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The assembly and maintenance of microbial diversity in natural
communities, despite the abundance of toxin-based antagonistic
interactions, presents major challenges for biological understand-
ing. A common framework for investigating such antagonistic
interactions involves cyclic dominance games with pairwise inter-
actions. The incorporation of higher-order interactions in such
models permits increased levels of microbial diversity, especially in
communities in which antibiotic-producing, sensitive, and resistant
strains coexist. However, most such models involve a small num-
ber of discrete species, assume a notion of pure cyclic dominance,
and focus on lowmutation rate regimes, none of which well repre-
sent the highly interlinked, quickly evolving, and continuous
nature of microbial phenotypic space. Here, we present an alterna-
tive vision of spatial dynamics for microbial communities based on
antagonistic interactions—one in which a large number of species
interact in continuous phenotypic space, are capable of rapid
mutation, and engage in both direct and higher-order interactions
mediated by production of and resistance to antibiotics. Focusing
on toxin production, vulnerability, and inhibition among species,
we observe highly divergent patterns of diversity and spatial com-
munity dynamics. We find that species interaction constraints
(rather than mobility) best predict spatiotemporal disturbance
regimes, whereas community formation time, mobility, and muta-
tion size best explain patterns of diversity. We also report an
intriguing relationship among community formation time, spatial
disturbance regimes, and diversity dynamics. This relationship,
which suggests that both higher-order interactions and rapid evo-
lution are critical for the origin and maintenance of microbial
diversity, has broad-ranging links to the maintenance of diversity
in other systems.

cyclic dominance j continuous species model j community assembly j
higher-order interactions j eco-evolutionary dynamics

Understanding the origin and maintenance of species diver-
sity is a long-standing biological question, and understand-

ing diversity through the lens of species interactions has been
deemed key (1–5). Natural communities possess high species
diversity, often much higher than expected from a “simple”
Darwinian interpretation of species interactions (6). Extraordi-
nary levels of diversity exist in several macroscopic systems
(e.g., coral reefs and tropical forests), but remarkable levels of
diversity also exist in microscopic systems among microbial
communities. High levels of diversity in microbial systems are
especially intriguing given the ubiquity of antagonistic interac-
tions among microbes, such as the production of antibiotics/tox-
ins against one another (7–11).

Theoretical and empirical studies have explored microbial
interactions with the goal of understanding the mechanisms of
species coexistence in hyper-diverse microbial systems. Major
examples include models with 1) mutualistic and cross-feeding
interactions (12), 2) resource-based competitive interactions (13),
3) a combination of mutualistic and competitive interactions
(13–16), 4) stochastic spatiotemporal processes (17, 18), and 5)
antagonistic interactions because of toxin production (6, 19, 20).

Previous studies focusing on the mutualistic, cross-feeding,
and resource-based competitive interactions (points 1 to 3
above) have demonstrated that positive interactions arising
from resource exchange can affect key criteria governing the
relationship between community diversity and stability. Exam-
ples of such criteria are that species richness is inversely related
to the strength of random pairwise interactions in stable com-
munities (2), and communities constructed with random pair-
wise interactions feature an upper bound on diversity (21–23).
Additional key findings from the resource-based framework are
that cooperative (metabolic) interactions can arise spontane-
ously in complex microbial communities (24) and that a cooper-
ative versus competitive dichotomy of microbial communities
may exist, depending on conditions (25). Sometimes, the inter-
actions arising from resource exchange allow systems to bypass
classic stability–diversity relationships (13, 14). Collectively,
these results have tremendously improved our understanding
of the factors influencing the development and persistence of
microbial community diversity. However, resource-based per-
spectives fail to account for a major class of well-known antago-
nistic interactions that exist among microbes, mediated through
bacterial toxins or antibiotics (also termed as bacteriocins and
related compounds). Toxin-based interactions are ubiquitous in
both natural microbial communities and controlled settings
(7–10), are found in all known phyla of bacteria, come in
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diverse forms, and play a central yet usually underappreciated
role in shaping microbial community structure (11).

Here, we focus on modeling microbial communities struc-
tured by antagonistic interactions among antibiotic/toxin-pro-
ducing, sensitive, and resistant species. Prior research in this
area has relied on the framework of cyclic dominance (also
termed nontransitive systems or rock-paper-scissors systems)
and related techniques in evolutionary game theory (7, 19, 20,
26–28). Early models using cyclic dominance explored commu-
nity stabilization, increased coexistence, and maintenance of
diversity in spatially structured environments (19, 26, 29, 30).
However, because these models focused on pairwise interac-
tions, they generally did not account for other kinds of interac-
tions that occur when intermixed species coexist at very small
spatial scales (6, 9, 10, 31–33). For example, real microbial spe-
cies are routinely involved in multispecies interaction systems
including so-called “higher-order interactions” in which the
interactions between two species can be modulated by other
species (34, 35). One simple example of such a behavior occurs
when an antibiotic produced by one species that inhibits the
growth of a competing (sensitive) species can be attenuated by
a third species that can degrade the antibiotic (20, 36, 37).
Here, the third species modulates the interaction between the
antibiotic-producing and antibiotic-sensitive species without
impacting either of them directly (34), thus creating a higher-
order interaction.

