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1. Introduction

Fusion categories can be viewed as categorical generalizations of finite groups. From
this perspective modular (tensor) categories are generalizations of metric groups (G, q),
i.e., finite abelian groups G equipped with a non-degenerate quadratic form ¢ : G — C*.
Indeed, any pointed modular category (i.e., with each simple object tensor-invertible) can
be constructed from a metric group, and conversely [15]. Many structures and properties
of metric groups can be generalized to the modular category setting. Two important
examples are Gauss sums and Witt equivalence.

The quadratic Gauss sum 7(G,q) = > . q(z) of a metric group (G, ¢) is known to
have the form ¢ \/@ for some 8"-root of unity ¢. In particular, the modulus of any
Galois conjugate of the quadratic Gauss sum of a metric group is always equal to \/ﬁ .
The categorical dimension dim(C) of a fusion category C plays the role of the order of G,
and the counterpart of the quadratic Gauss sum for modular categories is the first Gauss
sum 71 (C) = ZXGIrr(C)(dX)Q fx where dx are the categorical dimensions and 6x are
the twists. While the categorical dimension dim(C) of a modular category C may not be
an integer, it is a totally positive cyclotomic integer (cf. [19]). This means o(dim(C)) is
a positive real cyclotomic integer for any automorphism o of Q. It has been shown that
the first Gauss sum 7 (C) is equal to & (C)+/dim(C) where &;(C) is a root of unity, and
called the central charge of C (cf. [1]). However, the Galois conjugates of the Gauss sum
71(C) can have moduli different from 4/dim(C). This apparent discrepancy between the
Gauss sum in the categorical setting and the metric group setting inspired the notions
of higher Gauss sums and higher central charges for modular categories introduced in
[32].

The concept of Witt equivalence and the Witt group W for non-degenerate braided fu-
sion categories was introduced in [9], generalizing the concept for metric groups. For met-
ric groups, Witt equivalence is defined modulo groups with a hyperbolic quadratic form,
where the operation is the usual direct product of metric groups. For non-degenerate
braided fusion categories one uses the Deligne product X and considers equivalence
classes modulo Drinfeld centers. It is worth noting that Witt classes do not depend on,
or assume, any pivotal structure. Moreover, the classical Witt group W, corresponding
to metric groups appears as a subgroup of W, as the Witt classes of pointed modular
categories. Witt equivalence for slightly degenerate braided fusion categories was intro-
duced in [10], and the corresponding Witt group sV is called the super- Witt group in this
paper. The study of the Witt group for non-degenerate braided fusion categories leads
to many interesting questions about its structure (see [10,9]). While it is known that
the torsion subgroup Tor(W) of W is a 2-group with exponent 32, it was not previously
known whether Tor(WW)/W,; has infinite cardinality or not. Another interesting open
problem is to find a set of generators for the Witt group W. One of the reasons these
problems are difficult is that there are very few known invariants of the Witt group.

Witt classes also have physical significance: symmetry gauging [8,2] and the reverse
process boson condensation preserve Witt class. Both of these are topological phase
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transitions in the theory of topological phases of matter [2,6]. Each Witt class has a
unique completely anisotropic representative [9], and all members of that class can be
reduced to this representative by anyon condensation. Thus, distinguishing Witt classes
can be regarded as analogous to determining allotropy classes in chemistry.

It is known [19] that any pseudounitary braided fusion category has a unique canonical
spherical structure so that the categorical dimensions dx > 0 for each X. Moreover, the
Witt classes with a pseudounitary representative form a subgroup Wy, of W [9]. For a
pseudounitary non-degenerate braided fusion category C we may define its higher central
charges to be those obtained from the modular category by endowing it with the canonical
spherical structure yielding dx > 0 for all X. It has been proved in [32] that the higher
central charges of degrees coprime to the Frobenius-Schur exponents of any two Witt
equivalent pseudounitary modular categories are equal, generalizing the case for the first
central charge which was proved in [9]. In particular, the higher central charges are Witt
invariants on Wy, . The higher central charges of C with degrees coprime to the Frobenius-
Schur exponent can be reformulated as a function We : Gal(Q) — 100, Where o, C C is
the group of roots of unity in C. This central charge function We of C can be expressed in

terms of the first central charge &;(C), and the signature ec : Gal(Q) — {£1} of C, which

is a function given by e¢ (o) = ‘ng m. Since dim(C) is totally positive, y/dim(C) is

a totally real algebraic integer. Therefore, o(1/dim(C)) is a nonzero real number, which
can only be either positive or negative. It is proved in Section 3 that the signature of
a pseudounitary modular category is an invariant of its Witt class. Moreover, both the
central charges and the signatures of pseudounitary modular categories can be extended
to group homomorphisms ¥ and ¢ from the Witt subgroup Wy, to the group U, of
functions from Gal(Q) to pieo (cf. Section 4).

The signatures of nonzero totally real algebraic numbers, especially those of algebraic
units, are studied in number theory [17,16]. It is simple to determine the signatures of
real quadratic numbers, but it is a difficult task for higher degree totally real algebraic
number. However, for the quantum group modular categories C, := 50(2r+1),41 (r > 1),
we are able to determine the signatures of a family of infinite subsequences of the C,.
Our starting point is a formula for /dim(C,) expressed as a product of sine values
of rational angles. The determination of the signatures of these modular categories is

k‘lgf in [20] (see also

inspired by the computation of the quadratic Gauss sum ijo

[35]).

Using these results, we study the Witt subgroups generated by the Witt classes of this
family of subsequences. We prove in Theorem 6.6 that the signatures of the categories
in each of these subsequences are Fy-linearly independent functions, which enables us to
determine the kernel and the image of the restriction of the signature homomorphism on
these Witt subgroups. As a corollary, we show that they are all isomorphic to Z/32 &
(Z,/2)®N. Moreover, it is well-known that [C,] are square roots of the Ising modular
categories in the Witt group, and we prove that the Ising modular category has infinitely
many square roots in W/Wpy.
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In sW, there is a subgroup sW, generated by the Witt classes of completely anisotropic
s-simple braided fusion categories of finite order, and sW; is of exponent 2 (cf. [10]). It is
conjectured [10, Conjecture 5.21] that sWs has infinite rank. By applying Corollary 6.8
and Proposition 7.1, we prove this conjecture in Theorem 7.3.

The paper is organized as follows: In Section 2, we briefly review the key concepts
for fusion categories and the Witt group W(E) over a symmetric fusion category & for
later use. In Section 3, we define two versions of signatures for fusion categories over &
and show that they are Witt invariants. In Section 4, we derive a formula of the higher
central charges in terms of the categorical dimension signature, and we define the higher
central charge homomorphism ¥ on Wy, in terms of the signature . In Section 5, we
study the quantum group modular categories s0(2r + 1)9,+1, with an emphasis on their
signatures. In Section 6, we prove our first main results Theorem 6.6, Corollaries 6.7
and 6.8. We finally prove the conjecture of Davydov-Nikshych-Ostrik in Theorem 7.3 of
Section 7.

Throughout this paper, we use the notation ¢, := exp (%), and Q, := Q((,) for any
a € N. In particular, i := exp (%) = /—1.

2. Preliminaries
2.1. Fusion categories and their global dimensions

A fusion category is a semisimple, C-linear abelian, rigid monoidal category with
finite-dimensional Hom-spaces and finitely many simple objects which include the tensor
unit 1 (cf. [19]). For any fusion category C, we denote by Irr(C) the set of isomorphism
classes of simple objects of C. If the context is clear, we will use the abuse notation to
denote an object in an isomorphism class X of C by X. The tensor product endows
Ky (C), the Grothendieck group of C, a ring structure. More precisely, we have X®Y =
> zemn(C) N% yZ for any X,Y € Irr(C), where

N{y :=dimc C(X®Y, Z).

For any X € Irr(C), let Nx be the square matrix of size |Irr(C)| such that (Nx)y,z =
N%y for any Y,Z € Trr(C). The Frobenius-Perron dimension (or FP-dimension) of
X € Irr(C), denoted by FPdim(X), is the largest positive eigenvalue for Nx (cf. [19]).
The Frobenius-Perron dimension of C is defined to be

FPdim(C) = )  FPdim(X)*.
Xelrr(C)

It is shown in [19] that for any fusion category C, FPdim(C) is a totally positive cyclotomic
integer.

Let C be a fusion category. For any object V of C, the left dual of V' is denoted by the
triple (V*, evy, coevy ), where evy : V*®@V — 1 and coevy : 1 — V@V™ are respectively
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the evaluation and coevaluation morphisms for the left dual V* of V' (cf. [18]). A simple
object X of C is called invertible if X ® X* = 1. For any morphism f : X — X** its
left quantum trace is defined to be

trx (f) :=evx« o (f®idx~) ocoevy € Endc(1) = C.

