zMesh, and original

z-order reorder a simple 2D AMR data without and with redundancy.

Orange: coarse level , blue: fine level, red: redundant data.

dataset run1-Z2 for evaluation because TAC is slightly worse than
the 3D baseline on this dataset.

Figure 18 shows the motivation of performing rate-distortion
trade-off between different AMR levels. As the error bounds for

+
Gsp: (512?)  AKDTree: (0.25 * 2562) 5122
2/3d-baseline

Fine (5122, s = 25)
AMR data (2-lvls) Our sol

Figure 17: Comparison between the 3D baseline and TAC on an
example AMR dataset with the dense finest level.

the fine and coarse levels increase, their bit rates will converge to a
similar value. This means that when the error bound is relatively
large, the reduction in data size will be insignificant compared to
the compression error increment (i.e., the slopes of both curves are
very small). Therefore, we can say that when the error is large, it is
not worth trading data quality for size reduction.

—4—Finelvl —e—Coarse Ivl
2
2
®R
1t
-
0 L ® 2 O ——t 0
0 1E+09 2E+09 3E+09 4E+09 5E+09
ABS error bound

Figure 18: Bit-rates with different error bounds using SZ lossy com-
pression for fine and coarse levels on Run1_Z2 dataset.

1 _ST ———————————————————————————————————————
-~ —#—3D baseline
s TAC (uniform eb)
gl 05 | —e—TAC (adp eb)
2
=‘I
3

0

0 2 4 6 8 10

Figure 19: Power spectrum error (in relative) of the 3D baseline and
TAC (the same error bound for all AMR levels) and TAC (different
error bounds for different AMR levels) on baryon density field on
run1-Z2. The red dashed line is the 1% limit of acceptable power
spectrum error.

Power Spectrum. Figure 19 shows that, under the (almost) same
compression ratio, TAC (with the uniform error bound) has a similar
power-spectrum error compared to the 3D baseline.

Now, let us follow the three steps mentioned at the beginning
of this section to adjust the error bound for each AMR level. First,
the post-analysis metric-power spectrum—needs to be run on the
uniform-resolution data and focuses on the global quality of data.
Thus, the ideal error-bound configuration/ratio for the fine and
coarse levels on the uniform-resolution data would be 1:1.



Table 2: Overall compression/decompression throughput (MB/s) of different approaches with different absolute error bounds.

EB,, Run1_Z2 Run1 73 Run1 75 Run1 Z10 Run2 T2 Run2 T3 Run2 T4
1D | 3D | TAC| 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC
1E+08 | 169 | 94 97 166 90 94 161 76 99 160 | 40 95 152 | 17 76 143 | 24 60 125 | 04 30
1E+09 | 219 | 115 | 121 | 213 | 120 | 127 | 208 | 109 | 123 | 208 | 63 | 117 | 193 | 27 91 184 | 3.9 | 66 159 | 0.5 32
1E+10 | 259 | 125 | 135 | 256 | 125 | 136 | 253 | 117 | 137 | 250 | 65 | 135 | 242 | 30 | 102 | 229 | 4.0 72 197 | 0.5 34

As aforementioned, the coarse level of the AMR dataset needs to
be up-sampled to uniform the resolution. As a result, the compres-
sion error of the coarse level will be up-sampled as well, resulting
in more error to the post analysis. Thus, we then need to give the
coarse level a smaller error bound based on the up-sample rate.
Here the up-sample rate for Z2’s coarse level is 23, leading to an
ideal error-bound ratio of the fine and coarse levels changed to 8:1.

Finally, this 8:1 ratio needs to be adjusted based on the rate-
distortion trade-off as aforementioned. As shown in Figure 19, when
using the error-bound ratio of 8:1 (e.g., 4E+9 for the fine level and
5E+8 for the coarse level), the error bound of the fine level is too
large, resulting in an ineffective rate-distortion trade-off. Thus, we
can balance two levels by increasing the error bound for the coarse
level (to gain compression ratio) and decreasing the error bound
for the fine level (to add compression error), which can achieve
an overall rate-distortion benefit. Based on our experiments, we
adjust the error-bound ratio from 8:1 to 3:1 and can observe that
TAC has a significant improvement in the power spectrum error
and outperforms the 3D baseline.

Halo finer. We evaluate the mass change, and the number of cells
change for the biggest halo identified using the 3D baseline, TAC
(with uniform error bound), and TAC (with adaptive error bound),
as shown in Table 3. We can see that TAC with adaptive error bound
produces better halo-finer analysis quality than the 3D baseline.

Table 3: Halo finder analysis with different methods.

