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1. Introduction

Fusion categories can be viewed as categorical generalizations of finite groups. From 
this perspective modular (tensor) categories are generalizations of metric groups (G, q), 
i.e., finite abelian groups G equipped with a non-degenerate quadratic form q : G → C×. 
Indeed, any pointed modular category (i.e., with each simple object tensor-invertible) can 
be constructed from a metric group, and conversely [15]. Many structures and properties 
of metric groups can be generalized to the modular category setting. Two important 
examples are Gauss sums and Witt equivalence.

The quadratic Gauss sum τ(G, q) =
∑

x∈G q(x) of a metric group (G, q) is known to 
have the form ζ

√
|G| for some 8th-root of unity ζ. In particular, the modulus of any 

Galois conjugate of the quadratic Gauss sum of a metric group is always equal to 
√
|G|. 

The categorical dimension dim(C) of a fusion category C plays the role of the order of G, 
and the counterpart of the quadratic Gauss sum for modular categories is the first Gauss 
sum τ1(C) =

∑
X∈Irr(C)(dX)2 θX where dX are the categorical dimensions and θX are 

the twists. While the categorical dimension dim(C) of a modular category C may not be 
an integer, it is a totally positive cyclotomic integer (cf. [19]). This means σ(dim(C)) is 
a positive real cyclotomic integer for any automorphism σ of Q. It has been shown that 
the first Gauss sum τ1(C) is equal to ξ1(C)

√
dim(C) where ξ1(C) is a root of unity, and 

called the central charge of C (cf. [1]). However, the Galois conjugates of the Gauss sum 
τ1(C) can have moduli different from 

√
dim(C). This apparent discrepancy between the 

Gauss sum in the categorical setting and the metric group setting inspired the notions 
of higher Gauss sums and higher central charges for modular categories introduced in 
[32].

The concept of Witt equivalence and the Witt group W for non-degenerate braided fu-
sion categories was introduced in [9], generalizing the concept for metric groups. For met-
ric groups, Witt equivalence is defined modulo groups with a hyperbolic quadratic form, 
where the operation is the usual direct product of metric groups. For non-degenerate 
braided fusion categories one uses the Deligne product � and considers equivalence 
classes modulo Drinfeld centers. It is worth noting that Witt classes do not depend on, 
or assume, any pivotal structure. Moreover, the classical Witt group Wpt corresponding 
to metric groups appears as a subgroup of W, as the Witt classes of pointed modular 
categories. Witt equivalence for slightly degenerate braided fusion categories was intro-
duced in [10], and the corresponding Witt group sW is called the super-Witt group in this 
paper. The study of the Witt group for non-degenerate braided fusion categories leads 
to many interesting questions about its structure (see [10,9]). While it is known that 
the torsion subgroup Tor(W) of W is a 2-group with exponent 32, it was not previously 
known whether Tor(W)/Wpt has infinite cardinality or not. Another interesting open 
problem is to find a set of generators for the Witt group W. One of the reasons these 
problems are difficult is that there are very few known invariants of the Witt group.

Witt classes also have physical significance: symmetry gauging [8,2] and the reverse 
process boson condensation preserve Witt class. Both of these are topological phase 
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transitions in the theory of topological phases of matter [2,6]. Each Witt class has a 
unique completely anisotropic representative [9], and all members of that class can be 
reduced to this representative by anyon condensation. Thus, distinguishing Witt classes 
can be regarded as analogous to determining allotropy classes in chemistry.

It is known [19] that any pseudounitary braided fusion category has a unique canonical 
spherical structure so that the categorical dimensions dX > 0 for each X. Moreover, the 
Witt classes with a pseudounitary representative form a subgroup Wun of W [9]. For a 
pseudounitary non-degenerate braided fusion category C we may define its higher central 
charges to be those obtained from the modular category by endowing it with the canonical 
spherical structure yielding dX > 0 for all X. It has been proved in [32] that the higher 
central charges of degrees coprime to the Frobenius-Schur exponents of any two Witt 
equivalent pseudounitary modular categories are equal, generalizing the case for the first 
central charge which was proved in [9]. In particular, the higher central charges are Witt 
invariants on Wun. The higher central charges of C with degrees coprime to the Frobenius-
Schur exponent can be reformulated as a function ΨC : Gal(Q) → μ∞, where μ∞ ⊆ C is 
the group of roots of unity in C. This central charge function ΨC of C can be expressed in 
terms of the first central charge ξ1(C), and the signature εC : Gal(Q) → {±1} of C, which 

is a function given by εC(σ) = σ(
√

dim(C))
|σ(

√
dim(C))| . Since dim(C) is totally positive, 

√
dim(C) is 

a totally real algebraic integer. Therefore, σ(
√

dim(C)) is a nonzero real number, which 
can only be either positive or negative. It is proved in Section 3 that the signature of 
a pseudounitary modular category is an invariant of its Witt class. Moreover, both the 
central charges and the signatures of pseudounitary modular categories can be extended 
to group homomorphisms Ψ and ε from the Witt subgroup Wun to the group U∞ of 
functions from Gal(Q) to μ∞ (cf. Section 4).

The signatures of nonzero totally real algebraic numbers, especially those of algebraic 
units, are studied in number theory [17,16]. It is simple to determine the signatures of 
real quadratic numbers, but it is a difficult task for higher degree totally real algebraic 
number. However, for the quantum group modular categories Cr := so(2r+1)2r+1 (r ≥ 1), 
we are able to determine the signatures of a family of infinite subsequences of the Cr. 
Our starting point is a formula for 

√
dim(Cr) expressed as a product of sine values 

of rational angles. The determination of the signatures of these modular categories is 
inspired by the computation of the quadratic Gauss sum 

∑k−1
j=0 ζj

2

k in [20] (see also 
[35]).

Using these results, we study the Witt subgroups generated by the Witt classes of this 
family of subsequences. We prove in Theorem 6.6 that the signatures of the categories 
in each of these subsequences are F2-linearly independent functions, which enables us to 
determine the kernel and the image of the restriction of the signature homomorphism on 
these Witt subgroups. As a corollary, we show that they are all isomorphic to Z/32 ⊕
(Z/2)⊕N . Moreover, it is well-known that [Cr] are square roots of the Ising modular 
categories in the Witt group, and we prove that the Ising modular category has infinitely 
many square roots in W/Wpt.
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In sW, there is a subgroup sW2 generated by the Witt classes of completely anisotropic 
s-simple braided fusion categories of finite order, and sW2 is of exponent 2 (cf. [10]). It is 
conjectured [10, Conjecture 5.21] that sW2 has infinite rank. By applying Corollary 6.8
and Proposition 7.1, we prove this conjecture in Theorem 7.3.

The paper is organized as follows: In Section 2, we briefly review the key concepts 
for fusion categories and the Witt group W(E) over a symmetric fusion category E for 
later use. In Section 3, we define two versions of signatures for fusion categories over E
and show that they are Witt invariants. In Section 4, we derive a formula of the higher 
central charges in terms of the categorical dimension signature, and we define the higher 
central charge homomorphism Ψ on Wun in terms of the signature ε. In Section 5, we 
study the quantum group modular categories so(2r + 1)2r+1, with an emphasis on their 
signatures. In Section 6, we prove our first main results Theorem 6.6, Corollaries 6.7
and 6.8. We finally prove the conjecture of Davydov-Nikshych-Ostrik in Theorem 7.3 of 
Section 7.

Throughout this paper, we use the notation ζa := exp
( 2πi

a

)
, and Qa := Q(ζa) for any 

a ∈ N. In particular, i := exp
( 2πi

4
)

=
√
−1.

2. Preliminaries

2.1. Fusion categories and their global dimensions

A fusion category is a semisimple, C-linear abelian, rigid monoidal category with 
finite-dimensional Hom-spaces and finitely many simple objects which include the tensor 
unit 1 (cf. [19]). For any fusion category C, we denote by Irr(C) the set of isomorphism 
classes of simple objects of C. If the context is clear, we will use the abuse notation to 
denote an object in an isomorphism class X of C by X. The tensor product endows 
K0(C), the Grothendieck group of C, a ring structure. More precisely, we have X⊗Y =∑

Z∈Irr(C) N
Z
X,Y Z for any X, Y ∈ Irr(C), where

NZ
X,Y := dimC C(X⊗Y,Z) .

For any X ∈ Irr(C), let NX be the square matrix of size |Irr(C)| such that (NX)Y,Z =
NZ

X,Y for any Y, Z ∈ Irr(C). The Frobenius-Perron dimension (or FP-dimension) of 
X ∈ Irr(C), denoted by FPdim(X), is the largest positive eigenvalue for NX (cf. [19]). 
The Frobenius-Perron dimension of C is defined to be

FPdim(C) =
∑

X∈Irr(C)

FPdim(X)2 .

It is shown in [19] that for any fusion category C, FPdim(C) is a totally positive cyclotomic 
integer.

Let C be a fusion category. For any object V of C, the left dual of V is denoted by the 
triple (V ∗, evV , coevV ), where evV : V ∗⊗V → 1 and coevV : 1 → V⊗V ∗ are respectively 
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the evaluation and coevaluation morphisms for the left dual V ∗ of V (cf. [18]). A simple 
object X of C is called invertible if X ⊗ X∗ ∼= 1. For any morphism f : X → X∗∗, its 
left quantum trace is defined to be

trX(f) := evX∗ ◦ (f⊗idX∗) ◦ coevX ∈ EndC(1) ∼= C .

Since C is a fusion category, V ∼= V ∗∗ for any V ∈ ob(C) (cf. [27,19]). If X ∈ Irr(C)
and h : X → X∗∗ is a nonzero morphism, the squared norm of X is defined as

|X|2 := trX(h) · trX∗((h−1)∗) ∈ C ,

which is independent of the choice of h. The global dimension (or categorical dimension) 
of C is defined as

dim(C) =
∑

X∈Irr(C)

|X|2 .

By [19, Theorem 2.3], |X|2 > 0 for any X ∈ Irr(C), and dim(C) ≥ 1 for any fusion 
category C. Moreover, by [19, Remark 2.5], dim(C) is a totally positive algebraic integer. 
We will denote the positive square root of dim(C) by 

√
dim(C).