Since C is a fusion category, V' = V** for any V € ob(C) (cf. [27,19]). If X € Irr(C)
and h : X — X** is a nonzero morphism, the squared norm of X is defined as

|X|? := tryx(h) - trx-((R"H)*) € C,

which is independent of the choice of h. The global dimension (or categorical dimension)
of C is defined as

dim(C) = > |X].

Xelrr(C)

By [19, Theorem 2.3], |X|?> > 0 for any X € Irr(C), and dim(C) > 1 for any fusion
category C. Moreover, by [19, Remark 2.5, dim(C) is a totally positive algebraic integer.
We will denote the positive square root of dim(C) by +/dim(C).

One can extend the left duality of C to a contravariant functor (—)*. Then (—)** defines
a monoidal functor on C. A pivotal structure on a fusion category C is an isomorphism of
monoidal functors j : id¢ =N (—)**. A fusion category equipped with a pivotal structure is
called a pivotal fusion category, in which the quantum dimension of any object V' € ob(C)
is defined to be

dim; (V) := try (jy) € Ende(1) = C .

A pivotal structure j on C is called spherical if dim;(V') = dim;(V*) for all V' € ob(C).
A pivotal fusion category C is called a spherical fusion category if its pivotal structure is
spherical. We will simply denote the quantum dimension of an object V' € ob(C) by dy
or dim(V) when the pivotal structure is clear from the context.

If C is a spherical fusion category, then d3 = |X|? for any X € Irr(C) (cf. [27,19]).
Therefore, dx # 0 for X € Irr(C) and

dim(C) = Y dk.

Xelrr(C)

By [31, Proposition 5.7], if C is a spherical fusion category, then dim(C) € Qy, where
N = FSexp(C) is the Frobenius-Schur exponent of C (cf. [30]). If C is not spherical, then
we can consider the “sphericalization” C of C defined in [19, Remark 3.1]. In particular,
C is a spherical fusion category such that dim(C) = 2dim(C) (cf. [19, Proposition 5.14]).
The same argument as above implies that dim(C) € Q s, where N = FSexp(C). The
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upper bound N can be determined by dim(C). In particular, dim(C) is a totally positive
cyclotomic integer for any fusion category C.

Remark 2.1. The cyclotomicity of dim(C) can also be derived from [33, Corollary 1.4]
and [19, Theorem 8.51].

A fusion category C is called pseudounitary if dim(C) = FPdim(C). It is shown in
[19, Proposition 8.23] that a pseudounitary fusion category C admits a unique canonical
spherical structure such that dy = FPdim(V) for any V € ob(C). In this paper, we
assume that any pseudounitary fusion category is equipped with its canonical spherical
structure.

2.2. Braided fusion categories and the square root of dimension
Let C be a fusion category. A braiding on C is a natural isomorphism
Buw VAW SWeV

satisfying the Hexagon axioms (cf. [18]). A fusion category equipped with a braiding is
called a braided fusion category.

The degeneracy of a braiding 5 on C is characterized by double braidings. More
precisely, let C’ denote the Miiger center of C, which is the full subcategory C determined
by objects V' € ob(C) such that Sw,v o fy.w = idygw for all W € ob(C). The Miiger
center C' is a fusion subcategory of C. A braided fusion category C is called non-degenerate
if Irr(C') = {1}, i.e. C’ is equivalent to the category Vec of finite-dimensional vector
spaces over C. From any fusion category A, one can construct a non-degenerate braided
fusion category [22,23,25], which is called the Drinfeld center of A and is denoted by
Z(A).

In contrast to non-degenerate braided fusion categories, a braided fusion category C
is called a symmetric fusion category if C’ = C. For any finite group G, let Rep(G)
be the fusion category of finite-dimensional complex representations of G, equipped
with the usual braiding. If z € G is a central element of order 2, let Rep(G, z) be
the fusion category Rep(G) equipped with the braiding given by the universal R-matrix
R = 1(1®1+1®z+2®1 — 2®z). Both Rep(G) and Rep(G, z) are symmetric fusion cate-
gories, and the theorems of Deligne imply that any symmetric fusion category is braided
equivalent to Rep(G) or Rep(G, z) for some finite group G (cf. [12,13]). A symmetric
fusion category is called Tannakian (resp. super-Tannakian) if it is braided equivalent to
Rep(G) (resp. Rep(G, 2)) for some finite group G. In particular, if C is symmetric, then
dim(C) € Z.

In general, if C is a braided fusion category, then C’ is either Tannakian or super-
Tannakian. If C’ is braided equivalent to Rep(Z/2,1), which is the category sVec of
finite-dimensional super-vector spaces over C, then C is called slightly degenerate.
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A premodular category is a spherical braided fusion category. A premodular category
C is called modular if C is non-degenerate. The (unnormalized) S-matriz of a premodular
category C is defined to be

SX,Y = trX*@Y(ﬂY,X* o ﬁX*,Y)7 X,Y S ITI'(C) .

An alternative criterion for modularity of a premodular category is that the S-matrix is
invertible (cf. [28]).

Let C be a premodular category. A natural isomorphism 6 : ide = ide, called the
ribbon structure of C, can be defined using the spherical pivotal structure of C and the
Drinfeld isomorphism (cf. [18]). The ribbon structure satisfies

Ovew = (v @ Ow) o Bw,v o Bv,w (2.1)

and

for any V,W € ob(C). In particular, for any X € Irr(C), fx is equal to a non-zero scalar
times idx. By an abuse of notation, we denote both the scalar and the isomorphism
itself by 6x for all simple X. The T-matriz of a premodular category C is defined to be
the diagonal matrix

TX,Y = ex~5X7y, X,YEII‘I“(C).

It is well-known that if C is modular, then the S- and the T-matrices give rise to a
projective representation of SLa(Z) (cf. [1,36]).

A premodular category C is called super-modular if C is a slightly degenerate braided
fusion category. The non-trivial simple object in C’, denoted by f, is an invertible object
such that 3y s = —id;gs. This implies that ¢d; = —1, so that 8y = —dy = £1. It is
readily seen by (2.1) and the dimension equation dfgx = dy dx that tensoring with f
gives rise to a permutation on Irr(C) without any fixed point, and X* 2 f®X for any
X € Irr(C). Therefore, Irr(C) can be written as a disjoint union

II‘I‘(C) = HO @) (f ® H())

for some subset IIy of Irr(C) containing 1 and closed under taking duals. With respect
to this decomposition of Irr(C), the S-matrix of C takes the form
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For any X,Y € Iy, by [29, Lemma 2.15], we have

2 Z S’X’zgz,y = Z SX,ZSZ,Y

Z€lly Zelrr(C)

=dim(C) Y NYydw (2.3)
Welrr(C)

= dim(C)(Sxyy* y

where the last equality is guaranteed by the assumption that Ilj is closed under taking
duals. In particular, 52 is a non-zero multiple of the charge conjugation matrix of Ilg,
and so S is invertible.

Let P denote the free abelian group over Ily. For any X,Y, Z € I, let

N7 ®RZ
NZ, =N%{y+d;- N};Y )

One can verify directly that the bilinear map e : P x P — P given by X ¢ Y =
> zem, N %y Z defines a commutative ring structure on P with the identity 1. Moreover,
by [29, Lemma 2.4], for any X,Y, Z € Ilj, we have

Sxy . Szy B Z NW Sw.y

— .= X,Z
dy  dy W elrr(C) dy
S S
_ Z NY, W,y +N}f(®ZW fOW,Y
’ dy ’ dy
Welly (2 4)
SW,Y WSW,Y .
(R
Wellg v
cw Swy
- Z N;ZZ d
Wellp

Therefore, the function yy : P — C defined by xy(X) := S'X,y/dy for X € Ily is a
C-linear character of P. Now, (2.3) implies that {xy : Y € Ilp} is a set of C-linearly
independent characters P, and hence it is the set of all the C-linear characters of P.
Moreover, we have the following Verlinde-like formula

o 2 gX,WSY,WgZ*,W
NZ, = > . (2.5)

dim(C) Wt Syw

Recall that S is a submatrix of the S-matrix of the Drinfeld center of C. It follows from
[31, Proposition 5.7] that S is a matrix defined over a certain cyclotomic field, and so is
S. The above discussion on the characters on P implies that the absolute Galois group

acts on Iy by permutation. More precisely, let Gal(Q) be the absolute Galois group,
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then for any o € Gal(Q), and for any Y € Ily, o(xy) is another character of P. Hence,

there exists a unique 6(Y’) € Il such that o(xy) = Xs(v). Thus, for any o € Gal(Q)
and for any X, Y € Iy, we have

o | 22X ) = 0(xy)(X) = xor)(X) = 222200 (2.6)
dy ds(v)

Note that the above Galois property of a super-modular category is similar to that of a
modular category (cf. [11,7,19]).

