RANDOM TREES IN THE BOUNDARY OF OUTER SPACE
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ABSTRACT. We prove that for the harmonic measure associated to a random walk
on Out(F;) satisfying some mild conditions, a typical tree in the boundary of Outer
space is trivalent and nongeometric. This result answers a question of Mladen
Bestvina.

1. INTRODUCTION

As a means to study the outer automorphism group Out(F, ), Culler and Vogtmann
[CV86] introduced Outer space CV, as the deformation space of marked metric F,-
graphs.

Outer space is naturally equipped with a boundary dCV, whose points are repre-
sented by actions of F, on the class of ‘very small’ R-trees [CL95, BF94]. Since its
introduction, 0CV, has attracted much of its own attention and plays a role similar
to that of Thurston’s boundary of Teichmiiller space.

Since a point of OCV, is the homothety class [T] of an R-tree T, one can study
its basic properties as such. For example, each p € T separates T', and the number
of its complementary components is the valency of p. We call T trivalent if each of
its branch-points (i.e. points of valency at least 3) is 3-valent. Similarly, one can
also consider the manner in which T arises as an F.-tree; T is called geometric if
it is dual to a measured foliation on a 2-complex whose fundamental group is F.
As a point of reference, all of the R-trees that arise in Thurston’s boundary of the
Teichmiiller space are geometric since they are dual to singular measured foliations on
the underlying surface. Moreover, in that setting, the valencies of the branch-points
correspond to the degrees of the singularities on the surface.

In this paper we develop a complete understanding of these two properties for a
“random” tree in OCV;.

As a significant point of contrast to the surface case, we find that such a random
tree of OCV; is not geometric.

For this, let (wy,)n>1 be the random walk on Out(F,) determined by a nonelemen-
tary measure g on Out(F,). By combining work of Horbez [Horl6] and Namazi-
Pettet-Reynolds [NPR14],

we recall that the random walk induces a naturally associated hitting or exit mea-
sure v on OCV, and that v is the unique p-stationary probability measure on 9CV,.
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Moreover, v gives full measure to the subspace of trees in JCV, which are free, ara-
tional, and uniquely ergodic.

We refer the reader to Section 2 for the relevant background. Our main theorem
is the following;:

Theorem 1.1. Let » > 3 and let i be a nonelementary probability measure on
Out(F,) with finite support such that

the semigroup generated by the support of pu contains 0~ for some principal fully
irreducible ¢ € Out(F}).

Then for v- almost every [T] € OCVy, the tree T is trivalent and nongeometric.

This answers a question of Mladen Bestvina, who asked us whether almost every
tree in OCV, is trivalent.

An important component of our argument for Theorem 1.1 is the existence of
a principal outer automorphism in the semigroup generated by the support of u.
Such outer automorphisms were originally introduced in [AKKP18] and are discussed
further in Section 3. Let us remark here that principal outer automorphisms are
analogous to pseudo-Anosov mapping classes whose Teichmiiller axes live in the top
dimensional stratum over Teichmiiller space.

As a simple example, we note that the hypotheses of Theorem 1.1 are satisfied when
the support of p is a finite symmetric generating set of Out(F,.) — see Corollary 7.1
below.

Connections to previous work. In our previous work [KMPT18], we proved that
with probability approaching 1 as n — oo, the random outer automorphism w,, is
fully irreducible and its attracting/repelling trees T’ are trivalent and nongeometric.
However, since such trees form a countable, and hence v-measure zero, subset of 9CV,,
this provides no information about a v-typical tree in 9CV,. Indeed, the machinery
previously employed, that of ideal Whitehead graphs associated to fully irreducible
outer automorphisms, is no longer available in the general setting studied in this
paper. Instead, we rely on new results that connect the structure of folding paths to
properties of their limiting trees in order to study branching and index properties of
the latter.

Our main theorem (Theorem 1.1) in some sense parallels, and is inspired by, the
main theorem of [GM20] in the mapping class group setting. There, Gadre-Maher
show that with respect to the hitting measure, a typical lamination in Thurston’s
boundary of Teichmiiller space has complementary regions that are triangles and
once-punctured disks.

However, our setting differs from theirs in a few key ways. First, their arguments
ultimately rely on the openness of the top dimensional stratum in the unit cotangent
bundle of Teichmiiller space. Of course there is no similar structure for CV; and so
entirely different techniques must be developed. For this, we introduce the concepts
of eventually legalizing folding rays (Section 4) and principal recurrence (Section 5)
which we hope will additionally be useful in future work. Second, as previously
mentioned, in the mapping class group setting every limit point of the random walk
is geometric (essentially by definition), and so the fact that a typical tree in dCV; is



RANDOM TREES ARE TRIVALENT 3

nongeometric is a truly novel feature of the Out(F})-setting. Our argument for this
uses the index theory of Gaboriau and Levitt [GL95]. Informally, this states that
being nongeometric is equivalent to the failure of a ‘Poincaré—Hopf index formula’ for
branch-points of the tree. Using our specialized folding rays, we show that such a
formula typically fails.

Outline of paper. Section 2 provides background on some geometric tools used to
study Out(F,) and concludes by discussing a few properties of the hitting measure
on the boundary of Outer space associated to a random walk on Out(F;). In Section
3, we discuss the needed properties of principal outer automorphisms. These are
fully irreducible outer automorphisms whose axes in Outer space have particularly
rigid and saturated structure. The main result there (Proposition 3.4) says that an
arbitrary folding path which closely fellow travels such an axis inherits much of the
same structure.

Section 4 presents our main (nonrandom) criteria (Theorem 4.1) ensuring that a
folding ray determines a limiting tree that is trivalent and nongeometric. We call
such folding paths eventually legalizing. Informally, these are folding rays for which
every path is, after flowing forward and pulling tight, eventually legal, i.e. no longer
folded. If the ‘eventually legalizing’ condition on the folding ray holds, it allows one
to recover the precise structure of the branch-points of the limiting tree T from the
graphs along the ray, without losing any directions at the branch-points. A similar
issue arose in a recent paper [BHW20], where the authors introduced a “carrying
index” of T" which sufficed for their purposes but might not detect some directions at
branch-points of T

To establish the eventually legalizing property for a random folding ray, we in-
troduce the notion of principal recurrence in Section 5. A folding ray is principally
recurrent if it fellow travels a translate of a principal axis on arbitrarily long subseg-
ments. The main result (Proposition 5.2) of Section 5 says that random folding rays
are principally recurrent.

Finally, in Section 6 we show that a principally recurrent folding path is eventually
legalizing (Proposition 6.2). The proof of this fact uses results established in Section
3 and is another instance of a folding path inheriting the structure of a principal axis
that it fellow travels. In Section 7 we combine the above results to complete the proof
of Theorem 1.1.
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2. BACKGROUND

We record here some preliminaries used throughout the paper. Most of this appears
in the literature, with exceptions including Proposition 2.1, which builds folding paths
to trees in JCV, and Corollary 2.3, which establishes that a random tree in OCV is
free.

2.1. Outer space. We denote by CV the unprojectivized Outer space for the free
group F,. (where r > 2), and we denote by CV = CV, the corresponding projectivized
Outer space. A point in CV is represented (up to some natural equivalence) by a
marked metric graph structure on a finite connected graph G where each vertex of
G has degree > 3, the metric assigns each edge of G a strictly positive length, and
the marking identifies 71 (G) with F,.. We can also think of this point of CV as the
minimal free discrete isometric action of Fj,. on the R-tree T = G with the lifted
metric. We denote by vol(G) = vol(T) the sum of the lengths of the edges of G. The
space CV C CV consists of points G € CV with vol(G) = 1.

There is a natural closure CV of CV with respect to the length function topology,
and CV is known to consist of precisely the very small nontrivial minimal isometric

actions by F, on R-trees. The projectivization of CV with respect to the natural
multiplicati/og action of Rsq is denoted CV; it is known that CV is compact. For
every T' € CV the projective class [T] is canonically identified with T'/vol(T") € CV,
and thus we can think of CV as the projectivization of GV, and so as a subset of
CV. We denote OCV = CV — CV. For additional background on Outer space, its
topology, and its boundary see [CV86, CL95, BF94, Pau89].

For G1,Gs € ﬁ, we denote by A(G1,G2) the infimum of the Lipschitz constants
of the continuous maps f: G; — G4 preserving the marking, i.e. “change of marking”
maps. It is known that for G1,G2 € CV we have A(G1,G2) > 1, and that G; = Go
in CV if and only if A(G1,G2) = 1. For G1,Gy € CV we denote dov(G1,G2) =
log A(G1,G2) and refer to doy as the asymmetric Lipschitz metric on CV. For more
on this metric, see [FM11, AK11, BF14]. As is common, we let dsy;, denote the
symmetric Lipschitz metric: dsym(G1,G2) = dov(G1, G2) + dov(Ga, Gh).

For an interval J C R, a map ~: J — CV is called a geodesic in CV if
dev(y(t),y({t")) = ¢ —t for all t,t' € J with ¢t < /. A geodesic ray in CV is a
geodesic v: [0,00) — CV. We emphasize that the term geodesic always refers to the
asymmetric Lipschitz metric.

2.2. Laminations and arational trees. We refer the reader to [CHL08a, CHLOSD,
Rey12, BR15, BF14] for detailed background on algebraic laminations on F,., arational
trees, and the free factor complex. We only recall a few basic facts here. For a free
group F, (with r > 2) let OF, be its Gromov boundary and let 0?°F, = {(21,22) €
OF, x OF,|z1 # z}. The set 0?F, is equipped with the subspace topology from
OF, x OF, and with the diagonal translation action of F,. An algebraic lamination
on F is a subset L C 9%F, which is closed, F,-invariant, and flip-invariant (for the
“flip” map 0°F, — 0%F, defined by (21, 22) — (22, 21)). For an algebraic lamination
L on F, a pair (z1,22) € L is called a leaf of L. For a lamination L on F;, a leaf
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(21,22) € L, and a nontrivial finitely generated subgroup H < F, we say that (z1, 22)
is carried by H if both z; and z9 are contained in 0H. Here we have used the facts
that H is itself free and that the inclusion H — F, induces an embedding 0H — OF;.