Models using cyclic dominance with higher-order interac-
tions for a small number of static (i.e., nonevolving) species
have demonstrated increased stability and diversity in both spa-
tially structured and well-mixed communities (6, 19, 20, 26, 29,
38), and findings from such models have been verified empiri-
cally (20). In contrast, horizontal gene transfer and mutation
blur the boundaries among microbial strains and species,
reflecting the continuous nature of phenotypes in microbial
assemblages. Scaling up analytic models of cyclic dominance to
species-rich scenarios is not possible because the incorporation
of more than a few discrete species makes the dynamics
extremely complex and hard to interpret using equation-based
approaches (20).

Despite its prominence in modeling studies, pure cyclic domi-
nance, in which there is a “closed” loop of dominance, is rare in
nature (39–42). In contrast, rapid evolution routinely leads to
model systems featuring semicyclic or noncyclic patterns in which
higher-order interactions, such as those involving antibiotic-
producing, sensitive, and resistant species, are common (35, 40).
Therefore, the notion of pure cyclic dominance used in earlier
studies of antagonistic microbial dynamics needs to be supple-
mented with evolving, “mixed” patterns of dominance in order to
better model microbial community interactions.

Prior studies of community-level eco-evolutionary dynamics,
which have explored the evolution of species interactions
abstractly or the specific traits that determine such interactions
(43–45), focused on niche-based food web models (i.e., those
involving resource consumption) rather than the nonresource-
based antagonistic interactions that characterize our work.
Even when studies did investigate antagonistic interactions and
resultant species dynamics, they emphasized very slow mutation
regimes and assumed a separation of ecological and evolution-
ary timescales (46–48). Such assumptions do not work very well
for microbial systems in which high mutation rates and exten-
sive horizontal gene transfers are commonplace, creating an
overlap of ecological and evolutionary timescales (47–50).
These eco-evolutionary feedbacks can affect the nature of trait
evolution (48) and even destabilize species interactions (51).
Recent models exploring these fast-evolving regimes in
antibiotic-mediated antagonistic communities have uncovered
mechanisms responsible for de novo assembly of diverse micro-
bial communities with higher-order interactions, but such

results are qualitatively different from what is possible when
mutation is rare (38, 47). What is needed, then, are studies of
community assembly in models in which a large number of spe-
cies interact in continuous phenotypic space, are capable of
rapid mutation, and engage in both direct and higher-order
interactions.

Here, we integrate three major themes concerning the
dynamics of microbial communities structured by antagonistic
interactions, specifically higher-order interactions, a continuous
view of microbial trait space, and an eco-evolutionary perspec-
tive on community assembly wherein evolution can happen rap-
idly. This integrated perspective allows us to explore mixed,
rather than strict, patterns of dominance among a large number
of biologically realistic species (hundreds to thousands; con-
strained only by computational power) to study microbial com-
munities of toxin/antibiotic-producing, sensitive, and resistant
species. Within an agent-based modeling framework, we use a
continuous species parametrization model with a wide range of
mutational sizes to explore spatiotemporal community assem-
bly, diversity, and stability (Fig. 1 and SI Appendix,
Supplemental Methods). Parameters are defined at a global level
and are divided into two categories: spatial (which define rules
and properties of spatial interactions) and species level (which
define the toxin interactions in the species space). The continu-
ous (phenotypic) species space generalizes intraspecies rela-
tionships of toxin production, vulnerability, and resistance that
arise randomly in populations through mutation and interspe-
cies relationships.

We find that species-level properties, such as constraints on
higher-order interactions among species, affect the spatial
structure of microbial dynamics more than spatial factors like
mobility and the effective distance over which individuals kill or
inhibit each other. In contrast, nonspatial metrics of community
diversity reflect complex interactions among species-level and
spatial parameters, especially mobility and mutation size, plus
community formation time (the time it takes to form a stable
community; see ref. 38). Our attention to community formation
time, which provides an opportunity for characterizing transient
dynamics rather than just focusing on stable states or the long-
term maintenance of diversity (15, 39, 47), is intentional. It
turns out that community formation time is a very good predic-
tor of diversity dynamics, but, this time, duration cannot be
estimated well from other parameters, pointing to emergent
complex properties of community assembly.

Results
After running 10.49 million simulations across a broad range of
parameter combinations, we observed strong differences in spa-
tial heterogeneity among runs. We classified this behavior into
three major categories depending only on the observed level of
spatial disturbance (low, medium, and high disturbance; Fig. 2
and SI Appendix, Supplemental Methods). These three catego-
ries featured both between- and within-category differences in
community spatiotemporal dynamics but exhibited similar dis-
turbance regimes within categories (Fig. 2). The continuous
trait axis and the mutable nature of traits together allow for the
simulation and visualization of hyper-diverse communities, con-
trasting with the small, fixed number of discrete, immutable
species in previous works (6, 20, 27).

The time that each simulation took to stabilize (i.e., to form
a stable community) is termed the community formation time
(CFT; SI Appendix, Supplemental Methods and ref. 38), and the
community that thus assembled is called an eco-evolutionary
stable community. The incorporation of mutations allows for
an exploration of community assembly, transient dynamics
(such as CFT and its relation to community properties over
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time), and complex spatial patterns that were not possible using
previous frameworks (Fig. 2) (20, 38).

To understand how parameters relate to the spatial disturbance
categories, we performed a random forest (RF) classification

using the six model parameters (kill radius, inhibit radius, growth
radius, kill margin, inhibit margin, and mutation size). The model
had an out-of-bag error (OOB) of 10.2% and identified the kill
margin and the inhibit margin as the best predictors of the

Kill radius

Inhibit 
radius

Growth 
radius

Each point on the species line 
de nes a distinct species. 
Each species has a speci c 

target species it can kill using 
its antibiotic, another whose 
antibiotic it can inhibit, and 
species with antibiotics to 

which it is vulnerable. Each 
species can also a ect species 
that are phenotypically near its 
targets for killing or inhibition; 

these impacts are mediated by 
the kill margin and inhibit 

margin parameters.