The proof of the following lemma is identical to the proof for modular categories as
in [11,7,19]. However, we provide the proof for the sake of completeness.

Lemma 2.2. Let C be a super-modular category, and D the positive square root of dim(C).

(1) For any o € Gal(Q), there exists a function g, : Iy — {&1} such that for any
X> Y e HO;

Sx.y S&(X) Y Sx &(Y)
2T ) g (x) 2R (v 22

(2) The positive real number D is a cyclotomic integer.

Proof. Recall that for any X € Ilg, dx # 0 (cf. Section 2.1). By Egs. (2.3) and (2.6), for

any o € Gal(Q), we have

dlm(C) S’X,ygyﬁx*
U( z ):"<2 2 T)
X Y ellp X
gXY) (SYX*>
2 E 0( : o ’
Y €Tl dx dx

PN

Ss(x)v Sy.s(x)

=2
Yer, dex)  de(xr)
dim(C)
=06(X)6(X) g
&(X)

Therefore, we have §(X*) = 6(X)* and

D D
) =g, (X
’ (dx> 9a( )d&(x)

for some g,(X) € {£1}. Again by (2.6), for any X,Y € Ilj, we have
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Sx.y _ Sx.y dy \ SX,&(Y) ds(v) SX,&(Y)
U<l)>_a<dY>U(D>_ﬂAY>%W> p w7

Since dim(C) = D? is an algebraic integer, so is D. Note that Sy y/D = 1/D and § is

symmetric. For any 0,7 € Gal(Q),

07(%>=94nm4m<§ﬂ%i9>:TU<%).

Therefore, Gal(Q(D)/Q) is abelian. By the Kronecker-Weber Theorem, Q(D) is con-
tained in a cyclotomic field. In particular, D is a cyclotomic integer. 0O

Now we are ready to prove the following theorem.

Theorem 2.3. For any pseudounitary braided fusion category C, \/dim(C) is a totally real
cyclotomic integer.

Proof. Let D = /dim(C). Since dim(C) is a totally positive algebraic integer, D is a
totally real algebraic integer. We are left to show the cyclotomicity of D.

We have the following two cases.

(1) If C’ is Tannakian, then the pseudounitarity of C implies fx = idx for X € Irr(C’).
By [4,26], the de-equivariantization on C with respect to C’ gives rise to a modular
category M(C) with

_dim(C)

dim(M(C)) = s

By [31, Theorem 7.1], 1/dim(M(C)) € Qi2m as FSexp(M(C)) | m, where m =
FSexp(C). Note that dim(C’) € Z as €’ is symmetric. Therefore, y/dim(C’) is a cy-
clotomic integer, and so is

D = /dim(M(C)) dim(C") .

(2) If C’" is super-Tannakian, then C" has a maximal fusion subcategory C', which is
Tannakian and

dim(C") = 2dim(C’,) .

De-equivariantizing C with respect to C’ gives rise to a super-modular category S(C)
(cf. [26, Section 5.3]) and

dm@@)(ﬁ%&.
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By Lemma 2.2 (2), 1/dim(S(C)) is a cyclotomic integer. Using similar argument as in
Case (1), D is a cyclotomic integer. O

Remark 2.4. (i) The pseudounitary condition in the previous theorem could be removed
but some technicality is required. However, this technicality can be circumvented if every
super-modular category admits a minimal modular extension or every fusion category
has a spherical structure.

(ii) In the proof of Theorem 2.3, the conductor of /dim(C) can be shown to be bounded
by 12 - FSexp(C) if C' is Tannakian by using the Cauchy Theorem [5]. It is unclear a
similar bound can be obtained when C’ is super-Tannakian.

2.8. The Witt group W(E)

In this section, we follow [10] to study the Witt group of non-degenerate braided
fusion categories over symmetric fusion categories.

Let £ be a symmetric fusion category. Throughout this paper, a fusion category over
£ is a fusion category A equipped with a braided tensor functor T4 : £ — Z(A) such
that the composition of T4 and the forgetful functor Z(.A) — A is fully faithful.

A tensor functor F': A — B between two fusion categories over £ is called a tensor
functor over € if F is compatible with the embeddings T4 and T. For details, see [10,
Section 2].

Let A, B be two fusion categories over £, and R : £ — £ K & be the right adjoint
functor to the tensor product functor ® : EXKE — £. Then A := (T4 X Tp)R(1) is a
connected étale algebra in Z(A X B). The tensor product AXgB of A and B over £ is
defined to be (AKX B) 4, the fusion category over £ of right A-modules. By [9, Lemma
3.11], we have

FPdim(A) FPdim(8) _ FPdim(A) FPdim(B)

2.7)

Recall that the Miiger center C' of any braided fusion category C is a symmetric
fusion category. A braided fusion category C equipped with a braided tensor equivalence
T:E — C' is called a non-degenerate braided fusion category over €. In particular, with
this terminology, non-degenerate braided fusion categories are non-degenerate over Vec,
and slightly degenerate braided fusion categories are non-degenerate over sVec.

For any fusion category A over &, the Miiger centralizer of T4 (£) in Z(A) is denoted
by Z(A, &), which is a typical example of non-degenerate braided fusion categories over
E (cf. [29, Theorem 3.2], [15, Theorem 3.10]). Since Z(.A) is non-degenerate over Vec, by
[19, Theorem 2.5] and [15, Theorem 3.14], we have

_ _ FPdim(Z(A)) FPdim(A)?
FPAM(Z(A.8) = —ppiime)  ~ FPam() | (28)
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Two non-degenerate braided fusion categories C and D over & are called Witt equivalent
if there exist fusion categories A and B over £ and a braided equivalence over £ such
that

CReZ(A, €)= DR Z(B,E) . (2.9)

According to [10], the Witt equivalence is an equivalence relation among braided fusion
categories over £, and the Witt equivalence classes form a group whose multiplication is
given by K¢. We call this group the Witt group over £, and we denote it by W(E). We
denote the Witt class of a braided fusion category C over € by [C]. In case £ = Vec or
sVec, we simply denote by W for W(Vec) and sW for W(sVec). The Witt group sW is
also called the super- Witt group in this paper.

By [10, Proposition 5.13], the assignment

S:W—=sW; [C]+— [CXsVec] (2.10)

is a group homomorphism, and it is shown in [10] that ker(S) is a cyclic group of order 16
generated by the class of any Ising braided category. An Ising category is a non-pointed
fusion category C of FPdim(C) = 4. There are 2 Ising categories up to tensor equivalence,
and each of them admits 4 inequivalent braidings and they are all non-degenerate. Since
Ising categories are pseudounitary (cf. [19]), these 8 inequivalent Ising braided categories
are modular and they are classified by their central charges.

It is shown in [10] that the group W has only 2-torsion, and the maximal finite
order of an element of W is 32. We have seen in the above paragraph that the classes of
pseudounitary Ising modular categories are of order 16, but less is known about elements
in W of order 32. In Sections 6 and 7, we will show that the pseudounitary Ising modular
categories have infinitely many square roots in ¥V modulo Wy.

3. The E-signatures of the Witt group W(E)

Let a # 0 be a totally real algebraic number. For each o € Gal(Q), o() is either pos-
itive or negative. The sign of o () is 1 if it is positive, and -1 otherwise. This assignment
() of signs

e(a)(o) :=sgn(o(a)) (3.11)

for each o € Gal(Q) is called the signature of a.
Let p, C C* denote the group of the n'"-roots of unity and poo = (oo, ptn- Then

the set Uy, of functions from Gal(Q) to ps is an abelian group under pointwise mul-

tiplication, and U,, = ,ugal(Q)

of C,

is a subgroup of Uy. Thus, if F' is a totally real subfield

€:F><_>Z/l2
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is a group homomorphism.

Recall that similar to FPdim(C), the well-definedness of the categorical dimension
dim(C) of a fusion category C does not depend on the existence of a pivotal structure on
C [19,29]. Moreover, both dimensions are totally positive cyclotomic integers [19], so the

positive square roots /FPdim(C) and /dim(C) are totally real.