For any tree T € CV there is an associated dual lamination or zero lamination
L(T) C 0?F, on F, which depends only on the projective class [T] € CV. The dual
lamination encodes, in a systematic way, the information about sequences of elements
of F,. with arbitrarily small translation length in 7. We refer the reader to [CHLOS8b]
for the precise technical definition of L(7T"). For our purposes the key relevant facts

are that for T € CV we have L(T) = @ if and only if T € CV, and that whenever

T,T' € CV are such that llullr < ||ul|r for every u € F, then L(T') C L(T). Here
|lullr denotes the translation length of u € F, with respect to the action F, ~ T.

A tree T € CV is called arational if T 4 CV and if no leaf of L(T) is carried by a
proper free factor of F,. [Rey12]. In this case the projectivized tree [T] € OCV is also
called arational. Note that the property of being arational depends only on the dual
lamination of the tree.

For r > 3, the free factor graph FF is a simple graph where the vertex set is the set
of F.-conjugacy classes of proper free factors of F,.. Two distinct vertices of FF are
adjacent in FF if and only if they can be represented as conjugacy classes [A], [B] of
proper free factors A, B of F;. such that A < B or B < A. The graph FF is endowed
with the simplicial metric where every edge has length 1, and with the natural left
action of Out(F;) by simplicial automorphisms (and hence by isometries), where for
a vertex [A] of FF and an element ¢ € Out(F,) we have ¢ - [A] = [¢p(A)].

It is known, by a result of Bestvina and Feighn [BF14], that for » > 2 the free
factor graph FF is Gromov-hyperbolic, and that for ¢ € Out(F}) the element ¢ acts
as a loxodromic isometry if and only if ¢ is fully irreducible. (Recall that ¢ is fully
irreducible if no positive power of ¢ fixes the conjugacy class of any proper free factor.)
There is a natural coarsely defined and coarsely Out(F))-equivariant “projection”
m: CV — FF where Gy € CV is mapped to the free factor [A] represented by any
proper connected non-contractible subgraph of Gg. It is also known [BR15] (see
also [Ham12]) that the hyperbolic boundary 0FF can be identified with the set of

equivalence classes [[T]] of arational trees T € CV, where two such trees T,T" are
considered equivalent whenever L(T) = L(T").

Finally, let UE be the subspace of JCV consisting of arational trees having a unique
length measure, up to scale. More precisely, [T] € UE if and only if T is arational and
[T] = [T'] whenever L(T) = L(T"). Such trees are sometimes called uniquely ergodic.

2.3. Branch-points and the geometric index of a tree. For an R-tree T" and a
point p € T, a direction at p in T is a connected component of T'\ {p}. The number
of directions at p in T is denoted valy(p) and called the valency (or degree) of p in
T. We think of valr(p) as an element of {oo} U{n € Z|n > 0}. A point p € T is a
branch-point of T if valr(p) > 3.

Let T € CV. In [GL95] Gaboriau and Levitt proved that T has only finitely
many F.-orbits of branch-points and only finitely many F,-orbits of directions at
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branch-points. They also showed that if T € CV is a free F,-tree then for every
branch-point p € T one has valy(p) < oo. For such a free F-tree T, if p1,...,pm € T
are representatives of all the distinct F.-orbits of branch-points, [GL95] defined the
geometric index indgeom (1) as

m
geom Z ValT pz - 2
=1

The unordered list valy(py),. .., valp(pm) is the index list for T
Gaboriau and Levitt further defined indgeom(7") for an arbitrary (not necessarily

—

free) tree T € CV and proved that one always has indgeom (T') < 2r — 2. The equality
indgeom (1) = 2r — 2 holds if and only if the tree T" is geometric, i.e. arises as the dual
tree of a measured foliation of some finite 2-complex with fundamental group F,.. We
say that T is nongeometric if indgeom (T") < 2r — 2. We refer the reader to the paper
[CH12] for more detailed background on this topic.

2.4. Folding lines and limiting trees. We next turn to folding paths in CV and
in CV. In the case of folding paths between simplicial trees, we closely follow [BF14,
Section 2], where we refer the reader for additional details. Since we will be particu-
larly interested in folding rays to points in 0CV, we pay special attention to this case
in Proposition 2.1.

Following [HM11, MP16], we define a folding path in CV as a proper continuous
injective map y: I — CV (where I C R is an interval), with v(¢) = G; € CV for
all t € I, together with a family of continuous folding maps g;: Gy — Gy, where
t,t' € I with t < t/, satisfying the following properties: Each map g, : Gy — Gy is
locally injective on edges of Gy, and we have g;; = Idg, for each ¢ € I. In addition,
whenever ¢ <t' <t for ¢,¢',¢" € I, we have g; 4 = gy 4 0 g¢p. We will often denote
such a folding path as just (Gy):cr and suppress explicit mention of the maps g; 4.

A folding path is a folding line if I = R and a folding ray if I = [tg, 00) for some
ty € R.

For the most part, in this paper we will concentrate on special “greedy” types of
folding paths.

We next turn to their description and refer the reader to [BF14, FM11] for more
details. -

For a point G € CV, a gate structure T on G is a partition, for every vertex v of
G, of the set of oriented edges originating at v into nonempty subsets called gates. A
turn {ej,ea} at v (i.e. a pair of oriented edges originating at v) is called legal with
respect to T if e, eo belong to different gates, and is called illegal otherwise. In this
setting the gate structure and the notions of legal and illegal turns naturally extend,
via lifting, to T = G. An edge-path (or a circuit) in G is called legal with respect
to T if for every 2-edge subpath ee’ of this path, the turn {e~!, ¢} is legal. A train
track structure on G is a gate structure 7 on G such that at each vertex of G there
are at least 2 gates.

For trees Ty € EV, T e ﬁ, an F-equivariant map f: Ty — T is called a morphism
if for each edge e = [z,y]| of Ty the map f sends e isometrically to [f(x), f(y)]r (so
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that, in particular, f(z) # f(y)). Note that a morphism is, by definition, a 1-Lipschitz
map. A morphism f: Ty — T defines a pullback gate structure Ty on Ty where a turn
{e1,e2} at a vertex x of T is legal if and only if the restriction of the map f to the
path 61_162 is injective.

A morphism f: Ty — T is optimal if the pullback gate structure 7y is a train track
structure on Tj. -

Suppose Ty = éo € GV, T e GV, and f: Ty — T is an optimal morphism. Then
f canonically determines in CV a greedy isometric folding path defined by f, denoted
(Gy)sey, with J C [0,00) an interval starting at 0, with Go = Gy, and with the
following properties and addltlonal structure. For every s,s’ € J with s < s’ we have
a 1-Lipschitz - map Js,s’ . Gy - G that lifts to an optimal morphism f, o: Ty — Ty,

where Ty = G and Ty = Gs/. For each s € J we also have an optimal morphism
fs:Ts = T, where fy = f. These morphisms are compatible, in the sense that for
every s,s' € J with s < s’ we have fy o fs o+ = fs. For each s € J we equip Ts with
the pullback gate structure T, induced by fs: Ts — T. (In what follows, we will refer
to both sets of maps gs ¢ and fs ¢ as folding maps.) The “greedy” property of this
folding line means that for each s € J, which is not the right-end point of J, there
exists an € > 0 such that [s,s 4+ €) C J and such that for each s’ € (s, s+ €) the map
fss: Ts — T} is obtained by equivariantly, at each vertex x of Ty and for each gate
(with respect to T) at z, folding together into a single segment the initial segments
of length s’ — s of all the edges in that gate. The interval J starting at 0 is chosen to
be maximal possible subject to (@s) scg satisfying all these properties.

For several constructions of greedy folding lines and additional properties, see
[BF14, Section 2]. We remark on a few relevant properties here. The function vol(7%)
is strictly monotone decreasing on J. Moreover, the fact that f: Tp — T is an optimal
morphism implies that for each s € J the pullback gate structure 75 on G, is a train
track structure. The path (as)sej, with the maps g; ¢, is a folding path in CV in the
more general sense described in Subsection 2.4. Also, in this setting, for any s; < s9
in J the path (@3)86[51752} is (up to shifting the parameter by s1) exactly the greedy
isometric folding path defined by f, s,: T, — T, .

It is known that if f: Ty — T is an optimal morphism, then the path (as)sej
projects to a reparameterized geodesic in CV [FM11, AK11]. In this case for s, s’ € J
with s < §' we have Gy /vol(Gs), Gy /vol(Gy) € CV and

Gs Gy vol(Gly)
\% =, = = log ———.

vol(Gs) vol(Gy) vol(Gy)

In particular, if Gg € CV has volume 1, then in this setting

G 1 ~
d Go,——— | =1lo — = —log vol(Gy).
v ( " vol(Gs)> ® Vol(Gy) g vollG)

Since Vol(@s) is a strictly decreasing function on J, there exists a unique mono-
tone increasing reparameterization «(t) of J with «(0) = 0, a: J* — J, such that

Vol(aa(t)) = et foralt e J. We denote Gy = @a(t)/vol(@a(t)) for all t € J'.
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Note that as topological spaces we have G = @a(t), and the only difference between

G, and @a(t) is in their metric graph structures. For all ¢ < ' in J' we also set
9t = Ja(t),a(r)- Then (Gi)iey, with the maps gy, is a folding path in CV in the
general sense described above.

This reparameterization gives us a path (G¢)iey in CV starting at Go which is

a geodesic in CV. If Gy € CV, Ty = éo, T € EV, and f: Ty — T is an optimal
morphism, we refer to (G)icy as the greedy geodesic folding path defined by f.