Kill margin de nes the set of 
species around the target species 

which can be killed by an 
antibiotic 

Inhibit margin 
de nes the set of 

species around the 
target species whose 

antibiotic can be 
inhibited

Kill radius de nes the 
distance on the lattice to 
which an individual can 
a ect another individual 

using its antibiotics

Inhibit radius de nes 
the distance on the 
lattice to which an 

individual can negate 
or inhibit the e ect of 
antibiotic of another 

individual

Growth radius de nes the 
distance on the lattice to 
which an individual can 

reproduce, by producing a 
copy of itself with certain 

possible mutations
Mutation can change one species 
into another through alteration of 
its properties (e.g. target species). 
The mutation size is controlled 

through the model.

Fig. 1. A conceptual representation of the model with descriptions of all the parameters involved. See SI Appendix, Supplemental Methods for details
about implementation.

Fig. 2. System dynamics in three example conditions of initial conditions pertaining to different regimes of spatial disturbance behavior (Low, Medium,
and High) (A–C). Snapshots of each simulation at different timesteps (10, 100, 250, and 500) are shown in columns 1 through 4. The respective species
dynamics (in which different colors represent different species “bins,” SI Appendix, Supplemental Methods) and diversity dynamics are represented in col-
umns 5 and 6, respectively. In columns 5 and 6, the time taken for the simulation to stabilize (i.e., the CFT) is denoted with a vertical red dotted line. The
community existing after the system has reached the CFT is termed an eco-evolutionary stable community.
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disturbance classification (Fig. 3A). Note that the kill margin and
the inhibit margin are global species-specific parameters.

The next most important parameter was the growth radius,
which is a proxy for mobility in our model (Fig. 1), followed by
mutation size, kill radius, and inhibit radius. These findings
showed that, except for the growth radius, other spatial param-
eters played a minor role in determining the structure of spatial
disturbance in the model systems.

To assess nonspatial metrics of community assembly, we per-
formed an RF regression on the Shannon diversity (SD) mean
(i.e., mean SD for the period from timestep = 0 to the CFT)
and the associated SD variance using the same six simulation
parameters (and an associated species bin size of 0.05 for dis-
cretizing species; for more details on species binning, see SI
Appendix, Supplemental Methods). That RF model explained
68.4% of the variance for the SD mean and 70.2% for the SD
variance. Mutation size and growth radius were the two best
predictors of both outcome variables (Fig. 3 B and C). Among
the less important parameters that affect SD mean and

variance, we note that the kill margin and the kill radius play a
larger role in determining SD mean, whereas inhibition pro-
cesses better predict SD variance (Fig. 3 B and C and SI
Appendix, Fig. S1).

From a naıve interpretation, one would expect mutation size
to be a good predictor of increasing diversity, as a higher muta-
tion size allows for the possibility of greater variation in micro-
bial phenotypic space, and, therefore, the binned SD would be
expected to be higher. However, after overlaying the plot of SD
mean versus variance with the respective mutation size values,
the picture is largely muddled (Fig. 3D). We saw even more
mixed results after overlaying the growth radius values on the
SD mean–variance plot (Fig. 3E). Overlaying other less impor-
tant model parameters on the SD mean–variance plot showed
no straightforward pattern at all (SI Appendix, Fig. S2).

Interestingly, upon overlaying the SD mean–variance plot
with the values of the respective CFTs, a stronger pattern
emerged. Note the clustering by color gradient of the points
because of CFT in SD mean–variance space (Fig. 3F).

A

D E F

B C

Fig. 3. Dependence of model dynamics on different parameters and CFT. A shows the variable importance score for all the parameters from an RF classi-
fication (with 10,000 trees) on the three categories of spatial disturbance (OOB = 10.2%). B and C denote the variable importance scores from RF regres-
sion models (with 10,000 trees) for SD mean and variance, respectively. D, E, and F show the SD mean–variance plots overlaid with mutation size, growth
radius, and CFT values of the respective simulations. For A–C, IncNodePurity (used in regression RFs) and MeanDecreaseGini (used in classification RFs)
refer to how well a parameter explains the prediction variable in question.
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Although CFT is not a parameter, it is an emergent outcome of
the community assembly process, and exploring it further pro-
vided insights into the diversity formation process itself.

To formally detect clusters in the SD mean–variance plot
with respect to CFT, we used k-means clustering optimized for
the number of clusters using multiple methods (SI Appendix,
Supplemental Methods) and identified four clusters (Fig. 4A and
SI Appendix, Fig. S3). These clusters pertain to 1) low SD mean
and SD variance, 2) high SD mean and SD variance, 3) high
SD mean and medium SD variance, and 4) high SD mean and
low SD variance in order of increasing values of CFT.

On performing RF regression predicting CFT using the six
parameters for the whole dataset, we found a low explanation
of variance (22.3%), with the kill parameters (kill radius and
kill margin) being the strongest predictors. However, upon per-
forming the analysis separately on the four CFT groups, a
stronger pattern emerged (SI Appendix, Fig. S4). For group 1,
the regression explained 30.2% of the variance with the growth
radius being the strongest predictor and other variables playing

a smaller part, but, nevertheless, the second and third best pre-
dictors are the kill parameters (SI Appendix, Fig. S3A). Group
2 regression explained 90.6% of the variance with the growth
radius as the strongest predictor again with other parameters
making almost no contributions (SI Appendix, Fig. S4B). For
groups 3 and 4, the regression explains 27.2 and 6.0% of the
variance, respectively, with the growth radius again having most
impact on prediction (SI Appendix, Fig. S4 C and D). This pat-
tern of results is unusual because the overall regression did not
show any strong dependence on growth radius (SI Appendix,
Fig. S4E).