Definition 3.1. Let C be a fusion category. We define the signature e¢ of C as
e(y/FPdim(C)) and the categorical dimension signature € of C as e(1/dim(C)).

By Theorem 2.3, for pseudounitary braided fusion categories, we can change Gal(Q)
to Gal(Q?P) in the definition of the categorical dimension signature, where Q2 is the
abelian closure of Q.

Remark 3.2. For any pseudounitary fusion category C, e¢ = €.

Lemma 3.3. Let C, D be fusion categories.

(a) ecrp = ec - ep, and ey = €¢ - €, i.¢e., both signatures respect the Deligne tensor
product of fusion categories.
(b) Both ez(c) and €’ are the constant function 1.

Proof. Statement (a) follows from the multiplicativity of the FP-dimension and the
categorical dimension with respect to the Deligne tensor product.

Statement (b) follows from +/FPdim(Z(C)) = FPdim(C), 1/dim(Z(C)) = dim(C)
(cf. [19], [28]) and the total positivity of both the FP-dimension and the categorical
dimension. O

Theorem 3.4. For any symmetric fusion category &, the assignment
Ig:W((‘:)_}Z/[Q; [C]'—)Ec-ag
is a well-defined group homomorphism.

Proof. We first show that the assignment Ig is well-defined. Indeed, for any braided
fusion categories C and D over £ which are Witt equivalent over &, there exist fusion
categories A, B over £ such that CRgZ(A, &) = DX Z(B,E). Therefore, by Egs. (2.7)
and (2.8), we have

FPdim(C) FPdim(A)?  FPdim(D) FPdim(B)?
FPdim(&)? B FPdim(&)?

This implies that /FPdim(C) FPdim(A) = /FPdim(D) FPdim(B). As mentioned in
the previous subsection, FPdim(.A) and FPdim(B) are totally positive, so for any o €

Gal(Q), we have
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ce(0) = sen(o (/FPdm(C)))
= sgn(o (/FPdim(C) FPdim(A4)))
V/FPdim(D) FPdim(5) ))

= sgn(o ( FPdim(D)))

/N

sgn(o

= ¢ep(0)

which means e¢ = ep, and hence I¢ is well-defined.

Again by (2.7), for any o € Gal(Q), we have

I¢([CReD))(0) = ecr,p(0) - €£(0)
sgn(o <\/ FPdi?;?iil;gm(D) ) ) sgn(o ( FPdim(é’)))

sgn(o (\/FPdim(C

~—

FPdim(D)))

~—

=(ec-cs-ep-cg)o
= (Le([C]) - L1([D))) (o)

as desired. O
Theorem 3.5. For £ = Vec or sVec, the assignment
It - W(E) = Uy;  [C] > ep - ek
is a well-defined group homomorphism.
Proof. By Theorem 2.5 and Theorem 3.10 (i) of [15], for any fusion category A over &,

dim(.A)?

(3.12)

For £ = Vec or sVec, let A and B be fusion categories over £. In this case, there
exists a finite group G such that Rep(G) ~ £ embeds into £ X € as a braided fusion
subcategory. In fact, G is trivial when & = Vec, and G = Z/2Z when £ = sVec. Note
that |G| = dim(&) in both cases. Moreover, the image of the regular algebra of Rep(G)
under the composition Rep(G) — EX & EEUILN Z(AK B) coincides with the algebra
A in the definition of the tensor product over £ (cf. Section 2.3). Therefore, AXgB is
braided equivalent to the de-equivariantization (AKX B)q, and by [15, Proposition 4.26],

dim(A) dim(B)  dim(A) dim(B)

dim(AKeB) = —— 7 = — ()

(3.13)
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Having established Eqs. (3.12) and (3.13), we are done by repeating the proof of
Theorem 3.4 with all the FP-dimensions changed into categorical dimensions. O

Remark 3.6. (1) Our approach to prove (3.13) does not work for arbitrary symmetric
fusion categories. If £ = Rep(G), there may not be an embedding & — EXE such that the
regular algebra of £ coincides with the algebra A € EXE used in the tensor product over
E. For example, when G is a non-abelian simple group, the only embeddings &€ — EX £
are EX 1 and 1 X €. However, if (3.13) can be proved in general, then the assignment
I¢ in Theorem 3.5 is a well-defined group homomorphism.

(2) One can also define I} on a ribbon version of the £-Witt group. Let &, be the
ribbon category £ equipped with a spherical structure p. An &,-modular category C
is a ribbon category whose Miiger center is equivalent to &, as ribbon categories. In
particular, C is an £-nondegenerate braided fusion category. Two &,-modular categories
C, D are &,-Witt equivalent if there exist spherical fusion categories A and B over &,
such that C Mg, Z(A,&,) and D Xg, Z(B,E,) are equivalent as £,-modular categories.
The &,-Witt group W, () is the group of £,-Witt equivalence classes. For any spherical
fusion categories A and B over &,, we have

dim(AXg, B) = dim(A) dim(B)/da = dim(A) dim(B)/dim(€)

where A is the algebra in the preceding remark (cf. [24]). In this case, I} is a homomor-
phism of W,(&,). However, we do not intend to pursue further discussion of this version
of I¢ in this paper.

Definition 3.7. We call the group homomorphism I¢ : W(E) — Uy defined in Theorem 3.4
the E-signature on W(E), and I¢([C]) the E-signature of [C]. For £ = Vec or sVec, we
call the group homomorphism I : W(E) — Us defined in Theorem 3.5 the categorical
dimension E-signature on W(E), and I([C]) the categorical dimension &-signature of

c].

In practice, when there is a pseudounitary representative C for a Witt class, the
signatures I¢([C]) = Iz([C]) are ebbentially a function of the Galois group of Q,,, where

n is the conductor of /dim(€)dim(C). For simplicity, Ivec, Lsvec; Lie and Ily.. &
denoted by I, sI, I' and sI’ respectlvely.

Corollary 3.8. The following diagrams of group homomorphisms are commutative
W—S W wW——5 LW

N TN

Proof. The statement follows immediately from Theorems 3.4, 2.3 and the definition
(2.10) of S. O
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4. Higher central charges and signatures

Let C be a modular category. The n'* Gauss sum 7,(C) of C introduced in [32] is
defined as

W(C) = > dif%.

Xelrr(C)
If 7,,(C) # 0, the n'"* central charge &,(C) is defined by

T (C)

“O=ren

In particular, if N is the Frobenius-Schur exponent of C and n is coprime to N, by [32,
Theorem 4.1], 7,(C) # 0 and &,(C) is a root of unity. When there is no ambiguity, we
simply write 7, and &, for the nt* Gauss sum and the n'" central charge of C.

Recall that there is a group homomorphism * : Gal(Q) — Sym(Irr(C)) from the abso-
lute Galois group to the permutation group Sym(Irr(C)) of Irr(C). By [14, Proposition

4.7], for any third root v of &, we have

v
a?(y)

The following theorem shows the relation between higher central charges of C and the

signature of 1/dim(C) (cf. (3.11)).

Os(1) = (4.14)

Theorem 4.1. Let C be a modular category with Frobenius-Schur exponent N. Then for
any integer n coprime to N,

n

— o)-o(&) - i
gn*sC() (g) 0_2(,7»”>

where 7y is any third root of &1, o € Gal(Q) such that o= ((n) = (%.
Proof. By [32, Theorem 4.1],

B dim(C) ,
Tn = U(Tl)m () -

Since dim(C) is totally positive and 6,1y is a root of unity, we find

~_dim(C)
o(dim(C))

[7n| = lo(11)]

Therefore,
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Since 71 = |7y| - & and dim(C) = |71|?, we have
o(n) = (D)o (&),
where D = /dim(C). Thus,
lo(r)| = [o(D)].-

Therefore,

&n = 0—0(51)92(11) =cc(0) (&) - 05 -
Now, the formula follows from (4.14). O

Note that since both o(¢;) and v/0%(v) are completely determined by &; and o, &, is
completely determined by o, & and e;(0).

Remark 4.2. Consider S, the unnormalized S-matrix of a modular category C. Similar to
Lemma 2.2, there exists a sign function €, : Irr(C) — {£1} such that

Sxy\ Se(x)y Sx,6(v)
0< 5] > = €e,(X) o) =¢,(Y) o)

for any X,Y € Irr(C) (cf. [18,14]). In particular, o(S1,1/D) = €5(1)Ss(n),1/D. This

implies

o(D) = (1)
Therefore,
() = sen(0(D)) = ¢o(1) - sen(dau) .
If dx > 0 for X € Irr(C) or C is pseudounitary, then (o) = e, (1).
For the remaining discussion, it would be more convenient to define the higher mul-

tiplicative central charges of degrees coprime to the Frobenius-Schur exponent of C as a
function in Us,. For any N € N, and k coprime to N, we use o to denote the element

in Gal(Qn/Q) such that o1 ((n) = (&
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Definition 4.3. Let C be a modular category and N = ord (T¢). We define the higher

central charge function U¢ € Uy, of C as follows: for any o € Gal(Q), if o|g, = ok, then
\Ifc(O') = fk(C) .
In this convention, Theorem 4.1 can be restated as follows.