One can extend the left duality of C to a contravariant functor (−)∗. Then (−)∗∗ defines 
a monoidal functor on C. A pivotal structure on a fusion category C is an isomorphism of 
monoidal functors j : idC

∼=−→ (−)∗∗. A fusion category equipped with a pivotal structure is 
called a pivotal fusion category, in which the quantum dimension of any object V ∈ ob(C)
is defined to be

dimj(V ) := trV (jV ) ∈ EndC(1) ∼= C .

A pivotal structure j on C is called spherical if dimj(V ) = dimj(V ∗) for all V ∈ ob(C). 
A pivotal fusion category C is called a spherical fusion category if its pivotal structure is 
spherical. We will simply denote the quantum dimension of an object V ∈ ob(C) by dV
or dim(V ) when the pivotal structure is clear from the context.

If C is a spherical fusion category, then d2
X = |X|2 for any X ∈ Irr(C) (cf. [27,19]). 

Therefore, dX �= 0 for X ∈ Irr(C) and

dim(C) =
∑

X∈Irr(C)

d2
X .

By [31, Proposition 5.7], if C is a spherical fusion category, then dim(C) ∈ QN , where 
N = FSexp(C) is the Frobenius-Schur exponent of C (cf. [30]). If C is not spherical, then 
we can consider the “sphericalization” C̃ of C defined in [19, Remark 3.1]. In particular, 
C̃ is a spherical fusion category such that dim(C̃) = 2 dim(C) (cf. [19, Proposition 5.14]). 
The same argument as above implies that dim(C) ∈ QÑ , where Ñ = FSexp(C̃). The 
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upper bound Ñ can be determined by dim(C). In particular, dim(C) is a totally positive 
cyclotomic integer for any fusion category C.

Remark 2.1. The cyclotomicity of dim(C) can also be derived from [33, Corollary 1.4]
and [19, Theorem 8.51].

A fusion category C is called pseudounitary if dim(C) = FPdim(C). It is shown in 
[19, Proposition 8.23] that a pseudounitary fusion category C admits a unique canonical 
spherical structure such that dV = FPdim(V ) for any V ∈ ob(C). In this paper, we 
assume that any pseudounitary fusion category is equipped with its canonical spherical 
structure.

2.2. Braided fusion categories and the square root of dimension

Let C be a fusion category. A braiding on C is a natural isomorphism

βV,W : V ⊗W
∼=−→ W ⊗ V

satisfying the Hexagon axioms (cf. [18]). A fusion category equipped with a braiding is 
called a braided fusion category.

The degeneracy of a braiding β on C is characterized by double braidings. More 
precisely, let C′ denote the Müger center of C, which is the full subcategory C determined 
by objects V ∈ ob(C) such that βW,V ◦ βV,W = idV⊗W for all W ∈ ob(C). The Müger 
center C′ is a fusion subcategory of C. A braided fusion category C is called non-degenerate
if Irr(C′) = {1}, i.e. C′ is equivalent to the category Vec of finite-dimensional vector 
spaces over C. From any fusion category A, one can construct a non-degenerate braided 
fusion category [22,23,25], which is called the Drinfeld center of A and is denoted by 
Z(A).

In contrast to non-degenerate braided fusion categories, a braided fusion category C
is called a symmetric fusion category if C′ = C. For any finite group G, let Rep(G)
be the fusion category of finite-dimensional complex representations of G, equipped 
with the usual braiding. If z ∈ G is a central element of order 2, let Rep(G, z) be 
the fusion category Rep(G) equipped with the braiding given by the universal R-matrix 
R = 1

2 (1⊗1 +1⊗z+z⊗1 −z⊗z). Both Rep(G) and Rep(G, z) are symmetric fusion cate-
gories, and the theorems of Deligne imply that any symmetric fusion category is braided 
equivalent to Rep(G) or Rep(G, z) for some finite group G (cf. [12,13]). A symmetric 
fusion category is called Tannakian (resp. super-Tannakian) if it is braided equivalent to 
Rep(G) (resp. Rep(G, z)) for some finite group G. In particular, if C is symmetric, then 
dim(C) ∈ Z.

In general, if C is a braided fusion category, then C′ is either Tannakian or super-
Tannakian. If C′ is braided equivalent to Rep(Z/2, 1), which is the category sVec of 
finite-dimensional super-vector spaces over C, then C is called slightly degenerate.
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A premodular category is a spherical braided fusion category. A premodular category 
C is called modular if C is non-degenerate. The (unnormalized) S-matrix of a premodular 
category C is defined to be

SX,Y := trX∗⊗Y (βY,X∗ ◦ βX∗,Y ), X, Y ∈ Irr(C) .

An alternative criterion for modularity of a premodular category is that the S-matrix is 
invertible (cf. [28]).

Let C be a premodular category. A natural isomorphism θ : idC
∼=−→ idC , called the 

ribbon structure of C, can be defined using the spherical pivotal structure of C and the 
Drinfeld isomorphism (cf. [18]). The ribbon structure satisfies

θV⊗W = (θV ⊗ θW ) ◦ βW,V ◦ βV,W (2.1)

and

θV ∗ = θ∗V (2.2)

for any V, W ∈ ob(C). In particular, for any X ∈ Irr(C), θX is equal to a non-zero scalar 
times idX . By an abuse of notation, we denote both the scalar and the isomorphism 
itself by θX for all simple X. The T-matrix of a premodular category C is defined to be 
the diagonal matrix

TX,Y := θX · δX,Y , X, Y ∈ Irr(C).

It is well-known that if C is modular, then the S- and the T-matrices give rise to a 
projective representation of SL2(Z) (cf. [1,36]).

A premodular category C is called super-modular if C is a slightly degenerate braided 
fusion category. The non-trivial simple object in C′, denoted by f , is an invertible object 
such that βf,f = −idf⊗f . This implies that θfdf = −1, so that θf = −df = ±1. It is 
readily seen by (2.1) and the dimension equation df⊗X = df dX that tensoring with f
gives rise to a permutation on Irr(C) without any fixed point, and X∗ � f⊗X for any 
X ∈ Irr(C). Therefore, Irr(C) can be written as a disjoint union

Irr(C) = Π0 ∪ (f ⊗ Π0)

for some subset Π0 of Irr(C) containing 1 and closed under taking duals. With respect 
to this decomposition of Irr(C), the S-matrix of C takes the form

S =
(

Ŝ df Ŝ
ˆ ˆ

)
.

dfS S
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For any X, Y ∈ Π0, by [29, Lemma 2.15], we have

2
∑
Z∈Π0

ŜX,Z ŜZ,Y =
∑

Z∈Irr(C)

SX,ZSZ,Y

= dim(C)
∑

W∈Irr(C′)

NW
X,Y dW

= dim(C)δX,Y ∗ ,

(2.3)

where the last equality is guaranteed by the assumption that Π0 is closed under taking 
duals. In particular, Ŝ2 is a non-zero multiple of the charge conjugation matrix of Π0, 
and so Ŝ is invertible.

Let P denote the free abelian group over Π0. For any X, Y, Z ∈ Π0, let

N̂Z
X,Y := NZ

X,Y + df ·Nf⊗Z
X,Y .

One can verify directly that the bilinear map • : P × P → P given by X • Y =∑
Z∈Π0

N̂Z
X,Y Z defines a commutative ring structure on P with the identity 1. Moreover, 

by [29, Lemma 2.4], for any X, Y, Z ∈ Π0, we have

ŜX,Y

dY
· ŜZ,Y

dY
=

∑
W∈Irr(C)

NW
X,Z

SW,Y

dY

=
∑

W∈Π0

(
NW

X,Z

SW,Y

dY
+ Nf⊗W

X,Z

Sf⊗W,Y

dY

)

=
∑

W∈Π0

(
NW

X,Z

ŜW,Y

dY
+ df ·Nf⊗W

X,Z

ŜW,Y

dY

)

=
∑

W∈Π0

N̂W
X,Z

ŜW,Y

dY
.

(2.4)

Therefore, the function χY : P → C defined by χY (X) := ŜX,Y /dY for X ∈ Π0 is a 
C-linear character of P . Now, (2.3) implies that {χY : Y ∈ Π0} is a set of C-linearly 
independent characters P , and hence it is the set of all the C-linear characters of P . 
Moreover, we have the following Verlinde-like formula

N̂Z
X,Y = 2

dim(C)
∑

W∈Π0

ŜX,W ŜY,W ŜZ∗,W

Ŝ1,W

. (2.5)

Recall that S is a submatrix of the S-matrix of the Drinfeld center of C. It follows from 
[31, Proposition 5.7] that S is a matrix defined over a certain cyclotomic field, and so is 
Ŝ. The above discussion on the characters on P implies that the absolute Galois group 
acts on Π0 by permutation. More precisely, let Gal(Q) be the absolute Galois group, 
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then for any σ ∈ Gal(Q), and for any Y ∈ Π0, σ(χY ) is another character of P . Hence, 
there exists a unique σ̂(Y ) ∈ Π0 such that σ(χY ) = χσ̂(Y ). Thus, for any σ ∈ Gal(Q)
and for any X, Y ∈ Π0, we have

σ

(
ŜX,Y

dY

)
= σ(χY )(X) = χσ̂(Y )(X) =

ŜX,σ̂(Y )

dσ̂(Y )
. (2.6)

Note that the above Galois property of a super-modular category is similar to that of a 
modular category (cf. [11,7,19]).

The proof of the following lemma is identical to the proof for modular categories as 
in [11,7,19]. However, we provide the proof for the sake of completeness.

Lemma 2.2. Let C be a super-modular category, and D the positive square root of dim(C).

(1) For any σ ∈ Gal(Q), there exists a function gσ : Π0 → {±1} such that for any 
X, Y ∈ Π0,

σ

(
ŜX,Y

D

)
= gσ(X)

Ŝσ̂(X),Y

D
= gσ(Y )

ŜX,σ̂(Y )

D
.

(2) The positive real number D is a cyclotomic integer.