To explore this dilemma further, we performed a partial rank
correlation coefficient (PRCC) analysis on this data pertaining
to CFT (Fig. 4B). We found that the sign and strength of the
dependence of growth radius for CFT groups vary widely;
hence, the RF regression on the whole dataset misses this sig-
nal. The growth radius had a strong positive PRCC with CFT
in group 1, a very strong negative PRCC with CFT in group 2,
a weakly positive PRCC in group 3, and a negligible one in
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Fig. 4. Effects of CFT on the spatial diversity dynamics. A depicts the four optimal clusters (groups) of SD mean–variance space found using k-means clus-
tering (SI Appendix, Fig. S3). B shows the results from the PRCC analyses of the four groups and the overall data. C shows the proportion of spatial distur-
bance regimes present in different groups. D and F show the distribution of the values of mean and variance of Shannon equitability and Simpson’s
index, respectively, for a smaller subsample of the runs with points colored by groups from A. E depicts the group-wise histogram of Shannon equitability,
and G depicts the histogram of Simpson’s index (for clarity, only the range between 0 and 0.04 is shown).
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group 4. Other parameters had relatively smaller PRCC values
as compared to the growth radius values for groups 1 and 2.
The kill radius and kill margin had overall higher PRCC values
than the other parameters and thus were identified by the RF
algorithm (Fig. 4B and SI Appendix, Fig. S4E). Moreover, on
calculating the PRCC of parameters on SD mean and SD vari-
ance, we found that the general values are similar for both SD
metrics, but what differentiates SD mean and SD variance val-
ues the most is the growth radius (SI Appendix, Fig. S1).

To link the dependence of diversity dynamics on CFT with
the spatial disturbance regimes, we compared what proportion
of the three spatial disturbance regimes (low, medium, and
high) fall into the four CFT-classified groups from SD
mean–variance space (Fig. 4C). We found that the low distur-
bance regime was most associated with group 1 and, to a much
lesser extent, group 4. The medium disturbance regime was pri-
marily dominated by group 2, with a small contribution from
group 3. Lastly, the high disturbance regime was dominated by
groups 3 and 4. These results can be interpreted in the light of
the Shannon equitability and Simpson’s index values for the
simulations (Fig. 4 D–G). Transitioning from groups 1 through
4 reveals an increase in mean Shannon’s equitability (Fig. 4 D
and E) and a decrease in mean Simpson’s index (Fig. 4 F and
G). One interpretation here is that higher equitability among
species (i.e., higher values of Shannon equitability), which can
occur when comparatively few species dominate the community
(i.e., lower Simpson’s index), results in simulations that take
longer to equilibrate (i.e., longer CFTs). For example, commu-
nities in group 4 take longer to equilibrate (longer CFTs)
because the species in those communities are more nearly equi-
table with comparatively fewer species whose interactions exer-
cise control over the community. In contrast, group 1 has low
equitability, implying a higher level of community dominance
by some players, and, therefore, those simulations settle down
quickly (low CFTs). Collectively, these results highlight some
important connections between temporal spatial patterns
and diversity dynamics, especially through the lens of transient
phenomena (52, 53).

All the results in this section were performed using a species
bin size (for the discretization of species for diversity metrics;
SI Appendix, Supplemental Methods) of 0.05, but we repeat the
analyses at three other reasonable bin sizes (0.03, 0.07, and
0.09; SI Appendix, Supplemental Methods) and find almost no
changes in the structure of the results and their interpretations
(SI Appendix, Fig. S5) in any of the cases. The space of SD
mean and variance shrinks in scale (SI Appendix, Fig. S5C) as
the bin sizes increase, which is expected because increasing bin
sizes results in fewer distinct species for analysis. However, the
categorization of spatial disturbance remains unaltered because
binning does not affect the actual dynamics of the model but
only how we quantify those dynamics through discretization.
Therefore, the dependence of CFT on parameters remained
unaltered (SI Appendix, Fig. S5D). The categorization of SD
mean and variance into groups, their relation to spatial distur-
bance regimes, and their dependence on parameters also varied
little (SI Appendix, Fig. S5 A, B, and E).

Discussion
A continuous species model with simple rules for interactions
based on antibiotic production, inhibition, and vulnerability can
produce a wide array of complex dynamics and generate hyper-
diverse, persistent communities. Despite enormous heterogene-
ity in behavior, certain general patterns in the assembly and
stability of these hypothetical microbial communities stand out.

The diversity patterns seen across time were expressed in the
form of mean SD and its associated variance. The phase space
of these two metrics shows a nonlinear relationship between

the metrics. RF regressions revealed that the mutation size and
the growth radius were the best predictors of mean SD diversity
and its variance (Fig. 3 B and C). In other words, the mutation
size and mobility of species jointly determine how diversity
dynamics play out in these theoretical communities.