Theorem 4.4. Let C be a modular category. Then for any o € Gal(Q),

e(o) =elo) -0 (6(0)) - ;%

where v is any third root of & (C).
Proof. The theorem is a direct consequence of Theorem 4.1 and Definition 4.3. O

This formula of higher central charges allows us to define the function ¥, in the
following definition, on the subgroup Wy, of W generated by the pseudounitary modular
categories. This function ¥ will be shown to be a group homomorphism in the subsequent
proposition.

Definition 4.5. Let Wy, be the subgroup of W generated by the pseudounitary modular
categories. The function ¥ : W, — U, called the higher central charge homomorphism,
is defined by

v([C]) = Ve
for any pseudounitary modular category C.

Proposition 4.6. The higher central charge homomorphism ¥ : Wy, — Uy is a well-
defined group homomorphism.

Proof. If C and D are Witt equivalent pseudounitary modular categories, then & (C) =
¢1(D) and € = £, by Theorem 3.5. Let v € C be any 374 root of £;(C). Then, for any

o € Gal(Q), we have

¥e(0) = (o) 07 H6(C) - Ty = (o) -0 (D) I = (o).

By [32, Lemma 3.1] or Theorem 4.4, we also have

Vegp(o) = Ye(o) - Up(o)

for any o € Gal(Q) and pseudounitary modular categories C, D. Therefore, ¥ is a group
homomorphism and this completes the proof of the statement. 0O
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Remark 4.7. Theorem 4.4 also implies that the higher central charge homomorphism is
equivalent to the product of the first central charge and the signature. More precisely,
recall that the first central charge homomorphism is defined by & : Wan — pieo, [C] —
&1(C) (see [9]). Define a function § : pioe X Us — Uy by

F(u,g9)(o) := g(g*l) -a’l(u) . fi(’Y)

for any o € Gal(Q), where «y is any third root of u (note that the value of the function
does not depend on the choice of ). It is easy to see that § is a group monomorphism,
and Theorem 4.4 implies the commutativity of the diagram:

I
S Moo XZ/{Q

Wi ———
R %
Uso
In light of this commutative diagram, we will call ¥ or the equivalent map ¥’ :=&; x [
the higher central charge homomorphism.

We close this section with the following proposition which will be useful for the last
two sections, the proof of which follows immediately from the preceding remark.

Proposition 4.8. The kernel of U consists of the Witt classes [C] € Wan such that & (C) =
1 and ¢ is the constant function 1. O

5. The modular tensor categories s0(2r + 1)2,41
In this section, we provide some basic facts for the quantum group modular categories
Cr :=50(2r 4+ 1)ap41
for » > 1. The readers are referred to [1,34] for more details on these categories. In
particular, by [38], C,. is pseudounitary, so ec, = ¢ for 7 € N by Remark 3.2. We

prove a formula for the higher central charges of C, in Lemma 5.1 and a formula for
D, = /dim(C,) in Proposition 5.3 which are essential to the proof of our major result.

5.1. Notations and formulas

Some basic facts of the categories C, can be extracted from the underlying Lie algebras
50(2r+1) and their root/weight datum. The conventions and notations of roots, weights
and information of C, are adopted from [1,3,21,34]. We list below some of the datum we
will use in the next few sections.
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Let n = 2r + 1 for some r > 1. The Lie algebra so(n) = so(2r + 1) is of type B,.
We consider the quantum group modular category C, of so(n) at level n, and use the
following notations for r > 2.

o Orthonormal basis for the inner product space (R, (- |-)): {e1,...,er}.
e Normalized inner product such that any short root « has squared length 2:

(ej,er) = 205 = 2(e; | ex).
e The set of positive roots: Ay. It contains the following elements

e, j=1,...,m;
ej—ep, 1 <j<k<r
ejter, 1<j<k<r.

In particular, |A4| = 72.
o Fundamental weights:

wj =e1+ -+ ey, j=1...,r—1;

1
wT:§(el+---+er).

o The set of dominant weights: @ .
¢ Root lattice: Q.
o Coroot lattice:

2a

(a] )

o Weight lattice: P. Note that the index of QY in P is given by

Q" ={ |la€Q}.
[P/QY|=1P/Ql-1Q/Q"| = 4. (5.15)

e Half sum of positive roots:

1

pP=3 ((27" —1er+(2r—3)ea+ - +3e,—1 + e,.).
o Highest root:
Yo = e1 + ea.

e Dual Coxeter number:

W =2%r—1=n-2. (5.16)
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e The fundamental alcove:
Cr={0€ed | (A +p|d) <n+h"}
={Ae€ed | (A+p|) <4r} (5.17)
={Aed | (A|VY) <n}
Note that the isomorphism classes of simple objects of C,. are indexed by C,., and so

we identify C, and Irr(C,).
e Quantum parameter:

_ T _ T e ﬂ
4= P 2(n+ hV) TP\ \an—a) TP\ )

e Quantum integer:

m

q" —q

m] = q—qt

o Twist:
0y = @220 for N e O,

e Quantum dimension:

o 20tela)
b= U Sgrar fres

e First central charge:

T
=
—
o
R
S~—
Il
o
o]
o]
7N\

2mi ndimc (50(71)))

8 n -+ hY
oo (25 - 1)) .

For r =1, C, = s0(3)3. All the above notations are the same except that ¥g = e;.
5.2. Higher central charge of C,

Let D, = y/dim(C,) be the positive square root of dim(C,.). Let N, be the Frobenius-
Schur exponent of C,, and T, the T-matrix of C,. By [30, Theorem 7.7],

N, =ord (T,) = lem{ord (0)) | A € C,-}.
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Lemma 5.1. Let r be a positive integer. Then

(a) lem{32,4r} | N, | 32r.
(b) D, € Qn,, and for any o € Gal(Q), we have

Y([C)) (o) =ec. (o) (5.19)

Proof. Since 2(\ | A+ 2p) € 1Z, 0, = ¢®PP+20) is a 32rth-root of unity. Therefore,
T3 =id or N, | 32r.
By (5.17), we have w, = $(e; + -+ + e,) € C,.. Therefore,

r(2r+1) .

2wy |wy +2p) = B

Therefore,

i r(2r+1) (2r + 1)mi
9w = Q(wr‘wf-‘er) = —ﬂ-l . 47‘( = -
r=4 P 5 2 P 16 ’

which implies that ord (6, ) = 32. Thus, it suffices to consider r > 3 for statement (a).
Note that by (5.17), we have 2e; € C,. for r > 3. We have

2(2e1 | 2e1+2p) =8+4(2r—1)=8r +4.

O2¢, = exp (g - (8r —|—4)> = —exp <72r—i>

which implies that ord (6s.,) = 4r. The above computations imply the first divisibility

Therefore,

of statement (a).

By (5.18), 7 = &1(C)* is a 374 root of &(C,), and ¥32 = 1. By (a), 7 € Qu, . This
implies that D, € Qp, by [14, Theorem II (ii)]. The remaining statement of (b) follows
immediately from Theorem 4.4. 0O

Remark 5.2. The preceding lemma implies that ord (7)) is non-decreasing with respect
tor.

5.8. A formula for D,

Proposition 5.3. The square root of the global dimension of C, is given by

Vi (& (0 — D\ ES L (ir\™ W
DTZW Hsm % Hsm ™ (5.20)

=1 =1
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where my(j), 1 < j < 2r —2, is given by

. 0, ifr=1;
mr(])—{ ;

r—[%—|, if r>2.

Proof. According to [1, Theorem 3.3.20],

1P/(n+1)QY] ] <2sm <7§a+|£\)/-7r>)1. (5.21)

aE€Ay

By (5.15), (5.16) and the fact that |A | = r%, we have

D, = 42(%70)7“ H (sin ((054—|Tm7r>>_1

et (5.22)
B 2v-f—1 all (Sin <%W)>

Recall that Ay = {es,eq ey |1 <l <r,1<a<b<r} then (o] p) can be easily
given as follows:

When o = ey for some 1 < ¢ < r, (a| p) = (r — €) + 1/2 which is a half integer;
when a = e, + ¢, for some 1 <a <b<r, (a]|p)=2r—(a+b)+1 which is an integer
satisfying

2< (alp) <2r—2;

when oo = e, —¢p for some 1 < a < b <r, (a| p) =b— a which is also an integer
satisfying

1<(afp)<r-1.