Proof. Recall that for any X ∈ Π0, dX �= 0 (cf. Section 2.1). By Eqs. (2.3) and (2.6), for 
any σ ∈ Gal(Q), we have

σ

(
dim(C)
d2
X

)
= σ

(
2

∑
Y ∈Π0

ŜX,Y ŜY,X∗

d2
X

)

= 2
∑

Y ∈Π0

σ

(
ŜX,Y

dX

)
σ

(
ŜY,X∗

dX∗

)

= 2
∑

Y ∈Π0

Ŝσ̂(X),Y

dσ̂(X)

ŜY,σ̂(X∗)

dσ̂(X∗)

= δσ̂(X)∗,σ̂(X∗)
dim(C)
d2
σ̂(X)

.

Therefore, we have σ̂(X∗) = σ̂(X)∗ and

σ

(
D

dX

)
= gσ(X) D

dσ̂(X)

for some gσ(X) ∈ {±1}. Again by (2.6), for any X, Y ∈ Π0, we have
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σ

(
ŜX,Y

D

)
= σ

(
ŜX,Y

dY

)
σ

(
dY
D

)
= gσ(Y )

ŜX,σ̂(Y )

dσ̂(Y )

dσ̂(Y )

D
= gσ(Y )

ŜX,σ̂(Y )

D
.

Since dim(C) = D2 is an algebraic integer, so is D. Note that Ŝ1,1/D = 1/D and Ŝ is 
symmetric. For any σ, τ ∈ Gal(Q),

στ

(
1
D

)
= gσ(1)gτ (1)

(
Ŝσ̂(1),τ̂(1)

D

)
= τσ

(
1
D

)
.

Therefore, Gal(Q(D)/Q) is abelian. By the Kronecker-Weber Theorem, Q(D) is con-
tained in a cyclotomic field. In particular, D is a cyclotomic integer. �

Now we are ready to prove the following theorem.

Theorem 2.3. For any pseudounitary braided fusion category C, 
√

dim(C) is a totally real 
cyclotomic integer.

Proof. Let D =
√

dim(C). Since dim(C) is a totally positive algebraic integer, D is a 
totally real algebraic integer. We are left to show the cyclotomicity of D.

We have the following two cases.
(1) If C′ is Tannakian, then the pseudounitarity of C implies θX = idX for X ∈ Irr(C′). 

By [4,26], the de-equivariantization on C with respect to C′ gives rise to a modular 
category M(C) with

dim(M(C)) = dim(C)
dim(C′) .

By [31, Theorem 7.1], 
√

dim(M(C)) ∈ Q12m as FSexp(M(C)) | m, where m =
FSexp(C). Note that dim(C′) ∈ Z as C′ is symmetric. Therefore, 

√
dim(C′) is a cy-

clotomic integer, and so is

D =
√

dim(M(C)) dim(C′) .

(2) If C′ is super-Tannakian, then C′ has a maximal fusion subcategory C′
+ which is 

Tannakian and

dim(C′) = 2 dim(C′
+) .

De-equivariantizing C with respect to C′
+ gives rise to a super-modular category S(C)

(cf. [26, Section 5.3]) and

dim(S(C)) = dim(C)
′ .
dim(C+)
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By Lemma 2.2 (2), 
√

dim(S(C)) is a cyclotomic integer. Using similar argument as in 
Case (1), D is a cyclotomic integer. �
Remark 2.4. (i) The pseudounitary condition in the previous theorem could be removed 
but some technicality is required. However, this technicality can be circumvented if every 
super-modular category admits a minimal modular extension or every fusion category 
has a spherical structure.
(ii) In the proof of Theorem 2.3, the conductor of 

√
dim(C) can be shown to be bounded 

by 12 · FSexp(C) if C′ is Tannakian by using the Cauchy Theorem [5]. It is unclear a 
similar bound can be obtained when C′ is super-Tannakian.

2.3. The Witt group W(E)

In this section, we follow [10] to study the Witt group of non-degenerate braided 
fusion categories over symmetric fusion categories.

Let E be a symmetric fusion category. Throughout this paper, a fusion category over
E is a fusion category A equipped with a braided tensor functor TA : E → Z(A) such 
that the composition of TA and the forgetful functor Z(A) → A is fully faithful.

A tensor functor F : A → B between two fusion categories over E is called a tensor 
functor over E if F is compatible with the embeddings TA and TB. For details, see [10, 
Section 2].

Let A, B be two fusion categories over E , and R : E → E � E be the right adjoint 
functor to the tensor product functor ⊗ : E � E → E . Then A := (TA � TB)R(1) is a 
connected étale algebra in Z(A � B). The tensor product A�EB of A and B over E is 
defined to be (A � B)A, the fusion category over E of right A-modules. By [9, Lemma 
3.11], we have

FPdim(A�EB) = FPdim(A) FPdim(B)
FPdim(A) = FPdim(A) FPdim(B)

FPdim(E) . (2.7)

Recall that the Müger center C′ of any braided fusion category C is a symmetric 
fusion category. A braided fusion category C equipped with a braided tensor equivalence 
T : E → C′ is called a non-degenerate braided fusion category over E . In particular, with 
this terminology, non-degenerate braided fusion categories are non-degenerate over Vec, 
and slightly degenerate braided fusion categories are non-degenerate over sVec.

For any fusion category A over E , the Müger centralizer of TA(E) in Z(A) is denoted 
by Z(A, E), which is a typical example of non-degenerate braided fusion categories over 
E (cf. [29, Theorem 3.2], [15, Theorem 3.10]). Since Z(A) is non-degenerate over Vec, by 
[19, Theorem 2.5] and [15, Theorem 3.14], we have

FPdim(Z(A, E)) = FPdim(Z(A)) = FPdim(A)2
. (2.8)
FPdim(E) FPdim(E)



12 S.-H. Ng et al. / Advances in Mathematics 404 (2022) 108388
Two non-degenerate braided fusion categories C and D over E are called Witt equivalent
if there exist fusion categories A and B over E and a braided equivalence over E such 
that

C�EZ(A, E) ∼= D�EZ(B, E) . (2.9)

According to [10], the Witt equivalence is an equivalence relation among braided fusion 
categories over E , and the Witt equivalence classes form a group whose multiplication is 
given by �E . We call this group the Witt group over E , and we denote it by W(E). We 
denote the Witt class of a braided fusion category C over E by [C]. In case E = Vec or 
sVec, we simply denote by W for W(Vec) and sW for W(sVec). The Witt group sW is 
also called the super-Witt group in this paper.

By [10, Proposition 5.13], the assignment

S : W → sW ; [C] 
→ [C � sVec] (2.10)

is a group homomorphism, and it is shown in [10] that ker(S) is a cyclic group of order 16 
generated by the class of any Ising braided category. An Ising category is a non-pointed 
fusion category C of FPdim(C) = 4. There are 2 Ising categories up to tensor equivalence, 
and each of them admits 4 inequivalent braidings and they are all non-degenerate. Since 
Ising categories are pseudounitary (cf. [19]), these 8 inequivalent Ising braided categories 
are modular and they are classified by their central charges.

It is shown in [10] that the group W has only 2-torsion, and the maximal finite 
order of an element of W is 32. We have seen in the above paragraph that the classes of 
pseudounitary Ising modular categories are of order 16, but less is known about elements 
in W of order 32. In Sections 6 and 7, we will show that the pseudounitary Ising modular 
categories have infinitely many square roots in W modulo Wpt.

3. The E-signatures of the Witt group W(E)

Let α �= 0 be a totally real algebraic number. For each σ ∈ Gal(Q), σ(α) is either pos-
itive or negative. The sign of σ(α) is 1 if it is positive, and -1 otherwise. This assignment 
ε(α) of signs

ε(α)(σ) := sgn(σ(α)) (3.11)

for each σ ∈ Gal(Q) is called the signature of α.
Let μn ⊆ C× denote the group of the nth-roots of unity and μ∞ =

⋃∞
n=1 μn. Then 

the set U∞ of functions from Gal(Q) to μ∞ is an abelian group under pointwise mul-
tiplication, and Un = μ

Gal(Q)
n is a subgroup of U∞. Thus, if F is a totally real subfield 

of C,

ε : F× → U2
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is a group homomorphism.
Recall that similar to FPdim(C), the well-definedness of the categorical dimension 

dim(C) of a fusion category C does not depend on the existence of a pivotal structure on 
C [19,29]. Moreover, both dimensions are totally positive cyclotomic integers [19], so the 
positive square roots 

√
FPdim(C) and 

√
dim(C) are totally real.

Definition 3.1. Let C be a fusion category. We define the signature εC of C as 
ε(
√

FPdim(C)) and the categorical dimension signature ε′C of C as ε(
√

dim(C)).

By Theorem 2.3, for pseudounitary braided fusion categories, we can change Gal(Q)
to Gal(Qab) in the definition of the categorical dimension signature, where Qab is the 
abelian closure of Q.

Remark 3.2. For any pseudounitary fusion category C, εC = ε′C .

Lemma 3.3. Let C, D be fusion categories.

(a) εC�D = εC · εD, and ε′C�D = ε′C · ε′D, i.e., both signatures respect the Deligne tensor 
product of fusion categories.

(b) Both εZ(C) and ε′Z(C) are the constant function 1.

Proof. Statement (a) follows from the multiplicativity of the FP-dimension and the 
categorical dimension with respect to the Deligne tensor product.

Statement (b) follows from 
√

FPdim(Z(C)) = FPdim(C), 
√

dim(Z(C)) = dim(C)
(cf. [19], [28]) and the total positivity of both the FP-dimension and the categorical 
dimension. �
Theorem 3.4. For any symmetric fusion category E, the assignment

IE : W(E) → U2 ; [C] 
→ εC · εE

is a well-defined group homomorphism.

Proof. We first show that the assignment IE is well-defined. Indeed, for any braided 
fusion categories C and D over E which are Witt equivalent over E , there exist fusion 
categories A, B over E such that C�EZ(A, E) ∼= D�EZ(B, E). Therefore, by Eqs. (2.7)
and (2.8), we have

FPdim(C) FPdim(A)2

FPdim(E)2 = FPdim(D) FPdim(B)2

FPdim(E)2 .