If T € CV, then in the above setting a greedy geodesic folding path defined by f
always reaches T in some finite time, and J' = [0,dcy (T, T)]. If [T] € OCV, then
it is possible that J’ is a finite interval (this can happen if the geodesic folding path
exits CV after a finite distance), and even in the case where J' = [0,00) we are not
necessarily guaranteed that lim;_,o, Gy = [T] in CV. Nevertheless, for reasonably nice
T € 0CV one can rule out such unexpected behavior.

Proposition 2.1. Let [T] € OCV be such that T is a free Fy-tree. Then:

(1) For each r-rose in CV there exists a metric structure Go € CV on this rose
and an optimal morphism f: é[) =Ty — T for some ¢ > 0.

(2) Let Ty = Gy € CV, let f: Ty — T be an optimal morphism, and let (@S)SGJ
and (Gy)ie g be the greedy isometric folding path and the greedy geodesic folding
path determined by f. Denote M = sup{s|s € J}. Then:

(a) There exists a limit limg_, 57— @s =T in @, and, moreover, T is again
a free Fy-tree and [T'] € OCV. Moreover, in this case L(T") C L(T).
(b) If, in addition, T is arational, then L(T) = L(T") and J' = [0,00), so

that R
lim dcy (Go, GSA ) = 00
s— M~ vol(Gy)
(¢) If T is arational and uniquely ergodic, then T =T in ﬁ, and hence
lim Gy =T

t—o00

in CV.
Proof. (1) Let T'y € CV be an r-rose corresponding to a free basis ai,...,a, of F.
By assumption F,. acts freely on 7', so that a; is a loxodromic isometry of 7" with
translation length ||ai||7 > 0.

Let 29 € fo be a lift of the vertex vg of I'g. Let L,, C T be the axis of a; in T,
and pick a point p € Ly,. Thus ai1p € L,, and dp(p,a1p) = ||a1||r > 0. By replacing
T by T for an appropriate ¢ > 0 we can assume that 2221 dr(p,a;p) = 1.

Note that since T is a free Fj.-tree, we have a;p # p for i = 1,...,r. We give each
edge a; of T'y the length dr(p, a;p) > 0, which defines a new volume-1 metric structure
Gy on I'g, and a point Ty = éo € CV. For i = 1,...,r denote by x; the vertex of
Ty which is the terminal endpoint of the lift e; of the petal a; of I'y starting at xg.
We construct an F-equivariant morphism f: Ty — T by setting f(xg) = p, setting
f(x;) = a;p for i = 1,...,r, mapping each e; isometrically to the segment [p, a;p|r,
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and then extending f by equivariance. By construction f: Ty — T is a morphism.
Moreover, the fact that p € L,, implies that zy (and hence every other vertex of
Tp) has at least 2 gates for the pullback gate structure 7;. Thus f is an optimal
morphism, as required.

2)

(a) Since f: Ty — T is an optimal morphism, hence each vertex for the pullback
legal structure 7o on Ty has at least 2 gates at each vertex, there exists a nontrivial
To-legal circuit v in Gy representing the conjugacy class of some 1 # w € F,. The
fact that (Gs)ses is the greedy isometric folding path determined by f and starting
at Gy = @0 implies that for each s € J the circuit fy s(7) is legal in @S for the train
track structure 74 induced by fs: Ts — T. Recall that M = sup{s | s € J}. Thus
0 < M < vol(Gyp) < .

The fact that for any s < s’ in J the folding map fs ¢ : Ts — Ty is 1-Lipschitz im-
plies that for each u € F}. we have |[u||7, > ||u||7,,. Thus for each u € F}. the function
||ul|z, is monotone non-increasing on J and there is a finite limit lim,_, /- ||ul|z,.
Moreover, for our legal loop =y representing 1 # w € F, we have ||w||r, = ||w||z, > 0,
and so the limit lim,_,/— ||w||7, = ||w||z, > 0. Therefore there exists a nontrivial

tree limy_, 3~ Ts = T" in CV. Since there are 1-Lipschitz maps fs: Ts — T, we have
l|lul|z, > ||ul||r for every u € F, and every s € J. Therefore, for the limiting length
function ||.||7, we also have ||u||pr > ||u||z for all w € F,.. Recall that T is a free
F,-tree. Therefore for every 1 # u € F, we have ||u||r > ||u||7 > 0, so that T” is also
a free F,-tree. -

We claim that [T'] € OCV. Suppose not. Then 77 € CV and sup;s = M € J and
T’ = Ty;. The assumption that T € OCV then implies that the map far: Thy — T
is not locally injective, and therefore for the gate structure 7p; on Ths there exists a
gate at some vertex with at least two distinct edges in that gate. This means that the
isometric folding path (@s) scJ can be continued past s = M for some positive time
[M, M + ¢), contradicting the fact that M = sup; s. The condition ||u||p» > ||u||7 for
all u € F, also implies that L(T") C L(T). This completes the proof of (2)(a).

(b) Suppose now that, in addition, 7" is both free and arational. By part (a) above
we know that [T”] € OCV and therefore L(T") # @. Now [BR15, Proposition 4.2(i)]
implies that the “derived lamination” L'(T) C L(T) is the unique minimal sub-
lamination in L(7). Since L'(T) is minimal, we have L'(T) = L"(T) = L"(T).
Since L(T") C L(T), and since L(T') is a nonempty lamination, it follows that
L'(T) C L(T"). Thus L"(T) C L(T"). Since T is arational, [BR15, Corollary 4.3]
implies that L(T") = L(T), and that T is also arational.

Then the greedy geodesic folding path (Gy):c - projects to a reparameterized quasi-
geodesic in the free factor complex FF [BF14, Corollary 6.5] which converges to a
point of the hyperbolic boundary dFF represented by 7' [BR15, Proposition 8.3].
Since the projection map 7: CV — FF is coarsely Lipschitz, it follows that J' =
[0,00). Indeed, otherwise J' is a finite interval and = would map the folding line
(Gt)tey to a set of bounded diameter in FF, which cannot limit to a point of F F.
Thus indeed J' = [0,00) and lim,_, /- dCV(GO,@S/Vol(és)) = oo. Part (2)(b) is
verified.
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(c) Suppose now that 7' is free arational and uniquely ergodic. By part (b) we
know that L(T) = L(T") and T" is arational. Then, by definition of unique ergodicity,
we have [T] = [T'] in OCV. Thus T” = bT for some b > 0. Note that for our legal

circuit 7 representing w in Gy we have ||w||7 = [|w||, = [|w||7» > 0 and therefore
b=1. Thus T =T’ in CV, as required. O

We conclude this subsection by setting a few conventions to simplify terminology.

Convention 2.2. From now on, by a geodesic folding ray in CV we mean a folding
ray (Gt)ie(to,00) iIn CV which, up to a shift of the parameter by to, is a greedy geodesic
folding path in CV with J' = [0,00). Also, by a geodesic folding line in CV we mean
a folding line (Gy)ier in CV such that for every ¢9 € R the path (Gi)efry,00) 18 @
geodesic folding ray in CV.

We will often abbreviate the notation for geodesic folding rays and geodesic folding
lines in CV to just (G). Moreover, if a geodesic folding line in CV is gp-periodic for
some fully irreducible ¢ € Out(F;), we usually denote such a line by A(t).

2.5. Random walks and Outer space. The general notion of a nonelementary
probability measure on a group acting isometrically on a Gromov-hyperbolic metric
space is discussed in more detail in Section 5 below. Considering the case of the
action of G = Out(F,) on the free factor graph FF, a probability measure p on
Out(F}) is nonelementary if the subsemigroup (Supp(p))+ of Out(F;) generated by
the support of p contains some two independent fully irreducible elements 1, )s.
Here independent means that the attracting and repelling fixed points of 1,9 in
OFF are four distinct points. By [BFH97, Proposition 2.16, Theorem 4.1], fully
irreducibles 1,12 € Out(F;) are independent if and only if (11, 12) < Out(F;) is not
virtually cyclic, and also if and only if (¢1) N (¢2) = {1}.

Recall that UYE C OCV is the subspace of uniquely ergodic trees.

The following is Theorem 7.21 of Namazi-Pettet-Reynolds [NPR14]; see also Dahmani-
Horbez [DH18, Theorem 5.10] and Horbez [Horl7, Proposition 4.4].

Theorem 2.1 (Hitting measure on OCV). Let pu be a nonelementary probability mea-
sure on Out(F),) with finite first moment with respect to dcy. Then for almost every
sample path w = (wn)n>0 of the random walk on (Out(F,),n) and any yo € CV, the
sequence (wpYo)n>0 converges to a point bnd(w) € UE. The hitting measure v defined
by setting
v(S) = P(bnd(w) € 9),

for all measurable subsets S C OCV is nonatomic, and it is the unique p-stationary
measure on OCV.

In fact, it is not hard to see that v—almost every T' € JCV is also free. Since
we will need this fact, we record it here. For the statement, we recall that a fully
irreducible ¢ € Out(F}) is geometric if there is a once punctured surface S with
m1(S) = F, and a pseudo-Anosov homeomorphism f: S — S such that f, = ¢, as
outer automorphisms. If ¢ is not geometric, then it is nongeometric.

Corollary 2.3. Suppose in addition to the hypotheses of Theorem 2.1 that the semi-
group generated by the support of p contains a nongeometric fully irreducible outer
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automorphism. Let v be the associated hitting measure on OCV as obtained in Theo-
rem 2.1. Then a v-typical tree T in OCV is free.

Proof. The hypotheses imply that p is nonelementary with respect to the action on
the co-surface graph (See [TT16, Section 2.4]). By Maher-Tiozzo [MT14, Theorem
1.1], this means that almost every sample path converges to a point in the boundary
of the co-surface graph. By work of Dowdall-Taylor [DT17] the boundary of the
co-surface graph is the subspace of dCV consisting of free and arational trees (after
identifying trees with the same dual lamination, as in the identification of OFF).
Now for a typical sample path w, (w,¥yo)n>0 converges to a point bnd(w) € UE by
Theorem 2.1. Since such a path typically projects to a path in the co-surface graph
converging to a boundary point represented by a free tree, we see that bnd(w) is also
free. O

The additional assumption in Corollary 2.3 on the semigroup generated by the
support of u is necessary. Without it, the entire random walk could, for example,
be contained in some mapping class subgroup of Out(F;) in which case almost every
limiting tree has nontrivial point stabilizers.