Let m,(j) = #{a € Ay | (a| p) =4} for 1 < j < 2r — 2. We can now rewrite (5.22)
as

-1

Vi (& (@=Da\ TS e\ W
DT._W Hbln B Hbln I

=1 =1

When r =1, (a | p) is not an integer for @ € A and hence the lemma follows directly

from (5.22). We proceed to show that m,(j) =r — {%] forr>2and1<j<2r—2by
induction on r.
Note that the equations j = b —a and j = 2r — (b4 a) + 1 have no common integer

solution (a,b) for any integer j. Thus
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my(j) = [Mr(j)]
for 1 <7 < 2r — 2, where
M, (j) :=={(a,b) | 1 <a <b<rsuchthat (b—a—j)(2r—(b+a)+1—j)=0}.

One can check directly that m(j) = 2— [4] for 1 < j < 2. Assume that m,.(j) = r—[]
for all 1 < j < 2r — 2 for some integer r. Note that if 1 < j < 2r — 2, then

M, (j) + (1,1) = {(a,b) € My41(j) | a = 2}
Thus,

(M, (j) + (1, 1) u {1, + 1)} if1<j<r,

MT+1(j):{(Mr(j)+(171))U{(1’2r+2_j)} ifr+1<5<2r—-2.

Therefore, m,+1(j) = m,-(j) + 1 for 1 < j < 2r — 2. It is easy to see that

Myoa(2r — 1) = {(1,3)}, My 11 (20) = {(1,2)} and F’”;ﬂ _ %W —r

Thus,
Mo () = 1My () = 1=7+1- M
for 2r — 1 < j < 2r. Therefore, we have m,41(j) =r+1— {%] for 1<j<2r. O

6. Witt subgroups generated by C,.

Let 7 := su(2)3 be a fixed Ising modular category (cf. [15]). It is well-known (cf. [9])
that for any n = 2r + 1, the conformal embedding so(n), x so(n), C so(n?); implies
Cr K C, is Witt equivalent to an Ising modular category. By comparing the first central
charges, the Witt class [C,] of C, satisfies

[Z)'* if r=0or 3 (mod 4),
, (6.23)
[Z]?, if r=1or2 (mod 4).
Since the first central charge of C,. is a primitive 32"¢ root of unity (cf. (5.18)), the cyclic
subgroup ([C,]) of W generated by [C,] is of order 32 for any positive integer r.

In this section, we study the subgroup of the Witt group W generated by the Witt
classes [C,] for » > 1 using their higher central charges. We proceed by investigating
some number-theoretical properties of them.
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6.1. The signature of C,

In this subsection, we compute some values of the signatures of an infinite subset of
{C, | » € N}. For any pair of coprime integers k, m with m > 1, let o denote any
element in Gal(Q) such that o1((n) = ¢X

m:*

Lemma 6.1. For any integer v, j, k with k =1 (mod 4) and ged(k,r) =1,

i . kjm .
Ok (sm (ZET’)) = sin (é) n Qg - (6.24)
Proof.

. Jmi —jmi kjmi —kjmi i
. g esr — e s e 8 — e 8r . kjﬂ'
g s | — =0 — — sin )
’“( (8r>> ’“( 2 ) < 2 ) <8r)

Lemma 6.2. Let r be an odd positive integer. For any integer k coprime to r,

— K\ —
Uk( T*) = <’f’> rr,
-1
where r* = <> r, and (.> is the Jacobi symbol. If, in addition, k = 1 (mod 4), then,
r r

n Qur, we have

() = (5)vF-

r

Proof. For any prime factor p of r, \/p* € Q, C Q, (cf. [37]). Note that Gal(Q,/Q) is
cyclic of order p — 1. Thus, if a is a primitive root of (Z/p)*, then o, is a generator of

Gal(Q,/Q) and o,(v/p*) = —/p*. Therefore, i (\/p*) = (—1)7\/p* for any integer j.
Hence, we have oy (1/p*) = (S) VD*.

If r = py - - pe is the prime factorization of r, then 7* = p7 - - - p; and so

ok(VI™) = on(V/pD) -+ on(V/0]) = (ﬁ)...(ﬁ)ﬁ: (ﬁ)f

Y41 De

If, in addition, K = 1 (mod 4), then, in Q4,, we have

(VT gk<fr> fﬁ

Proposition 6.3. For any integersl > 0, w > 0 and y, let a = 21+ 1 + w(8l 4+ 2) and
k=8ya+4l+ 1. Then, ged(k,4a) =1 and
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ec,(ok) = (-1)".
Proof. The first assertion follows directly by the Euclidean algorithm. We proceed to
compute the sign of each component of o1 (D,) in the right hand side of (5.20). The sign

of the second sine component is 1 by the following lemma.

Lemma 6.4. We have the following equality:

Proof of Lemma 6.4. Since £k =1 (mod 4), by Lemma 6.1, we have

2a—2 . meq () 2a—2 ki meq(3)
sgn | ok H sin (g) = H sgn (sin (4];)) .
j=1 Jj=1
For each j =1,...,2a — 2, we have

. ([ kjm . [ (Bya+4l+1)jr N ACTE T
sin| — | =sin | ~—~>———"— | =sin [ ———>— ] .
4a 4a 4a

Moreover, by the definition of a and the assumption that w > 0, we have

(4l +1)(2a — 2)

— 21 .
1a >0
Therefore,
41 +1)(2a — 2 41+ 1)(2 1
2l<(l+ )(2a )<(l+ )(a)=2l+—.
4a 4a 2

Consequently, for j =1,...,2a — 2, sgn (sin (W)) = —1 if and only if

(4l +1)5

2 —1<
9 4a

<2 (6.25)

for some 1 < ¢ < [.
For any ¢ =1,...,1, (6.25) is equivalent to

4q -2 4q
8 2)(2g — 1 8 2)(2 —_
(3w +2)(2g — 1) + T < < (Sw+2)(20) + s
Since 1 < ¢ <[, we have
4q — 2 4
0< g < q <1

4I+1  4+1
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So (6.25) is equivalent to
Bw+2)(2¢—1)+1<j<(8w+2)(2q).

There are exactly 8w+2 integers between (8w+2)(2¢—1)+1 and (8w+2)(2q) inclusively.
They can be written in pairs (8w + 2)(2¢ — 1) + (2t — 1), (8w + 2)(2¢ — 1) + 2t for
1 <t < 4w + 1. However, for each such ¢, we have

ma((8w 4 2)(2q — 1) + (2t — 1))

(8w +2)(2q — 1) + (2t — 1)
a—

=a— ((dw+1)(2¢ — 1) + 1)
[(4w +1)(2¢ — 1) + (2t)—‘

=Qaq —

=Qa —

2
=mq((8w + 2)(2¢g — 1) + (2t)).

2a—2 k . mq(J)
sgn | sin P

I
I

Thus we have

w—+1
H (_1)'rnu((8w+2)(2q—1)+(2t—1)) i (_1)ma((8w+2)(2q—1)+2t) (626)

=1

)

as desired. O

The sign of the first sine component of the right hand side of (5.20) is computed in
the following lemma.