This implies that 
√

FPdim(C) FPdim(A) =
√

FPdim(D) FPdim(B). As mentioned in 
the previous subsection, FPdim(A) and FPdim(B) are totally positive, so for any σ ∈
Gal(Q), we have
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εC(σ) = sgn(σ
(√

FPdim(C)
)
)

= sgn(σ
(√

FPdim(C) FPdim(A)
)
)

= sgn(σ
(√

FPdim(D) FPdim(B)
)
)

= sgn(σ
(√

FPdim(D)
)
)

= εD(σ)

which means εC = εD, and hence IE is well-defined.
Again by (2.7), for any σ ∈ Gal(Q), we have

IE([C�ED])(σ) = εC�ED(σ) · εE(σ)

= sgn(σ
(√

FPdim(C) FPdim(D)
FPdim(E)

)
) sgn(σ

(√
FPdim(E)

)
)

= sgn(σ
(√

FPdim(C) FPdim(D)
)
)

= (εC · εE · εD · εE)(σ)

= (IE([C]) · IE([D]))(σ)

as desired. �
Theorem 3.5. For E = Vec or sVec, the assignment

I ′E : W(E) → U2; [C] 
→ ε′C · ε′E

is a well-defined group homomorphism.

Proof. By Theorem 2.5 and Theorem 3.10 (i) of [15], for any fusion category A over E ,

dim(Z(A, E)) = dim(A)2

dim(E) . (3.12)

For E = Vec or sVec, let A and B be fusion categories over E . In this case, there 
exists a finite group G such that Rep(G) � E embeds into E � E as a braided fusion 
subcategory. In fact, G is trivial when E = Vec, and G = Z/2Z when E = sVec. Note 
that |G| = dim(E) in both cases. Moreover, the image of the regular algebra of Rep(G)
under the composition Rep(G) ↪→ E � E TA�TB−−−−−→ Z(A � B) coincides with the algebra 
A in the definition of the tensor product over E (cf. Section 2.3). Therefore, A�EB is 
braided equivalent to the de-equivariantization (A �B)G, and by [15, Proposition 4.26],

dim(A�EB) = dim(A) dim(B) = dim(A) dim(B)
. (3.13)
|G| dim(E)
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Having established Eqs. (3.12) and (3.13), we are done by repeating the proof of 
Theorem 3.4 with all the FP-dimensions changed into categorical dimensions. �
Remark 3.6. (1) Our approach to prove (3.13) does not work for arbitrary symmetric 
fusion categories. If E = Rep(G), there may not be an embedding E → E�E such that the 
regular algebra of E coincides with the algebra A ∈ E�E used in the tensor product over 
E . For example, when G is a non-abelian simple group, the only embeddings E → E � E
are E � 1 and 1 � E . However, if (3.13) can be proved in general, then the assignment 
I ′E in Theorem 3.5 is a well-defined group homomorphism.

(2) One can also define I ′E on a ribbon version of the E-Witt group. Let Ep be the 
ribbon category E equipped with a spherical structure p. An Ep-modular category C
is a ribbon category whose Müger center is equivalent to Ep as ribbon categories. In 
particular, C is an E-nondegenerate braided fusion category. Two Ep-modular categories 
C, D are Ep-Witt equivalent if there exist spherical fusion categories A and B over Ep
such that C �Ep

Z(A, Ep) and D �Ep
Z(B, Ep) are equivalent as Ep-modular categories. 

The Ep-Witt group Wr(Ep) is the group of Ep-Witt equivalence classes. For any spherical 
fusion categories A and B over Ep, we have

dim(A �Ep
B) = dim(A) dim(B)/dA = dim(A) dim(B)/ dim(E)

where A is the algebra in the preceding remark (cf. [24]). In this case, I ′E is a homomor-
phism of Wr(Ep). However, we do not intend to pursue further discussion of this version 
of I ′E in this paper.

Definition 3.7. We call the group homomorphism IE : W(E) → U2 defined in Theorem 3.4
the E-signature on W(E), and IE([C]) the E-signature of [C]. For E = Vec or sVec, we 
call the group homomorphism I ′E : W(E) → U2 defined in Theorem 3.5 the categorical 
dimension E-signature on W(E), and I ′E([C]) the categorical dimension E-signature of 
[C].

In practice, when there is a pseudounitary representative C for a Witt class, the 
signatures IE([C]) = I ′E([C]) are essentially a function of the Galois group of Qn, where 
n is the conductor of 

√
dim(E) dim(C). For simplicity, IVec, IsVec, I ′Vec and I ′sVec are 

denoted by I, sI, I ′ and sI ′ respectively.

Corollary 3.8. The following diagrams of group homomorphisms are commutative

W sW

U2

S

I sI
,

W sW

U2

S

I′ sI′
.

Proof. The statement follows immediately from Theorems 3.4, 2.3 and the definition 
(2.10) of S. �
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4. Higher central charges and signatures

Let C be a modular category. The nth Gauss sum τn(C) of C introduced in [32] is 
defined as

τn(C) =
∑

X∈Irr(C)

d2
XθnX .

If τn(C) �= 0, the nth central charge ξn(C) is defined by

ξn(C) = τn(C)
|τn(C)| .

In particular, if N is the Frobenius-Schur exponent of C and n is coprime to N , by [32, 
Theorem 4.1], τn(C) �= 0 and ξn(C) is a root of unity. When there is no ambiguity, we 
simply write τn and ξn for the nth Gauss sum and the nth central charge of C.

Recall that there is a group homomorphism ̂· : Gal(Q) → Sym(Irr(C)) from the abso-
lute Galois group to the permutation group Sym(Irr(C)) of Irr(C). By [14, Proposition 
4.7], for any third root γ of ξ1, we have

θσ̂(1) = γ

σ2(γ) . (4.14)

The following theorem shows the relation between higher central charges of C and the 
signature of 

√
dim(C) (cf. (3.11)).

Theorem 4.1. Let C be a modular category with Frobenius-Schur exponent N . Then for 
any integer n coprime to N ,

ξn = ε′C(σ) · σ(ξ1) ·
γn

σ2(γn)

where γ is any third root of ξ1, σ ∈ Gal(Q) such that σ−1(ζN ) = ζnN .

Proof. By [32, Theorem 4.1],

τn = σ(τ1)
dim(C)

σ(dim(C))θ
n
σ̂(1) .

Since dim(C) is totally positive and θσ̂(1) is a root of unity, we find

|τn| = |σ(τ1)| ·
dim(C)

σ(dim(C)) .

Therefore,
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ξn = σ(τ1)
|σ(τ1)|

θnσ̂(1) .

Since τ1 = |τ1| · ξ1 and dim(C) = |τ1|2, we have

σ(τ1) = σ(D) · σ(ξ1),

where D =
√

dim(C). Thus,

|σ(τ1)| = |σ(D)| .

Therefore,

ξn = σ(D)
|σ(D)|σ(ξ1)θnσ̂(1) = ε′C(σ) · σ(ξ1) · θnσ̂(1) .

Now, the formula follows from (4.14). �
Note that since both σ(ξ1) and γ/σ2(γ) are completely determined by ξ1 and σ, ξn is 

completely determined by σ, ξ1 and ε′C(σ).

Remark 4.2. Consider S, the unnormalized S-matrix of a modular category C. Similar to 
Lemma 2.2, there exists a sign function εσ : Irr(C) → {±1} such that

σ

(
SX,Y

D

)
= εσ(X)

Sσ̂(X),Y

D
= εσ(Y )

SX,σ̂(Y )

D

for any X, Y ∈ Irr(C) (cf. [18,14]). In particular, σ(S1,1/D) = εσ(1)Sσ̂(1),1/D. This 
implies

σ(D) = εσ(1) D

dσ̂(1)
.

Therefore,

ε′C(σ) = sgn(σ(D)) = εσ(1) · sgn(dσ̂(1)) .

If dX > 0 for X ∈ Irr(C) or C is pseudounitary, then ε′C(σ) = εσ(1).

For the remaining discussion, it would be more convenient to define the higher mul-
tiplicative central charges of degrees coprime to the Frobenius-Schur exponent of C as a 
function in U∞. For any N ∈ N, and k coprime to N , we use σk to denote the element 
in Gal(QN/Q) such that σk(ζN ) = ζkN .
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Definition 4.3. Let C be a modular category and N = ord (TC). We define the higher 
central charge function ΨC ∈ U∞ of C as follows: for any σ ∈ Gal(Q), if σ|QN

= σk, then

ΨC(σ) := ξk(C) .

In this convention, Theorem 4.1 can be restated as follows.

Theorem 4.4. Let C be a modular category. Then for any σ ∈ Gal(Q),

ΨC(σ) = ε′C(σ−1) · σ−1(ξ1(C)) · σ(γ)
σ−1(γ)

where γ is any third root of ξ1(C).

Proof. The theorem is a direct consequence of Theorem 4.1 and Definition 4.3. �
This formula of higher central charges allows us to define the function Ψ, in the 

following definition, on the subgroup Wun of W generated by the pseudounitary modular 
categories. This function Ψ will be shown to be a group homomorphism in the subsequent 
proposition.

Definition 4.5. Let Wun be the subgroup of W generated by the pseudounitary modular 
categories. The function Ψ : Wun → U∞, called the higher central charge homomorphism, 
is defined by

Ψ([C]) = ΨC

for any pseudounitary modular category C.

Proposition 4.6. The higher central charge homomorphism Ψ : Wun → U∞ is a well-
defined group homomorphism.

Proof. If C and D are Witt equivalent pseudounitary modular categories, then ξ1(C) =
ξ1(D) and ε′C = ε′D by Theorem 3.5. Let γ ∈ C be any 3rd root of ξ1(C). Then, for any 
σ ∈ Gal(Q), we have

ΨC(σ) = ε′C(σ−1) · σ−1(ξ1(C)) · σ(γ)
σ−1(γ) = ε′D(σ−1) · σ−1(ξ1(D)) · σ(γ)

σ−1(γ) = ΨD(σ) .