Mobility controls diversity dynamics in numerous previous
studies (6, 20, 27, 28). In particular, small amounts of mobility
enhance diversity, whereas large amounts of mobility jeopar-
dize it (6, 28). Reduced mobility results in spatially structured
populations in which coexistence is easier to maintain as seen
in experimental works on competing Escherichia coli strains
(26, 54, 55). Recent work has shown that even in cases of high
mobility (i.e., well-mixed communities), one can observe coexis-
tence if higher-order interactions such as antibiotic production
and degradation are considered (20). This is the case for in vivo
experiments with bacterial colonies in the intestines of cocaged
mice; these systems can be considered locally well mixed and
have high levels of coexistence (30).

High mutation rates, and processes such as horizontal gene
transfer (HGT), have been long known to affect diversity in
experimental microbial populations, especially during the initial
phase of community assembly (56, 57). However, cyclic domi-
nance models have tended to overlook the role of mutations
and HGT in coexistence. Such studies have focused instead on
the detailed understanding of a small number of discrete spe-
cies under a low mutation regime (47). Recently, studies have
focused on understanding the effects of high mutational
regimes in community assembly, which better represent micro-
bial systems (38) and can generate frequent noncyclic interac-
tions (40). Our efforts have considered an array of mutational
regimes and characterized the importance of noncyclic patterns
of interactions in the assembly and maintenance of microbial
communities.

Mutation size and the growth radius (a proxy for mobility)
were good predictors of SD mean and SD variance but yielded
no discernable patterns in the phase space (Fig. 3 D and E). In
contrast, CFT partitioned the space cleanly into four regions
with distinct properties (Figs. 3F and 4A). Communities that
have low diversity (SD mean) and small fluctuations in diversity
(i.e., low SD variance) (group 1) assemble quickly, and mobility
enhances diversity and coexistence in this scenario (Fig. 4 A
and B). In contrast, mobility negatively affects diversity and
coexistence for communities with high diversity (SD mean) and
larger fluctuations (high SD variance) (group 2), and these
communities assemble slower than group 1. For communities
that take a long time to stabilize (groups 3 and 4), diversity is
generally high (SD mean), but it fluctuates less, and mobility
has a negligible effect.

Mutation sizes were weakly correlated with CFT, as observed
previously (38), but exhibited substantial variation in trends
due to interactions with other model parameters. For low SD
mean and variance (group 1) and high SD mean and variance
(group 2), mutation size positively affects CFT (Fig. 4B). This
implies that communities with larger mutations take longer to
stabilize but only when the diversity outcome corresponds to
these two groups (Fig. 4B). If the SD mean is high but the SD
variance is low, mutation affects CFT negatively (i.e., higher
mutation helps communities converge faster) (Fig. 4B).

Community spatial structure is also important for coexis-
tence (28). However, rather than focusing on the final spatial
structure, we examined the degree of spatial disturbance that
occurred throughout the assembly process, which provides
insight into the extent of mixing/migration that might occur in
these communities. The categorization of spatial disturbance
regimes was best predicted by species-level parameters (the kill
margin and the inhibit margin) rather than by other spatial
parameters in our model. This is somewhat surprising, but
higher-order interactions are known to influence spatial
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patterns of coexistence (20). Importantly, we found a strong
correspondence between the regimes of spatial disturbance and
the groups produced by CFTs. The communities that formed
quickly (group 1) tended to have low spatial disturbance (Fig.
4C). Communities that took more time to stabilize and ended
up with high diversity through large overall diversity fluctua-
tions (high SD mean and SD variance, group 2) have primarily
a medium level of spatial disturbance. The communities that
took longest to stabilize were characterized by high diversity
(SD mean) and lower average fluctuations in diversity (SD vari-
ance) (groups 3 and 4) but have larger spatial disturbances.

All these observations point toward a complex interplay of
mutation and mobility, which affects the assembly time of a
community (CFT), and, in turn, controls the diversity of the
assembled community. Although mobility (or, more broadly,
dispersal) is known to enhance diversity in ecological communi-
ties in both theoretical (58, 59) and experimental (60, 61) set-
tings, especially at local scales (62), we found that mobility is
linked to diversity only in communities with short and interme-
diate CFT (i.e., those that equilibrated relatively quickly).
Mobility enhances diversity and coexistence in group 1 in which
a subset of dominant (high relative abundance) species appear
to set community dynamics. In this capacity, dispersal would
appear to act in the classic disruptive fashion, permitting coexis-
tence where it would otherwise not occur (63, 64). In contrast,
in group 2 in which communities are characterized by both high
diversity and high fluctuations, mobility has a negative effect on
diversity and coexistence in keeping with the capacity for dis-
persal to homogenize otherwise diverse systems (65, 66). This
dichotomy, together with the absence of an important role for
mobility in group 4 in which communities are characterized by
long-term nonequilibrial dynamics, offers an intriguing target
for future integrative research.

The mechanistic light shed upon these patterns by studying
the Shannon equitability index (which measures the distribution
of relative abundance of species in a community) and Simp-
son’s index (which measures the distribution of the
“dominance” of species in a community) is also worth mention-
ing. The more equitable a community (higher Shannon equita-
bility), the lower the chance of a particular species dominating
the interactions (lower value of Simpson’s index) and, there-
fore, the longer it takes for the community dynamics to stabilize
(longer CFTs) as seen in the behavior of the four groups (Fig. 4
D–G). The importance of species dominance to the mainte-
nance of diversity in this model, which is structured via
nonresource-based antagonistic interactions, is intriguingly sim-
ilar to the critical role that species dominance plays in both real
and theoretical communities structured via resource-based
competition (67–70).