3. PRINCIPAL OUTER AUTOMORPHISMS AND
FELLOW TRAVELING FOLDING PATHS

We now turn to discussing the particular type of outer automorphism, called a
principal outer automorphism, that will act as the ‘seed’ of our construction. The
main result of this section (Proposition 3.4) proves a strong rigidity property for
folding paths that fellow travel the axis of a principal outer automorphism.

The original definition of a principal outer automorphism ¢ € Out(F}) is given
in terms of its ideal Whitehead graph [HM11] and the reader can find a complete
definition in those terms in [AKKP18] or [KMPT18]. Rather than recall the original
definition here, we collect the essential properties that we will need and give an
alternative characterization.

Recall that a fully irreducible ¢ € Out(F,) is called ageometric if the attracting tree
T, = T{ € 9CV is nongeometric, i.e. indgeomTy < 2r — 2. For an ageometric fully
irreducible ¢ € Out(F,) the action of F, on TY is free and has dense F,-orbits. For
r > 3, a fully irreducible ¢ € Out(F,) is principal if ¢ is ageometric with indgeom L =
2r — 3, if every branch-point p € T f has valr, (p) = 3, and if every nondegenerate
turn at p in T is “taken” by the expanding lamination A, of .

For those readers unacquainted with this terminology, this notion essentially amounts
to the fact that among all fully irreducible outer automorphisms, principal outer au-
tomorphisms are characterized as those which satisfy conditions (2) — (4) in Lemma
3.1. We remark that principal outer automorphisms exist in Out(F}.) for each r > 3
[AKKP18, Example 6.1].

As a fully irreducible outer automorphism, a principal ¢ € Out(F;) has a periodic
folding line A in CV, which we write as A(t) rather than (A;) as done in Section 2.4.
Here, A is periodic in the sense that there is a A > 1 so that o tA(t) = A(t) - ¢ =
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A(t+1n)) for all t € R 1. Note that In A > 0 is the translation length of ¢ in CV.
We refer to A as an axis for ¢.

Next we collect properties of the pair ¢, A. Most of these are easily located in the
literature.

Lemma 3.1. Suppose that ¢ € Out(F),) is principal and that A is an axis for .
Then the following hold.

(1) The folding line A is the lone axis for ¢. This means that it is the unique (up
to reparameterization) folding line with the property that lim;_,_~ A(t) = [T-]
and lim;_,oo A(t) = [T], where [T_], [T] € OCV are the repelling/ attracting
trees for .

(2) For all but a discrete collection of times, A(t) is contained in the interior of
a mazximal simplex (i.e. it is trivalent). Moreover, when A(t) is not trivalent,
it has a unique vertex of degree 4.

(3) For allt € R, A(t) has exactly one illegal turn. Hence, A is a greedy folding
line in the sense defined in Section 2.4.

(4) For allt € R for which A(t) is trivalent, every legal turn of A(t) is taken (i.e.
it is a turn traversed by the image of the interior of an edge of A(s) under the
folding map A(s) — A(t) for some s < t).

Proof. Since ¢ is a principal outer automorphism, by definition, its ideal Whitehead
graph IW () is the disjoint union of 2r —3 triangles. Thus, (1) is a direct consequence
of [MP16, Theorem 4.7] and the [HM11] definition of an axis bundle.

Similarly, item (2) follows immediately from Lemma 5.1 and Remark 3.11 in
[AKKP18], and item (3) is explained in [KMPT18, Remark 5.4] using the fact that
A is a lone axis for ¢ (as in item (1)).

To prove item (4), recall that in the language of Section 2.4, A(t) (for ¢ greater than
any fixed tg € R) is a greedy geodesic folding path guided by some optimal morphism

f: A(to) — T4, where T is the attracting tree for ¢ (as in item (1)). We suppose
that A(tp) is trivalent and let vy be its unique vertex with an illegal turn (using item

—~

(3)). For any other vertex v of A(tp) and any lift v to A(to), f maps v to a (necessarily
valence 3) branch-point of 7. From the property that indgeom T4 = 2r — 3 we note
that f induces a bijection between the set of vertices of A(ty) other than vy and the
set of orbits of branch-points of 7. The condition that all nondegenerate turns at
f(v) are ‘taken’ by the stable lamination means here that for each such turn there is

an edge € of A(tp) whose interior maps over this turn under f. In terms of the greedy
geodesic folding line A, this translates to the statement that for some sufficiently large
integer n, the folding map A(tg) — A(to +nlnX) = A(ty) - ¢™ has the property that
the image of each vertex v # vy, which is itself a trivalent vertex with all legal turns,
has each of its turns taken by some edge of A(t).

Since tp was an arbitrary time for which A(¢y) is trivalent, using periodicity of
the folding line A we see that it only remains to show that the two legal turns of
vo are taken by edges of A(s) under the folding map A(s) — A(to) for some s < ty.

INote that it is ¢~ ! that translates along the forward ‘folding’ direction of A for the left action on
CV.
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However, this is clear by inspection: If e, es, eg are the directed edges out of vy such
that {e1,es} is the unique illegal turn in A(tp), then for i = 1,2 any open edge of
A(s) whose image contains e; must also contain es. Since there must be such edges
of A(s) for some s < ty, we have that the turns {e;,es} and {eg,e3} are taken, as
required. This proves (4) and completes the proof of the lemma.

O

We will also require the following lemma which states that along the axis of a
principal outer automorphism, bounded length loops are legalized in bounded time.
Recall that for a conjugacy class a in F,. and graph G € CV, {g(«) denotes the length
of the immersed representative of o in G.

Lemma 3.2. Let ¢ be a principal outer automorphism with lone axis A. For each
1 >0 thereis a D > 0 such that if « is a conjugacy class in F, such that KhA(tO)(a) <l
(for some h € Out(F})), then the immersed representative of o in hA(t) is legal for
allt >ty + D.

Proof. By applying the isometry h € Out(F;) of CV, it suffices to prove the lemma
for h = 1.

There is some t; € [to, to + In A] such that the folding map A(t;) — A(t1 +1In\) =
A(t1) - ¢, which we relabel as f: A — A, is a train track representative of ¢ mapping
vertices to vertices. Note that if £,y () <1, then £y y(a) < Al

According to [AKKP18, Proposition 4.11], since ¢ is principal there are no periodic
Nielsen paths in A. Hence we may apply [BF94, Proposition 3.1], which states that
for any loop A in A there is an Ng > 0 such that [fV#(8)] (i.e. the tightened image
of fN8(B) in A) is legal. Let

N = max{Ngz EA(tl)(ﬁ) < )\l}
Then our proof is completed by setting D = (In \)(N + 1). O

We will next turn to prove our rigidity result concerning folding paths that fellow
travel the lone axis A. First we describe the precise definition of fellow traveling that
we will use.

Definition 3.3 (Fellow traveling). Let L > 0 and p > 0, and let v: I — CV and
~": I' — CV be geodesics.

(1) Let t,t' € Rsuch that [t,t+ L] C I, and [t',t'+ L] C I', and for each s € [0, L],
dsym(Y(t +8),7/(t' +5)) < p. We then say that |,y r) and vy po 1) p-fellow
travel.

(2) We say that v and " p-fellow travel for length L if there exist ¢, ¢’ such that
YNit,+r) and vy p4p) p-fellow travel.

We remark that here and throughout, fellow traveling in CV is always meant with
respect to the symmetric metric, and furthermore this definition of fellowing traveling
takes in to account the orientation of the geodesic.

Let (G}) be a geodesic folding path. For the statement of the next proposition, we
say that a nondegenerate turn in G, is being folded (at time ¢ = a) if the image of
the turn under the folding maps G, — G} is degenerate for any b > a.
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Proposition 3.4. Suppose that ¢ € Out(F,) is a principal outer automorphism with
lone axis A. Then there exist constants €p, Ko > 0 such that if (Gy), for t € [t1,t2],
is a greedy geodesic folding path in CV, and if there is an h € Out(F,) such that
(Gy) eo-fellow travels A" = hA for length to — t1, then the following holds: For any
t € (t1 + Ko, t2) and s € R such that

o (4 is trivalent,
o A'(s) is trivalent and in the same open simplex as Gy, and
o ¢s: A'(s) = Gy is a rescaling homeomorphism topologically identifying these
graphs,
we have that a turn in A'(s) is being folded if and only if its image under ¢4 is being
folded in Gy. Hence, ¢ preserves the train track structures in the sense that it maps
legal turns to legal turns.

Proof. By applying the appropriate isometry h € Out(F; ), we note that it suffices to
prove the proposition for A’ = A.

Begin by choosing €y < log(2) so that (G;) passes through the same sequence of
open maximal simplices as A. Also, fix D > 0, provided by Lemma 3.2, to be such
that any loop in A(t) of length no more than 4 is legal in A(t + D).

Let o be a conjugacy class of F, represented by a legal loop in Gy, such that
G, (a) < 2. (Such an « is sometimes called a legal candidate in the literature.)

Since €y < log(2), there is a s € R such that dsym (G, A(s1)) < € < log(2), and
80 L4(5,)(@) < 4. By our choice of D in the above paragraph, « is legal in A(s) for
all s > s; + D. Moreover, there is a constant Do > D, depending only on the axis A,
such that « crosses all legal turns in A(s) for all s > s; + Do when A(s) is trivalent.
This is because when A(s) is trivalent, all legal turns are taken (Lemma 3.1), and so
the difference Dy — D depends only on the stretch factor of g and the power needed
so that every edge maps over all other edges and takes all legal turns.