By [32, Lemma 3.1] or Theorem 4.4, we also have

ΨC�D(σ) = ΨC(σ) · ΨD(σ)

for any σ ∈ Gal(Q) and pseudounitary modular categories C, D. Therefore, Ψ is a group 
homomorphism and this completes the proof of the statement. �
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Remark 4.7. Theorem 4.4 also implies that the higher central charge homomorphism is 
equivalent to the product of the first central charge and the signature. More precisely, 
recall that the first central charge homomorphism is defined by ξ1 : Wun → μ∞, [C] 
→
ξ1(C) (see [9]). Define a function F : μ∞ × U2 → U∞ by

F(u, g)(σ) := g(σ−1) · σ−1(u) · σ(γ)
σ−1(γ) ,

for any σ ∈ Gal(Q), where γ is any third root of u (note that the value of the function 
does not depend on the choice of γ). It is easy to see that F is a group monomorphism, 
and Theorem 4.4 implies the commutativity of the diagram:

Wun μ∞ × U2

U∞

ξ1×I

Ψ F

.

In light of this commutative diagram, we will call Ψ or the equivalent map Ψ′ := ξ1 × I

the higher central charge homomorphism.

We close this section with the following proposition which will be useful for the last 
two sections, the proof of which follows immediately from the preceding remark.

Proposition 4.8. The kernel of Ψ consists of the Witt classes [C] ∈ Wun such that ξ1(C) =
1 and εC is the constant function 1. �
5. The modular tensor categories so(2r + 1)2r+1

In this section, we provide some basic facts for the quantum group modular categories

Cr := so(2r + 1)2r+1

for r ≥ 1. The readers are referred to [1,34] for more details on these categories. In 
particular, by [38], Cr is pseudounitary, so εCr

= ε′Cr
for r ∈ N by Remark 3.2. We 

prove a formula for the higher central charges of Cr in Lemma 5.1 and a formula for 
Dr =

√
dim(Cr) in Proposition 5.3 which are essential to the proof of our major result.

5.1. Notations and formulas

Some basic facts of the categories Cr can be extracted from the underlying Lie algebras 
so(2r+1) and their root/weight datum. The conventions and notations of roots, weights 
and information of Cr are adopted from [1,3,21,34]. We list below some of the datum we 
will use in the next few sections.
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Let n = 2r + 1 for some r ≥ 1. The Lie algebra so(n) = so(2r + 1) is of type Br. 
We consider the quantum group modular category Cr of so(n) at level n, and use the 
following notations for r ≥ 2.

• Orthonormal basis for the inner product space (Rr, (· | ·)): {e1, . . . , er}.
• Normalized inner product such that any short root α has squared length 2:

〈ej , ek〉 = 2δj,k = 2(ej | ek).

• The set of positive roots: Δ+. It contains the following elements

ej , j = 1, . . . , r;

ej − ek, 1 ≤ j < k ≤ r;

ej + ek, 1 ≤ j < k ≤ r .

In particular, |Δ+| = r2.
• Fundamental weights:

ωj = e1 + · · · + ej , j = 1, . . . , r − 1;

ωr = 1
2(e1 + · · · + er) .

• The set of dominant weights: Φ+.
• Root lattice: Q.
• Coroot lattice:

Q∨ = { 2α
(α | α) | α ∈ Q} .

• Weight lattice: P . Note that the index of Q∨ in P is given by

|P/Q∨| = |P/Q| · |Q/Q∨| = 4 . (5.15)

• Half sum of positive roots:

ρ = 1
2

(
(2r − 1)e1 + (2r − 3)e2 + · · · + 3er−1 + er

)
.

• Highest root:

ϑ0 = e1 + e2.

• Dual Coxeter number:

h∨ = 2r − 1 = n− 2 . (5.16)
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• The fundamental alcove:

Cr = {λ ∈ Φ+ | (λ + ρ | ϑ0) < n + h∨}
= {λ ∈ Φ+ | (λ + ρ | ϑ0) < 4r}
= {λ ∈ Φ+ | (λ | ϑ0) ≤ n}.

(5.17)

Note that the isomorphism classes of simple objects of Cr are indexed by Cr, and so 
we identify Cr and Irr(Cr).

• Quantum parameter:

q = exp
(

πi

2(n + h∨)

)
= exp

(
πi

4n− 4

)
= exp

(
πi

8r

)
.

• Quantum integer:

[m] = qm − q−m

q − q−1 .

• Twist:

θλ = q2(λ|λ+2ρ) for λ ∈ Cr .

• Quantum dimension:

dλ =
∏

α∈Δ+

[2(λ + ρ | α)]
[2(ρ | α)] for λ ∈ Cr .

• First central charge:

ξ1(Cr) = exp
(

2πi
8 · n dimC(so(n))

n + h∨

)

= exp
(

2πi
8 · (2r + 1) · (r(2r + 1))

4r

)

= exp
(

2πi (2r + 1)2

32

)
.

(5.18)

For r = 1, Cr = so(3)3. All the above notations are the same except that ϑ0 = e1.

5.2. Higher central charge of Cr

Let Dr =
√

dim(Cr) be the positive square root of dim(Cr). Let Nr be the Frobenius-
Schur exponent of Cr, and Tr the T-matrix of Cr. By [30, Theorem 7.7],

Nr = ord (Tr) = lcm{ord (θλ) | λ ∈ Cr} .
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Lemma 5.1. Let r be a positive integer. Then

(a) lcm{32, 4r} | Nr | 32r.
(b) Dr ∈ QNr

, and for any σ ∈ Gal(Q), we have

Ψ([Cr])(σ) = εCr
(σ−1) · σ(ξ1(Cr))11

σ−1(ξ1(Cr))10
. (5.19)

Proof. Since 2(λ | λ + 2ρ) ∈ 1
2Z, θλ = q2(λ|λ+2ρ) is a 32rth-root of unity. Therefore, 

T 32r
r = id or Nr | 32r.
By (5.17), we have ωr = 1

2 (e1 + · · · + er) ∈ Cr. Therefore,

2(ωr | ωr + 2ρ) = r(2r + 1)
2 .

Therefore,

θωr
= q2(ωr|ωr+2ρ) = exp

(
πi

8r · r(2r + 1)
2

)
= exp

(
(2r + 1)πi

16

)
,

which implies that ord (θωr
) = 32. Thus, it suffices to consider r ≥ 3 for statement (a).

Note that by (5.17), we have 2e1 ∈ Cr for r ≥ 3. We have

2(2e1 | 2e1 + 2ρ) = 8 + 4(2r − 1) = 8r + 4 .

Therefore,

θ2e1 = exp
(
πi

8r · (8r + 4)
)

= − exp
(
πi

2r

)

which implies that ord (θ2e1) = 4r. The above computations imply the first divisibility 
of statement (a).

By (5.18), γr = ξ1(Cr)11 is a 3rd root of ξ1(Cr), and γ32
r = 1. By (a), γr ∈ QNr

. This 
implies that Dr ∈ QNr

by [14, Theorem II (ii)]. The remaining statement of (b) follows 
immediately from Theorem 4.4. �
Remark 5.2. The preceding lemma implies that ord (Tr) is non-decreasing with respect 
to r.

5.3. A formula for Dr

Proposition 5.3. The square root of the global dimension of Cr is given by

Dr =
√
rr

2r2−r−1

⎛
⎝ r∏

sin
(

(2�− 1)π
8r

) 2r−2∏
j=1

sin
(
jπ

4r

)mr(j)
⎞
⎠

−1

(5.20)


=1
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where mr(j), 1 ≤ j ≤ 2r − 2, is given by

mr(j) =
{

0, if r = 1 ;
r −

⌈
j
2
⌉
, if r ≥ 2 .

Proof. According to [1, Theorem 3.3.20],

Dr =
√

|P/(n + h∨)Q∨|
∏

α∈Δ+

(
2 sin

(
(α | ρ)
n + h∨ · π

))−1

. (5.21)

By (5.15), (5.16) and the fact that |Δ+| = r2, we have

Dr =
√

4(4r)r
2r2

∏
α∈Δ+

(
sin

(
(α | ρ)

4r π

))−1

=
√
rr

2r2−r−1

∏
α∈Δ+

(
sin

(
(α | ρ)

4r π

))−1
(5.22)

Recall that Δ+ = {e
, ea ± eb | 1 ≤ � ≤ r, 1 ≤ a < b ≤ r}, then (α | ρ) can be easily 
given as follows:

When α = e
 for some 1 ≤ � ≤ r, (α | ρ) = (r − �) + 1/2 which is a half integer; 
when α = ea + eb for some 1 ≤ a < b ≤ r, (α | ρ) = 2r − (a + b) + 1 which is an integer 
satisfying

2 ≤ (α | ρ) ≤ 2r − 2 ;

when α = ea − eb for some 1 ≤ a < b ≤ r, (α | ρ) = b − a which is also an integer 
satisfying

1 ≤ (α | ρ) ≤ r − 1 .

Let mr(j) = #{α ∈ Δ+ | (α | ρ) = j} for 1 ≤ j ≤ 2r − 2. We can now rewrite (5.22)
as

Dr =
√
rr

2r2−r−1

⎛
⎝ r∏


=1

sin
(

(2�− 1)π
8r

) 2r−2∏
j=1

sin
(
jπ

4r

)mr(j)
⎞
⎠

−1

When r = 1, (α | ρ) is not an integer for α ∈ Δ+ and hence the lemma follows directly 
from (5.22). We proceed to show that mr(j) = r −

⌈
j
2
⌉

for r ≥ 2 and 1 ≤ j ≤ 2r − 2 by 
induction on r.

Note that the equations j = b − a and j = 2r − (b + a) + 1 have no common integer 
solution (a, b) for any integer j. Thus
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mr(j) = |Mr(j)|

for 1 ≤ j ≤ 2r − 2, where

Mr(j) := {(a, b) | 1 ≤ a < b ≤ r such that (b− a− j)(2r − (b + a) + 1 − j) = 0} .