Collectively, these results demonstrate the rich spatiotempo-
ral dynamics that are possible when large numbers of microbial
species with limited but heterogeneous rules for aggressive,
inhibitory, and vulnerable interactions live in a common space.
Although these findings are focused primarily on nonresource-
based antagonistic interactions between microbes, such dynam-
ics may also be relevant for coral communities and other
spatially structured systems featuring diverse types of interspe-
cific interactions (71–73).

Our results also point toward the important yet often-
overlooked role that transient dynamics play in the behavior
and structure of ecological systems (53). Usually, models of
ecological dynamics use asymptotically stable behavior or val-
ues at stability to explore patterns in the system (53). Admit-
tedly, we have followed this approach in our exploration of how
different parameters affect microbial communities’ long-run
behavior (i.e., after CFT is reached). In addition, however, we
also focused on categorizing spatiotemporal disturbance
regimes and connecting these transient phenomena to system

diversity. Great opportunities exist for future work investigating
temporal diversity dynamics and how they relate to spatial het-
erogeneity and system processes. Such investigations can shed
light on how transient microbial dynamics and assembly history
affects the species diversity seen in microbial communities (74).

Even though our model introduced the use of continuous
axes for species traits and interactions, we note that the post
hoc binning procedure creates a bridge back to the matrix/net-
work framework that has characterized community ecology
studies for decades (2, 4, 13, 14, 21, 23). In this case, however,
a multilayered network perspective would be necessary to
accommodate the different kinds of antibiotic-mediated inter-
actions (production, inhibition, and vulnerability). Future work
could also incorporate other important forms of microbial
interactions (e.g., mutualism, cross-feeding, resource competi-
tion) into the continuous species framework we have devel-
oped. Such investigations would allow exploration of how the
interplay between resource-based and antagonistic interactions
jointly shape diversity dynamics. However, to do this, we need
to understand the interrelationships between resource-based
and antagonistic interactions across species (11, 75, 76). Such
investigations could be highly beneficial by providing a more
complete view of how higher-order, intransitive interactions
shape community assembly, stability, and diversity in natural
systems.

Model
Model Description. Here, we outline an algorithmic presentation
of the model. The parameters of the model and their corre-
sponding symbols are detailed in Table 1. The simulation takes
place on a 200 × 200 square lattice with toroidal boundary con-
ditions. This size of this simulation was a tradeoff between
being small enough for computational feasibility and large
enough to allow interesting dynamics. We found 200 × 200 to
be a reasonable range for our computation budget. The model
of microbial dynamics on this simulation is split into two parts:
the microbial (phenotypic) space and the environment space
(Fig. 1). This division of the model is purely for convenience
and can easily be reinterpreted when the microbes and the
environment are not differentiated. For the microbial pheno-
typic space, each cell in the lattice represents a single “variant”
of microbe and is parameterized by a stateful three-dimensional

species vector R3ε fØ, ½0, 1�3g, in which Ø represents a cell that
is unoccupied, and [0,1] is a bounded real value that defines the
parameters of any occupants. The three elements of the species
vector are the species’ vulnerability (Sv), the species’ inhibition
value (Si), and the species’ antibiotic production value (Sa). In
the microbial space, neighboring cells do not interact with each
other directly but instead affect the environment space, which
then affects the microbial space. The environment space is
stateless and instead always resets to the most recent effects
from the microbial space, or, in other words, no antibiotics
remain in the environment between timesteps. This can just be
interpreted as diffusion on a less granular timescale. A cell in
the environment space is parameterized by a single scalar value

R1ε fØ, ½0, 1�g, which represents the antibiotic occupying that
cell space (Ca) or indicates that the cell contains no antibiotics,
represented by Ø.

Note that our model involves only a phenotypic space for
microbial traits. There is no underlying genotypic space, and
our phenotypic microbial space abstracts away genotypic
changes into expressed phenotypic traits. Doing this in a mean-
ingful way is a very difficult problem, and this is especially true
for bacterial toxin-based antagonisms in which the basic nature
of the interactions remains at a preliminary level of research
and discovery (11, 76–84).
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At fixed-interval time steps, the state of the microbial space
is updated synchronously in four stages. First, an antibiotic
release step occurs, which simulates the process of microbes
diffusing antibiotics into the environment. Here, each cell’s
antibiotic value (Ca) in the environment space is randomly
assigned a species’ antibiotic value (Sa) of one other cell from
the microbial space that is within the antibiotic radius (Kr).
Note that rewrites of the environment cell are possible during
this step, so the order of cell updates is randomized. Second,
an inhibition step occurs which handles any inhibiting effects of
the antibiotics in the environment space. In this step, for every
cell in the microbe space, an inhibition radius (Ir) around it is
checked for other cells in the environment space which contain
an antibiotic value (Ca) such that the inhibition value is within
a marginal range of the antibiotic value, Ivεi ≤ Ca ≤ Iv þ εi. If
this is the case, the cell in the environment space antibiotic
value (Ca) is made empty, Ø. Third, a kill step occurs when we
iterate over every cell, comparing the antibiotic value (Ca) in
the environment space and the individual vulnerability value
(Sv) in the microbial space. If the individual vulnerability value
(Sv) is within the range of the antibiotic value ðCa),
Ca � εa ≤ Sv ≤ Ca þ εa, then the individual is killed and the cell
in the microbial space is made empty, Ø. Fourth and last, a
growth step occurs when, for every cell in the microbial space
that it is not empty, another cell in the microbial space that is
within that cell’s growth radius (Gr) is randomly selected. If the
selected cell is empty, the species vector of the growing microbe
cell is copied to the selected cell. The copied parameters are
also further modified according to a mutation size (μ). This
modification is a noncorrelated additive perturbation of the
species’ vector by a uniform value sampled from Uð�μ, μÞ, and
the value is restricted in the range [0,1] by adding or subtracting
1 if it is outside this range. This ensures that all species have
equal likelihood of interactions with other species by putting
the species parameters on a three-dimensional toroid. From a
theoretical perspective, this growth can be seen as a model of
growth probability in which the probability that an individual
will reproduce is equal to EðCÞ=FðCÞ in which EðCÞ is the num-
ber of empty cells within radius Gr of the current C, and

FðCÞ ¼ floorð2π G2
r Þ is equal to the total number of cells within

radius Gr of cell C.