CR | Rel Mass Diff | Cell Nums Diff
3D baseline | 198.5 6.66E-04 39.00
TAC (1:1) 198.5 4.97E-04 28.00
TAC (2:1) 198.6 4.49E-04 25.00

Similar to the error-bound configuration analysis done for power
spectrum, let us now adjust the error-bound ratio between the
fine and coarse levels for halo finder. The halo-finer analysis also
requires a uniform-resolution data as input. However, different from
the power-spectrum analysis, the halo-finder analysis focuses more
on high-value points in the fine level, since only high-value data
points qualify as halo candidates, as described in Section 4.2. Note
that this does not mean we can directly discard the coarse-level
data with small values as they still contribute to the average value
of the dataset, which is also an important parameter for the halo
finder [11]. Therefore, we set the ideal error-bound ratio to 1:2 (i.e.,
fine level v.s. coarse level) for the uniform-resolution data based on
our massive experiments.After that, considering the up-sampling
rate of 23, the error-bounded ratio is changed to 4:1. Finally, we
adjust the ratio to 2:1 based on the rate-distortion trade-off. Overall,
as we can see in Table 3, TAC with adaptive error bound obtains
the minimal differences of the mass and cell numbers.

4.6 Evaluation on Time Overhead

We evaluate the overall throughput (including pre-processing, com-
pression, and decompression) on all the datasets with different
error bounds. As shown in Table 2 compared to the 3D baseline, the
throughput of TAC is up to 75X higher than on the Run2 datasets
and 2.4x higher on the Runl datasets. This is because the Run2
datasets have lower density than the Runl1 datasets in the finest
level, resulting in a higher overhead of redundant data for the 3D
baseline, which is consistent with our discussion in Section 4.4.
Moreover, TAC is slightly worse than the 1D baseline on the Run1
datasets due to the pre-possessing overhead. While we note that
on the T3 and T4 datasets, our throughput drops due to a relatively
heavy launching time (for compressing multiple 4D arrays gen-
erated by OpST) compared to the overall time on the small-sized
datasets. Note that we exclude zMesh during the evaluation as it is
theoretically slower than the 1D baseline due to the extra z-ordering
and provides worse rate-distortion according to our evaluation.

5 CONCLUSION AND FUTURE WORK

In conclusion, this paper proposes an error-bounded lossy compres-
sion for 3D AMR data, called TAC. It leverages 3D compression for
AMR data on a systemic level. We propose three pre-processing
strategies that can adapt based on the density of each AMR level.
Our approach improves the compression ratio compared to the
state-of-the-art approach by up to 3.3X under the same data quality
loss. With our level-wised compression approach, we are able to
tune the error-bound ratio of fine and coarse levels to be 3:1 and 2:1
for better power-spectrum and halo-finder analyses, respectively,
under the same compression ratio.

In future work, we will apply our hybrid compression approach
to more AMR simulations. We will also address the issue of rela-
tively low throughput on small AMR datasets.

ACKNOWLEDGMENTS

This work has been authored by employees of Triad National Secu-
rity, LLC which operates Los Alamos National Laboratory under
Contract No. 89233218CNA000001 with the U.S. Department of En-
ergy/National Nuclear Security Administration. This research was
supported by the Exasky Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. This
research was supported by the U.S. National Science Foundation
under Grants OAC-2042084 and OAC-2104024. We would like to
thank Dr. Zarija Luki¢ from the NYX team at Lawrence Berkeley
National Laboratory for granting us access to cosmology datasets.



REFERENCES

[1] M Ainsworth, O Tugluk, B Whitney, and S Klasky. 2017. MGARD: A Multilevel

[2

(6

[7

[10

[16

[17

[19

[

=

[

]

[20]

[21

[22

Technique for Compression of Floating-Point Data. In DRBSD-2 Workshop at
Supercomputing.

Ann S Almgren, John B Bell, Mike J Lijewski, Zarija Luki¢, and Ethan Van Andel.
2013. Nyx: A massively parallel amr code for computational cosmology. The
Astrophysical Journal 765, 1 (2013), 39.

AMReX: Building a Block-Structured AMR Application (and More). 2020.
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-
5_5_8-6_11am_Almgren- AMReX.pdf.

Allison H Baker, Haiying Xu, John M Dennis, Michael N Levy, Doug Nychka,
Sheri A Mickelson, Jim Edwards, Mariana Vertenstein, and Al Wegener. 2014. A
methodology for evaluating the impact of data compression on climate simulation
data. In Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 203-214.

Allison H Baker, Haiying Xu, Dorit M Hammerling, Shaomeng Li, and John P
Clyne. 2017. Toward a multi-method approach: Lossy data compression for cli-
mate simulation data. In International Conference on High Performance Computing.
Springer, 30-42.

Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. 2020. TTHRESH:
Tensor Compression for Multidimensional Visual Data. IEEE Transactions on
Visualization and Computer Graphics 26, 9 (2020), 2891-2903. https://doi.org/10.
1109/TVCG.2019.2904063

Jon Bentley. 1975. Multidimensional Binary Search Trees Used for Associative
Searching. communications of the ACM September, 1975. vol. 18: pp. 509-517 : ill.
includes bibliography. 18 (01 1975).