Lemma 6.5. We have the following equality:

sen | o Hm(%_n> =~

Proof of Lemma 6.5. Since K =1 (mod 4), by Lemma 6.1, we have

o (i (22)) - T (57)

Thus,



28 S.-H. Ng et al. / Advances in Mathematics 404 (2022) 108388

(25 -1 (25 -1
sgn | oy H sin ( j=Ur > H sgn (sm ( jga i >) .
Moreover, by definition, we have

i <k(2j8; 1)71') . <(8ya+4l Ei)(zj - 1)71')

— (—1)7sin ((41—&—1)8(23'—1)77) |

Therefore, since a is odd, we have

(o (o (B27) ) ) = o T o (222,

(6.27)
Since
(4l +1)(2a—1) s,
8a
we have
I < (4l 4+1)(2a —1) - (4l +1)(2a) :l+1.
8a 8a 4

Now we consider two cases.
(4l+1)(25-1) 71'))

Case 1. If [ is even, then for any j = 1,...,a, sgn(sin( e

= —1 if and only
if

(4 +1)25-1)

2 —1<
4 8a

<2 (6.28)

for some 1 < ¢ <1/2. Note that for any ¢ = 1,...,1/2, (6.28) is equivalent to

4g-2 1 4 1
I << (Bw+2)(2g) + — L 4 =

8w+ 2)(2¢ — 1
Bw+2)QCe-1+ 7 +5 A+1 2

Since 1 < ¢ < 1/2, we have

4q — 2 4q 1

011 “d+1° 72

0<
(6.28) is equivalent to

Bw+2)(2¢—1)+1<j<(8w+2)(2q) = 16wq +4q.
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Hence, we have
1/2 16wq+4q

(4Z+1)(2j1)7r)) 1 1 1) =1

H sgn (sin (
, 3a :
J=1 =1 \j=(8w+2)(2¢—1)+1

as there are 8w + 2 terms in each of the product corresponding to g.
%W)) = —1 if and only

Case 2. If [ is odd, then for any j = 1,...,a, sgn(sin(

if j satisfies

Al+1)(25 — 1
20— 1< M <2 (6.29)
8a
for some 1 < ¢ < (I —1)/2, or j satisfies
(4l+1)(25 - 1) 1
< —F <+ - 6.30
8a + 4 ( )

By the same argument as in Case 1, the sign for the j’s satisfying (6.29) is equal to
(1-1)/2 16wq+4q

11 11 (-1 | =1.

g=1  \j=(8w+2)(2g—1)+1

Note that (6.30) is equivalent to

21 1
Swl+2l+ ——+ =< —.
wl + +4H_1—|—2<]<a-i-2

Since % < %, and by definition of a, (6.30) is equivalent to

a—2w<j<a.

Note that there are 2w + 1 such j’s, and so their sign contribution is -1. Therefore,

o (4 22-0)

(1-1)/2 16wq+4q
= 11 11 |- [ n=-1.
q=1

j=Bw+2)(2¢—1)+1

This completes Case 2, and we have

jﬁlsgn (Sin ((41 + 1);2;‘ — 1)7r>> I
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for any positive integer [.
Combining with (6.27), we obtain

& (2 —Dm
sgn | ok jl;[lsm <%> = (—1)¥*!

as claimed. This completes the proof of Lemma 6.5. O

Now we are ready to prove Proposition 6.3. By definition and the quadratic reciprocity
of Jacobi symbols, we have

<§> - <$> B (451 1) B @E) - (;511) = (2:1) =(-D". (631)

Therefore, by Lemma 6.2,

1

o (Va©) = o (a3 Va) = (—) Va= (-1 va,

i.e., sgn(or(va®)) = (—1)!. The proposition follows directly from Lemmas 6.4, 6.5 and
(5.20). O

6.2. The higher central charge homomorphism ¥ on Wy,

In this subsection, we construct certain infinite sequences a; = {a;,}5%, of positive
integers and prove that the restriction of the signature homomorphism I on the subgroup
Gy of Wun generated by {[Cq, ] | » > 0} has kernel ([Z]). Moreover, we show that ¥|g,
is injective, and the image {S([Cq, ,]) | 7 > 0} in the super-Witt group sW is Fa-linearly
independent.

For any positive integer I = 2 (mod 4), we define the sequence a; = {a;,}52, induc-
tively by setting a; o = 2141, and defining a; »+1 to be the smallest positive integer such
that

A nt1 =20+1 (mod 81+ 2)
and ged(agny1,a:,5) =1 for all j =0,...,n. The existence of the infinite sequence a; is
guaranteed by the Dirichlet prime number theorem. For example, the sequence a5 begins
with

5,23,41,59, 77,113,131, 149, 167, 221,239, . . .

Let Gy, be the subgroup of Wy, generated by {[Cqs, ;] | j =0,...,n}, and
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Gi=J G
n=0

For any positive integer » and o € Gal(Q), we simply denote

Theorem 6.6. Let | = 2 (mod 4) be a positive integer. Then the set of signatures

{€a, . Yn>0 is Fa-linearly independent, i.e., ifsf’l?yo . -sg’llyn =1 for some integers by, ..., b,
and positive integer n, then bg = -+ =b, =0 (mod 2). In particular,

1(G1) = D {earn) -

n>0
Moreover, Gy, Nker I = ([Z]) for all nonnegative integer n.

Proof. Suppose {eq,, }n>0 is dependent. Then, there exist a positive integer n and some

br

integers bg,--- ,b, such that b, is odd for some m < n and % ...¢ = 1. Since

a0 ap,n
g2 =1 for all r € N, we may assume that b; > 0 by adding some positive multiple of 2
Rbg R,

if necessary. Now, let A=C,  X---XC, " and A = [A]. Then,

ar,o

ea=¢er ...ghho =1, (6.32)

a0 ap,n

Now let N :=lem{ord (Tg, ;) | 0 < j <nand j # m}. Then by Lemma 5.1 (a),

32|N, and N|[32 [] a;-
0<j<n
#m
By the definition of a;, the integer a; ,, is coprime to 32 and a; ; for all j # m, and hence
ged(ay,m, N) = 1. Therefore, there exist =,y € Z such that

xam +yN =1.

Set k := —4lza;m + 4 +1 = 4lyN + 1. Then k£ = 1 (mod N). Moreover, by Proposi-
tion 6.3, ged(k, a; m) = 1. Therefore, ged(k, Naym,) = 1.

Let 0 € Gal(Q) such that U\QN%M = op. Forany j = 0,...,n and j # m, we have
Dy, ; € Qora (Ta, ;) C Qn by Proposition 5.3 or [14]. Since k = 1 (mod N), o(Dy, ;) =

D,, ; and hence ¢, ;(0) = 1. Also, by Proposition 6.3, we have

Carm(0) = (=1)!*/% = (=1)*

since [/2 is odd. Note that za; ,», +yN = 1 implies that = has to be odd, and so we have
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n
ea(@) = [[ea, (0% =ca.(0) = (-1)* = -1,
J=0

which contradicts (6.32). Therefore {eq, ,, }n>0 is Fa-linearly independent.
Since I([Cq, %) = €2, , = 1 and ([Cq,,]®) = ([Z]), ([Z]) © Gin NkerI for any

)
nonnegative integer n. Conversely, if A € G}, Nker I, then

A= [Cﬂl,o]bo R [Caz_n]bn and I(A) — Ebo . 'Eb" —1.

az,o ai,n

The preceding conclusion implies by, ..., b, are all even. Since [C,.]? € {[Z]) for all 7, we
find A € ([Z]). Therefore, G;,, Nker I = ([Z]). O

The subgroup generated by {S([C,]) | » > 1} in sW is an abelian group of exponent
2. It is conjectured in [10, Conjecture 5.21] that {S([C,]) | » > 1} is linearly independent
in sW. The following corollary proves that this holds for infinitely many subsequences
of {S([C;]) | » > 1}, but we do not know whether they are in s, or not. The group
sWs will be further discussed in Section 7.
Corollary 6.7. For any positive integer | = 2 (mod 4), the sequence
sa1 = {8(Cay ) |3 2 0}

is linearly independent in sWV.

Proof. Apply the signature homomorphism s/ to the sequence {S([Cq, ,]) | n > 0}. By
Corollary 3.8, we find

{81 0S8([Ca; 1) }nz0 = {€s,. tn>0

which is Fa-linearly independent by Theorem 6.6. Therefore, {S([C;]) | r > 1} is linearly
independent in sW. O

The commutativity of the diagram

G 5 S(Gy)

I(Gy)

implies the equivalence of the restriction of S and I on G;. Now, we can determine the
isomorphism class of GG; using the higher central charges homomorphism ¥ or simply
the signature homomorphism 1.
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Corollary 6.8. For any positive integer | = 2 (mod 4), G; has the direct sum decomposi-

tion:
Gr = {([Cay,)) © @D(Cn) = Z /320 (Z/2)°N, (6.33)
n>1
where Cy, = [Ca, ]+ [Cayo) ™™ for n > 1, where i, is an integer such that [Cq, | =

[Ca,..J?. Moreover, ¥|q, is injective.

Proof. For any integer n > 0, since ([Cq, . ]*) = ([Ca,,]?), there exists an integer i, such
that [Ca, ]2 = [Ca;o)*. Then C2 = [Vec] for n > 1, and G is generated by the elements
[Ca; ] and Cp, n > 1. Suppose

b
[VGC} = [C(ll,o]bocll T CZ"
for some positive integer n and integers by, . .., b,. Note that ec; = &, ;, and so we have

_ bo—(irbi+Ainby) b1 by
1= Eaz,o <€az,l Eal,n :

By Theorem 6.6, we have by, by, ...,b, are all even and hence C;-)j = [Vec] for j > 0.
Thus, we have [Cq, ,]% = [Vec], and this proves the direct sum decomposition (6.33).
The second isomorphism follows immediately from the fact that ord ([Cy, ,]) = 32.