Model Assumptions. There are three major assumptions/rules
underlying our model implementation. The first is that the
model only attends to toxin-based antagonistic interactions. Lit-
tle evidence is available to characterize the relationship
between antagonistic interactions and other forms of microbial
interactions (e.g., mutualisms and resource competition) across
species (11, 77). Therefore, our aim here was to build a “base”
model that allows for the investigation of antagonistic interac-
tions with more nuance and across more dimensions of com-
plexity than was possible in previous work on the subject. The
interplay between antagonistic interactions and other types of
microbial interactions may be explored in future work as more
information becomes available.

The second assumption pertains to the structure of the
microbial trait space. Our model represents species traits of
“antibiotic production,” “vulnerability,” and “inhibition” as
continuous values on a real number line. A chief advantage of
this approach is that a continuous trait space makes it easy to
introduce mutations that preserve some history of the evolu-
tionary process. Though critical to representations of species
evolution, such mutations are difficult to combine with graph-
based models of species interactions because it is unclear how
mutation would update the graph edges (20). We define the
presence or absence of a species interaction using a simple
thresholded Euclidean distance (termed a “margin” in our
model). In a multispecies context, the larger the margin, the
greater the connectivity of the graph of interacting species, and,
likewise, the smaller the margin, the sparser the graph.

These distance-based margins assume that the trait space is
a uniform, three-dimensional toroid, which has implications for
how we deal with changes in trait space. In particular, changing
the value of one trait in one species and a second trait in
another species by the same value d will result in the interacting
edge between those two species remaining unchanged in the
graph of interacting species. For example, if species A is vulner-
able to species B’s antibiotic and the trait values of vulnerability

Table 1. Brief description of model parameters

Parameter Type Definition

Species antibiotic production value (Sa) Species-level, Species-specific Defines what species are vulnerable to the
antibiotic that this individual produces

Species vulnerability value (Sv) Species-level, Species-specific Defines what antibiotics (and hence species)
this individual is vulnerable to

Species inhibition value (Si) Species-level, Species-specific Defines the species whose antibiotics this
individual can inhibit

Kill radius (Kr) Spatial, Global Maximum spatial distance of diffusion of the
antibiotics produced by an individual

Inhibit radius (Ir) Spatial, Global Maximum spatial distance of diffusion of the
inhibitors to antibiotics of produced by an

individual
Growth radius (Gr) Spatial, Global Maximum spatial distance at which an

individual can reproduce by producing a
copy of itself with certain possible mutations

Kill margin (εk) Species-level, Global The total span centered around the specified
species antibiotic production value (Sa),

which can be affected/killed by the antibiotic
of a given species

Inhibit margin (εk) Species-level, Global The total span centered around the specified
species inhibition value (Si), whose antibiotic

can be inhibited by a given species
Mutation size (μ) Species-level, Global Maximum value by which the species-specific

parameters can be additively altered during
reproduction/copying
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(Sv) in A and antibiotic production (Sa) in B each mutate by a
value d, species A will remain vulnerable to species B’s antibi-
otic. This approach, which is mathematically simple compared
to alternative representations of trait evolution (SI Appendix,
Supplemental Methods and Fig. S6), is a reasonable starting
point because the true nature of the relationship between anti-
biotic production and vulnerability across microbial species is
very much unknown (10, 11, 76–84).

In real species, a small genotypic change may or may not cor-
respond to a small change in phenotypic space, and some phe-
notypes can be independently reached via alternative sets of
genotypic mutational processes (including HGTs). To accom-
modate such phenomena, models of microbial diversity and/or
mutational processes often adopt an explicitly phenotypic
modeling approach (20, 32). The phenotypic structure of our
model allows for such complexity—including the possibility of
both small and large phenotypic changes in a single generation,
and no specific correlation exists between distance on the phe-
notypic space along any axis and the (implicit, unmodeled)
genetic change from which it results. Modeled in this fashion,
phenotypic changes could plausibly represent the outcome of a
diverse set of microbial mutational processes, given that the
details of such processes affecting antagonistic microbial inter-
actions are still in their infancy (for details see refs. 10, 11, and
76 to 84). We emphasize that we do not model mutations at a
genotype level because HGT, which plays a major role in trait
evolution in microbes, especially bacteriocins (10, 11, 77), is not
easily amenable to such modeling.

For our third assumption, we stipulate that, within a run of
our model, mutations only affect species identity (i.e., parame-
ters Sa, Sv, Si within the continuous trait space). Other param-
eters (i.e., those governing spatial aspects of interactions, the
species breadth [“margin”] of interactions, and mutation size;
Table 1) remain constant in a given run. We make this assump-
tion because antagonistic spatial interactions between bacteria
(which we emulate via parameters for the kill radius and the
inhibit radius) are typically affected by diffusion properties of
the toxin compounds, which have similar physical properties
within a given class of molecules but can vary across classes of
toxins (11). Hence, for computational purposes, we keep the
radius parameters constant over a run. Likewise, we keep
the margin parameters constant over a run because they govern
the generality of the interactions within the fixed kill and inhibit
radii. We keep the maximum mutation size constant within
runs to facilitate comparisons across different regimes of trait
alteration.