Hence, for all trivalent A(s) with s > s1+ Da, « crosses all of the legal turns in A(s)
and so « crosses all but the unique illegal turn. If ¢ € [t1, t2] is such that Gy lies in the
same open maximal simplex as A(s), then «, which is legal in Gy, crosses all but one
turn in Gy. This conclusion holds because ¢s: A(s) — Gy is a homeomorphism and
so maps the immersed representative of o in A(s) to the immersed representative of
« in Gy. Hence, the one turn in Gy not taken by o« must be the unique illegal turn
in Gy. This implies that ¢s: A(s) — G} preserves legality, whenever s > s; + Dy and
A(s) and G are in the same maximal open simplex.

To complete the proof of the proposition, it suffices to find a Ky > 0 such that if
t > Ko+ t1, then any A(s) in the same maximal open simplex with G; necessarily
has s > s; + Dy. For this, let 0 < € be the minimum injectivity radius (i.e. length of
shortest essential loop) along the periodic line A. Note that if the Lipschitz distance
from G; to a graph in A is less than ¢y, then the injectivity radius of Gy is at least
e~ “9¢. By compactness, the diameter of the subspace of a simplex consisting of graphs
with injectivity radius at least e~“C¢ is bounded by some constant ® > 0. Then setting
Ko = Dy + 9 + 2¢p completes the proof by the triangle inequality. O

In order to apply Proposition 3.4 we will require the following lemma:
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Lemma 3.5. Suppose that ¢ € Out(F,) is a principal outer automorphism with lone
axis A. There exists €1 > 0 such that for everyt € R there isx € R witht < x <t+1
so that the symmetric €1-ball about A(x) lies in the interior of a maximal simplex.

Proof. By Lemma 3.1.2, the set
Z ={t € R: A(t) is not in the interior of a maximal simplex}

is a discrete subset of R. Moreover, since A(t) - ¢ = A(t + log(\)) for some A > 1, Z
is invariant under translation by log(A) > 0. Hence, it suffices to assume that ¢ lies in
the compact interval [0,log(A)]. Set I = [0,log(A) + 1] and note that Z N I is finite.

Let K be the complement in CV of the interiors of maximal simplices. Clearly K
and its closed symmetric e-neighborhood N, = N<(K) are closed.

The preimage Ce = A~ (N) N1 is compact. It is easy to see that ()., Ce=Z NI
since for any ¢t ¢ Z the symmetric distance from A(t) to K is positive. Hence, we
can choose €; > 0 sufficiently small so that each component of C¢, has diameter less
than 1. For such an ¢; and any ¢ € [0,log(\)] there is an z € I with ¢t <z <t + 1 so
that z is not in C¢,. Consequently, A(z) has symmetric distance greater than e; from
K and so the symmetric €;-ball about A(x) is contained in the interior of a maximal
simplex, as required. This completes the proof. ]

4. VALENCIES OF BRANCH-POINTS AND
EVENTUALLY LEGALIZING FOLDING LINES

We begin by stating a convention that we will refer to throughout this section.

Convention 4.1. For the remainder of this section, we assume that [7] € OCV is
given by a free F-tree T (where r > 3), that Gy € CV, and that f: Ty — T is
an optimal morphism from Ty = C~¥0 to T. This data produces the greedy isometric
folding path (és)seJ in CV determined by f starting at Go = Gy.

Recall from Sectiorfl\/2.4 that the folding path (@5) scJ comes together with optimal

morphisms fg: Ts = Gy —T (where s € J), with “folding maps” gs ¢ : Gs — Gy for
all s,s' € J,s <, and their lifts f; ¢: Ty — Ty such that fg o fs o = fs. We also
have the corresponding geodesic folding path (Gy)ies in CV.

Finally, recall that each (A;S is given the pullback train track structure 75 defined
by the map fs; although we note that because the folding path is greedy, the gate
structure is unambiguous. By part (2)(a) of Proposition 2.1, the interval J has the
form [0, M) for some real number M > 0.

We record the following useful general property of our folding paths.

~

Lemma 4.2. Let T, f: Ty — T, and (Gs)sey be as in Convention 4.1. Let s € J
and let © € Ty be a vertex with k > 3 gates with respect to Ts. Then p = fs(x) € T is
a branch-point with valy(p) > k > 3.

Proof. Let eq,..., e, be edges of T originating at x and representing the k distinct
gates at x. Then f; maps each e; isometrically to a nondegenerate geodesic segment
fs(ei) = [p,ps]r in T. For i # j the edges e;,e; are in different gates; therefore the
turn {e;, e;} is legal and the path e;lej is mapped by fs injectively to T". This means
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that for i« = 1,...,k the segments [p, p;]7 represent k distinct directions at p in 7.
Hence valy(p) > k > 3, as required. O

Lemma 4.2 motivates the following definition:

~

Definition 4.3 (Representing branch-points). Let T', f: Top — T, and (Gg)ses be as
in Convention 4.1. Let s € J and let x € T be a vertex with k > 3 gates with respect
to Ts, and let g € V@, be the projection of x to G,. Let p = fs(z) € T (so that, by
Lemma 4.2, p is a branch-point of T of valency > k).

In this case we say that the branch-point p € T is represented by x, and that the
F-orbit of p is is represented by xq.

If, moreover, valp(p) = k, we say that the branch-point p € T is faithfully repre-
sented by x, and that the F.-orbit of p is faithfully represented by xg.

Remark 4.4. Note that if a branch-point p € T is represented (resp. faithfully
represented) by x € T then for each s > s in J, the branch-point p is also represented
(resp. faithfully represented) by fs o (x) € Ty .

In general it can happen that in the setting of Lemma 4.2 the point p = fs(x) € T
has some extra directions not coming from the gates at x in T, that is, that valp(p) >
k, so that p is represented but not faithfully represented by z. (For experts: this is
exactly what happens in the presence of periodic INPs in train track maps representing
some nongeometric fully irreducible ¢ € Out(F}).)

Below we define an additional condition satisfied by some “good” folding paths,
which will allow us to control and ultimately rule out this kind of behavior. This
condition on folding lines is a central point of this paper.

~

Definition 4.5 (Eventually legalizing folding paths). Let T, f: To — T, and (Gs)ses
be as in Convention 4.1. We say that the folding path (@s)sej is eventually legalizing
if for any s € J and any immersed finite path + in G, there exists s’ € J, s > s such
that the tightened form ~" = [gs &(7)] of the image of v in Gy is legal (with respect
to Ty ). In this situation we also say that the greedy geodesic folding path (Gy)e s in
CV determined by f is eventually legalizing.

Note that under the assumptions of Convention 4.1, for every s € J the subset
fs(Ts) C T is an F-invariant subtree and therefore f4(Ts) = T since the action of F,
on 7' is minimal.

~

Proposition 4.6. Let T, f: Ty — T, and (Gs)sey be as in Convention 4.1. Assume

that the greedy isometric folding path (Gs)sey is eventually legalizing.

Then for each branch-point p € T there exists some s € J and a vertex xg € és
such that xq faithfully represents the F,.-orbit of p.

Proof. Recall that, by the result of Gaboriau and Levitt, since T is a free F,.-tree,
every branch-point of T has finite valency, and there are only finitely many F.-orbits
of branch-points in 7" (see Section 2.3).

Let p € T be a branch-point. Thus 3 < valp(p) = m < oo. Let q1,...,qm be
points in 7" distinct from p such that the directions at p defined by geodesic segments
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D, q1]T, - -, [P, gm]T represent all m directions at p. In particular, [p, g7 N [p, ¢;lT =
{p} for all i # j.

Recall that Ty = @’0 and that f = fy : Ty — T is onto. Let u,vy1,...,ym € 1o
be such that fo(u) = p and fo(yi) = ¢;- Denote 8; = [u,y;]7, and denote by «; the

image of 3; in Gy. Thus each «; is an immersed path in Gy from some point v (the
image of u in @0) to some point z; (the image of y; in @0). Note that fo(f5;) is a path
in T from p to ¢;, and so this path passes over [p, ¢;]7 but we cannot claim yet that
fo(Bi) = [p, qilr-

Since our folding path is eventually legalizing, there exists some s > 0 in J such
that for ¢ = 1,...,m the tightened go s-image 7; of ; in @s is legal. All 7; have the
same initial point v’ which is the image of v in G.

Observe that, for each ¢ = 1,...,m, the tightened fo-image w; of 3; in T = és
is the lift of 7; starting at x = fy s(u) and hence legal. (Here, the map fy s is as in
Convention 4.1.)

This means that fs: Ty — T is injective on w;. Then fs(z) = p and fs(w;) = [p, g1
fori=1,...,m.

Since we chose q1,...,qn so that the directions at the point p in 1" defined by
[, q1]T, - - -, [P, gm|T are distinct, the directions defined by wi, ..., w,, at = have to be
distinct as well. Otherwise, there would be some ¢ # j such that w; Nw; is nontrivial.
But then the image of this overlap fs(w; Nw;) would be nontrivial as well, implying
that [p, ¢;]7N[p, ¢;]7 is nontrivial. (Recall that fs(w;) = [p, ¢:]r and fs(w;) = [p, ¢j]7.)
This contradicts our choice of distinct directions at p. R

Since m > 3, this means that z is a vertex of T}, and hence v’ is a vertex of G, and
that the directions at v’ represented by initial germs of 7q,...,7,, are in m distinct
gates for 7.

If v' has k > m gates in és, that would imply that there is another direction at
x in Ty which maps by fs to a direction at p different from the m directions given
by [p,qilr, - - -, [P, gm]T, contradicting the choice of m and of ¢1, ..., q;,. Hence v’ has
exactly m gates in (A}'S. Thus the vertex x € T faithfully represents the branch-point
p € T, and the vertex v’ € @S faithfully represents the Fj.-orbit of p, as required. [

We now come to the main result of this section.