Finally, if A = [C4,J%C" -+ Cb € ker(¥), then I(A) = 1 and &(A) = 1
by Proposition 4.8. It follows from Theorem 6.6 that by, ...,b, are all even and so
A =[Cq,,]% € ([Z]). Since the first central charge homomorphism ¢; is injective on ([Z]),
&1(A) =1 implies A = [Vec]. Therefore, ¥ is injective on G;. O

Remark 6.9. By the same argument, Corollary 6.8 holds for any infinite subsequence of
a;. This version of Corollary 6.8 will be used in Theorems 7.2 and 7.3.

It is not difficult to show that the higher central charge homomorphism W is injective
on Wy (p), the Witt subgroup of Wy (p) generated by the Witt classes of the pointed
modular categories C(H,q) where H is a finite abelian p-group. However, the kernel of
Wlyy,, is not trivial.

For any odd prime p, let A, be the unique Witt class in W, (p) of trivial signature.
In particular, A, has order 2 and can be represented by an abelian group of order 2.
Let Ay := [Z]8, which is the unique class of Wy (2) of order 2 with trivial signature.
Therefore, A, is the unique element of W, (p) of order 2 with trivial signature for all
prime p.

Remark 6.10. Note that the first central charge of A, is —1 for any prime p, and so
A, ¢ ker(). However, for any primes p and p’, A, A, € ker(¥) by Proposition 4.8.
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Proposition 6.11. The intersection ker(¥) N W,y is generated by ApA,, where p and p’
are distinct primes.

Proof. Let B € ker(¥)NW, be a non-trivial Witt class. Then there exists an anisotropic
metric group (H, ¢) such that B = [C(H, q)] such that & (C(H,q)) =1, and I(B) =1 by
Proposition 4.8.

Let h = H?=1 pjj be the order of H, where p1,...,p, are distinct primes. Then

B=DB,, - B,,
where By, € Wy (p;) is nontrivial for j = 1,...,n.

We claim that e; has to be even for all j = 1,...,n. In particular, I(B,,) = 1. Oth-
erwise, vh ¢ Q and there exists 0 € Gal(Q) such that o(vh) = —v/h, that means
I(B)(0) = —1, a contradiction.

To complete the proof, it suffices to show n is even and B),, = A, for j = 1,...,n.
Since e; is even for any j = 1,...,n, By, = Ap, if p; is odd. Thus, if h is odd, so are p;
for all j. Then

1145, =] B», = B € kex(¥)
j=1 j=1

implies that n must be even by Remark 6.10.
n

. . €4
We now consider the case when h is even. Then h = 2 Hj:2 p; for some even

positive integer e;. Suppose n is odd. Then

H By, = H Ay, € ker(V)
j=2 j=2

by Remark 6.10. Since B € ker(¥), and so By € ker(¥). However, this contradicts that
U is injective on Wy (2) (cf. [32, Example 6.2]). Therefore, n is also even in this case.
Consequently, By has the same first central charge as ]_[;L:2 A, ! which is —1. Therefore,
By=AsasI(By)=1. O

Theorem 6.6 and Proposition 6.11 inspire the following questions.

Question 6.12. Is the sequence {e,},>¢ linearly independent? An affirmative answer to
this question implies the linearly independence of the sequence {S([C,])}r>0 in sW.

Question 6.13. Is the intersection between ker(¥) and the torsion subgroup Tor(Wyy)
contained in Wy ?
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7. The group sW,

Let sWp be the image S(W,) in sW. By [10, Proposition 5.18], the super-Witt group
sV can be decomposed into a direct sum

SW = sWp @ sWa @ sW

where sW, (resp. sW,,) is the subgroup of sW generated by the Witt classes of com-
pletely anisotropic s-simple fusion categories of Witt order 2 (resp. of infinite Witt order).
In particular, the torsion part of sW is sWy & sWa. It is conjectured [10, Conjecture
5.21] that sW, has infinite rank. In this section, we give a proof for this conjecture in
Theorem 7.3. We also prove that [Z] has infinitely many square root in YW modulo Wy
(Theorem 7.2).

Fix a positive integer [ = 2 (mod 4) as before. Consider the subsequence p = {p;}32
of a; consisting of all prime number terms. Again by the Dirichlet prime number theorem,
p is an infinite sequence. Let G be the subgroup of G; generated by {[C,,]};>0.

Proposition 7.1. We have Gp N Wyt = ([Z]?).

Proof. Since [Z]? € Wy and ([Z]2) = ([Cp,]*), ([Z]?) € GpNWps. Suppose A € Gp N Wy

is nontrivial. Then A = []7_, [Cp,]” for some integers by, ..., b,. As is illustrated in
the proof of Theorem 6.6, we can assume that all the b;’s are nonnegative, and we let
Xbg b,

A=C, X.---KC, ".

We first show that all the b;’s are even. If not, there exists a nonnegative integer
m < n such that by, is odd. Since [Cp,]* € ([Cp]?) for all j, we may simply assume
m=n.

Since A € W, there exists a finite abelian group H and a non-degenerate quadratic
form ¢ : H — C* such that the corresponding pseudounitary modular category H =
C(H,q) satisfies [H] = A in Wyy,. By Theorem 3.5,

ealo) =ey(o) (7.34)

for all o € Gal(Q).
Let h denote the order of H. Since p,, is an odd prime different from pg,...,p,_1, we
can write h as h = hyhg, where ged(hy, p,) = 1, and hy = pg, for some s € N U {0}. Let

n—1
M:32h1 HpJ
7=0

Again, Lemma 5.1 (a) implies that ord (7},,) | M for j = 0,...,n — 1. Moreover, by
construction, ged(p,, M) = 1. Hence, there exist z,v € Z such that

Tpn +vM =1.
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Note that since M is even, x has to be odd.
Set k := —4lxp, + 41+ 1 = 4lvM + 1. Then &k =1 (mod M) and ged(k,p,) = 1 by
Proposition 6.3. Therefore, we have k = 1 (mod hq), and ged(k, p, M) = 1.

Let N = Mp,, and o € Gal(Q) such that o|g, = ok. By Proposition 5.3 or [14] again,
D, € Qord(ij) C Qu for j=0,...,n—1.Since k =1 (mod M), o(D,,;) = D,,, and
hence ¢,,(0) =1 for j = 0,..,n — 1. Apply Proposition 6.3, we have

o) = (1) = -1,

Since b,, is odd, we have

ealo) =[] e, (@) =p, (o) = —1.
7=0

By the definition of M, we have vh € Qx and v/h; € Q. On one hand, since k = 1
(mod M), o(v/h1) = Vhi. On the other hand, k =1 (mod 4). By the same computation

as (6.31), we have
k
) =(-Dt=1.
() =

Therefore, by Lemma 6.2 and hy = p;,, we have

Vi Vhy  Vh

contradicting (7.34). Therefore, by, ..., b, are all even, and hence A € ([Z]).
Since ([Z]) N Wyt = ([Z]?), A € ([Z]?). Therefore, G, N Wy, = ([Z]?). O

AR ) ey _ (K _ (kY

Theorem 7.2. The Witt class of the Ising modular category T has infinitely many square
roots in YW modulo Wy.

Proof. Let p = {p;}72, be the prime number subsequence of a;. Then Gp N W,y = (Z)%.
By Corollary 6.8 and Remark 6.9,

Gp = [Cpo] @ @(Cn>

n>0

where C,, is an order 2 element given by [C,,][Cp,] " for some integer 4,,. Since ([Cp, |*) =
([Z]) for all n > 0, the statement follows. O

Theorem 7.3. The group sWs has infinite rank.
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Proof. Let p = {p;}52, be the prime number subsequence of a;. Then S(Gp) is an
elementary 2-group, and so S(Gp + Wpt) C sWpe @ sWa by [10, Proposition 5.18]. By
[10, Proposition 5.18], sWpt = S(Wpt). Thus,

S(Gp + Wpt)
S(Wpt)

is isomorphic to a subgroup of sW,. By Proposition 7.1, we have G, N Wy, = ([Z]?).
Since ker(S) = ([Z]), by Corollary 6.8 and Remark 6.9, we have

S(Gp + Wht) o~ Gp + Wpt ~ Gp + Woe [/ {[Z]) + Wt
) (Wpt) <[I]> + Wpt Wpt Wpt

~

.G, @ G
= Gpnwpt/ Gy Sy S @

Therefore, sWs, is an infinite group. 0O
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