Model Implementation. We implemented the simulation in Cþþ
using the SFML (Simple and Fast Multimedia Library) graphics
library for rendering. It is possible to parallelize the updating of
substeps of the cells due to the synchronous nature of the
model, but we chose to use a simpler sequential algorithm that
looped through each cell one at a time. We did, however, paral-
lelize the running of multiple simulations when sweeping
parameter spaces. This allowed us to reduce the total computa-
tion time required by two orders of magnitude. Each simulation
was run for 2,000 timesteps or until stability/stagnation (also
termed the CFT). Stagnation/stability was determined by com-
paring the state of all cells between two consecutive time steps,
and if it remained unchanged for a total of five time steps, the
simulation was terminated. This helped to quickly remove a
large number of simulations that terminated early because of poor
parameter settings. Because the simulation was so large, collecting
per-cell data across many parameters was not practical. Alterna-
tively, we chose to compute population-level statistics online dur-
ing each simulation using the SD mean and variance (over time),
and then, from the analysis of this lower-granularity data, we
selected individual parameter settings to explore population-level

statistics. Furthermore, we also built a qualitative application to
allow quick classification of simulations, assigning them to a class
based on their spatial heterogeneity/disturbance dynamics. Simu-
lations were assigned to one of three classes according to how the
spatial dynamics evolved (Fig. 2).

To track population-level statistics, it was necessary to discre-
tize the continuous species space. l-discretization (or l-binning)
assigned individuals to the same species if the three parameters
of those individuals had the same integer values after perform-
ing a binning transformation on them like so: bSvl c, bSil c, andbSal c. When recording the population-level data, we stored the
number of individuals per species every time step using a stan-
dard 0.05 discretization. Although the choice of 0.05 discretiza-
tion is arbitrary, we emphasize that the binning only affects the
resolution of the statistical analysis and has no influence on the
dynamics of the model itself. We found 0.05 to be a small
enough value for which the simulation statistics did not blend
away but not too small such that there were no measurable sta-
tistics (see Data Analysis). For comparison, we repeated the
complete set of analyses on system properties at three other
reasonable species bin sizes (0.03, 0.07, and 0.09) (see SI
Appendix, Fig. S5 for more details).

For every parameter setting, we repeated the simulation
10 times, seeding the pseudorandom number generator
with a unique value for each repetition. Every simulation
began by assigning every cell vector the all-empty state
ð�1, � 1, � 1,�1, � 1Þ except the center cell, which is assigned
a random value in the range ½�1, 1� for the first three elements
of its vector. This initial cell represented a randomly created
individual. One potential issue was that if the center cell was
assigned a random value such that it was vulnerable to its own
antibiotic, it would kill itself, and the simulation would termi-
nate immediately. Although this was possible, it was rarely the
case, and it did not significantly affect our results because of
our use of multiple runs per parameter setting.

Data Analysis. We ran a total of 10.49 million runs of our model
with various parameter initializations and performed data anal-
ysis with Python 3.7 and the R statistical language. For these
runs, we obtained a manual classification of the size of the spa-
tial disturbance (low, medium, and high). The simulations
which stabilized quickly (fewer than 20 time steps) with no fur-
ther changes in spatial patterns and the ones that had (more or
less) stabilized by 20 time steps, except for a small number of
point fluctuations in the grid, were categorized as the “low dis-
turbance” regime (Fig. 2 A, 1). The simulations which had not
stabilized after 20 time steps but exhibited small waves of diver-
sity replacements which diminished over time were termed as
“medium” disturbance. All medium disturbance simulations
stabilized before 500 time steps (Fig. 2 B, 1). The remaining
simulations did not stabilize even after 500 time steps nor had a
reduced amplitude of waves of diversity replacements; these
were categorized as the “high” spatial disturbance regime
(Fig. 2 C, 1).

We also calculated the mean SD, Shannon equitability, and
Simpson’s index over time (until a community stabilized, i.e.,
reached the CFT) and the variance in each of the three metrics
over the same time period. The disturbance classification, SD
mean, and SD variance were our three outcomes of interest
and are the focus of the results. We later connect the results to
the values of Shannon equitability and Simpson’s index.

To understand how parameters affect diversity dynamics, we
determined the PRCC of various parameters with respect to
the three outcomes of interest using the sensitivity package (85)
in R. We also performed RF regressions and classification using
the randomForest package (82) in R to identify which parame-
ters were the strongest predictors of the patterns in predicting
the outcomes of interest. We optimized the number of
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parameters available for splitting at each tree node in the RF
using OOB (86). Please note that the overlay figures (Fig. 3
D–F and SI Appendix, Fig. S2) have been plotted with pruned
samples for better visualization.

For clustering values on the SD mean versus SD variance
space with respect to CFT, we used k-means clustering in R and
optimized for the number of clusters using the elbow method,
the D index, and the Hubert indices (which all yielded similar
results) using the package NbClust (87). For each obtained clus-
ter in the SD space, we performed an RF analysis to calculate
differences in variable importance scores across these clusters.
For each cluster, we also performed PRCC and RF analyses in

order to delineate the effects that individual parameters had on
the different subsets of the diversity space.

Data Availability. All code and required data to replicate our results are avail-
able in the following repository: https://github.com/levifussell/MicroEvo.
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