Theorem 4.1. Let [T] € OCV be a free Fy-tree (where r > 3), let Ty € CV, let

f: Ty — T be an optimal morphism, and let (Gs)scy be a greedy isometric folding
path in CV determined by f starting at Ty. Suppose that:

~

(1) The folding path (Gs)scy is eventually legalizing and
(2) for each s € J there exists some s’ > s in J such that the graph Gy is trivalent.

Then T s trivalent and nongeometric.

Proof. Let p € T be a branch-point. Then by Proposition 4.6 there exists some s € J
and a vertex xg € @8 such that zg faithfully represents the Fi.-orbit of p. Thus
valp(p) = k > 3, and G, has exactly k gates at zg for T;. By condition (2), there
exists some s’ > s in J such that the graph éS/ is trivalent. Then, by Remark 4.4,
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xy = Js,s (x0) € és, is also a vertex with k > 3 gates that faithfully represents the
Fy-orbit of p, and thus k < degs (). Since Gy is trivalent, it follows that k = 3.
Thus T is trivalent, as required. )

We now claim that T is nongeometric. Suppose on the contrary that 7' is geometric.
Then the geometric index of T'

is equal to 2r — 2.

Since T is trivalent, and every F-orbit trivalent branch-point contributes 3 —2 =1
to the geometric index of T', this means that T has exactly 2r — 2 Fj.-orbits of branch-
points, each of valency 3. Let p1,p2,...,p2r—2 € T be representatives of these 2r — 2
F.-orbits of branch-points in 7'.

By applying Proposition 4.6, Remark 4.4 and assumption (2), we can find a big
enough s € J such that és is trivalent and such that for every i = 1,...,2r — 2 there
exists a vertex v; in G s which faithfully represents the F.-orbit of p; and has exactly 3
gates for 7,. The Euler characteristic count for G gives us > l(deg(v)/2—1] =r—1.
We also have Z?i;ﬁdeg(vi)/Q —1] = (2r—2)(1/2) = r — 1, which implies that G has
no other vertices and that VCAJS = {v1,...,v2,—2}. Since each v; has degree 3 and has 3
gates in és, it follows that all non-degenerate turns at v; are legal fori =1,...,2r—2,
so that all non-degenerate turns in @S are legal for 7;. This means that fs: Ts — T is
locally injective, and hence an isometry, contradicting the assumption that [T] € OCV.
Thus T is nongeometric, as claimed. O

The following lemma characterizes, for an eventually legalizing isometric folding
line, how different vertices of G can represent branch-points of 7' belonging to the
same F.-orbit.

~

Lemma 4.7. Let T, f: Ty — T, and (Gs)seg be as in Convention 4.1. Assume that
the greedy isometric folding path (és)sej 1s eventually legalizing. Let s € J and let
xz,y € Tg be vertices with > 3 gates which are respectively lifts of vertices xg,yo € @S.
Let p = fs(x),q = fs(y) € T (so that, by Lemma 4.2, p and q are branch-points of
T ). Then the following are equivalent:

(1) We have F.p = F,q.

(2) There exists some s' > s in J such that gs ¢ (x0) = gs,s' (Yo)-

(8) There exists some s’ > s in J and an immersed path v from xy to yo in és

such that the tightened image [gs s (7)) of v in CA}S/ s a trivial path.

Proof. Note that (3) directly implies (2).

And (2) implies (1) as follows.

Assume that (2) holds and that zp = g5 ¢ (20) = s, (y0). Recall that we are also
given a lift fy s: Ty — Ty of gsy such that fs = fo o fys. Then 21 = f; o (2)
and 22 = fs¢(y) are both lifts of 29 = gs ¢ (20) = s, (y0). We have p = fi(x) =
fsrofss(x) = fo(21) and g = fs(y) = fs o fss(y) = fo(22). Since both 21, 29 are lifts
of zy, it follows that zo = wz; for some w € F,. Since p = fy(z1) and q = fg(wz1)
and since fy is Fp-equivariant, we conclude that ¢ = wp, and (1) holds.

Finally, suppose that (1) holds and F,.p = F,.q. Then there exists w € F, such that
q = wp.
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Now fs(wz) = wfs(x) = wp = q. Let «y be the projection to G, of the geodesic
[y, wz|r,. Note that fs(y) = fs(wx) = ¢ in T. Since our folding path is eventually
legalizing, there exists some s’ > s in J such that the tightened path 7' = [g, s (7)]
is legal in Gy. If 9/ is a nontrivial path, then 4/ lifts to a legal immersed path of
positive length from fs ¢ (y) to fs ¢ (wx) in Ty which maps isometrically by fo to a
path of positive length in T" from fy(fs«(y)) to fs(fs s (wz)). This contradicts the
fact that fy(fs.s(y)) = fo(fs,sr(wz)) = ¢. Thus v is a trivial path in Gy. Thus we
have proved that (1) implies (3), completing the proof of the lemma. O

In the setting of Convention 4.1, for s € J let V] C V@, be the set of all vertices
of @S with > 3 gates for 7;. Define a relation ~4 on V! by setting vy ~; vg (for
v1,v2 € V/) if and only if there exists ' > s,s' € J such that g5« (v1) = s (v2) in
CA{S/. It is easy to see that ~g is an equivalence relation on V. Note that if v; ~4 vy
and v; represents the F,.-orbit of a branch-point p € T then vy also represents the
F,-orbit of p, and valy(p) > max{d;, ds} where d; is the number of gates at v; in @s
for ¢ = 1,2. However, in this situation if we also have that v; faithfully represents
the F.-orbit of p € T, that does not necessarily imply that vo faithfully represents
the F,-orbit of p € T' (since it may happen that the number of gates at vy is smaller
than the number of gates at v1). For a vertex v € V! we say that v is mazimal for ~
if v has the maximal number of gates among all vertices of VY in the ~4-equivalence
class of v.

~

Corollary 4.8. Let T, f: Ty — T, and (Gs)secy be as in Convention 4.1. Assume that
the greedy isometric folding path (Gs)scy is eventually legalizing. Let p1,...,pm € T

be representatives of all the distinct F,.-orbits of branch-points.
There exists sg € J such that for all s > sq with s € J the following holds:

(1) There are exactly m distinct ~4-equivalence classes in V.

(2) Letuvy, ..., v, € V] be representatives of all the distinct ~-equivalence classes
in V!, such that for each i =1, ... ,m the vertex v; is maximal for ~s. Then,
up to re-ordering of p1,...,Pm, for each i = 1,...,m the verter v; faithfully
represents the F,.-orbit of the branch-point p; of T.

In particular, if k; is the number of gates at v; in Ty then k; = valp(p;) and

m

indgeom (T) = > _[ki — 2].

i=1
Proof. Proposition 4.6 implies that there exists an s € J such that there are vertices
ULy ..., Uy € V] where, for each i, we have that u; faithfully represents the F,-orbit of
pi. Thus if k; is the number of gates at u; in T then k; = valp(p;) > 3fori=1,...,m.
Since p1, ..., pm are in distinct Fp-orbits, Lemma 4.7 implies that for ¢ # j we have
uj %5 uj. By Lemma 4.2, every vertex v € V{ represents the F,-orbit of some p;, and
therefore, by Lemma 4.7, v ~4 u; for some . Thus there are no other ~g-equivalence
classes in V! except the m distinct classes given by wuq,...,uy,. This means that
there are exactly m distinct ~g-equivalence classes in V, concluding the proof of (1).
Moreover, each u; is maximal in its ~¢-equivalence class, since otherwise there would
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exist a vertex in V! with > k; gates representing the F,-orbit of p;, contradicting
the fact that k; = valp(p;). Thus the conclusion of part (2) in V! holds for any

maximal elements v1, ..., v, in the ~4-equivalence classes of u1, ..., u;,. Remark 4.4
and Lemma 4.7 now imply that the conclusion of part (2) also holds for any s > s
with s’ € J. O

Corollary 4.8 provides a precise abstract description of how an eventually legalizing
folding path captures the geometric index and the index list for the free Fi.-tree

[T] € OCV.

5. RANDOM FOLDING RAYS AND PRINCIPAL RECURRENCE
Fix a principal outer automorphism ¢ € Out(F},) with lone axis A in CV.

Definition 5.1 (Recurrent folding rays). A geodesic folding ray (Gy) is ¢-recurrent,
for some principal outer automorphism ¢, if there is a K > 0 such that for any L > 0,
the ray (G;) has a subsegment that K-fellow travels an Out(F;)-translate of A for
length at least L.

We also say that (Gy) is principally recurrent if it is ¢-recurrent for some principal
v € Out(F).

The main proposition of this section is the following. It is deduced from facts about
random walks on groups acting on hyperbolic space (mainly results of Maher—Tiozzo
[MT14]) and the bounded geodesic image property for translates of the axis A, a
result previously established by the authors [KMPT18].

Proposition 5.2. Suppose that i is as in Theorem 2.1 and that ¢~' is in the semi-

group generated by the support of u. Let v be the corresponding hitting measure on
OCV (see Theorem 2.1). Then for v almost every tree T € OCV and any geodesic
folding ray (Gy) converging to T, we have that (Gy) is p-recurrent.

We remind the reader that if ¢ is principal with axis A in CV, then ¢ 1A(t) =
A(t +1n ). That is, with respect to the left action on CV, »~! translates A in its
folding direction.

Before turning to the proof of Proposition 5.2, we briefly discuss random walks and
hyperbolic spaces. The reader can find additional details in [MT14] and a similar
setup in [KMPT18]. We assume throughout that p is a probability measure on G
with finite support, although this condition is far stronger than what is needed in this
section.

Now suppose we have an isometric action of a group G on a d-hyperbolic space
(X,d). Recall that a Q-quasigeodesic is a map v: I — X such that for all s,t € I

5d(v(5),7(1)) = Q < [t — 5| < Qd(v(s),7(1)) + Q-
We now give a definition of fellow traveling for quasigeodesics.