Carsten Burstedde, Omar Ghattas, Georg Stadler, Tiankai Tu, and Lucas C Wilcox.
2008. Towards adaptive mesh PDE simulations on petascale computers. Proceed-
ings of Teragrid 8 (2008).

Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing Applications (2019).
Gabriel Cirio, Guillaume Lavoué, and Florent Dupont. 2010. A Framework for
Data-driven Progressive Mesh Compression. GRAPP 2010 - Proceedings of the
International Conference on Computer Graphics Theory and Applications, 5-12.
Marc Davis, George Efstathiou, Carlos S Frenk, and Simon DM White. 1985. The
evolution of large-scale structure in a universe dominated by cold dark matter.
The Astrophysical Journal 292 (1985), 371-394.

Peter Deutsch. 1996. GZIP file format specification version 4.3. Technical Report.
Olivier Devillers and Pierre-Marie Gandoin. 2000. Geometric Compression for
Interactive Transmission. Proc. Visualization ’00 (01 2000). https://doi.org/10.
1109/VISUAL.2000.885711

Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC data com-
pression with SZ. In 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 730-739.

Anshu Dubey, Ann Almgren, John Bell, Martin Berzins, Steve Brandt, Greg Bryan,
Phillip Colella, Daniel Graves, Michael Lijewski, Frank Loffler, et al. 2014. A
survey of high level frameworks in block-structured adaptive mesh refinement
packages. . Parallel and Distrib. Comput. 74, 12 (2014), 3217-3227.

Bo Fang, Daoce Wang, Sian Jin, Quincey Koziol, Zhao Zhang, Qiang Guan,
Surendra Byna, Sriram Krishnamoorthy, and Dingwen Tao. 2021. Characterizing
Impacts of Storage Faults on HPC Applications: A Methodology and Insights.
409-420. https://doi.org/10.1109/Cluster48925.2021.00048

Ali Murat Gok, Sheng Di, Yuri Alexeev, Dingwen Tao, Vladimir Mironov, Xin
Liang, and Franck Cappello. 2018. Pastri: Error-bounded lossy compression for
two-electron integrals in quantum chemistry. In 2018 IEEE international conference
on cluster computing (CLUSTER). IEEE, 1-11.

Pascal Grosset, Christopher Biwer, Jesus Pulido, Arvind Mohan, Ayan Biswas,
John Patchett, Terece Turton, David Rogers, Daniel Livescu, and James Ahrens.
2020. Foresight: analysis that matters for data reduction. In 2020 SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, 1171-1185.

Duong Hoang, Harsh Bhatia, Peter Lindstrom, and Valerio Pascucci. 2021. High-
Quality and Low-Memory-Footprint Progressive Decoding of Large-Scale Particle
Data. 32-42. https://doi.org/10.1109/LDAV53230.2021.00011

IS&T Co-Design Summer School. 2021. https://www.lanl.gov/projects/codesign/
codesign-summer-school/research-areas/adaptive-mesh-refinement.php.

Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido, Jiannan Tian, Ding-
wen Tao, and James Ahrens. 2020. Understanding GPU-based lossy compression
for extreme-scale cosmological simulations. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 105-115.

Sian Jin, Jesus Pulido, Pascal Grosset, Jiannan Tian, Dingwen Tao, and James
Abhrens. 2021. Adaptive configuration of in situ lossy compression for cosmology
simulations via fine-grained rate-quality modeling. In Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed Computing.
45-56.

(23]

[24

[25

[26

[27

[28

&
2

[36

[37

[38

(39]

[40

[41

[42

=
&

[44]

Didier Le Gall. 1991. MPEG: A video compression standard for multimedia
applications. Commun. ACM 34, 4 (1991), 46-58.

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018.
An Efficient transformation scheme for lossy data compression with point-wise
relative error bound. In CLUSTER. IEEE, Belfast, UK, 179-189.

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018.
An efficient transformation scheme for lossy data compression with point-wise
relative error bound. In 2018 IEEE International Conference on Cluster Computing.
IEEE, 179-189.

Xin Liang, Qian Gong, Jieyang Chen, Ben Whitney, Lipeng Wan, Qing Liu, David
Pugmire, Rick Archibald, Norbert Podhorszki, and Scott Klasky. 2021. Error-
controlled, progressive, and adaptable retrieval of scientific data with multilevel
decomposition. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-13.

Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014), 2674-2683.

Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert
Podhorszki, Scott Klasky, Matthew Wolf, Tong Liu, and Zhenbo Qiao. 2018.
Understanding and modeling lossy compression schemes on HPC scientific data.
In 2018 IEEE International Parallel and Distributed Processing Symposium. IEEE,
348-357.

