

Contact APS Meetings APS Meetings Home <u>Help</u>

Bulletin of the American Physical Society

Bulletin Home

My Scheduler

APS March Meeting 2021 Volume 66, Number 1

Monday-Friday, March 15-19, 2021; Virtual; Time Zone: Central Daylight Time, USA

Session V09: Mechanics and Structure of Filament Networks: Tissues and Cytoskeleton

Epitome

<u>Author Index</u>

Session_Index

Invited Speakers

Chair Index

Search Abstract

Search Affiliation

Using My Scheduler

Sponsoring Unit: DSOFT

3:00 PM-6:00 PM, Thursday, March 18, 2021

Chair: Alex Levine, University of California; Christoph Schmidt, Duke University

Abstract: V09.00005: Cells utilize strain hardening and crosslinking to establish their extracellular niche in

fibrous tissue

5:24 PM-6:00 PM Live

Abstract

Presenter:

Elliot Botvinick

(University of California, Irvine)

Authors:

Elliot Botvinick

(University of California, Irvine)

Alicja Jagiello

(University of California, Irvine)

Micah Lim

(University of California, Irvine)

Bulk measurements of ECM stiffness are commonly used in mechanobiology. However, peri-cellular stiffness can be quite heterogenous and divergent from the bulk properties. Here, we use optical tweezers active microrheology (AMR) to quantify how two different cell lines embedded in 1.0 and 1.5 mg/ml type 1 collagen (T1C) establish dissimilar patterns of peri-cellular stiffness. We found that dermal fibroblasts (DFs) increase local stiffness of 1.0 mg/ml T1C hydrogels, but surprisingly do not alter stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDA-MB-231 cells (MDAs) predominantly do not stiffen T1C hydrogels, as compared to cell-free controls. Results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically "prefer". Further, cells were subjected to treatments, that were previously shown to alter migration, proliferation and contractility of DFs and MDAs. Following treatment, both cell lines established different levels of stiffness magnitude and anisotropy, which were dependent on the cell line, T1C concentration and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale.

Follow Us

Become an APS Member Submit a Meeting Abstract Submit a Manuscript Find a Journal Article Donate to APS

My APS

Renew Membership Join an APS Unit Get My Member Number **Update Contact Information**

Information for

Librarians Authors Referees Media Students

About APS

The American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics.

© 2022 American Physical Society | All rights reserved | Terms of Use | Contact Us

Headquarters 1 Physics Ellipse, College Park, MD 20740-3844 (301) 209-3200 Editorial Office 1 Research Road, Ridge, NY 11961-2701 (631) 591-4000

Office of Public Affairs 529 14th St NW, Suite 1050, Washington, D.C. 20045-2001 (202) 662-8700