Definition 5.3 (Fellow traveling for quasigeodesics). Let L > 0 and x > 0, and let
~v: I — X and 7/: I' = X be Q-quasigeodesics.
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(1) Let I = [s,t] and I" = [s/,¢']. We say that v and 7/ r-fellow travel if the
Hausdorff distance between ~(I) and ~/(I’) is at most «, and furthermore
both d(v(s),v(s")) < x and d(y(t),y(¥)) < k.

(2) We say that v and +' k-fellow travel for length L if there exist subintervals
J C I and J' C I’ such that v|; and 7|y k-fellow travel, and furthermore the
images of both ~(J) and ~/(J’) have diameter at least L.

(3) For a point 2 = (t) on v, we say that v and 7/ p-fellow travel for length L
at centered at x, if there are subintervals J C I and J' C I’, with ¢t € J, such
that v|; and +'|; k-fellow travel, the images of both v(J) and +/(J’) have
diameter at least L, and, moreover, the distance in X from x = v(t) to each
of the endpoints of v(J) is at least L/2.

We may now define what it means for two quasigeodesics to have an oriented match.

Definition 5.4 (Oriented match). Let v: I — X and v': I’ = X be quasigeodesics.
We say that v and 7/ have an (L, k)—oriented match if there is a group element h € G
such that v and h -+ k-fellow travel for length L.

This definition is symmetric, as if v and h - v k-fellow travel, then 7/ and h~' -~/

k-fellow travel.

Recall that a measure p on G is nonelementary for the action G ~ X if the
semigroup generated by the support of 1 contains 2 loxodromic elements with distinct
endpoints on dX. Suppose that y is a nonelementary measure for G ~ X and that
@ € G is a loxodromic in the semigroup generated by the support of p. In this
setting, there is a unique p-stationary measure v on dX, and v is the hitting measure
for the orbit of the random walk [MT14, Theorem 1.1]. With this setup, we have the
following lemma:

Lemma 5.5. For alld > 0 and all Q > 1 there is a k > 0 such that the following holds:
For any countable group G acting on a §-hyperbolic space X, with u a nonelementary
probability measure on G with finite support and hitting measure v on 0X, then for
v-almost every n € 0X and each Q-quasigeodesic ray v = [xg,n) in X with endpoint
n, the quasigeodesic tay v has, for each L > 0, an (L,k)-oriented match with a
Q—quasiazis o, of Q.

Here, a Q—quasiazis o, of ¢ is a @Q—quasigeodesic that ¢ acts on by translation.

Proof. Consider the bi-infinite step space (G, p)%. Let S: (gn)nez > (gni1)nez be
the shift map, which acts ergodically on the step space. Let w: (gn)nez — (Wn)nez
be the map from the step space to the path space (GZ,P), where

w. — 4 9192 -9n forn >0
" go_lgl_l...g:}ﬁl for n <0,

and P is the push forward of the product measure y? by w. By [MT14], almost every
sample path converges in both the forward and backward directions, giving rise to a
map 0 = 04 x 0_: (G%,P) = 0X x 0X, defined on a full measure subset of the path
space. In particular, this means that the shift map S acts ergodically on (G%,P),
where S*(wy,)nez = (w,;lwn). Furthermore, v x 7, the product of the hitting measure
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with the reflected hitting measure, is the push forward of the path space measure P
under 0.

Given an oriented )-quasiaxis a,, we shall write a:; and o, for its forward and
backward limit points in X respectively. We shall write c,(0) for a nearest point on
o, to the basepoint zp in X. Given constants § > 0 and ) > 0, there is a constant
x > 0, such that for any Q-quasigeodesic o, in a d-hyperbolic space, and any constant
L > 0, there are open sets A and B in X, with o, € A and o@ € B such that any
bi-infinite @)-quasigeodesic vy, with one endpoint in A and the other in B, x-fellow
travels length at least L with the quasigeodsic o, centered at a.,(0). Furthermore,
the distance between o, (0) and the closest point on v to the basepoint zg is bounded
in terms of § and Q.

We shall write 7, to denote a bi-infinite Q)-quasigodesic connecting the forward
and backward limit points of (wnxo)nez. If S*(wn)nez lies in 971(A x B), then
there is a subsegment of ~,, of length L, centered at the nearest point projection of
wy, to v, which fellow travels with wya,. As ¢ lies in the semigroup generated by
the support of u, by [MT14, Proposition 5.4], v x 7(A x B) = v(A)v(B) is strictly
positive. In particular, 9~'(A x B) is positive. Therefore, by Birkhoff’s pointwise
ergodic theorem, the proportion of integers 1 < k < N such that S*(w,)nez lies in
071 (A x B) converges to v(A)7(B) as N — co. In particular, there is a sequence of
integers k; — oo such that S¥ (wy,)nez lies in 971 (A x B), and as (wy,)nez converges
to O4(wn)nez, this means that there are infinitely many disjoint subintervals of ~,,
which k-fellow travel with a translate of «a,, for length L. The same property now
follows for Q-quasigeodesic rays starting at zp and converging to 04 (wp )nez, as every
such ray has an infinite terminal subray which fellow travels with ~,,.

So we have shown that for some x > 0 and any L > 0, the set of n € 90X for
which any @Q-quasigeodesic ray v = [x0,7) has an (L, x)-oriented match with a,, has
v measure 1. Intersecting these sets over all L € Z,, we see that the set of n € 0X
such that every @-quasigeodesic ray v = [zo,7) has an (L, x)-oriented match with o,
for every L > 0 also has v measure 1. This completes the proof. O

Now Proposition 5.2 follows from Lemma 5.5 and the bounded geodesic image
property for translates of A.

Proof of Proposition 5.2. Recall that for v-a.e. tree T' € OCV, we have that T is
free, arational, and uniquely ergodic (Theorem 2.1 and Corollary 2.3.) Hence, by
Proposition 2.1, there exists a geodesic folding ray (G) converging to 7'

The w-image of any geodesic folding path in the free factor complex FF is a
Q-unparameterized quasigeodesic, for ) depending only on the rank of F, [BF14,
Corollary 6.5]. Since ¢ acts as a loxodromic isometry on FF, at the expense of
increasing ), we may assume that the image m(A) of the axis A is a @-quasiaxis for
p in FF. So applying Lemma 5.5 to the situation at hand, gives that almost surely
the quasiray 7((Gy)) has an (L, k)-oriented match with 7w(A) for every L > 0.

Unpacking this statement, we see that for any L > 0, there is an h € Out(F})
such that 7((Gy)) k-fellow travels w(hA) for length at least L in FF. Since the map
m: CV — FF is coarsely Lipschitz [BF14, Corollary 3.5], it suffices to show that fellow
traveling of 7w((G;)) and w(hA) in FF can be lifted to uniform fellow traveling of (G;)
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and hA in CV. This follows from the bounded geodesic image property established
in [KMPT18, Theorem 7.8] and the rest of the argument is similar to the one given
for [KMPT18, Theorem A].

In some detail, if 7((G¢)) and 7w(hA) fellow travel for length L sufficiently large,
then the nearest point projection in FF of the path m((Gt)) to m(hA) is roughly
diameter L, depending only on @) and the hyperbolicity constant of FF. In terms
of Outer space, this means that the projection of (G) to the greedy folding axis hA
using the Bestvina-Feighn (see [BF14]) projection Prj4: CV — hA has diameter no
less than cL, for some ¢ > 0 depending only on the rank of F,.. This follows from the
fact, established in [DT18, Lemma 4.2], that moPry 4 is coarsely equal to nom, where
n: FF — w(hA) is the nearest point projection. Corollary 7.9 of [KMPT18] then
implies that the path (G¢) contains a subsegment that K-fellow travels a subsegment
of hA for length cL — ¢, for some constants c;, K > 0 that depend only on the
principal outer automorphism . Since this was true for any L > 0, we have that
(Gy) is ¢-recurrent and the proof is complete. O

6. PRINCIPALLY RECURRENT FOLDING LINES ARE EVENTUALLY LEGALIZING

In this section, we fix a principal outer automorphism ¢ € Out(F,) and denote by
A its lone folding axis in CV.

Our goal is to show that principally recurrent folding paths are all eventually
legalizing.

This is achieved in Proposition 6.2.

Our first lemma is proven in the same manner as Lemma 5.9 of [KMPT18]. It
basically states that in the case of interest, if folding paths fellow travel for a long
enough time, then they get arbitrarily close to one another.

Lemma 6.1. If the greedy geodesic folding ray (Gt) is p-recurrent, then for any
€ >0 and any L > 0, the ray (Gt) has a subsegment that e-fellow travels an Out(F,)-
translate of A for length at least L.

Proof. Using the periodicity of A and @-recurrence of (Gy), we can find a ty € R and
a sequence of h; € Out(F;) so that the rays h;(G;) K-fellow travel the restriction of
A to the interval [ty — L;, to + L;] for length 2L;. Here, we choose L; — oo as i — oo.
Up to reparameterizing the geodesic ray h;(G;) by translation, we can assume that
dsym (hiGy,, A(tg)) < K.

Then, just as in the proof of Lemma 5.9 of [KMPT18], the sequence h;(G;) has
a subsequence that converges uniformly on compact sets to a greedy folding line B
which has bounded distance from A (see also [BR15, Lemma 6.11]). In particular, B
has the same limit points in JCV as A (as in Lemma 3.1.1). This is to say that B
is a folding line from the repelling tree to the attracting tree of ¢ and so since ¢ is
a lone axis outer automorphism we have that B = A, after reparameterizing. Since
the convergence to A along the subsequence is uniform on compact sets, we conclude
that for any €, L > 0 there is an i > 0 so that h;(G}) e-fellow travel the restriction of
A to [tg — L, to + L] for length 2L. This completes the proof. O

The main result of this section is the following proposition.
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Proposition 6.2. Suppose that the greedy geodesic folding ray (Gt) in CV is p-
recurrent. Then (Gt) is eventually legalizing.

Proof. Let vy be an immersed path in Gy and let 7, denote its image in G; (via the
fold maps) after tightening. In general, if p is any path in G, its tightening is denoted
[p]. Our goal is to show that ~; is legal in G, for sufficiently large ¢.