One can check directly that m2(j) = 2 −
⌈
j
2
⌉

for 1 ≤ j ≤ 2. Assume that mr(j) = r−
⌈
j
2
⌉

for all 1 ≤ j ≤ 2r − 2 for some integer r. Note that if 1 ≤ j ≤ 2r − 2, then

Mr(j) + (1, 1) = {(a, b) ∈ Mr+1(j) | a ≥ 2} .

Thus,

Mr+1(j) =
{

(Mr(j) + (1, 1)) ∪ {(1, j + 1)} if 1 ≤ j ≤ r,

(Mr(j) + (1, 1)) ∪ {(1, 2r + 2 − j)} if r + 1 ≤ j ≤ 2r − 2 .

Therefore, mr+1(j) = mr(j) + 1 for 1 ≤ j ≤ 2r − 2. It is easy to see that

Mr+1(2r − 1) = {(1, 3)} ,Mr+1(2r) = {(1, 2)} and
⌈

2r − 1
2

⌉
=

⌈
2r
2

⌉
= r .

Thus,

mr+1(j) = |Mr+1(j)| = 1 = r + 1 −
⌈
j

2

⌉

for 2r − 1 ≤ j ≤ 2r. Therefore, we have mr+1(j) = r + 1 −
⌈
j
2
⌉

for 1 ≤ j ≤ 2r. �
6. Witt subgroups generated by Cr

Let I := su(2)2 be a fixed Ising modular category (cf. [15]). It is well-known (cf. [9]) 
that for any n = 2r + 1, the conformal embedding so(n)n × so(n)n ⊆ so(n2)1 implies 
Cr � Cr is Witt equivalent to an Ising modular category. By comparing the first central 
charges, the Witt class [Cr] of Cr satisfies

[Cr]2 = [Cr�2] =
{

[I]11 if r ≡ 0 or 3 (mod 4),
[I]3, if r ≡ 1 or 2 (mod 4).

(6.23)

Since the first central charge of Cr is a primitive 32nd root of unity (cf. (5.18)), the cyclic 
subgroup 〈[Cr]〉 of W generated by [Cr] is of order 32 for any positive integer r.

In this section, we study the subgroup of the Witt group W generated by the Witt 
classes [Cr] for r ≥ 1 using their higher central charges. We proceed by investigating 
some number-theoretical properties of them.
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6.1. The signature of Cr

In this subsection, we compute some values of the signatures of an infinite subset of 
{Cr | r ∈ N}. For any pair of coprime integers k, m with m > 1, let σk denote any 
element in Gal(Q) such that σk(ζm) = ζkm.

Lemma 6.1. For any integer r, j, k with k ≡ 1 (mod 4) and gcd(k, r) = 1,

σk

(
sin

(
jπ

8r

))
= sin

(
kjπ

8r

)
in Q16r . (6.24)

Proof.

σk

(
sin

(
jπ

8r

))
= σk

(
e

jπi
8r − e

−jπi
8r

2i

)
=

(
e

kjπi
8r − e

−kjπi
8r

2i

)
= sin

(
kjπ

8r

)
. �

Lemma 6.2. Let r be an odd positive integer. For any integer k coprime to r,

σk(
√
r∗) =

(
k

r

)√
r∗,

where r∗ =
(
−1
r

)
r, and 

(
•
r

)
is the Jacobi symbol. If, in addition, k ≡ 1 (mod 4), then, 

in Q4r, we have

σk(
√
r) =

(
k

r

)√
r .

Proof. For any prime factor p of r, 
√
p∗ ∈ Qp ⊆ Qr (cf. [37]). Note that Gal(Qp/Q) is 

cyclic of order p − 1. Thus, if a is a primitive root of (Z/p)×, then σa is a generator of 
Gal(Qp/Q) and σa(

√
p∗) = −√

p∗. Therefore, σj
a(
√
p∗) = (−1)j

√
p∗ for any integer j. 

Hence, we have σk(
√
p∗) =

(
k

p

)√
p∗.

If r = p1 · · · p
 is the prime factorization of r, then r∗ = p∗1 · · · p∗
 and so

σk(
√
r∗) = σk(

√
p∗1) · · ·σk(

√
p∗
 ) =

(
k

p1

)
· · ·

(
k

p


)√
r∗ =

(
k

r

)√
r∗ .

If, in addition, k ≡ 1 (mod 4), then, in Q4r, we have

σk(
√
r) = σk

(
√
r∗

√(
−1
r

))
=

(
k

r

)√
r∗

√(
−1
r

)
=

(
k

r

)√
r. �

Proposition 6.3. For any integers l > 0, w > 0 and y, let a = 2l + 1 + w(8l + 2) and 
k = 8ya + 4l + 1. Then, gcd(k, 4a) = 1 and
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εCa
(σk) = (−1)y.

Proof. The first assertion follows directly by the Euclidean algorithm. We proceed to 
compute the sign of each component of σk(Da) in the right hand side of (5.20). The sign 
of the second sine component is 1 by the following lemma.

Lemma 6.4. We have the following equality:

sgn

⎛
⎝σk

⎛
⎝2a−2∏

j=1
sin

(
jπ

4a

)ma(j)
⎞
⎠
⎞
⎠ = 1 .

Proof of Lemma 6.4. Since k ≡ 1 (mod 4), by Lemma 6.1, we have

sgn

⎛
⎝σk

⎛
⎝2a−2∏

j=1
sin

(
jπ

4a

)ma(j)
⎞
⎠
⎞
⎠ =

2a−2∏
j=1

sgn
(

sin
(
kjπ

4a

))ma(j)

.

For each j = 1, . . . , 2a − 2, we have

sin
(
kjπ

4a

)
= sin

(
(8ya + 4l + 1)jπ

4a

)
= sin

(
(4l + 1)jπ

4a

)
.

Moreover, by the definition of a and the assumption that w > 0, we have

(4l + 1)(2a− 2)
4a − 2l > 0 .

Therefore,

2l < (4l + 1)(2a− 2)
4a <

(4l + 1)(2a)
4a = 2l + 1

2 .

Consequently, for j = 1, . . . , 2a − 2, sgn
(
sin

(
(4l+1)jπ

4a

))
= −1 if and only if

2q − 1 <
(4l + 1)j

4a < 2q (6.25)

for some 1 ≤ q ≤ l.
For any q = 1, . . . , l, (6.25) is equivalent to

(8w + 2)(2q − 1) + 4q − 2
4l + 1 < j < (8w + 2)(2q) + 4q

4l + 1 .

Since 1 ≤ q ≤ l, we have

0 <
4q − 2

<
4q

< 1 .
4l + 1 4l + 1
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So (6.25) is equivalent to

(8w + 2)(2q − 1) + 1 ≤ j ≤ (8w + 2)(2q) .

There are exactly 8w+2 integers between (8w+2)(2q−1) +1 and (8w+2)(2q) inclusively. 
They can be written in pairs (8w + 2)(2q − 1) + (2t − 1), (8w + 2)(2q − 1) + 2t for 
1 ≤ t ≤ 4w + 1. However, for each such t, we have

ma((8w + 2)(2q − 1) + (2t− 1))

=a−
⌈

(8w + 2)(2q − 1) + (2t− 1)
2

⌉

=a− ((4w + 1)(2q − 1) + t)

=a−
⌈

(4w + 1)(2q − 1) + (2t)
2

⌉

=ma((8w + 2)(2q − 1) + (2t)) .

Thus we have

2a−2∏
j=1

sgn
(

sin
(
kjπ

4a

))ma(j)

=
l∏

q=1

4w+1∏
t=1

(−1)ma((8w+2)(2q−1)+(2t−1)) · (−1)ma((8w+2)(2q−1)+2t)

=1 ,

(6.26)

as desired. �
The sign of the first sine component of the right hand side of (5.20) is computed in 

the following lemma.

Lemma 6.5. We have the following equality:

sgn

⎛
⎝σk

⎛
⎝ a∏

j=1
sin

(
(2j − 1)π

8a

)⎞⎠
⎞
⎠ = (−1)y+l .

Proof of Lemma 6.5. Since k ≡ 1 (mod 4), by Lemma 6.1, we have

σk

⎛
⎝ a∏

j=1
sin

(
(2j − 1)π

8a

)⎞⎠ =
a∏

j=1
sin

(
k(2j − 1)π

8a

)
.

Thus,
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sgn

⎛
⎝σk

⎛
⎝ a∏

j=1
sin

(
(2j − 1)π

8a

)⎞⎠
⎞
⎠ =

a∏
j=1

sgn
(

sin
(
k(2j − 1)π

8a

))
.

Moreover, by definition, we have

sin
(
k(2j − 1)π

8a

)
= sin

(
(8ya + 4l + 1)(2j − 1)π

8a

)

= (−1)y sin
(

(4l + 1)(2j − 1)π
8a

)
.

Therefore, since a is odd, we have

sgn

⎛
⎝σk

⎛
⎝ a∏

j=1
sin

(
(2j − 1)π

8a

)⎞⎠
⎞
⎠ = (−1)y

a∏
j=1

sgn
(

sin
(

(4l + 1)(2j − 1)π
8a

))
.

(6.27)
Since

(4l + 1)(2a− 1)
8a − l > 0 ,

we have

l <
(4l + 1)(2a− 1)

8a <
(4l + 1)(2a)

8a = l + 1
4 .

Now we consider two cases.
Case 1. If l is even, then for any j = 1, . . . , a, sgn(sin( (4l+1)(2j−1)

8a π)) = −1 if and only 
if

2q − 1 <
(4l + 1)(2j − 1)

8a < 2q (6.28)

for some 1 ≤ q ≤ l/2. Note that for any q = 1, . . . , l/2, (6.28) is equivalent to

(8w + 2)(2q − 1) + 4q − 2
4l + 1 + 1

2 < j < (8w + 2)(2q) + 4q
4l + 1 + 1

2 .