Huizhang Luo, Jungi Wang, Qing Liu, Jieyang Chen, Scott Klasky, and Norbert
Podhorszki. 2021. zMesh: Exploring Application Characteristics to Improve Lossy
Compression Ratio for Adaptive Mesh Refinement. In 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 402-411.

Nyx. 2021. https://github.com/AMReX- Astro/Nyx.

Brandon Runnels, Vinamra Agrawal, Weiqun Zhang, and Ann Almgren. 2021.
Massively parallel finite difference elasticity using block-structured adaptive
mesh refinement with a geometric multigrid solver. J. Comput. Phys. 427 (2021),
110065.

Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng
Liao, and Alok Choudhary. 2014. Data compression for the exascale computing
era-survey. Supercomputing Frontiers and Innovations 1, 2 (2014), 76-88.

James M Stone, Kengo Tomida, Christopher ] White, and Kyle G Felker. 2020.
The Athena++ adaptive mesh Refinement framework: Design and magnetohy-
drodynamic solvers. The Astrophysical Journal Supplement Series 249, 1 (2020),
4.

Knut Sverdrup, Nikolaos Nikiforakis, and Ann Almgren. 2018. Highly paral-
lelisable simulations of time-dependent viscoplastic fluid flow with structured
adaptive mesh refinement. Physics of Fluids 30, 9 (2018), 093102.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Significantly
improving lossy compression for scientific data sets based on multidimensional
prediction and error-controlled quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 1129-1139.

Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics 38, 1 (1992), xviii—xxxiv.

Feng Wang, Nathan Marshak, Will Usher, Carsten Burstedde, Aaron Knoll, Timo
Heister, and Chris Johnson. 2020. CPU Ray Tracing of Tree-Based Adaptive
Mesh Refinement Data. Computer Graphics Forum 39 (06 2020), 1-12. https:
//doi.org/10.1111/cgf.13958

S Whitman, J Brasseur, and P Hamlington. 2018. Simulation of Bluff-Body
Stabilized Flames with PeleC, an Exascale Combustion Code.

R&D World. 2021. 2021 R&D 100 Award Winners - SZ: A Lossy Compression
Framework for Scientific Data. https://www.rdworldonline.com/rd-100-2021-
winner/sz-a-lossy-compression-framework-for-scientific-data/.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal
Finkel, Yuri Alexeev, and Frederic T Chong. 2019. Full-state quantum circuit sim-
ulation by using data compression. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-24.
Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy
Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, et al. 2019. AMReX:
a framework for block-structured adaptive mesh refinement. journal of Open
Source Software 4, 37 (2019), 1370-1370.

Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D Tonellot, Zizhong Chen,
and Franck Cappello. 2021. Optimizing error-bounded lossy compression for
scientific data by dynamic spline interpolation. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 1643-1654.

Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and
Franck Cappello. 2020. Significantly improving lossy compression for HPC
datasets with second-order prediction and parameter optimization. In Proceedings
of the 29th International Symposium on High-Performance Parallel and Distributed
Computing. 89-100.

Zstandard. 2020. http://facebook.github.io/zstd/.


https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-5_5_8-6_11am_Almgren-AMReX.pdf
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-5_5_8-6_11am_Almgren-AMReX.pdf
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1109/VISUAL.2000.885711
https://doi.org/10.1109/VISUAL.2000.885711
https://doi.org/10.1109/Cluster48925.2021.00048
https://doi.org/10.1109/LDAV53230.2021.00011
https://www.lanl.gov/projects/codesign/codesign-summer-school/research-areas/adaptive-mesh-refinement.php
https://www.lanl.gov/projects/codesign/codesign-summer-school/research-areas/adaptive-mesh-refinement.php
https://github.com/AMReX-Astro/Nyx
https://doi.org/10.1111/cgf.13958
https://doi.org/10.1111/cgf.13958
https://www.rdworldonline.com/rd-100-2021-winner/sz-a-lossy-compression-framework-for-scientific-data/
https://www.rdworldonline.com/rd-100-2021-winner/sz-a-lossy-compression-framework-for-scientific-data/
http://facebook.github.io/zstd/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lossy Compression for Scientific Data
	2.2 AMR Method and AMR data
	2.3 Existing AMR Data Compression
	2.4 k-D Tree for Particle Data Compression

	3 Our Proposed Design
	3.1 Optimized Sparse Tensor Representation for Low-density Data
	3.2 Adaptive k-D Tree for Medium-density Data
	3.3 Ghost-Shell Padding for High-density Data
	3.4 Hybrid Compression Strategy

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Evaluation on Rate-distortion
	4.4 Discussion on Comparison with Baselines
	4.5 Evaluation on Post-analysis Quality with Adaptive Error Bound
	4.6 Evaluation on Time Overhead

	5 Conclusion and Future Work
	References