Let NV be the number of illegal turns in g, so that N 41 is the number of maximal
legal segments of ~y. Note that the number of illegal turns N; in v; is nonincreasing
in t and so Ny < N. We begin by choosing ty > 0 sufficiently large so that for all
t > to,

e N; = Ny, i.e. the number of illegal turns has stabilized.
Hence, for all ¢ > ty we have the decomposition
M) W=,
where the breakpoints happen exactly at the illegal turns of ;. In the language of
Section 5 of [BF14], v, has all surviving illegal turns for the folding ray, in the sense
that no illegal turns of «; become legal or collide with one another while folding.
Although it is not strictly needed for what follows, this observation makes it clear
how the decomposition of 7 is obtained from the decomposition of ; for tg <t < t':
just consider the image of 7¢ under the folding map to Gy and remove initial and
terminal portions of the image that cancel with portions of its neighbors. Since the
number of illegal turns in ; does not decease for t > tg, these images are never
canceled away.

Returning to the argument, by Corollary 4.8 of [BF14], for s > t any legal segment
o inside of 4 of length L; > 2 gives rise to a legal segment o, inside of ~; of length
Ls > 2+ (L — 2)e*~t. (This conclusion follows from the so-called derivative formula
of Bestvina-Feighn, [BF14, Lemma 4.4].) Hence, if at any time ~; has length more
than 2, then it grows exponentially thereafter. So at the expense of making tg larger,
we may additionally assume that for each 0 < ¢ < Ny, either:

° fyfo has length at least 8 (and hence has length > 8 for all ¢t > t;), or
e 7/ has length at most 2 for all ¢ > to.

We call the vis of length greater than 8 large and the rest are called small.

Note that if Ny, = 0, then we are done. So assume that Ny, > 0.

Now for any s >ty we use (1) to construct another decomposition of ~s,
(2) Ne=rtort. ok
for k < N; defined as follows: for each large 7 there are two breakpoints of the de-
composition (2) at vertices along 4% obtained by starting at the endpoints v, moving
inward (along ~¢) for length 2 and choosing the next vertices of 4! (while continuing
to move along ~!). Since the length of 4! is at least 8 and every edge has length
less than 1, this process chooses two vertex breakpoints per large v, and results in a
decomposition of 5 in which each term begins and ends with (possibly overlapping)
legal segments of length at least 2. We point out that £ — 1 is twice the number of
large 7% in the initial decomposition of ;.
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The decomposition of vs given in (2) is a splitting in the sense that if we denote
the folding maps by g,:: Gs — Gy, we have for tg < s <t

Ve = [gst(rd)] - -+ [gst (r¥)].

This again follows from the formulation of the derivative formula stated above since
legal segments of length at least 2 are not completely cancelled under folding. (We
warn the reader that we are not claiming that the above splitting of ~; is the same as
the one appearing in (2) for s =t¢.)

Note that (for each s > tg) the r2’s alternate between legal segments (of length at
least 2) and clusters of segments of length no more than 3 joined by illegal turns. The
total length of each illegal cluster is no more than 3(Ny, + 1) < 3Ny + 3. Moreover, if
73 is an illegal cluster of 7, then for any ¢ > s, r/ is an illegal cluster of v; and r] is a
subpath of [gs+(r2)] whose complementary pieces are legal initial/terminal subpaths
of [gs¢(r})]. This fact follows directly from our construction.

Since N¢, > 0 and all illegal turns of -y, are contained in illegal clusters, there exists
a1l < j < k such that r} is an illegal cluster for all s > t5. We set ry = r and
henceforth work only with this illegal cluster. We will show that for some ty < s < ¢,
the immersed path [gs¢(7s)] is legal in Gy. Since this is a subpath of 7, this shows
that N; < Ny,; a contradiction that will complete the proof.

Now apply Lemma 3.2 with | = 2(3Ny + 8) to obtained a D > 0 so that for any
t € R and h € Out(F,), any loop in hA(t) of length at most 2(3Np + 8) becomes legal
in hA(t + D), after folding and tightening.

Also fix € < min{ep, €1,l0g(2)} and L > Ko+ D + 2, where ¢y and Ky are as in
Proposition 3.4 and € is as in Lemma 3.5. As (G) is ¢-recurrent, Lemma 6.1 implies
that for this €, L > 0, there is a interval (after time ty) on which (G}) e-fellow travels
hA(t) (for some h € Out(F})) for length L. For ease of notation, set A" = hA.

Hence, we have obtained a subinterval [t;,t; + L] (t; > to) such that the restriction
of (G¢) to this interval e-fellow travels A’ for length L.

Applying Proposition 3.4, we get a subinterval [t; + Ky, t; + L] of length at least
D + 2 with the property that for any t € (t; + Ko,t, + L) and s € R such that

(a) Gy is trivalent,

(b) A’(s) is trivalent and in the same open simplex as Gy, and

(c) ¢s: A'(s) = Gy is a homeomorphism topologically identifying these graphs,
we have that ¢ preserves the train track structures in the sense that it maps legal
turns to legal turns.

We now choose points for which these conditions hold. Let sq1, s2 € R with s1 < s9
be such that the restriction of A’ to [s1, 2] e-fellow travels the restriction of (Gy) to
[t1 + Ko, t1 + L]. Note that each of these intervals has length at least D + 2.

Next apply Lemma 3.5 to find ¢,d € [s1,s2] with s1 < ¢ < s34+ 1and sa —1 <
d < s9 so that the symmetric e;-balls about A’(¢) and A’(d) are each contained in
the interior of a maximal simplex. We record for later that d — ¢ > D. Finally, pick
a,b e (ti + Ko, t1 + L) so that dsym(Ga, A'(c)) and dsym (G, A'(d)) are each less than
€. As e < €1, we have that G, and A’(c) are contained in the same open simplex, as
are Gy and A'(d).
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Let ¢c: A'(c) = G, and ¢4: A'(d) — G} be the homeomorphisms preserving the
associated train track structures. Since A’(c) has exactly one illegal turn (Lemma
3.1), the same is true for G,.

Recall that the illegal cluster r, has length no more than 3Ny + 3 in GG,. Since
there is only one illegal turn of G, we can easily ‘legally’ extend r, to a immersed
loop a. By this we mean that «, is an immersed loop containing r, so that the rest
of oy (call it pg) is a legal arc of length at least 2 which meets the endpoints of r, at
legal turns. It is also easy to see that can be done in such a way that o, has length
no more than 5 plus the length of r,.

Let a be the conjugacy class of F,. represented by «, in G, and let a; denote the
immersed representative of v in Gy for ¢ > a. Hence, {g, (o) < 3Ny + 8.

We claim that for all ¢t > a, [g4+(7q)] is a subpath of a; in G¢. This conclusion is
an immediate consequence of the fact that [gq ()] = o and the fact that

Qq = Tq * Pa,

is a splitting of o, (as a loop). This last fact again follows from our construction and
the formulation of the Bestvina—Feighn derivative formula used above.

We are now ready to complete the proof of Proposition 6.2.

Using that dsym(Ga, A'(c)) < € <log(2), we have that

EA/(C) (a) < 260@ (Oé) < 2(3N0 + 8)

Moreover, our choice of D then gives that the immersed representative of ain A’(¢+D)
is legal. Because ¢ + D < d, the immersed representative of « in A’(d) is legal. But
since the homeomorphism ¢4: A’(d) — G maps the immersed representative of « in
A'(d) to the immersed representative of a in Gy, and preserves legality, the immersed
representative of a in Gy, is also legal. This is all to say that «y is a legal loop in Gj,.
Since oy, contains the path [gq4(74)], this path too is legal in Gy. But this is exactly
the contradiction we sought, and so the proof of Proposition 6.2 is complete. O

7. PROOF OF THE MAIN RESULT

Recall that a probability measure p on Out(F;) is called nonelementary if the
subsemigroup (Supp(u))+ of Out(F;) generated by the support Supp(u) of p contains
two independent fully irreducible elements (that is, two fully irreducible elements
1,19 € Out(F;) such that the subgroup (¢1,12) is not virtually cyclic).

We can now prove the main result of this paper (c.f. Theorem 1.1 in the introduc-
tion):

Theorem 7.1. Suppose that r > 3 and let i be a nonelementary probability measure
on Out(F,.) with finite support such that = € (Supp(u)), for some principal fully
irreducible ¢ € Out(F,). Let v be the hitting measure on OCV for the random walk
(Out(F,), p) starting at some yo € CV.

Then for v-a.e. [T] € OCV, the tree T is trivalent and nongeometric.

Proof. By Corollary 2.3 and Theorem 2.1, for v-a.e. [T] € OCV, the tree T is F,-free
and uniquely ergodic.



RANDOM TREES ARE TRIVALENT 27

By Proposition 2.1, there exists a (greedy) geodesic folding ray (G;) in CV such
that limy_,oo G; = [T] in CV. Proposition 5.2 now implies that the ray (G;) is -
recurrent. Hence, by Proposition 6.2, the ray (G;) is eventually legalizing. Therefore,
by Theorem 4.1, the tree T is trivalent and nongeometric. [l

Corollary 7.1. Suppose that r > 3 and let u be a nonelementary probability measure
on Out(F,) with finite support such that (Supp(u))+ contains a subgroup of finite in-
dex in Out(F},). Let v be the hitting measure on OCV for the random walk (Out(F;), p1)
starting at some yo € CV.

Then for v-a.e. [T] € OCV, the tree T is trivalent and nongeometric.

Proof. Let H < Out(F;) be a subgroup of finite index such that H C (Supp(u)) .
By [AKKP18, Example 6.1], there exists a principal fully irreducible ¢ € Out(F;).
Then for some m > 1 we have ¢ € H and therefore ¢~ € (Supp(u))+. Hence, by
Theorem 7.1 above, the statement of the corollary follows. O
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