Since 1 ≤ q ≤ l/2, we have

0 <
4q − 2
4l + 1 <

4q
4l + 1 <

1
2 ,

(6.28) is equivalent to

(8w + 2)(2q − 1) + 1 ≤ j ≤ (8w + 2)(2q) = 16wq + 4q .
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Hence, we have

a∏
j=1

sgn
(

sin
(

(4l + 1)(2j − 1)π
8a

))
=

l/2∏
q=1

⎛
⎝ 16wq+4q∏

j=(8w+2)(2q−1)+1

(−1)

⎞
⎠ = 1

as there are 8w + 2 terms in each of the product corresponding to q.
Case 2. If l is odd, then for any j = 1, . . . , a, sgn(sin( (4l+1)(2j−1)

8a π)) = −1 if and only 
if j satisfies

2q − 1 <
(4l + 1)(2j − 1)

8a < 2q (6.29)

for some 1 ≤ q ≤ (l − 1)/2, or j satisfies

l <
(4l + 1)(2j − 1)

8a < l + 1
4 . (6.30)

By the same argument as in Case 1, the sign for the j’s satisfying (6.29) is equal to

(l−1)/2∏
q=1

⎛
⎝ 16wq+4q∏

j=(8w+2)(2q−1)+1

(−1)

⎞
⎠ = 1 .

Note that (6.30) is equivalent to

8wl + 2l + 2l
4l + 1 + 1

2 < j < a + 1
2 .

Since 2l
4l+1 < 1

2 , and by definition of a, (6.30) is equivalent to

a− 2w ≤ j ≤ a .

Note that there are 2w + 1 such j’s, and so their sign contribution is -1. Therefore,

a∏
j=1

sgn
(

sin
(

(4l + 1)(2j − 1)π
8a

))

=
(l−1)/2∏
q=1

⎛
⎝ 16wq+4q∏

j=(8w+2)(2q−1)+1

(−1)

⎞
⎠ ·

a∏
j=a−2w

(−1) = −1 .

This completes Case 2, and we have

a∏
sgn

(
sin

(
(4l + 1)(2j − 1)π

8a

))
= (−1)l ,
j=1
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for any positive integer l.
Combining with (6.27), we obtain

sgn

⎛
⎝σk

⎛
⎝ a∏

j=1
sin

(
(2j − 1)π

8a

)⎞⎠
⎞
⎠ = (−1)y+l

as claimed. This completes the proof of Lemma 6.5. �
Now we are ready to prove Proposition 6.3. By definition and the quadratic reciprocity 

of Jacobi symbols, we have

(
k

a

)
=

(
4l + 1

a

)
=

(
a

4l + 1

)
=

(
2l + 1
4l + 1

)
=

(
4l + 1
2l + 1

)
=

(
−1

2l + 1

)
= (−1)l . (6.31)

Therefore, by Lemma 6.2,

σk

(√
aa

)
= σk

(
a

a−1
2
√
a
)

=
(
k

a

)
a

a−1
2
√
a = (−1)la

a−1
2
√
a ,

i.e., sgn(σk(
√
aa)) = (−1)l. The proposition follows directly from Lemmas 6.4, 6.5 and 

(5.20). �
6.2. The higher central charge homomorphism Ψ on Wun

In this subsection, we construct certain infinite sequences aaal = {al,n}∞n=0 of positive 
integers and prove that the restriction of the signature homomorphism I on the subgroup 
Gl of Wun generated by {[Cal,n

] | n ≥ 0} has kernel 〈[I]〉. Moreover, we show that Ψ|Gl

is injective, and the image {S([Cal,n
]) | n ≥ 0} in the super-Witt group sW is F2-linearly 

independent.
For any positive integer l ≡ 2 (mod 4), we define the sequence aaal = {al,n}∞n=0 induc-

tively by setting al,0 = 2l+1, and defining al,n+1 to be the smallest positive integer such 
that

al,n+1 ≡ 2l + 1 (mod 8l + 2)

and gcd(al,n+1, al,j) = 1 for all j = 0, . . . , n. The existence of the infinite sequence aaal is 
guaranteed by the Dirichlet prime number theorem. For example, the sequence aaa2 begins 
with

5, 23, 41, 59, 77, 113, 131, 149, 167, 221, 239, . . .

Let Gl,n be the subgroup of Wun generated by {[Cal,j
] | j = 0, . . . , n}, and
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Gl =
∞⋃

n=0
Gl,n .

For any positive integer r and σ ∈ Gal(Q), we simply denote

εr(σ) := εCr
(σ) = ε′Cr

(σ) .

Theorem 6.6. Let l ≡ 2 (mod 4) be a positive integer. Then the set of signatures 
{εal,n

}n≥0 is F2-linearly independent, i.e., if εb0al,0
· · · εbnal,n

= 1 for some integers b0, . . . , bn
and positive integer n, then b0 ≡ · · · ≡ bn ≡ 0 (mod 2). In particular,

I(Gl) =
⊕
n≥0

〈εal,n
〉 .

Moreover, Gl,n ∩ ker I = 〈[I]〉 for all nonnegative integer n.

Proof. Suppose {εal,n
}n≥0 is dependent. Then, there exist a positive integer n and some 

integers b0, · · · , bn such that bm is odd for some m ≤ n and εb0al,0
· · · εbnal,n

= 1. Since 
ε2
r = 1 for all r ∈ N, we may assume that bj > 0 by adding some positive multiple of 2

if necessary. Now, let A = C�b0
al,0

� · · · � C�bn

al.n
and A = [A]. Then,

εA = εb0al,0
· · · εbnal,n

= 1 . (6.32)

Now let N := lcm{ord (Tal,j
) | 0 ≤ j ≤ n and j �= m}. Then by Lemma 5.1 (a),

32 | N, and N | 32
∏

0≤j≤n
j �=m

al,j .

By the definition of aaal, the integer al,m is coprime to 32 and al,j for all j �= m, and hence 
gcd(al,m, N) = 1. Therefore, there exist x, y ∈ Z such that

xal,m + yN = 1 .

Set k := −4lxal,m + 4l + 1 = 4lyN + 1. Then k ≡ 1 (mod N). Moreover, by Proposi-
tion 6.3, gcd(k, al,m) = 1. Therefore, gcd(k, Nal,m) = 1.

Let σ ∈ Gal(Q) such that σ|QNal,m
= σk. For any j = 0, . . . , n and j �= m, we have 

Dal,j
∈ Qord (Tal,j

) ⊆ QN by Proposition 5.3 or [14]. Since k ≡ 1 (mod N), σ(Dal,j
) =

Dal,j
and hence εal,j

(σ) = 1. Also, by Proposition 6.3, we have

εal,m
(σ) = (−1)lx/2 = (−1)x

since l/2 is odd. Note that xal,m + yN = 1 implies that x has to be odd, and so we have
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εA(σ) =
n∏

j=0
εal,j

(σ)bj = εal,m
(σ) = (−1)x = −1 ,

which contradicts (6.32). Therefore {εal,n
}n≥0 is F2-linearly independent.

Since I([Cal,0 ]2) = ε2
al,0

= 1 and 〈[Cal,0 ]2〉 = 〈[I]〉, 〈[I]〉 ⊆ Gl,n ∩ ker I for any 
nonnegative integer n. Conversely, if A ∈ Gl,n ∩ ker I, then

A = [Cal,0 ]b0 · · · [Cal.n
]bn and I(A) = εb0al,0

· · · εbnal,n
= 1 .

The preceding conclusion implies b0, . . . , bn are all even. Since [Cr]2 ∈ 〈[I]〉 for all r, we 
find A ∈ 〈[I]〉. Therefore, Gl,n ∩ ker I = 〈[I]〉. �

The subgroup generated by {S([Cr]) | r ≥ 1} in sW is an abelian group of exponent 
2. It is conjectured in [10, Conjecture 5.21] that {S([Cr]) | r ≥ 1} is linearly independent 
in sW. The following corollary proves that this holds for infinitely many subsequences 
of {S([Cr]) | r ≥ 1}, but we do not know whether they are in sW2 or not. The group 
sW2 will be further discussed in Section 7.

Corollary 6.7. For any positive integer l ≡ 2 (mod 4), the sequence

sasasal = {S([Cal,j
]) | j ≥ 0}

is linearly independent in sW.

Proof. Apply the signature homomorphism sI to the sequence {S([Cal,n
]) | n ≥ 0}. By 

Corollary 3.8, we find

{sI ◦ S([Cal,n
])}n≥0 = {εsl,n}n≥0

which is F2-linearly independent by Theorem 6.6. Therefore, {S([Cr]) | r ≥ 1} is linearly 
independent in sW. �

The commutativity of the diagram

Gl S(Gl)

I(Gl)

S

I sI
∼

implies the equivalence of the restriction of S and I on Gl. Now, we can determine the 
isomorphism class of Gl using the higher central charges homomorphism Ψ or simply 
the signature homomorphism I.
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Corollary 6.8. For any positive integer l ≡ 2 (mod 4), Gl has the direct sum decomposi-
tion:

Gl = 〈[Cal,0 ]〉 ⊕
⊕
n≥1

〈Cn〉 ∼= Z/32 ⊕ (Z/2)⊕N , (6.33)

where Cn = [Cal,n
] · [Cal,0 ]−in for n ≥ 1, where in is an integer such that [Cal,0 ]2in =

[Cal,n
]2. Moreover, Ψ|Gl

is injective.

Proof. For any integer n ≥ 0, since 〈[Cal,n
]2〉 = 〈[Cal,0 ]2〉, there exists an integer in such 

that [Cal,n
]2 = [Cal,0 ]2in . Then C2

n = [Vec] for n ≥ 1, and Gl is generated by the elements 
[Cal,0 ] and Cn, n ≥ 1. Suppose

[Vec] = [Cal,0 ]b0C
b1
1 · · ·Cbn

n

for some positive integer n and integers b0, . . . , bn. Note that εCj
= εal,j

, and so we have

1 = εb0−(i1b1+···+inbn)
al,0

εb1al,1
· · · εbnal,n

.

By Theorem 6.6, we have b0, b1, . . . , bn are all even and hence Cbj
j = [Vec] for j > 0. 

Thus, we have [Cal,0 ]b0 = [Vec], and this proves the direct sum decomposition (6.33). 
The second isomorphism follows immediately from the fact that ord ([Cal,0 ]) = 32.

Finally, if A = [Cal,0 ]b0C
b1
1 · · ·Cbn

n ∈ ker(Ψ), then I(A) = 1 and ξ1(A) = 1
by Proposition 4.8. It follows from Theorem 6.6 that b0, . . . , bn are all even and so 
A = [Cal,0 ]b0 ∈ 〈[I]〉. Since the first central charge homomorphism ξ1 is injective on 〈[I]〉, 
ξ1(A) = 1 implies A = [Vec]. Therefore, Ψ is injective on Gl. �
Remark 6.9. By the same argument, Corollary 6.8 holds for any infinite subsequence of 
aaal. This version of Corollary 6.8 will be used in Theorems 7.2 and 7.3.

It is not difficult to show that the higher central charge homomorphism Ψ is injective 
on Wpt(p), the Witt subgroup of Wpt(p) generated by the Witt classes of the pointed 
modular categories C(H, q) where H is a finite abelian p-group. However, the kernel of 
Ψ|Wpt is not trivial.

For any odd prime p, let Ap be the unique Witt class in Wpt(p) of trivial signature. 
In particular, Ap has order 2 and can be represented by an abelian group of order p2. 
Let A2 := [I]8, which is the unique class of Wpt(2) of order 2 with trivial signature. 
Therefore, Ap is the unique element of Wpt(p) of order 2 with trivial signature for all 
prime p.

Remark 6.10. Note that the first central charge of Ap is −1 for any prime p, and so 
Ap /∈ ker(Ψ). However, for any primes p and p′, ApAp′ ∈ ker(Ψ) by Proposition 4.8.
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Proposition 6.11. The intersection ker(Ψ) ∩Wpt is generated by ApAp′ , where p and p′

are distinct primes.

Proof. Let B ∈ ker(Ψ) ∩Wpt be a non-trivial Witt class. Then there exists an anisotropic 
metric group (H, q) such that B = [C(H, q)] such that ξ1(C(H, q)) = 1, and I(B) = 1 by 
Proposition 4.8.

Let h =
∏n

j=1 p
ej
j be the order of H, where p1, . . . , pn are distinct primes. Then

B = Bp1 · · ·Bpn

where Bpj
∈ Wpt(pj) is nontrivial for j = 1, . . . , n.

We claim that ej has to be even for all j = 1, ..., n. In particular, I(Bpj
) = 1. Oth-

erwise, 
√
h /∈ Q and there exists σ ∈ Gal(Q) such that σ(

√
h) = −

√
h, that means 

I(B)(σ) = −1, a contradiction.
To complete the proof, it suffices to show n is even and Bpj

= Apj
for j = 1, . . . , n. 

Since ej is even for any j = 1, ..., n, Bpj
= Apj

if pj is odd. Thus, if h is odd, so are pj
for all j. Then

n∏
j=1

Apj
=

n∏
j=1

Bpj
= B ∈ ker(Ψ)

implies that n must be even by Remark 6.10.
We now consider the case when h is even. Then h = 2e1

∏n
j=2 p

ej
j for some even 

positive integer e1. Suppose n is odd. Then

n∏
j=2

Bpj
=

n∏
j=2

Apj
∈ ker(Ψ)

by Remark 6.10. Since B ∈ ker(Ψ), and so B2 ∈ ker(Ψ). However, this contradicts that 
Ψ is injective on Wpt(2) (cf. [32, Example 6.2]). Therefore, n is also even in this case. 
Consequently, B2 has the same first central charge as 

∏n
j=2 A

−1
pj

, which is −1. Therefore, 
B2 = A2 as I(B2) = 1. �

Theorem 6.6 and Proposition 6.11 inspire the following questions.

Question 6.12. Is the sequence {εr}r≥0 linearly independent? An affirmative answer to 
this question implies the linearly independence of the sequence {S([Cr])}r≥0 in sW.

Question 6.13. Is the intersection between ker(Ψ) and the torsion subgroup Tor(Wun)
contained in Wpt?
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7. The group sW2

Let sWpt be the image S(Wpt) in sW. By [10, Proposition 5.18], the super-Witt group 
sW can be decomposed into a direct sum

sW = sWpt ⊕ sW2 ⊕ sW∞

where sW2 (resp. sW∞) is the subgroup of sW generated by the Witt classes of com-
pletely anisotropic s-simple fusion categories of Witt order 2 (resp. of infinite Witt order). 
In particular, the torsion part of sW is sWpt ⊕ sW2. It is conjectured [10, Conjecture 
5.21] that sW2 has infinite rank. In this section, we give a proof for this conjecture in 
Theorem 7.3. We also prove that [I] has infinitely many square root in W modulo Wpt
(Theorem 7.2).

Fix a positive integer l ≡ 2 (mod 4) as before. Consider the subsequence ppp = {pj}∞j=0
of aaal consisting of all prime number terms. Again by the Dirichlet prime number theorem, 
ppp is an infinite sequence. Let Gppp be the subgroup of Gl generated by {[Cpj

]}j≥0.

Proposition 7.1. We have Gppp ∩Wpt = 〈[I]2〉.

Proof. Since [I]2 ∈ Wpt and 〈[I]2〉 = 〈[Cp0 ]4〉, 〈[I]2〉 ⊆ Gppp∩Wpt. Suppose A ∈ Gppp∩Wpt

is nontrivial. Then A =
∏n

j=0
[
Cpj

]bj for some integers b0, . . . , bn. As is illustrated in 
the proof of Theorem 6.6, we can assume that all the bj ’s are nonnegative, and we let 
A = C�b0

p0
� · · · � C�bn

pn
.

We first show that all the bj ’s are even. If not, there exists a nonnegative integer 
m ≤ n such that bm is odd. Since [Cpj

]2 ∈ 〈[Cp0 ]2〉 for all j, we may simply assume 
m = n.

Since A ∈ Wpt, there exists a finite abelian group H and a non-degenerate quadratic 
form q : H → C× such that the corresponding pseudounitary modular category H =
C(H, q) satisfies [H] = A in Wun. By Theorem 3.5,

εA(σ) = εH(σ) (7.34)

for all σ ∈ Gal(Q).
Let h denote the order of H. Since pn is an odd prime different from p0, . . . , pn−1, we 

can write h as h = h1h2, where gcd(h1, pn) = 1, and h2 = psn for some s ∈ N ∪ {0}. Let

M := 32 · h1 ·
n−1∏
j=0

pj .

Again, Lemma 5.1 (a) implies that ord (Tpj
) | M for j = 0, . . . , n − 1. Moreover, by 

construction, gcd(pn, M) = 1. Hence, there exist x, v ∈ Z such that

xpn + vM = 1 .
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Note that since M is even, x has to be odd.
Set k := −4lxpn + 4l + 1 = 4lvM + 1. Then k ≡ 1 (mod M) and gcd(k, pn) = 1 by 

Proposition 6.3. Therefore, we have k ≡ 1 (mod h1), and gcd(k, pnM) = 1.
Let N = Mpn and σ ∈ Gal(Q) such that σ|QN

= σk. By Proposition 5.3 or [14] again, 
Dpj

∈ Qord (Tpj
) ⊆ QM for j = 0, . . . , n − 1. Since k ≡ 1 (mod M), σ(Dpj

) = Dpj
, and 

hence εpj
(σ) = 1 for j = 0, .., n − 1. Apply Proposition 6.3, we have

εpn
(σ) = (−1)lx/2 = −1 .

Since bn is odd, we have

εA(σ) =
n∏

j=0
εpj

(σ)bj = εpn
(σ)bn = −1 .

By the definition of M , we have 
√
h ∈ QN and 

√
h1 ∈ QM . On one hand, since k ≡ 1

(mod M), σ(
√
h1) =

√
h1. On the other hand, k ≡ 1 (mod 4). By the same computation 

as (6.31), we have

(
k

pn

)
= (−1)l = 1 .

Therefore, by Lemma 6.2 and h2 = psn, we have

εH(σ) = σ(
√
h1)√
h1

σ(
√
h2)√
h2

= σ(
√
h2)√
h2

=
(
k

h2

)
=

(
k

pn

)s

= 1 , (7.35)

contradicting (7.34). Therefore, b0, . . . , bn are all even, and hence A ∈ 〈[I]〉.
Since 〈[I]〉 ∩Wpt = 〈[I]2〉, A ∈ 〈[I]2〉. Therefore, Gppp ∩Wpt = 〈[I]2〉. �

Theorem 7.2. The Witt class of the Ising modular category I has infinitely many square 
roots in W modulo Wpt.

Proof. Let ppp = {pj}∞j=0 be the prime number subsequence of aaal. Then Gppp∩Wpt = 〈[I]2〉. 
By Corollary 6.8 and Remark 6.9,

Gppp = [Cp0 ] ⊕
⊕
n>0

〈Cn〉

where Cn is an order 2 element given by [Cpn
][Cp0 ]−in for some integer in. Since 〈[Cpn

]2〉 =
〈[I]〉 for all n ≥ 0, the statement follows. �
Theorem 7.3. The group sW2 has infinite rank.
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Proof. Let ppp = {pj}∞j=0 be the prime number subsequence of aaal. Then S(Gppp) is an 
elementary 2-group, and so S(Gppp + Wpt) ⊆ sWpt ⊕ sW2 by [10, Proposition 5.18]. By 
[10, Proposition 5.18], sWpt = S(Wpt). Thus,

S(Gppp + Wpt)
S(Wpt)

is isomorphic to a subgroup of sW2. By Proposition 7.1, we have Gppp ∩ Wpt = 〈[I]2〉. 
Since ker(S) = 〈[I]〉, by Corollary 6.8 and Remark 6.9, we have

S(Gppp + Wpt)
S(Wpt)

∼= Gppp + Wpt

〈[I]〉 + Wpt
∼= Gppp + Wpt

Wpt

/
〈[I]〉 + Wpt

Wpt

∼= Gppp

Gppp ∩Wpt

/
〈[I]〉

Gppp ∩Wpt
∼= Gppp

〈[I]〉
∼= (Z/2)⊕N .

Therefore, sW2, is an infinite group. �
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